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RCDI-YOLO: a target-detection
method for complex
environment side-scan
sonar images based on
improved YOLOv8
Jiaoyang Zhang* and Bo Gao

Haide College, Ocean University of China, Qingdao, Shandong, China
Target detection in side-scan sonar images under complex environments is

challenging due to noisy backgrounds, occlusion, and blurred target boundaries,

which reduce the accuracy and robustness of traditional methods. To address

these issues, we propose RCDI-YOLO, an enhanced YOLOv8-based detection

framework that integrates rotation-aware feature extraction, multi-scale feature

integration, and implicit feature representations for noise suppression. In

addition, a diversified complex environment side-scan sonar dataset (CESSSD)

is constructed to mitigate data scarcity and imbalance. Experimental results

demonstrate that RCDI-YOLO achieves a detection accuracy of 95.3% and a

mean Average Precision of 95.7%, outperforming the original YOLOv8 by 2.5%

and 2.0%, respectively. These findings confirm that RCDI-YOLO significantly

improves detection performance in complex underwater environments,

particularly in scenarios with occlusion, cluttered backgrounds, and noise

interference, highlighting its potential for underwater detection and search-

and-rescue applications.
KEYWORDS

side-scan sonar images, complex underwater environments, data augmentation, target
detection, YOLOv8
1 Introduction

Side-scan sonar technology plays an important role in underwater detection and

imaging and is widely used in target detection, marine resource exploration, environmental

monitoring, engineering safety, and underwater archaeology. By emitting and receiving

sound waves, a side-scan sonar generates high-resolution images to analyze the seabed

environment. However, complex and dynamic underwater environments, such as target

occlusion, different seabed textures, and noise interference, significantly increase detection

difficulty. Traditional side-scan sonar target-detection methods rely mainly on techniques

such as background suppression through filtering, local contrast analysis, edge detection,
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and manual feature extraction (Bae and Sohng, 2010; Li et al., 2016;

Wu et al., 2017; Yang et al., 2022). Although effective under specific

conditions, these methods have limitations in complex

environments: poor robustness against noise, susceptibility to

false detections caused by complex reflections and interference,

reliance on prior knowledge and manual features, difficulty in

adapting to variations in target size, shape, and orientation, and

insufficient multi-scale target handling, leading to low detection

accuracy. These problems render traditional methods unsuitable for

modern high-precision underwater target detection.

In order to obtain high-resolution side-scan sonar images

(Zhang and Yang, 2019) under complex underwater conditions,

many researchers have explored advanced signal processing and

imaging algorithms based on synthetic aperture sonar (SAS),

particularly multi-receiver SAS systems. A series of works have

proposed improved back-projection techniques (Wang et al., 2015;

Zhang and Yang, 2022a), fast imaging algorithms (Zhang et al.,

2018), and extended chirp scaling methods (Zhang et al., 2022c),

enabling clearer reconstruction in noisy and nonuniform sampling

environments (Zhang et al., 2024). These methods significantly

improve the clarity and contrast of underwater acoustic images,

forming the basis for modern sonar-based target detection tasks.

Furthermore, Chebyshev-polynomial-based frequency-domain SAS

(Zhang et al., 2022d), dual-interpolator back-projection (Zhang and

Yang, 2022a), and experimental validations on novel sub-bottom

profilers (Tan et al., 2019; Zhang et al., 2022b) have demonstrated

enhanced robustness in real-world seabed imaging. Although such

imaging algorithms improve the quality of acoustic imagery,

challenges such as target occlusion, textured seabeds, and acoustic

noise remain major obstacles for automatic detection.

Over the years, various underwater target-recognition

algorithms based on sonar images have been proposed. Common

feature extraction methods include traditional signal processing

techniques such as the short-time Fourier transform (STFT)

(Benesty and Cohen, 2018), Hilbert-Huang transform (Li et al.,

2009), and wavelet transform (Tian et al., 2020), which effectively

extract underwater acoustic signal features. Additionally, target-

detection algorithms such as the Constant False Alarm Rate (CFAR)

(Katyayani et al., 2023), Cell Average CFAR (CA-CFAR) (Aalo

et al., 2015), and Accumulated Cell Average CFAR (ACA-CFAR)

(Tanuja, 2016) are widely used in underwater target detection.

These algorithms compare the threshold set with a grayscale sonar

image to detect and identify targets. Myers and Fawcett (2010) used

template matching to compare target features generated by acoustic

models with actual sonar images and combined echo and projection

shadows for classification, demonstrating that this method

outperformed traditional normalized cross-correlation methods.

Williams (2015) proposed an unsupervised algorithm for fast

underwater target detection in synthetic aperture sonar (SAS)

images, requiring no training data, adapting to environmental

features, and verified its performance under various geographic

conditions through large-scale experiments. Dura et al. (2005)

proposed an adaptive algorithm for detecting and classifying side-

scan sonar mine targets, training with a small number of labeled

samples, adapting to environmental changes, and optimizing
Frontiers in Marine Science 02
detection performance. Acosta and Villar (2015) modeled seabed

reverberation as a Gaussian distribution and used CFAR detection

to identify sunken ships. However, as the resolution of acoustic

images increases, the Gaussian distribution gradually becomes

ineffective in describing the statistical characteristics of the

seabed, prompting researchers to introduce non-Gaussian

distribution models such as Weibull, Gamma, K-distribution, and

a-stable distributions to improve underwater target detection

(Klausner and Azimi-Sadjadi, 2015). Abu and Diamant (2019)

combined the b-distribution to describe seabed textures and

target highlights while using the Gaussian distribution to model

target shadows, employing likelihood ratio tests for target

judgment. Overall, traditional side-scan sonar target-detection

methods have limitations in terms of noise interference, target

occlusion, and multi-scale detection. To address these challenges,

researchers have proposed advanced feature extraction,

unsupervised learning, data-adaptive algorithms, and non-

Gaussian distribution models, which significantly improve

underwater target detection accuracy and robustness, thus

advancing modern underwater detection technology.

Deep learning technologies have advanced significantly in

computer vision in recent years, especially convolutional neural

network (CNN)-based target-detection algorithms, which are now

being progressively used in underwater image processing. CNNs

enhance robustness and accuracy through automatic feature

extraction, allowing adaptation to multi-scale, multi-angle targets

and lighting changes. Traditional methods perform poorly due to

the complexity of the underwater environment, which includes

target occlusion, changes in seabed texture, and sonar noise. R-

CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-

CNN (Ren et al., 2017), and Mask R-CNN (He et al., 2015) are two-

stage detection algorithms that work well in complex situations but

are unsuitable for real-time applications due to their high

computational load and slow processing speed. On the other

hand, one-stage detection algorithms that balance speed and

accuracy, including SSD (Liu et al., 2016), RetinaNet (Lin et al.,

2017b), and YOLO (Redmon et al., 2016), are more suited for real-

time underwater surveillance applications. Additionally, deep

learning has been used to improve subsequent processing by

applying enhancement techniques like image denoising and

dehazing, which make images sharper. The multi-scale target-

detection performance is further improved with multi-scale fusion

structures, like the feature pyramid network (FPN) (Lin et al.,

2017a). All things considered, deep learning has a lot of promise

for processing underwater images, increasing the speed and

accuracy of detection, and offering fresh solutions to problems

posed by the underwater environment. In order to address the

practical needs of highway autonomous driving, Wang et al. (2024)

introduced the YOLOv8-QSD network, which provides efficient

and precise small-target identification in driving scenarios with an

accuracy of 64.5% and a computational burden of just 7.1 GFLOPs.

Liangjun et al. (2024) introduced the MSFA-YOLO method, which

demonstrated notable performance improvements over YOLOv8n

and greatly increased the SAR image ship detection accuracy,

particularly for low-quality photos and ships of various sizes. By
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adding receptive field attention convolution, SPPF-LSKA modules,

and dynamic detection heads, Zhao et al. (2024) developed the

YOLO-RLDW algorithm, which increases the accuracy of small

object identification, background interference suppression, and

multi-scale object localization. The algorithm performs better

than alternative approaches on a variety of datasets, according to

the testing results. Furthermore, Aboah et al. (2023) created a real-

time multiclass helmet violation detection system based on

YOLOv8 that showed great robustness and usefulness in real-

world applications while achieving effective detection with few-

shot data.

Although deep learning algorithms have shown great potential

for underwater target detection, in side-scan sonar images, targets

often suffer from low contrast, complex backgrounds, and

occlusions, which cause classical deep learning algorithms such as

YOLO to perform poorly in underwater detection. To address these

issues, this paper proposes a target-detection method for complex

environment side-scan sonar images based on an improved

YOLOv8 called RCDI-YOLO. The core idea of this paper is to

improve the structure of the YOLOv8 model to enhance its

adaptability to multi-scale targets and complex backgrounds and

to tackle the detection challenges posed by target occlusion and

high-noise environments in complex seabed conditions. Several

core improvements have been proposed to adapt the model to the

complex conditions of sonar images.
Fron
1. To address the issues of multi-scale targets, complex

backgrounds, and occlusion in the marine environment,

this paper uses the SimpleCopy-Paste data augmentation

method to construct a complex environment side-scan

sonar dataset (CESSSD). This dataset addresses the

problems of uneven target distribution and insufficient

samples, enhances the data richness, and improves the

robustness and recognition ability of the model in

complex scenarios.

2. To tackle the issues of low-contrast target separation and

noise interference in the side-scan sonar images, the C2f

module of YOLOv8 is replaced with the LANConvNeXtv2

module (R in RCDI), which enhances multi-scale feature

extraction and implements the rotating convolution

concept in practice, thereby providing stronger

perception capabilities for small- and low-contrast targets.

3. To overcome the limitations of fixed sampling methods in

traditional YOLO algorithms when handling multi-scale

targets, this paper introduces a dynamic sampling

mechanism, Dysample (D in RCDI), which realizes

dilated integration by refining multi-scale sampling to

improve feature extraction and robustness to object size

variations, thus enhancing detection performance in

complex backgrounds.

4. To address target occlusion and noise interference, this

paper introduces the ImplicitHead module (I in RCDI) in

the probe section. This lightweight head module increases

detection robustness and accuracy while lowering false
tiers in Marine Science 03
positives and missed detections, complementing the RC

a n d D mod u l e s w i t h o u t a d d i n g e x c e s s i v e

computational cost.
In order to increase the detection effectiveness and resilience of

the model, this work suggests a number of enhancements for sonar-

image target detection in complicated situations. The model’s

ability to adapt to complicated and multi-scale settings is

enhanced by building a diverse CESSSD dataset and applying the

SimpleCopy-Paste data augmentation method. The Dysample

method improves feature extraction and target-focusing

capabilities, while the LANConvNeXtv2 module improves target

feature extraction. The ImplicitHead module decreases missed

detections and false positives while increasing detection accuracy.

These enhancements demonstrate RCDI-YOLO’s promise in

underwater detection and search-and-rescue missions by enabling

it to perform very well in target occlusion, complicated

backgrounds, and noise interference.
2 Dataset and preprocessing

To effectively address the various challenges encountered in

side-scan sonar image target detection, this paper specifically

focuses on target detection in complex environments. Through

SimpleCopy-Paste, the original aircraft and shipwreck side-scan

sonar datasets are augmented to generate a complex seabed side-

scan sonar target dataset, and several data augmentation techniques

are employed. These augmentation techniques aim to enhance the

diversity of training samples, enabling the model to demonstrate

stronger robustness and generalization when facing real-world

issues such as noise interference, low contrast, and target

occlusion. The data augmentation methods primarily include

Cutout, Mosaic, and noise addition. These techniques help build a

more diversified side-scan sonar image dataset that simulates

complex underwater environments. The following section

provides a detailed introduction to the principles, applications,

and improvements to model performance achieved by

these methods.

The original aircraft and shipwreck side-scan sonar target

images, along with side-scan sonar data from different seabed

textures, are sourced from the SeabedObjects-KLSG dataset (Liu

et al., 2022), which was constructed with support from sonar

equipment suppliers such as Lcocean, Hydro-tech Marine, Klein

Marine, Tritech, and EdgeTech. This dataset contains 578 seabed

sonar images, 385 shipwreck images, and 62 aircraft sonar images,

as shown in Figure 1.

SimpleCopy-Paste (Ghiasi et al., 2021) is a straightforward and

effective data augmentation method that primarily generates new

data samples by extracting target objects from source images and

pasting them into other target images. As shown in Figure 2, this

data augmentation method is particularly useful for simulating

different complex backgrounds in side-scan sonar images, helping

the model adapt to variations in target objects across different
frontiersin.org
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background environments. This increases the diversity of the

dataset and enhances the robustness of the model when facing

background changes, noise interference, and target occlusion. The

core ope ra t ion can be de sc r ibed by the fo l l ow ing

mathematical formula:

The target object is extracted from the source image using a

mask, as shown in the formula below:

Iobject(x, y) = Isource(x, y) · Mmask(x, y) (1)

In the formula (Equation 1), Isource represents the source image,

which contains the target object to be extracted; Mmask denotes the

binary mask of the target in the source image; and Iobject denotes the

extracted object image obtained by applying Mmask to Isource. For

pixel coordinates (x, y), if the pixel belongs to the target, then Mmask

(x, y) = 1; otherwise,Mmask (x, y) = 0. Accordingly, Iobject (x, y) retains

only the pixels belonging to the target, with other pixels set to 0.

The target is then pasted into the target image Itarget. To ensure

that the background of the target image remains unchanged in the

regions where the target is not pasted, and to replace the specified

region with the target, the following formula is used for the

composition:

Inew(x, y) = Itarget(x, y) · (1 −Mmask(x, y)) + Iobject(x, y) (2)

In the formula (Equation 2), Inew denotes the composed image

obtained after placing the target into Itarget, Itarget (x, y) · (1 - Mmask

(x, y)) retains the background region of the target image where

target is absent; and Iobject (x, y) places the target in the

corresponding region.
Frontiers in Marine Science 04
This method ensures seamless integration of the target object

and background, generating a new image that retains the

background information while introducing the target object.

The final augmented image Ifinal is generated using the following

formula (Equation 3):

Ifinal(x, y) = Itarget(x, y) · (1 −Mmask(x, y)) +

Isource(x, y) · Mmask(x, y) + N(x, y)

(3)

The final augmented image, Ifinal, is generated using the

following formula.Through the SimpleCopy-Paste augmentation

technique, the diversity of the dataset was significantly improved,

especially when simulating complex seabed environments. This

enhanced the robustness of the model in scenarios involving

noise interference, background changes, and partial occlusion of

target objects. This method expands the number of data samples

and effectively improves the generalization ability of the model

when handling changing backgrounds and complex target detection

scenarios. Ultimately, the targets from 385 shipwreck and 62

aircraft sonar source images were extracted and pasted onto 578

seabed sonar target images, resulting in a total of 5,700 images of

aircraft and shipwreck data, as shown in Figure 2.

To enhance the target detection capability of the model in

complex seabed environments, various data augmentation

techniques were applied to an expanded set of 5,700 side-scan

sonar images, including Cutout (DeVries and Taylor, 2017), Mosaic

(Bochkovskiy et al., 2020), and noise addition techniques. Cutout

randomly generates square occlusion regions in images, simulating

the partial occlusion of targets by sediment, seabed structures, or
FIGURE 1

Aircraft, shipwreck, and seabed side-scan sonar data examples: (a) aircraft side-scan sonar data (b) shipwreck side-scan sonar data (c) seabed
side-scan sonar data.
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marine clutter. This technique enhances the ability of the model to

infer target shapes under conditions of missing information,

thereby improving generalization performance and robustness.

Mosaic augmentation constructs entirely new images by cutting

and stitching four or nine source images together, each containing

multiple targets and complex backgrounds. Specifically, 2,400

medium-scale target images were generated using four-image

mosaics, and 1,900 small-scale target images were created using

nine-image mosaics. This simulates complex underwater scenes

characterized by multiple objects and diverse backgrounds, thereby

increasing data diversity and enhancing the capability of the model

in multi-object detection and handling multi-scale targets. By

simulating seafloor noise interference, noise addition techniques

include adding Gaussian noise and salt-and-pepper noise improve

the model’s tolerance to noise and lessen its effect on detection,

which lowers the possibility of false positives and false negatives.

Figure 3 displays the data samples following preprocessing. An

augmented dataset of 10,000 photos was produced by combining

the SimpleCopy-Paste, Cutout, Mosaic, and noise addition

techniques. This greatly increased the data’s authenticity and

diversity and improved the model’s capacity to locate targets in

challenging seafloor situations.

This work created a diverse complex environment side-scan

sonar dataset (CESSSD) using the four data augmentation
Frontiers in Marine Science 05
approaches previously discussed. In addition to increasing the

dataset’s size, these data augmentation techniques greatly

enhanced the model’s resilience and capacity for generalization in

complicated situations. The 10,000 photos were divided into 8:2

training and validation sets. Table 1 contains the dataset’s

comprehensive information.
3 Model and method

3.1 YOLOv8 model

The base model for object detection in side-scan sonar pictures

of complex environments chosen for this investigation is YOLOv8.

YOLOv8 is a variant of the You Only Look Once (YOLO) series that

retains the series’ high speed and accuracy while making notable

improvements to its architecture, detection power, and efficiency.

Because of its superior detection accuracy, real-time performance,

and processing power, YOLOv8 is particularly well-suited for target

detection in side-scan sonar images of complex environments.

YOLOv8 has powerful multi-scale detection capabilities,

utilizing FPNs to extract multilevel resolution information and

path aggregation networks (PANs) to fuse features, significantly

improving the detection performance for targets of different scales
FIGURE 2

Schematic diagram of simple copy-paste data augmentation process: (a) seafloor target extraction process (b) original sonar images of six types of
seafloor substrates (c) example of aircraft data after the simple copy-paste operation (d) example of shipwreck data after the simple copy-paste
operation.
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in complex backgrounds. It excels in handling common issues in

side-scan sonar images, such as noise, target shape diversity, and

background interference, and accurately detects prominent and

subtle targets. Simultaneously, the architecture of YOLOv8 is

lightweight and efficient, with an adaptive anchor box design and

optimized inference processes, improving computational efficiency

and adapting to various hardware conditions to meet real-time

processing requirements. This allows YOLOv8 to process large

numbers of sonar images quickly for underwater exploration,

search and rescue, and other tasks, enabling timely target

detection and supporting decision-making. YOLOv8 uses an

improved version of CSPNet as its backbone network, which

reduces the redundant gradient flow by segmenting the feature

map calculations. This design reduces the computational load and

maintains an efficient feature extraction capability. This is especially

critical when handling low-resolution side-scan sonar images where

the target and background differences are small, optimizing

computational efficiency while enhancing the ability of the model

to separate important features from complex backgrounds.
Frontiers in Marine Science 06
3.2 LANConvNeXtv2 module structure

In underwater environments, targets in sonar images typically

have extremely low contrast, which presents significant challenges

for target detection. Unlike traditional optical images, sonar images

are often acquired under complex underwater conditions due to the

special nature of their generation, resulting in a very low contrast

between the target objects and background in the images. This low-

contrast phenomenon significantly increases the difficulty of

distinguishing targets from the background, making it difficult for

traditional computer vision techniques to effectively recognize

target objects. In addition to the low-contrast issues, numerous

complex noise sources and interference factors exist in underwater

environments. These noises include seabed reflections, marine

clutter, and sensor noise from the sonar devices. This noise often

creates false targets or strong interference signals in an image, which

can affect the ability of the model to detect real targets. Although

YOLOv8 is a powerful target-detection model that performs

excellently in general target-detection tasks, it still faces challenges

in terms of feature extraction when dealing with low-contrast and

complex, noisy sonar images. The standard convolutional module

of YOLOv8 struggles to extract sufficient and effective target

features, particularly when the target boundaries are blurred or

the background noise is overly complex. As a result, the model often

fails to focus on the true target regions, leading to suboptimal

detection performance in complex underwater environments. To

address these specific issues, RCDI-YOLO introduces the

LANConvNeXtv2 (lightweight attention network with ConvNeXt

v2) module. This module is specifically designed to improve feature

extraction capabilities and is particularly optimized for low-contrast
TABLE 1 Detailed information of CESSSD.

Category
Large-
scale
(images)

Medium-
scale
(images)

Small-
scale
(images)

Total

Training Set 4500 2000 1500 8000

Validation
Set

1200 400 400 2000

Total 5700 2400 1900 10000
FIGURE 3

Examples of data after preprocessing: (a) examples of data processed with cutout and mosaic (b) examples of data processed with noise addition.
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and noise-complex scenarios. The LANConvNeXtv2 module

integrates the advantages of lightweight attention mechanisms

and the ConvNeXt v2 network to enhance the feature extraction

per formance of the model , par t i cu lar ly in complex

underwater environments.

RCDI-YOLO replaces the original C2f module in the backbone

and neck networks of YOLOv8 with a LANConvNeXtv2 module.

This module integrates a lightweight attention mechanism (Zhang

et al., 2023) and the ConvNeXt v2 architecture (Woo et al., 2023)

and has the following characteristics:
Fron
1. LANConvNeXtv2 expands the receptive field and reduces

computational complexity using depthwise separable

convolution and dilated convolution, improving the

recognition accuracy of blurred and occluded targets in

underwater environments.

2. It introduces a lightweight attention mechanism that

focuses on important regions, suppresses noise

interference, and enhances detection accuracy without

increasing the computational burden, thereby improving

adaptability in noisy environments.

3. A multi-scale convolution strategy improves the ability of

the model to detect targets at different scales, reducing false

negatives and false positives, and ensuring high-accuracy

recognition in complex backgrounds.
As shown in Figure 4, LANConvNeXtv2 is an improved module

based on the lightweight attention mechanism and ConvNeXt

architecture, offering very high feature extraction efficiency. The

use of more refined convolution operations and attention

mechanisms can accurately enhance the features of low-contrast

targets in noisy environments. The design of LANConvNeXtv2
tiers in Marine Science 07
focuses on multi-scale feature extraction, which enables the capture

of key target features at different scales and resolutions, thereby

improving model performance in complex backgrounds.

The core principle of LANConvNeXtv2 is a combination of

convolution operations and attention mechanisms. The

convolution layers extract multilevel features, and the attention

mechanism dynamically adjusts the feature weights at different

levels to enhance the critical features. The formula is as follows:

Convolution Operation: The two-dimensional convolution

operation extracts local features as represented by the following

formula (Equation 4):

F(X,W) = W ∗X + b (4)

Where W is the convolution kernel, X is the input feature map,

∗ represents the convolution operation, and b is the bias term.

To capture the target features at different scales ,

LANConvNeXtv2 introduces multi-scale convolution operations.

At different scales s ∈ S, convolution is performed using kernels of

different sizes (Equation 5):

Fs(X,W) = Ws ∗X + bs (5)

where S is the set of scales, Ws is the convolution kernel weight

at scale s, X is the input feature map, bs is the bias term

corresponding to scale s, and Fs is the output feature map at scale s.

The feature maps Fs at different scales are fused to form a

comprehensive feature F. Fusion methods include addition and

concatenation fusion (Equations 6, 7):

F = o
s∈S

Fs (6)

Fconcat = Concat(Fs s ∈ S)j (7)
FIGURE 4

LANConvNeXtv2 architecture diagram.
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Then, a 1×1 convolution is applied to reduce the dimensionality

of the channels (Equation 8):

F = Fconcat ∗Wreduce + breduce (8)

where Wreduce is the dimensionality reduction convolution

kernel, and breduce is the corresponding bias term.

Attention Mechanism: The mechanism is used to dynamically

adjust the importance of different parts of a feature map. The

weights are calculated using the sigmoid function as follows

(Equation 9):

A(x) = s (Wa · x) (9)

Where Wa is the attention weight, x is the input feature map,

and s is the sigmoid activation function. The attention mechanism

enables the model to focus on key target features while reducing

attention to noisy areas, thereby improving detection accuracy.

The LANConvNeXtv2 module significantly enhances the target-

detection capabilities of the RCDI-YOLO model in low-contrast,

complex, noisy backgrounds. This module improves the feature

extraction efficiency and accuracy of the model and strengthens its

robustness in complex underwater environments, enabling RCDI-

YOLO to better handle the detection challenges in side-scan sonar

images. These improvements provide strong technical support for

practical tasks, such as underwater detection, marine exploration, and

search and rescue, making the target-detection system more reliable

and efficient in complex environments.
3.3 Dysample module structure

In multi-scale target detection, a significant size variation exists

among targets, and the model needs to be flexible in handling

different scales. However, the traditional YOLOv8 model uses fixed

upsampling operations, which, although somewhat effective, have

limitations when faced with significant changes in scale. Especially

in side-scan sonar images, small targets have very small sizes,

whereas large targets occupy larger regions, and marine noise,

reflections, and clutter interference in complex backgrounds

further exacerbate the detection difficulty. Fixed upsampling

struggles to adapt to dynamically changing target scales, leading

to false positives and missed detections.

The RCDI-YOLO model replaces the conventional upsampling

process with the Dysample mechanism (Liu et al., 2023) based on

YOLOv8 in order to overcome these problems. In order to meet the

feature extraction needs of targets of varying sizes, the adaptive

sampling technique known as “dysample” dynamically modifies the

sampling rate according to the true scale and features of targets.

Compared to fixed upsampling, Dysample allows flexible

adjustments to the sampling density, ensuring the accurate

capture of small targets and effective resolution of large targets.

This mechanism enhances detection accuracy and stability,

particularly in cases of target partial occlusion or complex

background noise. Additionally, Dysample increases the sampling

density in complex background areas and reduces the sampling rate

in simpler areas, thereby optimizing computational efficiency.
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Overall, Dysample improves the adaptability of RCDI-YOLO in

handling multi-scale targets and complex backgrounds, thereby

enhancing the detection performance of the model in side-scan

sonar images.

The core of Dysample is adaptive sampling rate adjustment,

which dynamically modifies the sampling rate based on the scale

information of the target object to enhance the feature extraction

capability of targets of different sizes. Figure 5a shows the dynamic

sampling mechanism of the RCDI-YOLO model. It utilizes a

sampling point generator to dynamically generate a sampling

point set, Sampling_Set, based on the input feature c and then

performs dynamic upsampling through the Grid Sample operation.

This ensures that the output feature c’ better adapts to the actual

scale and characteristics of the target. Figure 5a demonstrates the

upsampling process based on dynamic sampling, which is

mathematically described as follows (Equation 10):

c0 = Grid�Sample(c, S) (10)

Where c is the input feature map with dimensionsH×W×C; S is

the set of sampling points generated by the sampling point

generator, with dimensions sH×sW×2g; c′ is the output feature

map after dynamic sampling, with dimensions sH×sW×C; s is the

upsampling factor; and g is the dimension of each sampling point.

Dynamic sampling adjusts the values of S by dynamically

modifying the sampling positions based on the input features,

thereby achieving an adaptive upsampling operation.

The sampling point generator is responsible for generating S,

which is achieved by combining the range factor and offset. The

formula used is as follows (Equation 11):

s = G + O (11)

Where G is the scope factor that provides the initial sampling

distribution with dimensions sH×sW×2g, O is the offset that

introduces dynamic adjustments to refine the scope factor.

Figure 5b details the workflow of the sampling point generator,

including the Static Scope Factor and the Dynamic Scope Factor.

Both are generated by combining the scope factor G and the offset

O. The Static Scope Factor follows a fixed offset generation strategy,

whereas the Dynamic Scope Factor incorporates two linear

transformations, further enhancing the flexibility and adaptability

of sampling.

The offset O for the Static Scope Factor is generated using the

following formula (Equation 12):

O = Pixel _ Shuffle(0:25 · Linear(c)) (12)

In the formula, the input feature c first undergoes a linear

transformation, producing an output with dimensions H×W×2gs2.

After being scaled by a factor of 0.25, it is rearranged using the Pixel

Shuffle operation to obtain final dimensions of sH×sW×2g.

The offset O for the Dynamic Scope Factor is computed as

follows (Equation 13):

O = Pixel _ Shuffle(0:25 · (Linear1(c) + Linear2(c))) (13)

In the formula, the feature map c is transformed into two sets of

tensors through two linear transformations. These two sets of
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tensors are element-wise added, multiplied by a factor of 0.25, and

then converted to the target size sH×sW×2g through Pixel_Shuffle.

In summary, the RCDI-YOLO model significantly improves

multi-scale target detection capability by introducing the Dysample

(dynamic sampling) mechanism. Compared to traditional fixed

upsampling operations, Dysample can dynamically adjust the

sampling rate according to the actual scale and characteristics of

the target, enabling precise feature extraction for targets of

different sizes.

The versatility and adaptability of Dysample enable RCDI-

YOLO to capture target features more correctly, lowering false

negatives and false positives, especially when working with

complex, noisy backgrounds and targets with large size

fluctuations in side-scan sonar images. Dysample considerably

improves the detection effectiveness and robustness of the model

in complex environments by concentrating on target regions and

optimizing computational resources. This strengthens the

technological support for a variety of real-world applications,

including undersea exploration.
3.4 ImplicitHead module structure

In side-scan sonar images, underwater noise interference often

generates false targets, thereby increasing the difficulty of target

detection. In particular, when targets are occluded or submerged in

noise, the traditional YOLOv8 model struggles to distinguish

between noise and real targets, resulting in false positives and

missed detections. To address this issue, RCDI-YOLO introduced
Frontiers in Marine Science 09
the ImplicitHead module (Yu et al., 2024) in addition to YOLOv8,

which utilizes implicit feature representation to reduce reliance on

explicit features and enhance robustness in complex, noisy

backgrounds. Unlike traditional detection heads, the ImplicitHead

extracts key information more efficiently, reduces noise

interference, and improves target-detection accuracy.

The advantage of ImplicitHead is its ability to achieve strong

feature extraction capabilities with minimal parameters, particularly

in sonar images, by handling seabed reflections and marine clutter.

It effectively differentiates real targets from noise interference,

automatically filters out false targets in the background, and

significantly reduces the number of false positives. Additionally,

when targets are partially occluded or have blurry boundaries,

ImplicitHead, with its powerful implicit learning ability, can

better comprehend the overall characteristics of a target. Even if

some information is missing, it maintains high detection accuracy

and significantly reduces the computational complexity of the

model, allowing RCDI-YOLO to improve detection accuracy

while maintaining high real-time performance and computational

efficiency in practical applications.

As shown in Figure 6, the ImplicitHead module consists of a

sequential feature processing path, a distribution fitting loss (DFL)

optimization module, and ImplicitA/ImplicitM implicit learning

modules. The combination of these three components forms an

efficient and flexible target-detection head, effectively enhancing

feature representation capability and significantly improving

detection performance.

The input features originate from the previous layer of the

network backbone and are denoted as c. To extract high-level and
FIGURE 5

Sampling-based dynamic upsampling and module design in dysample: (a) dynamic sampling mechanism (b) workflow of sampling point generator.
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multi-scale features, ImplicitHead includes multiple parallel

sequential modules, each consisting of convolution operations

(Conv2d), an activation function (SiLU), and batch normalization

(BatchNorm). The computation was performed using the following

formula (Equation 14):

c0 = Conv2d(BN(SiLU(Conv2d(c)))) (14)

The multipath processing design of the sequential module

enabled efficient feature extraction from the input features,

enhanced the semantic representation capability of the features,

and provided richer information for subsequent modules.

The DFL module improves the accuracy of the target position

estimation and bounding box regression quality by fitting the

difference between the predicted and real distributions. This

module optimizes the bounding box regression loss during target

detection, which is formulated as follows (Equation 15):

LDFL =o
n

i=1
SmoothL1(Ppred

i , Pgt
i ) (15)

Where Pi
pred represents the predicted distribution, Pi

gt

represents the ground truth distribution, and SmoothL1(·) is the

regression loss function used for the bounding boxes.

The Implicit module was designed to dynamically adjust the

characteristics of the feature maps, making the feature

representation of the model more robust for different targets.

Two types of implicit learning modules exist: ImplicitA and

ImplicitM. These implicit learning modules introduce learnable

parameters to adaptively adjust the feature distribution. The

formulae are as follows (Equation 16):
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cout = cin + Implicit(cin) (16)

where ImplicitA adapts to local features, whereas ImplicitM

optimizes the global feature distribution.

In summary, the ImplicitHead module enhances the robustness

and noise resistance of the model, thereby improving the

performance of RCDI-YOLO in handling complex sonar images.

It effectively mitigates underwater noise interference, significantly

reduces false positives and false negatives, and optimizes

computational efficiency. This makes it well-suited for real-time

applications such as underwater detection, marine exploration, and

search-and-rescue missions. These improvements provide reliable

and efficient technical solutions for underwater target detection.
3.5 Improved YOLOv8 model

By combining the LANConvNeXtv2, Dysample, and

ImplicitHead modules, RCDI-YOLO considerably improves

YOLOv8 and significantly increases the target-detection capacity

in side-scan sonar images in complicated situations (Figure 7). The

model can reliably detect targets even in high-noise situations with

blurred boundaries thanks to LANConvNeXtv2, which is

specifically made to improve feature extraction for low-contrast

targets. It works especially well on small targets or items that are

partially obscured. To get beyond the stiffness of conventional

upsampling when working with multi-scale objects, Dysample

offers a dynamic sampling technique. It ensures accurate feature

extraction for objects of various scales by adaptively modifying the

sample rate according to the target’s size and attributes.
FIGURE 6

ImplicitHead architecture diagram.
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ImplicitHead reduces false positives and negatives under high noise

interference by using implicit learning. This improves the model’s

resilience in high-noise settings by efficiently filtering background

erroneous targets. Furthermore, the ImplicitHead’s lightweight

design speeds up inference and lowers computational complexity,

which makes RCDI-YOLO better suited for real-time applications.

All things considered, these enhancements boost the model’s

generalization ability in challenging situations and raise detection

stability and accuracy. RCDI-YOLO performs exceptionally well in

scenarios with high levels of noise interference, obscured targets, or

complicated backdrops, which makes it a perfect choice for

underwater detection, maritime exploration, and search and

rescue operations.
4 Experimental results and analysis

4.1 Experimental setup and implementation
details

Experiments were conducted on a Windows 10 system

equipped with an Intel i7-13700K CPU and an NVIDIA RTX

3090 GPU, using the PyTorch framework for model training and

validation. The dataset comprises 10,000 images, split 80% for
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training and 20% for validation. Input images were resized to

640×640. Models were trained using the SGD optimizer with an

initial learning rate of 0.01 and a fixed learning rate schedule, a

batch size of 32, and a warmup period of 3 epochs. Training lasted

up to 100 epochs with early stopping patience set to 50 epochs, and

random seed 0 was fixed to ensure reproducibility. Loss weights

were set to 7.5 for box regression, 0.5 for classification, and 1.5 for

DFL loss. Data augmentation included Mosaic (enabled with

probability 1.0, disabled in the last 10 epochs), random horizontal

flips (p=0.5), and HSV adjustments (H: ± 0.015, S: ± 0.7, V: ± 0.4).

During inference, NMS IoU threshold was set to 0.7 and anchors

were auto-computed. A full summary of the experimental setup is

provided in Table 2.
4.2 Model evaluation metrics

The model’s performance was assessed in this study using a

Confusion Matrix, Precision (P, Equation 17), Recall (R, Equation

18), Average Precision (AP, Equation 19), and Mean Average

Precision (mAP, Equation 20).

P =
TP

TP + FP
(17)
FIGURE 7

Architecture diagram of improved RCDI-YOLO.
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R =
TP

TP + FN
(18)

AP =
Z 1

0
P(R)dR (19)
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mAP =
1
No

N

i=1
APi (20)
4.3 Comparison tests on the enhanced
method’s effectiveness

Each detection accuracy increase’s performance was thoroughly

examined through comparative trials to see how much it

contributed to the total performance improvement. The goal was

to offer data support for model structure optimization and to

elucidate the precise effect of each structural modification on the

final model performance.

4.3.1 Comparison experiments on backbone and
neck network improvements

Four C2f modules are present in the neck and backbone

networks of the YOLOv8 model. The LANConvNeXtv2 module,

which combines a lightweight attention mechanism with an

enhanced ConvNeXt v2 architecture, was used to replace all eight

C2f modules in order to identify the best locations to enhance the

backbone and neck network structures. Tests of the updated

model’s accuracy showed that the best overall performance was

obtained by swapping out the first and second C2f modules in the

backbone network and the first, second, and fourth C2f modules in

the neck network. Additionally, this work used the GhostNet and

EfficientNet modules to do comparison studies.

According to Table 3, the LANConvNeXtv2 module obtained

the highest Precision of 94.4% in the backbone and neck network

improvement comparison experiments. This was 1.6%, 1.8%, and

1.1% higher than the original YOLOv8, EfficientNet-based, and

GhostNet-based models, respectively. The LANConvNeXtv2-based

network outperformed all other models in side-scan sonar target

detection in challenging situations, as evidenced by its maximum

recall (88.8%), mAP0.5 (95.1%), and mAP0.5-0.95 (60.1%).

4.3.2 Comparison experiments on detection head
Compared to the original YOLOv8 detection head, this study

adopted ImplicitHead, a module based on implicit feature

representation. By implicitly processing input features,

ImplicitHead captures key information in images more efficiently

while reducing the dependence on explicit feature learning, thereby

enhancing the robustness of the model in high-noise backgrounds.
TABLE 2 Experimental setup summary.

Category Item Specification

Hardware

CPU
Intel Core i7-13700K @ 3.40
GHz

GPU
NVIDIA GeForce RTX 3090
32GB

Operating System Windows 10

Training Settings

Image Resolution 640 × 640

Optimizer SGD

Initial Learning Rate 0.01

Learning Rate
Schedule

0.01

Batch Size 32

Warmup Epochs 3

Training Epochs 100

Early Stopping Patience = 50 epochs

Random Seed 0 (Fixed)

Epochs 100

Loss Weights

Box Loss 7.5

Cls Loss 0.5

DFL Loss 1.5

Data Augmentation

Mosaic
Enabled (p=1.0, disabled last
10 epochs)

Random Flip
(Horizontal)

p=0.5

HSV Augmentation H: ± 0.015, S: ± 0.7, V: ± 0.4

Inference
NMS IoU Threshold 0.7

Anchor Settings Auto-computed

Dataset
Total Images 10,000

Train/Validation Split 80%/20%
TABLE 3 Comparison results of backbone and neck network improvements.

Algorithm Backbone+neck Precision (%) Recall (%) mAP0.5 (%) mAP0.5-0.95 (%)

YOLOv8

– 92.8 85.9 93.7 56.6

EfficientNet (Tan and Le, 2019) 92.6 86.6 93.4 54.8

GhostNet (Han et al., 2020) 93.3 86.0 93.9 55.9

LANConvNeXtv2 94.4 88.8 95.1 60.1
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Additionally, we conducted comparative experiments with the

LADH and DynamicHead detection heads.

Target-detection accuracy for side-scan sonar images in

complicated situations is much enhanced by the ImplicitHead

detection head, as shown by the comparison findings of the

detection heads in Table 4. With a precision of 95.0%, it

outperformed the original YOLOv8, LADH, and DynamicHead

by 2.2%, 1.2%, and 1.7%, respectively. This remarkable advantage

indicates that ImplicitHead excels in precise target localization,

particularly in challenging environments. In addition to its superior

Precision, ImplicitHead also demonstrates stability and reliability in

Recall (86.2%) and mAP0.5 (93.0%), confirming its ability to

maintain high accuracy while effectively capturing more targets.

Moreover, ImplicitHead achieves 56.4% in the more challenging

mAP0.5-0.95 metric, which matches LADH and significantly

surpasses DynamicHead (54.9%). These results further validate
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the generalization capability of ImplicitHead in multi-scale and

complex scenarios.

4.3.3 Ablation experiments
To investigate the contribution of each improvement module to

YOLOv8, we conducted ablation experiments under the same

training protocol, with results summarized in Tables 5 and 6.

Introducing LANConvNeXtv2 (RC) as the improved backbone

significantly enhanced feature extraction under low-contrast and

noisy conditions, increasing Precision by 1.6%, Recall by 2.9%,

mAP0.5 by 1.4%, and mAP0.5-0.95 by 3.5%, demonstrating its

effectiveness in capturing richer and more discriminative feature

representations. The Dysample (D) multi-scale upsampling

mechanism provided modest but consistent gains—Precision

+1.0%, Recall +0.6%, mAP0.5 +0.3%, and mAP0.5-0.95 +0.7%—

primarily by increasing sampling density to better capture feature
TABLE 4 Comparison results of detection heads.

Algorithm Head Precision (%) Recall (%) mAP0.5 (%) mAP0.5-0.95 (%)

YOLOv8

– 92.8 85.9 93.7 56.6

LADH (Liu et al., 2020) 93.8 86.2 93.3 56.4

DynamicHead (Dai et al., 2021) 93.3 85.9 93.2 54.9

ImplicitHead 95.0 86.2 93.0 56.4
TABLE 5 Ablation experiment results.

Algorithm Precision (%) Recall (%) mAP0.5 (%) mAP0.5-0.95 (%) Params (M) GFLOPs

YOLOv8 (baseline) 92.8 85.9 93.7 56.6 3.01 8.1

+ RC 94.4 88.8 95.1 60.1 3.23 9.3

+ D 93.8 86.5 94.0 57.3 3.02 8.1

+ I 95.0 86.2 93.0 56.4 2.57 5.7

+ RC+ D 94.5 88.3 95.0 60.1 3.23 9.3

+RC+ I 93.9 88.4 95.2 59.4 3.23 9.3

+ I+ D 94.4 86.5 93.7 57.0 2.72 7.8

RCDI-YOLO 95.3 88.8 95.7 60.8 3.23 9.3
TABLE 6 Performance comparison of different improvements on various object sizes.

Algorithm mAP0.5_ medium (%) mAP0.5-0.95_ medium (%) mAP0.5_ large (%) mAP0.5-0.95 _ large (%)

YOLOv8 (baseline) 79.0 44.6 36.3 22.7

+ RC 80.3 48.0 39.6 25.1

+ D 79.3 45.8 37.5 23.4

+ I 78.9 45.6 29.3 18.2

+ RC+ D 80.2 48.4 35.0 22.4

+RC+ I 80.4 48.3 32.0 19.6

+ I+ D 78.9 46.2 35.0 19.4

RCDI-YOLO 80.4 49.1 36.9 23.6
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details and distinguish true targets from background noise.

ImplicitHead (I), a lightweight implicit detection head, improved

Precision by 2.2% and Recall by 0.3%, highlighting its ability to

process features implicitly, efficiently capture key image

information, and suppress noise, although its effect on mAP

metrics is more pronounced when combined with other modules.

Pairwise module combinations further confirmed their

complementarity: LANConvNeXtv2 + Dysample increased

mAP0.5 and mAP0.5-0.95 to 95.0% and 60.1%, LANConvNeXtv2 +

ImplicitHead reached 95.2% and 59.4%, and Dysample +

ImplicitHead maintained baseline mAP0.5 while slightly

improving mAP0.5-0.95 to 57.0%. Integrating all three modules
Frontiers in Marine Science 14
into RCDI-YOLO achieved the best overall performance, with

Precision 95.3%, Recall 88.8%, mAP0.5 95.7%, and mAP0.5-0.95
60.8%, representing gains of +2.5, +2.9, +2.0, and +4.2 percentage

points over the original YOLOv8 at essentially the same

lightweight scale.

Performance across different object sizes was further analyzed

according to the official COCO dataset standards, where small

objects are defined as area ≤ 32² pixels (1024), medium objects as

32² < area ≤ 96² pixels (9216), and large objects as area > 96² pixels

(9216). LANConvNeXtv2 (RC) consistently improves medium- and

large-object detection, with mAP0.5 and mAP0.5-0.95 increasing by

up to 3.3% and 3.4%, demonstrating its strong capability in
FIGURE 8

The mAP of ablation experiment: (a) mAP0.5 of fusion experiment (b) mAP0.5-0.95 of fusion experiment.
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extracting multi-scale features. Dysample (D) contributes moderate

improvements, particularly in mAP0.5-0.95, by refining multi-scale

sampling to better distinguish objects from noise. ImplicitHead (I)

slightly reduces performance on large objects when applied alone,

suggesting its lightweight implicit processing prioritizes noise

suppression over detailed large-object features. The combination

of all three modules in RCDI-YOLO yields the highest performance

across both medium and large objects, with mAP0.5 reaching 80.4%

and 36.9%, and mAP0.5-0.95 reaching 49.1% and 23.6%, highlighting

the complementary effects of LANConvNeXtv2 (RC), Dysample
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(D), and ImplicitHead (I) in enhancing robustness and detection

accuracy across diverse object scales.

Figure 8 illustrates the learning dynamics. Across all

experiments, accuracy stabilized after approximately 60 epochs.

The LANConvNeXtV2 curve consistently remained above the

baseline early on, demonstrating its contribution to enhanced

feature extraction. The ImplicitHead accelerated convergence

around the 40th epoch when used in fusion, reducing training

time to reach optimal results. RCDI-YOLO exhibited greater

fluctuations during the first 30 epochs, but after the 65th epoch,
TABLE 7 Comparison of experimental results with other detection models.

Structure Precision (%) Recall (%) mAP0.5 (%) mAP0.5-0.95 (%) Params (M) GFLOPs

YOLOv8-n (baseline) 92.8 85.9 93.7 56.6 3.01 8.1

YOLOv8-s 95.6 86.4 95.0 60.0 11.13 28.4

YOLOv8-m 94.5 87.5 94.8 61.4 25.84 78.7

YOLOv8-l 95.6 86.4 95.0 61.0 43.61 164.8

YOLOv3-tiny (Redmon et al., 2018) 93.7 84.6 91.4 53.1 12.13 18.9

YOLOv6 94.2 86.7 93.5 55.2 4.23 11.8

YOLOv9 96.6 88.0 94.6 64.6 25.53 103.6

YOLOv10 (Wang et al., 2024) 93.8 86.0 93.8 57.0 2.58 7.8

RetinaNet-50 88.4 90.2 87.0 50.8 36.35 81.93

RCDI-YOLO 95.3 88.8 95.7 60.8 3.23 9.3
FIGURE 9

Accuracy–efficiency trade-offs (batch=1, 640×640, end-to-end including pre/post; same device for all models). (a) mAP₀.₅ vs FPS. (b) mAP₀.₅–₀.₉₅ vs
FPS. RCDI is highlighted; the thin line denotes the Pareto frontier.
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both mAP0.5 and mAP0.5-0.95 consistently surpassed other variants,

reflecting strong adaptability to multi-scale targets and complex,

high-noise backgrounds. Overall, the ablation study confirms that

LANConvNeXtv2 strengthens feature extraction, Dysample

improves multi-scale sampling, and ImplicitHead contributes

synergistically, enabling RCDI-YOLO to deliver superior

detection performance for challenging side-scan sonar imagery.

4.3.4 Comparison experiments of different
models

RCDI-YOLO is a specialized target-detection method for

complex side-scan sonar images, built upon an improved

YOLOv8 backbone. As shown in Table 7, it demonstrates

superior overall performance compared with both lightweight and

heavier detection models. Specifically, RCDI-YOLO achieves a

Precision of 95.3% and Recall of 88.8%, surpassing YOLOv8-n

(92.8%/85.9%) and YOLOv6 (94.2%/86.7%), and matching or

exceeding larger YOLO variants such as YOLOv8-s (95.6%/

86.4%) and YOLOv8-l (95.6%/86.4%).

In terms of detection accuracy, RCDI-YOLO reaches 95.7% for

mAP0.5 and 60.8% for the more stringent mAP0.5-0.95 metric,

significantly outperforming YOLOv8-n (93.7%/56.6%) and

YOLOv6 (93.5%/55.2%). Compared with YOLOv9, which

achieves 94.6%/64.6% in mAP0.5/mAP0.5-0.95, RCDI-YOLO

maintains slightly lower mAP0.5-0.95 but with far fewer parameters

(3.23M vs. 25.53M) and lower GFLOPs (9.3 vs. 103.6), illustrating a

superior accuracy-to-efficiency trade-off. Lightweight models such

as YOLOv3-tiny and YOLOv10, although smaller in scale, achieve

only 53.1% and 57.0% mAP0.5-0.95, highlighting RCDI-YOLO’s

stronger generalization and adaptability in complex, high-noise

sonar environments. Non-YOLO detectors such as RetinaNet-50,

despite having large capacity (36.35M parameters, 81.93 GFLOPs),

achieve much lower mAP0.5-0.95 of 50.8%, further confirming the

advantage of the proposed architecture in challenging

detection scenarios.
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As shown in Figure 9, RCDI-YOLO significantly outperforms

the other comparison models in terms of Precision and Recall. In

terms of Precision, RCDI-YOLO achieves 95.3%, which is notably

higher than other models, such as YOLOv8 (92.8%) and YOLOv6

(94.2%). Regarding Recall, RCDI-YOLO also excelled, reaching

88.8%, slightly surpassing YOLOv10 (86.0%) and YOLOv6

(86.7%). By contrast, YOLOv3-tiny performed relatively poorly,

with a Recall rate of only 84.6%. These results indicate that RCDI-

YOLO achieves faster training convergence and exhibits higher

positive sample recognition rates, with lower false and missed

detection rates. This makes it more accurate and stable for

complex sonar-image detection tasks in challenging environments.

In terms of mAP0.5 and mAP0.5-0.95, RCDI-YOLO also

outperforms other models: For mAP0.5, RCDI-YOLO achieves

95.7%, demonstrating exceptional detection accuracy compared to

YOLOv8 (93.7%) and YOLOv10 (93.8%). In the more challenging

mAP0.5-0.95 metric, RCDI-YOLO reaches 60.8%, significantly

surpassing YOLOv6 (55.2%) and YOLOv3-tiny (53.1%). This

high performance indicates that RCDI-YOLO possesses stronger

detection and generalization capabilities across different IoU

thresholds, making it particularly suitable for sonar-image target-

detection tasks in complex environments.

Under a unified setup—batch 1, 640×640, same device, end to

end with pre/post—Figure 10 summarizes the accuracy–efficiency

trade-offs and consistently places RCDI-YOLO on or near the

Pareto frontier. In the mAP0.5–FPS plane, RCDI-YOLO reaches

mAP0.5=0.9569 at ≈163 FPS with ≈6.13 ms latency, delivering real-

time throughput without sacrificing accuracy; in the mAP0.5-0.95–

FPS view it records mAP0.5-0.95=0.6084 at the same operating point,

while competitors that score higher are notably heavier. Parameter-

wise, RCDI-YOLO uses 3.23M parameters and 9.3 GFLOPs yet

attains 0.9569/0.6084 on mAP0.5/mAP0.5-0.95, outperforming or

matching much larger models in mAP per parameter: relative to

YOLO-m/l with 25.84M/43.61M parameters and mAP0.5-0.95 of

0.6136/0.6101, RCDI-YOLO delivers nearly comparable accuracy
FIGURE 10

Accuracy–efficiency trade-offs (batch=1, 640×640, end-to-end including pre/post; same device for all models). (a) mAP0.5 vs FPS. (b) mAP0.5-0.95 vs
FPS. RCDI is highlighted; the thin line denotes the Pareto frontier.
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with ≈8–13× fewer parameters; compared with lightweight

baselines n and s, it secures a clear accuracy margin while

remaining real-time—n offers mAP0.5=0.9367 at 358 FPS and s

yields mAP0.5-0.95=0.5993 at 327 FPS. Memory-wise, RCDI-YOLO

sustains top-tier mAP0.5 and competitive mAP0.5-0.95 at ≈145 MB

peak, whereas methods with slightly higher mAP0.5-0.95—such as

YOLOv9 at 0.6479—require substantially more capacity around 218

MB and run slower near 119 FPS, reinforcing RCDI-YOLO’s

superior balance of accuracy, latency, and cost. These outcomes

align with our architectural choices—LANConvNeXtv2 for robust

feature enhancement under low contrast and clutter, Dysample for

multi-scale adaptivity, and ImplicitHead for noise-resistant

representation—and, together with earlier ablations, explain why

RCDI-YOLO combines high mAP0.5/mAP0.5-0.95, low latency, small

footprint, and modest memory, making it well suited for real-time,

resource-constrained deployment.
5 Conclusion

The proposed RCDI-YOLO model demonstrated outstanding

performance for side-scan sonar target detection in complex marine

environments. By incorporating the LANConvNeXtv2 module,

Dysample dynamic sampling mechanism, and ImplicitHead module,

the model achieved significant advancements in low-contrast target

detection, multi-scale target processing, and noise resistance. The key

improvements lie in enhancing feature extraction capabilities,

improving adaptability to multi-scale targets, and significantly

reducing the impact of noise backgrounds on detection accuracy.

Experimental results show that compared to the original YOLOv8

model, RCDI-YOLO achieves a 2.0% increase in mAP0.5, reaching

95.7%, whereas the more challenging mAP0.5-0.95 improves by 4.2%,

reaching 60.8%. These improvements highlight the significant

advantages of the model in handling complex backgrounds, target

occlusion, and noise interference. Additionally, the diversified CESSSD

dataset, constructed using data augmentation techniques such as

SimpleCopy-Paste, Cutout, Mosaic, and noise addition, further

enhanced the generalization ability and robustness of the model.

However, the applicability of RCDI-YOLO is primarily validated

on side-scan sonar images. Its performance on other sonar types, such

as synthetic aperture sonar (SAS), or in drastically different marine

environments, remains to be investigated. Despite the excellent

accuracy and robustness, a trade-off remains in terms of training

time and computational resource demands. In real-world

applications, such as marine resource exploration, rescue missions,

and underwater target detection, real-time performance and detection

accuracy are crucial. Therefore, future research could focus on further

optimizing computational efficiency while exploring more lightweight

modules to achieve a better balance between performance and

computational cost.

In summary, RCDI-YOLO provides strong technical support

for target-detection tasks in complex underwater environments,
Frontiers in Marine Science 17
with demonstrated effectiveness in side-scan sonar images, while its

applicability to other sonar scenarios requires further validation.
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