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Target detection in side-scan sonar images under complex environments is
challenging due to noisy backgrounds, occlusion, and blurred target boundaries,
which reduce the accuracy and robustness of traditional methods. To address
these issues, we propose RCDI-YOLO, an enhanced YOLOv8-based detection
framework that integrates rotation-aware feature extraction, multi-scale feature
integration, and implicit feature representations for noise suppression. In
addition, a diversified complex environment side-scan sonar dataset (CESSSD)
is constructed to mitigate data scarcity and imbalance. Experimental results
demonstrate that RCDI-YOLO achieves a detection accuracy of 95.3% and a
mean Average Precision of 95.7%, outperforming the original YOLOV8 by 2.5%
and 2.0%, respectively. These findings confirm that RCDI-YOLO significantly
improves detection performance in complex underwater environments,
particularly in scenarios with occlusion, cluttered backgrounds, and noise
interference, highlighting its potential for underwater detection and search-
and-rescue applications.

side-scan sonar images, complex underwater environments, data augmentation, target
detection, YOLOvVS

1 Introduction

Side-scan sonar technology plays an important role in underwater detection and
imaging and is widely used in target detection, marine resource exploration, environmental
monitoring, engineering safety, and underwater archaeology. By emitting and receiving
sound waves, a side-scan sonar generates high-resolution images to analyze the seabed
environment. However, complex and dynamic underwater environments, such as target
occlusion, different seabed textures, and noise interference, significantly increase detection
difficulty. Traditional side-scan sonar target-detection methods rely mainly on techniques
such as background suppression through filtering, local contrast analysis, edge detection,
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and manual feature extraction (Bae and Sohng, 2010; Li et al., 20165
Wu etal, 2017; Yang et al,, 2022). Although effective under specific
conditions, these methods have limitations in complex
environments: poor robustness against noise, susceptibility to
false detections caused by complex reflections and interference,
reliance on prior knowledge and manual features, difficulty in
adapting to variations in target size, shape, and orientation, and
insufficient multi-scale target handling, leading to low detection
accuracy. These problems render traditional methods unsuitable for
modern high-precision underwater target detection.

In order to obtain high-resolution side-scan sonar images
(Zhang and Yang, 2019) under complex underwater conditions,
many researchers have explored advanced signal processing and
imaging algorithms based on synthetic aperture sonar (SAS),
particularly multi-receiver SAS systems. A series of works have
proposed improved back-projection techniques (Wang et al., 2015;
Zhang and Yang, 2022a), fast imaging algorithms (Zhang et al,
2018), and extended chirp scaling methods (Zhang et al.,, 2022c),
enabling clearer reconstruction in noisy and nonuniform sampling
environments (Zhang et al., 2024). These methods significantly
improve the clarity and contrast of underwater acoustic images,
forming the basis for modern sonar-based target detection tasks.
Furthermore, Chebyshev-polynomial-based frequency-domain SAS
(Zhang et al., 2022d), dual-interpolator back-projection (Zhang and
Yang, 2022a), and experimental validations on novel sub-bottom
profilers (Tan et al., 2019; Zhang et al., 2022b) have demonstrated
enhanced robustness in real-world seabed imaging. Although such
imaging algorithms improve the quality of acoustic imagery,
challenges such as target occlusion, textured seabeds, and acoustic
noise remain major obstacles for automatic detection.

Over the years, various underwater target-recognition
algorithms based on sonar images have been proposed. Common
feature extraction methods include traditional signal processing
techniques such as the short-time Fourier transform (STFT)
(Benesty and Cohen, 2018), Hilbert-Huang transform (Li et al,
2009), and wavelet transform (Tian et al., 2020), which effectively
extract underwater acoustic signal features. Additionally, target-
detection algorithms such as the Constant False Alarm Rate (CFAR)
(Katyayani et al, 2023), Cell Average CFAR (CA-CFAR) (Aalo
et al, 2015), and Accumulated Cell Average CFAR (ACA-CFAR)
(Tanuja, 2016) are widely used in underwater target detection.
These algorithms compare the threshold set with a grayscale sonar
image to detect and identify targets. Myers and Fawcett (2010) used
template matching to compare target features generated by acoustic
models with actual sonar images and combined echo and projection
shadows for classification, demonstrating that this method
outperformed traditional normalized cross-correlation methods.
Williams (2015) proposed an unsupervised algorithm for fast
underwater target detection in synthetic aperture sonar (SAS)
images, requiring no training data, adapting to environmental
features, and verified its performance under various geographic
conditions through large-scale experiments. Dura et al. (2005)
proposed an adaptive algorithm for detecting and classifying side-
scan sonar mine targets, training with a small number of labeled
samples, adapting to environmental changes, and optimizing
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detection performance. Acosta and Villar (2015) modeled seabed
reverberation as a Gaussian distribution and used CFAR detection
to identify sunken ships. However, as the resolution of acoustic
images increases, the Gaussian distribution gradually becomes
ineffective in describing the statistical characteristics of the
seabed, prompting researchers to introduce non-Gaussian
distribution models such as Weibull, Gamma, K-distribution, and
o-stable distributions to improve underwater target detection
(Klausner and Azimi-Sadjadi, 2015). Abu and Diamant (2019)
combined the B-distribution to describe seabed textures and
target highlights while using the Gaussian distribution to model
target shadows, employing likelihood ratio tests for target
judgment. Overall, traditional side-scan sonar target-detection
methods have limitations in terms of noise interference, target
occlusion, and multi-scale detection. To address these challenges,
researchers have proposed advanced feature extraction,
unsupervised learning, data-adaptive algorithms, and non-
Gaussian distribution models, which significantly improve
underwater target detection accuracy and robustness, thus
advancing modern underwater detection technology.

Deep learning technologies have advanced significantly in
computer vision in recent years, especially convolutional neural
network (CNN)-based target-detection algorithms, which are now
being progressively used in underwater image processing. CNNs
enhance robustness and accuracy through automatic feature
extraction, allowing adaptation to multi-scale, multi-angle targets
and lighting changes. Traditional methods perform poorly due to
the complexity of the underwater environment, which includes
target occlusion, changes in seabed texture, and sonar noise. R-
CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-
CNN (Ren et al., 2017), and Mask R-CNN (He et al., 2015) are two-
stage detection algorithms that work well in complex situations but
are unsuitable for real-time applications due to their high
computational load and slow processing speed. On the other
hand, one-stage detection algorithms that balance speed and
accuracy, including SSD (Liu et al., 2016), RetinaNet (Lin et al.,
2017b), and YOLO (Redmon et al., 2016), are more suited for real-
time underwater surveillance applications. Additionally, deep
learning has been used to improve subsequent processing by
applying enhancement techniques like image denoising and
dehazing, which make images sharper. The multi-scale target-
detection performance is further improved with multi-scale fusion
structures, like the feature pyramid network (FPN) (Lin et al,
2017a). All things considered, deep learning has a lot of promise
for processing underwater images, increasing the speed and
accuracy of detection, and offering fresh solutions to problems
posed by the underwater environment. In order to address the
practical needs of highway autonomous driving, Wang et al. (2024)
introduced the YOLOV8-QSD network, which provides efficient
and precise small-target identification in driving scenarios with an
accuracy of 64.5% and a computational burden of just 7.1 GFLOPs.
Liangjun et al. (2024) introduced the MSFA-YOLO method, which
demonstrated notable performance improvements over YOLOv8n
and greatly increased the SAR image ship detection accuracy,
particularly for low-quality photos and ships of various sizes. By
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adding receptive field attention convolution, SPPF-LSKA modules,
and dynamic detection heads, Zhao et al. (2024) developed the
YOLO-RLDW algorithm, which increases the accuracy of small
object identification, background interference suppression, and
multi-scale object localization. The algorithm performs better
than alternative approaches on a variety of datasets, according to
the testing results. Furthermore, Aboah et al. (2023) created a real-
time multiclass helmet violation detection system based on
YOLOVS8 that showed great robustness and usefulness in real-
world applications while achieving effective detection with few-
shot data.

Although deep learning algorithms have shown great potential
for underwater target detection, in side-scan sonar images, targets
often suffer from low contrast, complex backgrounds, and
occlusions, which cause classical deep learning algorithms such as
YOLO to perform poorly in underwater detection. To address these
issues, this paper proposes a target-detection method for complex
environment side-scan sonar images based on an improved
YOLOV8 called RCDI-YOLO. The core idea of this paper is to
improve the structure of the YOLOv8 model to enhance its
adaptability to multi-scale targets and complex backgrounds and
to tackle the detection challenges posed by target occlusion and
high-noise environments in complex seabed conditions. Several
core improvements have been proposed to adapt the model to the
complex conditions of sonar images.

1. To address the issues of multi-scale targets, complex
backgrounds, and occlusion in the marine environment,
this paper uses the SimpleCopy-Paste data augmentation
method to construct a complex environment side-scan
sonar dataset (CESSSD). This dataset addresses the
problems of uneven target distribution and insufficient
samples, enhances the data richness, and improves the
robustness and recognition ability of the model in
complex scenarios.

2. To tackle the issues of low-contrast target separation and
noise interference in the side-scan sonar images, the C2f
module of YOLOVS is replaced with the LANConvNeXtv2
module (R in RCDI), which enhances multi-scale feature
extraction and implements the rotating convolution
concept in practice, thereby providing stronger
perception capabilities for small- and low-contrast targets.

3. To overcome the limitations of fixed sampling methods in
traditional YOLO algorithms when handling multi-scale
targets, this paper introduces a dynamic sampling
mechanism, Dysample (D in RCDI), which realizes
dilated integration by refining multi-scale sampling to
improve feature extraction and robustness to object size
variations, thus enhancing detection performance in
complex backgrounds.

4. To address target occlusion and noise interference, this
paper introduces the ImplicitHead module (I in RCDI) in
the probe section. This lightweight head module increases
detection robustness and accuracy while lowering false
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positives and missed detections, complementing the RC
and D modules without adding excessive
computational cost.

In order to increase the detection effectiveness and resilience of
the model, this work suggests a number of enhancements for sonar-
image target detection in complicated situations. The model’s
ability to adapt to complicated and multi-scale settings is
enhanced by building a diverse CESSSD dataset and applying the
SimpleCopy-Paste data augmentation method. The Dysample
method improves feature extraction and target-focusing
capabilities, while the LANConvNeXtv2 module improves target
feature extraction. The ImplicitHead module decreases missed
detections and false positives while increasing detection accuracy.
These enhancements demonstrate RCDI-YOLO’s promise in
underwater detection and search-and-rescue missions by enabling
it to perform very well in target occlusion, complicated
backgrounds, and noise interference.

2 Dataset and preprocessing

To effectively address the various challenges encountered in
side-scan sonar image target detection, this paper specifically
focuses on target detection in complex environments. Through
SimpleCopy-Paste, the original aircraft and shipwreck side-scan
sonar datasets are augmented to generate a complex seabed side-
scan sonar target dataset, and several data augmentation techniques
are employed. These augmentation techniques aim to enhance the
diversity of training samples, enabling the model to demonstrate
stronger robustness and generalization when facing real-world
issues such as noise interference, low contrast, and target
occlusion. The data augmentation methods primarily include
Cutout, Mosaic, and noise addition. These techniques help build a
more diversified side-scan sonar image dataset that simulates
complex underwater environments. The following section
provides a detailed introduction to the principles, applications,
and improvements to model performance achieved by
these methods.

The original aircraft and shipwreck side-scan sonar target
images, along with side-scan sonar data from different seabed
textures, are sourced from the SeabedObjects-KLSG dataset (Liu
et al., 2022), which was constructed with support from sonar
equipment suppliers such as Lcocean, Hydro-tech Marine, Klein
Marine, Tritech, and EdgeTech. This dataset contains 578 seabed
sonar images, 385 shipwreck images, and 62 aircraft sonar images,
as shown in Figure 1.

SimpleCopy-Paste (Ghiasi et al., 2021) is a straightforward and
effective data augmentation method that primarily generates new
data samples by extracting target objects from source images and
pasting them into other target images. As shown in Figure 2, this
data augmentation method is particularly useful for simulating
different complex backgrounds in side-scan sonar images, helping
the model adapt to variations in target objects across different
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Seafloor-2

FIGURE 1

Seafloor-3

Seafloor-4 Seafloor-5 Seafloor-6

Aircraft, shipwreck, and seabed side-scan sonar data examples: (a) aircraft side-scan sonar data (b) shipwreck side-scan sonar data (c) seabed

side-scan sonar data.

background environments. This increases the diversity of the
dataset and enhances the robustness of the model when facing
background changes, noise interference, and target occlusion. The
core operation can be described by the following
mathematical formula:

The target object is extracted from the source image using a
mask, as shown in the formula below:

Iobject(x’y) = Isource(x>y) : Mmask(x)y) (1)

In the formula (Equation 1), Iource represents the source image,
which contains the target object to be extracted; Mg denotes the
binary mask of the target in the source image; and Iopje denotes the
extracted object image obtained by applying M, to Isource. For
pixel coordinates (x, y), if the pixel belongs to the target, then Mg
(%, y) = 1; otherwise, M4 (%, y) = 0. Accordingly, Ijpject (X, y) retains
only the pixels belonging to the target, with other pixels set to 0.

The target is then pasted into the target image I,rger. T0 ensure
that the background of the target image remains unchanged in the
regions where the target is not pasted, and to replace the specified
region with the target, the following formula is used for the
composition:

Liew(x,y) = Itarget(x>y) (1= Mpaek (%, ) + Iobject(x)y) (2)

In the formula (Equation 2), I, denotes the composed image
obtained after placing the target into Largets ltarget (5 ¥) * (1 - Mipask
(x, y)) retains the background region of the target image where
target is absent; and Iopjece (X, y) places the target in the
corresponding region.

Frontiers in Marine Science

This method ensures seamless integration of the target object
and background, generating a new image that retains the
background information while introducing the target object.

The final augmented image Iy, is generated using the following
formula (Equation 3):

Iﬂnal(xry) = Itarget(x>y) (- Mmask(x»y)) + (3)
Isource(x’ )’) ‘ Mmask(x’y) + N(X»y)

The final augmented image, If,,, is generated using the
following formula.Through the SimpleCopy-Paste augmentation
technique, the diversity of the dataset was significantly improved,
especially when simulating complex seabed environments. This
enhanced the robustness of the model in scenarios involving
noise interference, background changes, and partial occlusion of
target objects. This method expands the number of data samples
and effectively improves the generalization ability of the model
when handling changing backgrounds and complex target detection
scenarios. Ultimately, the targets from 385 shipwreck and 62
aircraft sonar source images were extracted and pasted onto 578
seabed sonar target images, resulting in a total of 5,700 images of
aircraft and shipwreck data, as shown in Figure 2.

To enhance the target detection capability of the model in
complex seabed environments, various data augmentation
techniques were applied to an expanded set of 5,700 side-scan
sonar images, including Cutout (DeVries and Taylor, 2017), Mosaic
(Bochkovskiy et al., 2020), and noise addition techniques. Cutout
randomly generates square occlusion regions in images, simulating
the partial occlusion of targets by sediment, seabed structures, or
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(c)

FIGURE 2

10.3389/fmars.2025.1679077

Schematic diagram of simple copy-paste data augmentation process: (a) seafloor target extraction process (b) original sonar images of six types of
seafloor substrates (c) example of aircraft data after the simple copy-paste operation (d) example of shipwreck data after the simple copy-paste

operation.

marine clutter. This technique enhances the ability of the model to
infer target shapes under conditions of missing information,
thereby improving generalization performance and robustness.
Mosaic augmentation constructs entirely new images by cutting
and stitching four or nine source images together, each containing
multiple targets and complex backgrounds. Specifically, 2,400
medium-scale target images were generated using four-image
mosaics, and 1,900 small-scale target images were created using
nine-image mosaics. This simulates complex underwater scenes
characterized by multiple objects and diverse backgrounds, thereby
increasing data diversity and enhancing the capability of the model
in multi-object detection and handling multi-scale targets. By
simulating seafloor noise interference, noise addition techniques
include adding Gaussian noise and salt-and-pepper noise improve
the model’s tolerance to noise and lessen its effect on detection,
which lowers the possibility of false positives and false negatives.
Figure 3 displays the data samples following preprocessing. An
augmented dataset of 10,000 photos was produced by combining
the SimpleCopy-Paste, Cutout, Mosaic, and noise addition
techniques. This greatly increased the data’s authenticity and
diversity and improved the model’s capacity to locate targets in
challenging seafloor situations.

This work created a diverse complex environment side-scan
sonar dataset (CESSSD) using the four data augmentation
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approaches previously discussed. In addition to increasing the
dataset’s size, these data augmentation techniques greatly
enhanced the model’s resilience and capacity for generalization in
complicated situations. The 10,000 photos were divided into 8:2
training and validation sets. Table 1 contains the dataset’s
comprehensive information.

3 Model and method
3.1 YOLOV8 model

The base model for object detection in side-scan sonar pictures
of complex environments chosen for this investigation is YOLOVS.
YOLOVS is a variant of the You Only Look Once (YOLO) series that
retains the series’ high speed and accuracy while making notable
improvements to its architecture, detection power, and efficiency.
Because of its superior detection accuracy, real-time performance,
and processing power, YOLOVS is particularly well-suited for target
detection in side-scan sonar images of complex environments.

YOLOv8 has powerful multi-scale detection capabilities,
utilizing FPNs to extract multilevel resolution information and
path aggregation networks (PANSs) to fuse features, significantly
improving the detection performance for targets of different scales
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FIGURE 3

Examples of data after preprocessing: (a) examples of data processed with cutout and mosaic (b) examples of data processed with noise addition.

in complex backgrounds. It excels in handling common issues in
side-scan sonar images, such as noise, target shape diversity, and
background interference, and accurately detects prominent and
subtle targets. Simultaneously, the architecture of YOLOVS is
lightweight and efficient, with an adaptive anchor box design and
optimized inference processes, improving computational efficiency
and adapting to various hardware conditions to meet real-time
processing requirements. This allows YOLOv8 to process large
numbers of sonar images quickly for underwater exploration,
search and rescue, and other tasks, enabling timely target
detection and supporting decision-making. YOLOV8 uses an
improved version of CSPNet as its backbone network, which
reduces the redundant gradient flow by segmenting the feature
map calculations. This design reduces the computational load and
maintains an efficient feature extraction capability. This is especially
critical when handling low-resolution side-scan sonar images where
the target and background differences are small, optimizing
computational efficiency while enhancing the ability of the model
to separate important features from complex backgrounds.

TABLE 1 Detailed information of CESSSD.

Large- Medium- Small-
Category scale scale scale

(images) (images) (images)
Training Set ‘ 4500 2000 1500 8000
Validation

1200 400 400 2000
Set
Total ‘ 5700 2400 1900 10000

Frontiers in Marine Science

3.2 LANConvNeXtv2 module structure

In underwater environments, targets in sonar images typically
have extremely low contrast, which presents significant challenges
for target detection. Unlike traditional optical images, sonar images
are often acquired under complex underwater conditions due to the
special nature of their generation, resulting in a very low contrast
between the target objects and background in the images. This low-
contrast phenomenon significantly increases the difficulty of
distinguishing targets from the background, making it difficult for
traditional computer vision techniques to effectively recognize
target objects. In addition to the low-contrast issues, numerous
complex noise sources and interference factors exist in underwater
environments. These noises include seabed reflections, marine
clutter, and sensor noise from the sonar devices. This noise often
creates false targets or strong interference signals in an image, which
can affect the ability of the model to detect real targets. Although
YOLOV8 is a powerful target-detection model that performs
excellently in general target-detection tasks, it still faces challenges
in terms of feature extraction when dealing with low-contrast and
complex, noisy sonar images. The standard convolutional module
of YOLOV8 struggles to extract sufficient and effective target
features, particularly when the target boundaries are blurred or
the background noise is overly complex. As a result, the model often
fails to focus on the true target regions, leading to suboptimal
detection performance in complex underwater environments. To
address these specific issues, RCDI-YOLO introduces the
LANConvNeXtv2 (lightweight attention network with ConvNeXt
v2) module. This module is specifically designed to improve feature
extraction capabilities and is particularly optimized for low-contrast
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D GRN=Global Response Normalization
|| LAN=Lightweight Attention Network

D GELU=Gaussian Error Linear Unit
GRN C3

|:| DAM=Double Attention Module
GELU

FIGURE 4
LANConvNeXtv2 architecture diagram.

and noise-complex scenarios. The LANConvNeXtv2 module
integrates the advantages of lightweight attention mechanisms
and the ConvNeXt v2 network to enhance the feature extraction
performance of the model, particularly in complex
underwater environments.

RCDI-YOLO replaces the original C2f module in the backbone
and neck networks of YOLOv8 with a LANConvNeXtv2 module.
This module integrates a lightweight attention mechanism (Zhang
et al., 2023) and the ConvNeXt v2 architecture (Woo et al., 2023)
and has the following characteristics:

1. LANConvNeXtv2 expands the receptive field and reduces
computational complexity using depthwise separable
convolution and dilated convolution, improving the
recognition accuracy of blurred and occluded targets in
underwater environments.

2. It introduces a lightweight attention mechanism that
focuses on important regions, suppresses noise
interference, and enhances detection accuracy without
increasing the computational burden, thereby improving
adaptability in noisy environments.

3. A multi-scale convolution strategy improves the ability of
the model to detect targets at different scales, reducing false
negatives and false positives, and ensuring high-accuracy
recognition in complex backgrounds.

As shown in Figure 4, LANConvNeXtv2 is an improved module
based on the lightweight attention mechanism and ConvNeXt
architecture, offering very high feature extraction efficiency. The
use of more refined convolution operations and attention
mechanisms can accurately enhance the features of low-contrast
targets in noisy environments. The design of LANConvNeXtv2
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focuses on multi-scale feature extraction, which enables the capture
of key target features at different scales and resolutions, thereby
improving model performance in complex backgrounds.

The core principle of LANConvNeXtv2 is a combination of
convolution operations and attention mechanisms. The
convolution layers extract multilevel features, and the attention
mechanism dynamically adjusts the feature weights at different
levels to enhance the critical features. The formula is as follows:

Convolution Operation: The two-dimensional convolution
operation extracts local features as represented by the following
formula (Equation 4):

FX,W)=W=xX+b (4)

Where W is the convolution kernel, X is the input feature map,
* represents the convolution operation, and b is the bias term.

To capture the target features at different scales,
LANConvNeXtv2 introduces multi-scale convolution operations.
At different scales s € S, convolution is performed using kernels of
different sizes (Equation 5):

F(X, W) = WX + b, (5)

where S is the set of scales, W is the convolution kernel weight
at scale s, X is the input feature map, b, is the bias term
corresponding to scale s, and F; is the output feature map at scale s.

The feature maps F; at different scales are fused to form a
comprehensive feature F. Fusion methods include addition and
concatenation fusion (Equations 6, 7):

F=3F, (6)
SES
Feoncat = Concat(F|s € S) (7)
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Then, a 1x1 convolution is applied to reduce the dimensionality
of the channels (Equation 8):

F= Fconcat * Wreduce + breduce (8)

where Wieguce i the dimensionality reduction convolution
kernel, and byeqyce is the corresponding bias term.

Attention Mechanism: The mechanism is used to dynamically
adjust the importance of different parts of a feature map. The
weights are calculated using the sigmoid function as follows
(Equation 9):

A(x) = o(W, - x) &)

Where W, is the attention weight, x is the input feature map,
and o is the sigmoid activation function. The attention mechanism
enables the model to focus on key target features while reducing
attention to noisy areas, thereby improving detection accuracy.

The LANConvNeXtv2 module significantly enhances the target-
detection capabilities of the RCDI-YOLO model in low-contrast,
complex, noisy backgrounds. This module improves the feature
extraction efficiency and accuracy of the model and strengthens its
robustness in complex underwater environments, enabling RCDI-
YOLO to better handle the detection challenges in side-scan sonar
images. These improvements provide strong technical support for
practical tasks, such as underwater detection, marine exploration, and
search and rescue, making the target-detection system more reliable
and efficient in complex environments.

3.3 Dysample module structure

In multi-scale target detection, a significant size variation exists
among targets, and the model needs to be flexible in handling
different scales. However, the traditional YOLOv8 model uses fixed
upsampling operations, which, although somewhat effective, have
limitations when faced with significant changes in scale. Especially
in side-scan sonar images, small targets have very small sizes,
whereas large targets occupy larger regions, and marine noise,
reflections, and clutter interference in complex backgrounds
further exacerbate the detection difficulty. Fixed upsampling
struggles to adapt to dynamically changing target scales, leading
to false positives and missed detections.

The RCDI-YOLO model replaces the conventional upsampling
process with the Dysample mechanism (Liu et al.,, 2023) based on
YOLOVS in order to overcome these problems. In order to meet the
feature extraction needs of targets of varying sizes, the adaptive
sampling technique known as “dysample” dynamically modifies the
sampling rate according to the true scale and features of targets.
Compared to fixed upsampling, Dysample allows flexible
adjustments to the sampling density, ensuring the accurate
capture of small targets and effective resolution of large targets.
This mechanism enhances detection accuracy and stability,
particularly in cases of target partial occlusion or complex
background noise. Additionally, Dysample increases the sampling
density in complex background areas and reduces the sampling rate
in simpler areas, thereby optimizing computational efficiency.
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Overall, Dysample improves the adaptability of RCDI-YOLO in
handling multi-scale targets and complex backgrounds, thereby
enhancing the detection performance of the model in side-scan
sonar images.

The core of Dysample is adaptive sampling rate adjustment,
which dynamically modifies the sampling rate based on the scale
information of the target object to enhance the feature extraction
capability of targets of different sizes. Figure 5a shows the dynamic
sampling mechanism of the RCDI-YOLO model. It utilizes a
sampling point generator to dynamically generate a sampling
point set, Sampling Set, based on the input feature ) and then
performs dynamic upsampling through the Grid Sample operation.
This ensures that the output feature )’ better adapts to the actual
scale and characteristics of the target. Figure 5a demonstrates the
upsampling process based on dynamic sampling, which is
mathematically described as follows (Equation 10):

x' = Grid_Sample(y, S) (10)

Where y, is the input feature map with dimensions HxWxGC; S is
the set of sampling points generated by the sampling point
generator, with dimensions sHxsWx2g; ' is the output feature
map after dynamic sampling, with dimensions sHxsWxC; s is the
upsampling factor; and g is the dimension of each sampling point.

Dynamic sampling adjusts the values of S by dynamically
modifying the sampling positions based on the input features,
thereby achieving an adaptive upsampling operation.

The sampling point generator is responsible for generating S,
which is achieved by combining the range factor and offset. The
formula used is as follows (Equation 11):

s=G+0 (11)

Where G is the scope factor that provides the initial sampling
distribution with dimensions sHxsWx2g, O is the offset that
introduces dynamic adjustments to refine the scope factor.

Figure 5b details the workflow of the sampling point generator,
including the Static Scope Factor and the Dynamic Scope Factor.
Both are generated by combining the scope factor G and the offset
O. The Static Scope Factor follows a fixed offset generation strategy,
whereas the Dynamic Scope Factor incorporates two linear
transformations, further enhancing the flexibility and adaptability
of sampling.

The offset O for the Static Scope Factor is generated using the
following formula (Equation 12):

O = Pixel _ Shuffle(0.25 - Linear(y)) (12)

In the formula, the input feature 7 first undergoes a linear
transformation, producing an output with dimensions Hx Wx2gs>.
After being scaled by a factor of 0.25, it is rearranged using the Pixel
Shuffle operation to obtain final dimensions of sHxsWx2g.

The offset O for the Dynamic Scope Factor is computed as
follows (Equation 13):

O = Pixel _ Shuffle(0.25 - (Linear; (y) + Linear,(y))) (13)

In the formula, the feature map ¥ is transformed into two sets of
tensors through two linear transformations. These two sets of
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FIGURE 5

Sampling-based dynamic upsampling and module design in dysample: (a) dynamic sampling mechanism (b) workflow of sampling point generator.

tensors are element-wise added, multiplied by a factor of 0.25, and
then converted to the target size sHxsWx2g through Pixel_Shuffle.

In summary, the RCDI-YOLO model significantly improves
multi-scale target detection capability by introducing the Dysample
(dynamic sampling) mechanism. Compared to traditional fixed
upsampling operations, Dysample can dynamically adjust the
sampling rate according to the actual scale and characteristics of
the target, enabling precise feature extraction for targets of
different sizes.

The versatility and adaptability of Dysample enable RCDI-
YOLO to capture target features more correctly, lowering false
negatives and false positives, especially when working with
complex, noisy backgrounds and targets with large size
fluctuations in side-scan sonar images. Dysample considerably
improves the detection effectiveness and robustness of the model
in complex environments by concentrating on target regions and
optimizing computational resources. This strengthens the
technological support for a variety of real-world applications,
including undersea exploration.

3.4 ImplicitHead module structure

In side-scan sonar images, underwater noise interference often
generates false targets, thereby increasing the difficulty of target
detection. In particular, when targets are occluded or submerged in
noise, the traditional YOLOv8 model struggles to distinguish
between noise and real targets, resulting in false positives and
missed detections. To address this issue, RCDI-YOLO introduced
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the ImplicitHead module (Yu et al., 2024) in addition to YOLOVS,
which utilizes implicit feature representation to reduce reliance on
explicit features and enhance robustness in complex, noisy
backgrounds. Unlike traditional detection heads, the ImplicitHead
extracts key information more efficiently, reduces noise
interference, and improves target-detection accuracy.

The advantage of ImplicitHead is its ability to achieve strong
feature extraction capabilities with minimal parameters, particularly
in sonar images, by handling seabed reflections and marine clutter.
It effectively differentiates real targets from noise interference,
automatically filters out false targets in the background, and
significantly reduces the number of false positives. Additionally,
when targets are partially occluded or have blurry boundaries,
ImplicitHead, with its powerful implicit learning ability, can
better comprehend the overall characteristics of a target. Even if
some information is missing, it maintains high detection accuracy
and significantly reduces the computational complexity of the
model, allowing RCDI-YOLO to improve detection accuracy
while maintaining high real-time performance and computational
efficiency in practical applications.

As shown in Figure 6, the ImplicitHead module consists of a
sequential feature processing path, a distribution fitting loss (DFL)
optimization module, and ImplicitA/ImplicitM implicit learning
modules. The combination of these three components forms an
efficient and flexible target-detection head, effectively enhancing
feature representation capability and significantly improving
detection performance.

The input features originate from the previous layer of the
network backbone and are denoted as y. To extract high-level and
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ImplicitHead architecture diagram.

multi-scale features, ImplicitHead includes multiple parallel
sequential modules, each consisting of convolution operations
(Conv2d), an activation function (SiLU), and batch normalization
(BatchNorm). The computation was performed using the following
formula (Equation 14):

x' = Conv2d(BN(SiLU(Conv2d(y)))) (14)

The multipath processing design of the sequential module
enabled efficient feature extraction from the input features,
enhanced the semantic representation capability of the features,
and provided richer information for subsequent modules.

The DFL module improves the accuracy of the target position
estimation and bounding box regression quality by fitting the
difference between the predicted and real distributions. This
module optimizes the bounding box regression loss during target
detection, which is formulated as follows (Equation 15):

Log, = SSmoothL1(PPY, %) (15)
i=1

Where PP™ represents the predicted distribution, P8
represents the ground truth distribution, and SmoothL1(-) is the
regression loss function used for the bounding boxes.

The Implicit module was designed to dynamically adjust the
characteristics of the feature maps, making the feature
representation of the model more robust for different targets.
Two types of implicit learning modules exist: ImplicitA and
ImplicitM. These implicit learning modules introduce learnable
parameters to adaptively adjust the feature distribution. The
formulae are as follows (Equation 16):
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ImplicitA

ImplicitA

Xout = Xin Imphdt(xin) (16)

where ImplicitA adapts to local features, whereas ImplicitM
optimizes the global feature distribution.

In summary, the ImplicitHead module enhances the robustness
and noise resistance of the model, thereby improving the
performance of RCDI-YOLO in handling complex sonar images.
It effectively mitigates underwater noise interference, significantly
reduces false positives and false negatives, and optimizes
computational efficiency. This makes it well-suited for real-time
applications such as underwater detection, marine exploration, and
search-and-rescue missions. These improvements provide reliable
and efficient technical solutions for underwater target detection.

3.5 Improved YOLOv8 model

By combining the LANConvNeXtv2, Dysample, and
ImplicitHead modules, RCDI-YOLO considerably improves
YOLOV8 and significantly increases the target-detection capacity
in side-scan sonar images in complicated situations (Figure 7). The
model can reliably detect targets even in high-noise situations with
blurred boundaries thanks to LANConvNeXtv2, which is
specifically made to improve feature extraction for low-contrast
targets. It works especially well on small targets or items that are
partially obscured. To get beyond the stiffness of conventional
upsampling when working with multi-scale objects, Dysample
offers a dynamic sampling technique. It ensures accurate feature
extraction for objects of various scales by adaptively modifying the
sample rate according to the target’s size and attributes.
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Architecture diagram of improved RCDI-YOLO.

ImplicitHead reduces false positives and negatives under high noise
interference by using implicit learning. This improves the model’s
resilience in high-noise settings by efficiently filtering background
erroneous targets. Furthermore, the ImplicitHead’s lightweight
design speeds up inference and lowers computational complexity,
which makes RCDI-YOLO better suited for real-time applications.
All things considered, these enhancements boost the model’s
generalization ability in challenging situations and raise detection
stability and accuracy. RCDI-YOLO performs exceptionally well in
scenarios with high levels of noise interference, obscured targets, or
complicated backdrops, which makes it a perfect choice for
underwater detection, maritime exploration, and search and
rescue operations.

4 Experimental results and analysis

4.1 Experimental setup and implementation
details

Experiments were conducted on a Windows 10 system
equipped with an Intel i7-13700K CPU and an NVIDIA RTX
3090 GPU, using the PyTorch framework for model training and
validation. The dataset comprises 10,000 images, split 80% for
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training and 20% for validation. Input images were resized to
640x640. Models were trained using the SGD optimizer with an
initial learning rate of 0.01 and a fixed learning rate schedule, a
batch size of 32, and a warmup period of 3 epochs. Training lasted
up to 100 epochs with early stopping patience set to 50 epochs, and
random seed 0 was fixed to ensure reproducibility. Loss weights
were set to 7.5 for box regression, 0.5 for classification, and 1.5 for
DFL loss. Data augmentation included Mosaic (enabled with
probability 1.0, disabled in the last 10 epochs), random horizontal
flips (p=0.5), and HSV adjustments (H: + 0.015, S: £ 0.7, V: + 0.4).
During inference, NMS IoU threshold was set to 0.7 and anchors
were auto-computed. A full summary of the experimental setup is
provided in Table 2.

4.2 Model evaluation metrics

The model’s performance was assessed in this study using a
Confusion Matrix, Precision (P, Equation 17), Recall (R, Equation
18), Average Precision (AP, Equation 19), and Mean Average
Precision (mAP, Equation 20).

TP

= 1
TP + FP (17)
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TABLE 2 Experimental setup summary.

Category

Hardware

Training Settings

Item Specification

CPU gl;lei Core i7-13700K @ 3.40
NVIDIA GeForce RTX 3090

GPu 32GB

Operating System Windows 10

Image Resolution 640 x 640

Optimizer SGD

Initial Learning Rate 0.01

Learning Rate 001

Schedule

Batch Size 32

Warmup Epochs 3

Training Epochs 100

Early Stopping Patience = 50 epochs
Random Seed 0 (Fixed)
Epochs 100
Box Loss 7.5
Loss Weights Cls Loss 0.5
DFL Loss 1.5
Mosaic Enabled (p=1.0, disabled last

Data Augmentation

10 epochs)

Random Flip
(Horizontal)

HSV Augmentation

p=0.5

H: £0.015,S: £ 0.7, V: £ 0.4

Inference

Dataset

NMS IoU Threshold

0.7

Anchor Settings
Total Images

Train/Validation Split

TP

R=—
TP + FN

Auto-computed
10,000

80%/20%

(18)

1
AP = / P(R)dR
0

19)

TABLE 3 Comparison results of backbone and neck network improvements.

10.3389/fmars.2025.1679077

1 N
mAP = — SAP, (20)
N i=1

4.3 Comparison tests on the enhanced
method'’s effectiveness

Each detection accuracy increase’s performance was thoroughly
examined through comparative trials to see how much it
contributed to the total performance improvement. The goal was
to offer data support for model structure optimization and to
elucidate the precise effect of each structural modification on the
final model performance.

4.3.1 Comparison experiments on backbone and
neck network improvements

Four C2f modules are present in the neck and backbone
networks of the YOLOv8 model. The LANConvNeXtv2 module,
which combines a lightweight attention mechanism with an
enhanced ConvNeXt v2 architecture, was used to replace all eight
C2f modules in order to identify the best locations to enhance the
backbone and neck network structures. Tests of the updated
model’s accuracy showed that the best overall performance was
obtained by swapping out the first and second C2f modules in the
backbone network and the first, second, and fourth C2f modules in
the neck network. Additionally, this work used the GhostNet and
EfficientNet modules to do comparison studies.

According to Table 3, the LANConvNeXtv2 module obtained
the highest Precision of 94.4% in the backbone and neck network
improvement comparison experiments. This was 1.6%, 1.8%, and
1.1% higher than the original YOLOVS, EfficientNet-based, and
GhostNet-based models, respectively. The LANConvNeXtv2-based
network outperformed all other models in side-scan sonar target
detection in challenging situations, as evidenced by its maximum
recall (88.8%), mAP5 (95.1%), and mAP 5-.05 (60.1%).

4.3.2 Comparison experiments on detection head

Compared to the original YOLOv8 detection head, this study
adopted ImplicitHead, a module based on implicit feature
representation. By implicitly processing input features,
ImplicitHead captures key information in images more efficiently
while reducing the dependence on explicit feature learning, thereby
enhancing the robustness of the model in high-noise backgrounds.

Algorithm

YOLOv8

Backbone+neck Precision (%) Recall (%) MAP 5 (%) MAPg 5_0.95 (%)
- 92.8 85.9 93.7 56.6
EfficientNet (Tan and Le, 2019) = 92.6 86.6 93.4 54.8
GhostNet (Han et al., 2020) 93.3 86.0 93.9 55.9
LANConvNeXtv2 94.4 88.8 95.1 60.1
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TABLE 4 Comparison results of detection heads.

10.3389/fmars.2025.1679077

Algorithm Precision (%) Recall (%) MAP 5 (%) MAPg 5-0.05 (%)
- 92.8 85.9 93.7 56.6
LADH (Liu et al,, 2020) 93.8 86.2 93.3 56.4
YOLOv8
DynamicHead (Dai et al., 2021) 93.3 85.9 93.2 54.9
ImplicitHead 95.0 86.2 93.0 56.4

Additionally, we conducted comparative experiments with the
LADH and DynamicHead detection heads.

Target-detection accuracy for side-scan sonar images in
complicated situations is much enhanced by the ImplicitHead
detection head, as shown by the comparison findings of the
detection heads in Table 4. With a precision of 95.0%, it
outperformed the original YOLOvS, LADH, and DynamicHead
by 2.2%, 1.2%, and 1.7%, respectively. This remarkable advantage
indicates that ImplicitHead excels in precise target localization,
particularly in challenging environments. In addition to its superior
Precision, ImplicitHead also demonstrates stability and reliability in
Recall (86.2%) and mAPys (93.0%), confirming its ability to
maintain high accuracy while effectively capturing more targets.
Moreover, ImplicitHead achieves 56.4% in the more challenging
mAP 5-995 metric, which matches LADH and significantly
surpasses DynamicHead (54.9%). These results further validate

TABLE 5 Ablation experiment results.

the generalization capability of ImplicitHead in multi-scale and
complex scenarios.

4.3.3 Ablation experiments

To investigate the contribution of each improvement module to
YOLOVS, we conducted ablation experiments under the same
training protocol, with results summarized in Tables 5 and 6.
Introducing LANConvNeXtv2 (RC) as the improved backbone
significantly enhanced feature extraction under low-contrast and
noisy conditions, increasing Precision by 1.6%, Recall by 2.9%,
mAP, 5 by 1.4%, and mAPs-¢95 by 3.5%, demonstrating its
effectiveness in capturing richer and more discriminative feature
representations. The Dysample (D) multi-scale upsampling
mechanism provided modest but consistent gains—Precision
+1.0%, Recall +0.6%, mAP,5 +0.3%, and mAP5-g95 +0.7%—
primarily by increasing sampling density to better capture feature

Algorithm Precision (%) Recall (%) mAPq 5 (%) MAP 5_0.95 (%) Params (M) GFLOPs
YOLOVS (baseline) 92.8 85.9 93.7 56.6 3.01 8.1
+ RC 94.4 88.8 95.1 60.1 3.23 9.3
+D 93.8 86.5 94.0 57.3 3.02 8.1
+1 95.0 86.2 93.0 56.4 2.57 5.7
+ RC+D 94.5 88.3 95.0 60.1 323 9.3
+RC+ 1 93.9 88.4 95.2 59.4 323 9.3
+ 1+ D 94.4 86.5 93.7 57.0 2.72 7.8
RCDI-YOLO 95.3 88.8 95.7 60.8 323 9.3

TABLE 6 Performance comparison of different improvements on various object sizes.

Algorithm MAPg 5_ medium (%) MAPy 5.0.95_ medium (%) mAPqs_ large (%) MAP 5.0.95 _ large (%)
YOLOVS (baseline) 79.0 44.6 36.3 22.7
+RC 80.3 48.0 39.6 25.1
+D 79.3 45.8 37.5 234
+1 78.9 456 29.3 18.2
+RC+ D 80.2 484 35.0 224
+RC+ T 80.4 483 320 19.6
+1+D 78.9 46.2 35.0 19.4
RCDI-YOLO 80.4 49.1 36.9 23.6
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FIGURE 8

The mAP of ablation experiment: (a) mAPg 5 of fusion experiment (b) mAPq 5_¢ 95 Of fusion experiment.

details and distinguish true targets from background noise.
ImplicitHead (I), a lightweight implicit detection head, improved
Precision by 2.2% and Recall by 0.3%, highlighting its ability to
process features implicitly, efficiently capture key image
information, and suppress noise, although its effect on mAP
metrics is more pronounced when combined with other modules.

Pairwise module combinations further confirmed their
complementarity: LANConvNeXtv2 + Dysample increased
mAP; 5 and mAPj5-995 to 95.0% and 60.1%, LANConvNeXtv2 +
ImplicitHead reached 95.2% and 59.4%, and Dysample +
ImplicitHead maintained baseline mAP, s while slightly
improving mAPs-995 to 57.0%. Integrating all three modules
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into RCDI-YOLO achieved the best overall performance, with
Precision 95.3%, Recall 88.8%, mAP;5 95.7%, and mAP5-g9s
60.8%, representing gains of +2.5, +2.9, +2.0, and +4.2 percentage
points over the original YOLOv8 at essentially the same
lightweight scale.

Performance across different object sizes was further analyzed
according to the official COCO dataset standards, where small
objects are defined as area < 32” pixels (1024), medium objects as
32% < area < 96 pixels (9216), and large objects as area > 96 pixels
(9216). LANConvNeXtv2 (RC) consistently improves medium- and
large-object detection, with mAP, s and mAP 5-o 95 increasing by
up to 3.3% and 3.4%, demonstrating its strong capability in
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TABLE 7 Comparison of experimental results with other detection models.

Structure Precision (%) Recall (%) mMAPgs5 (%)  mMAPgs.095 (%) Params (M)  GFLOPs
YOLOvS-n (baseline) 928 85.9 93.7 56.6 3.01 8.1
YOLOVS-s 95.6 86.4 95.0 60.0 1113 28.4
YOLOVS-m 945 87.5 948 614 25.84 78.7
YOLOVS-1 95.6 86.4 95.0 61.0 4361 164.8
YOLOV3-tiny (Redmon et al., 2018) 93.7 84.6 914 53.1 12.13 18.9
YOLOv6 942 86.7 935 55.2 423 11.8
YOLOV9 9.6 88.0 94.6 64.6 25.53 103.6
YOLOVI0 (Wang et al., 2024) 938 86.0 938 57.0 258 7.8
RetinaNet-50 88.4 90.2 87.0 50.8 36.35 81.93
RCDI-YOLO 95.3 88.8 95.7 60.8 323 93

extracting multi-scale features. Dysample (D) contributes moderate
improvements, particularly in mAP 5s- s, by refining multi-scale
sampling to better distinguish objects from noise. ImplicitHead (I)
slightly reduces performance on large objects when applied alone,
suggesting its lightweight implicit processing prioritizes noise
suppression over detailed large-object features. The combination
of all three modules in RCDI-YOLO yields the highest performance
across both medium and large objects, with mAP, 5 reaching 80.4%
and 36.9%, and mAP 5-o o5 reaching 49.1% and 23.6%, highlighting
the complementary effects of LANConvNeXtv2 (RC), Dysample

(D), and ImplicitHead (I) in enhancing robustness and detection
accuracy across diverse object scales.

Figure 8 illustrates the learning dynamics. Across all
experiments, accuracy stabilized after approximately 60 epochs.
The LANConvNeXtV2 curve consistently remained above the
baseline early on, demonstrating its contribution to enhanced
feature extraction. The ImplicitHead accelerated convergence
around the 40th epoch when used in fusion, reducing training
time to reach optimal results. RCDI-YOLO exhibited greater
fluctuations during the first 30 epochs, but after the 65th epoch,
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both mAP, s and mAP 5-995 consistently surpassed other variants,
reflecting strong adaptability to multi-scale targets and complex,
high-noise backgrounds. Overall, the ablation study confirms that
LANConvNeXtv2 strengthens feature extraction, Dysample
improves multi-scale sampling, and ImplicitHead contributes
synergistically, enabling RCDI-YOLO to deliver superior
detection performance for challenging side-scan sonar imagery.

4.3.4 Comparison experiments of different
models

RCDI-YOLO is a specialized target-detection method for
complex side-scan sonar images, built upon an improved
YOLOV8 backbone. As shown in Table 7, it demonstrates
superior overall performance compared with both lightweight and
heavier detection models. Specifically, RCDI-YOLO achieves a
Precision of 95.3% and Recall of 88.8%, surpassing YOLOv8-n
(92.8%/85.9%) and YOLOV6 (94.2%/86.7%), and matching or
exceeding larger YOLO variants such as YOLOv8-s (95.6%/
86.4%) and YOLOVS-1 (95.6%/86.4%).

In terms of detection accuracy, RCDI-YOLO reaches 95.7% for
mAPys and 60.8% for the more stringent mAP,s-¢95 metric,
significantly outperforming YOLOv8-n (93.7%/56.6%) and
YOLOvV6 (93.5%/55.2%). Compared with YOLOvV9, which
achieves 94.6%/64.6% in mAP;s/mAP;s5-995, RCDI-YOLO
maintains slightly lower mAP s-o o5 but with far fewer parameters
(3.23M vs. 25.53M) and lower GFLOPs (9.3 vs. 103.6), illustrating a
superior accuracy-to-efficiency trade-off. Lightweight models such
as YOLOv3-tiny and YOLOV10, although smaller in scale, achieve
only 53.1% and 57.0% mAPs-o9s, highlighting RCDI-YOLO’s
stronger generalization and adaptability in complex, high-noise
sonar environments. Non-YOLO detectors such as RetinaNet-50,
despite having large capacity (36.35M parameters, 81.93 GFLOPs),
achieve much lower mAPg5-9 95 of 50.8%, further confirming the
advantage of the proposed architecture in challenging
detection scenarios.

0.96 T T T
RCDI
095 ® b
° ® YOLOv8-n
® YOLOv8-s
0.94 - e 1 YOLOV8-m
® YOLOVS-I
093 ° 1 | ® voLov3-tiny
YOLOv6
® YOLOV9
Q092 N ® YOLOvI0
b ® LANConvNeXtv2
£ 091 - Dysampie
® [mplicithead
©® LANConvNeXtv2+Dysample
0.9 7 LANConvNeXtv2+ImplicitHead
® ImplicitHead+Dysample
0.89 F 4 ® RetinaNet-50
— Pareto frontier
* RCDI
0.88 - b
0.87 -& . . .
100 200 300 400 500
FPS (end-to-end)
FIGURE 10

10.3389/fmars.2025.1679077

As shown in Figure 9, RCDI-YOLO significantly outperforms
the other comparison models in terms of Precision and Recall. In
terms of Precision, RCDI-YOLO achieves 95.3%, which is notably
higher than other models, such as YOLOV8 (92.8%) and YOLOv6
(94.2%). Regarding Recall, RCDI-YOLO also excelled, reaching
88.8%, slightly surpassing YOLOv10 (86.0%) and YOLOv6
(86.7%). By contrast, YOLOv3-tiny performed relatively poorly,
with a Recall rate of only 84.6%. These results indicate that RCDI-
YOLO achieves faster training convergence and exhibits higher
positive sample recognition rates, with lower false and missed
detection rates. This makes it more accurate and stable for
complex sonar-image detection tasks in challenging environments.

In terms of mAPys and mAPj5-995, RCDI-YOLO also
outperforms other models: For mAP; 5, RCDI-YOLO achieves
95.7%, demonstrating exceptional detection accuracy compared to
YOLOV8 (93.7%) and YOLOV10 (93.8%). In the more challenging
mAP( 5-995 metric, RCDI-YOLO reaches 60.8%, significantly
surpassing YOLOvV6 (55.2%) and YOLOv3-tiny (53.1%). This
high performance indicates that RCDI-YOLO possesses stronger
detection and generalization capabilities across different IoU
thresholds, making it particularly suitable for sonar-image target-
detection tasks in complex environments.

Under a unified setup—batch 1, 640x640, same device, end to
end with pre/post—Figure 10 summarizes the accuracy-efficiency
trade-offs and consistently places RCDI-YOLO on or near the
Pareto frontier. In the mAPys-FPS plane, RCDI-YOLO reaches
mAP5=0.9569 at =163 FPS with =~6.13 ms latency, delivering real-
time throughput without sacrificing accuracy; in the mAPg 5-9 95—
FPS view it records mAP 5-.95=0.6084 at the same operating point,
while competitors that score higher are notably heavier. Parameter-
wise, RCDI-YOLO uses 3.23M parameters and 9.3 GFLOPs yet
attains 0.9569/0.6084 on mAP,s/mAP5-g¢s, outperforming or
matching much larger models in mAP per parameter: relative to
YOLO-m/l with 25.84M/43.61M parameters and mAP;5-g95 of
0.6136/0.6101, RCDI-YOLO delivers nearly comparable accuracy
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with =8-13x fewer parameters; compared with lightweight
baselines n and s, it secures a clear accuracy margin while
remaining real-time—n offers mAP,5=0.9367 at 358 FPS and s
yields mAP 5-9.95=0.5993 at 327 FPS. Memory-wise, RCDI-YOLO
sustains top-tier mAP, 5 and competitive mAPg5-995 at =145 MB
peak, whereas methods with slightly higher mAP s-o9s—such as
YOLOV9 at 0.6479—require substantially more capacity around 218
MB and run slower near 119 FPS, reinforcing RCDI-YOLO’s
superior balance of accuracy, latency, and cost. These outcomes
align with our architectural choices—LANConvNeXtv2 for robust
feature enhancement under low contrast and clutter, Dysample for
multi-scale adaptivity, and ImplicitHead for noise-resistant
representation—and, together with earlier ablations, explain why
RCDI-YOLO combines high mAP, s/mAP 5s-¢ 95, low latency, small
footprint, and modest memory, making it well suited for real-time,
resource-constrained deployment.

5 Conclusion

The proposed RCDI-YOLO model demonstrated outstanding
performance for side-scan sonar target detection in complex marine
environments. By incorporating the LANConvNeXtv2 module,
Dysample dynamic sampling mechanism, and ImplicitHead module,
the model achieved significant advancements in low-contrast target
detection, multi-scale target processing, and noise resistance. The key
improvements lie in enhancing feature extraction capabilities,
improving adaptability to multi-scale targets, and significantly
reducing the impact of noise backgrounds on detection accuracy.
Experimental results show that compared to the original YOLOv8
model, RCDI-YOLO achieves a 2.0% increase in mAP s, reaching
95.7%, whereas the more challenging mAP5-oo5 improves by 4.2%,
reaching 60.8%. These improvements highlight the significant
advantages of the model in handling complex backgrounds, target
occlusion, and noise interference. Additionally, the diversified CESSSD
dataset, constructed using data augmentation techniques such as
SimpleCopy-Paste, Cutout, Mosaic, and noise addition, further
enhanced the generalization ability and robustness of the model.

However, the applicability of RCDI-YOLO is primarily validated
on side-scan sonar images. Its performance on other sonar types, such
as synthetic aperture sonar (SAS), or in drastically different marine
environments, remains to be investigated. Despite the excellent
accuracy and robustness, a trade-off remains in terms of training
time and computational resource demands. In real-world
applications, such as marine resource exploration, rescue missions,
and underwater target detection, real-time performance and detection
accuracy are crucial. Therefore, future research could focus on further
optimizing computational efficiency while exploring more lightweight
modules to achieve a better balance between performance and
computational cost.

In summary, RCDI-YOLO provides strong technical support
for target-detection tasks in complex underwater environments,
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with demonstrated effectiveness in side-scan sonar images, while its
applicability to other sonar scenarios requires further validation.
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