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DyAqua-YOLO: a high-precision
real-time underwater object
detection model based on
dynamic adaptive architecture
Shucheng Li1,2 and Xing Peng1,2,3*

1National Key Laboratory of Equipment State Sensing and Smart Support, Changsha, Hunan, China,
2College of Intelligent Science and Technology, National University of Defense Technology,
Changsha, Hunan, China, 3Hunan Provincial Key Laboratory of Ultra-Precision Machining
Technology, Changsha, Hunan, China
With the rapid development of marine resource exploitation and the increasing

demand for underwater robot inspection, achieving reliable target perception in

turbid, low-illumination, and spectrally limited underwater environments has

become a key challenge that urgently needs to be addressed in the field of

computer vision. This paper proposes DyAqua-YOLO, a dynamic adaptive model

specifically designed to address the critical challenges of low-contrast blurred

targets and pervasive small-object detection in complex underwater optical

environments. Central to our approach are three core innovations: 1) The

Dynamic Scale Sequence Feature Fusion (DySSFF) module, which replaces

static upsampling with a dynamic grid generator to preserve spatial details of

blurred and small targets; 2) The DyC3k2 module, which introduces dynamic

kernel weighting into the reparameterization process, enabling adaptive feature

extraction for degraded underwater images; 3) A unified Focaler-Wise

Normalized Wasserstein Distance (FWNWD) loss, not a mere combination but

a hierarchical framework whereWIoU provides gradient modulation, Focaler-IoU

handles hard-easy sample bias, and NWD ensures small-object sensitivity,

working in concert to resolve optimization conflicts. On the DUO dataset

containing 74,515 instances, the DyAqua-YOLO model achieves mAP@0.5 of

91.8% and mAP@[0.5:0.95] of 72.2%, demonstrating outstanding accuracy.

Compared to the baseline (YOLO11n), these metrics have improved by 3.9%

and 3.7%, respectively. On the OrangePi AIpro platform (8TOPS NPU, 16GB RAM),

the enhanced model achieves an inference speed of 21 FPS, striking an optimal

balance between accuracy and efficiency. Ablation experiments show that the

DyC3k2 module increases mAP@0.5 by 1.2% and mAP@[0.5:0.95] by 1.7%

compared to the YOLO11 baseline model, while reducing FLOPs by 3.2%,

thereby enhancing model accuracy and optimizing computational efficiency.

The FWNWD loss function improves the recall of small targets by 3.6% compared

to the CIoU loss function, effectively balancing the optimization conflicts

between hard examples and small targets and improving localization accuracy.

This research provides a new approach for high-precision real-time detection in
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underwater embedded devices, and its dynamic and adjustable architecture has

broad applicability guiding value for application in other scenarios with

similar challenges.
KEYWORDS

underwater object detection, deep learning, YOLO, FWNWD, dynamic adaptive model,
high-precision
1 Introduction

Underwater object detection, as a core technology in fields such

as marine resource exploration, underwater robot navigation, and

ecological monitoring, has received extensive attention in recent

years. With the increasing global demand for marine resource

development [according to the United Nations report on ocean

affairs, the scale of the ocean economy is expected to reach 3 trillion

US dollars by 2030 (United Nations, 2022)], efficient and accurate

underwater target recognition algorithms have become a key

bottleneck restricting the application of this technology. However,

the complex optical environment underwater leads to significant

degradation in image quality. Irregular light scattering and

differential absorption in water cause severe color distortion and

contrast attenuation in underwater images (Liu et al., 2020). The

low detectability of underwater targets poses a dual challenge of

high false detection and missed detection rates for underwater

object detection. At the same time, to ensure the mobility and

flexibility of underwater detectors, the computing power of

underwater embedded devices is greatly constrained, making it

difficult to meet the requirements of rapidity and real-time

performance for underwater object detection. In summary,

designing an accurate, fast, and lightweight underwater object

detection model has become a challenging issue.

Currently, object detection technologies include traditional

target recognition algorithms and deep learning-based object

detection algorithms (Xu et al., 2023). Traditional target

recognition algorithms use feature extractors to extract image

features, such as Histogram of Oriented Gradients (HOG) (Dalal

and Triggs, 2005) and Viola-Jones detector (Viola and Jones, 2001).

Compared with traditional target recognition algorithms, deep

learning-based object detection algorithms, starting with R-CNN

(Girshick et al., 2014), have established multi-structured network

models and designed adaptive feature extraction algorithms,

effectively improving detection speed, accuracy, and robustness in

complex environments (Amjoud and Amrouch, 2023). Since then,

the field of object detection has continued to make new

breakthroughs, with the emergence of algorithms such as Fast

R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2017),

SPPNet (He et al., 2015), R-FCN (Dai et al., 2016), SSD (Liu

et al., 2016), and YOLO (You Only Look Once; Redmon et al.,

2016) series (Zaidi et al., 2022). YOLO (Redmon et al., 2016), as a
02
single-stage object detector, achieves efficient real-time detection by

directly regressing bounding box coordinates and class

probabilities, demonstrating great potential in the embedded

deployment of underwater equipment. However, due to the

complex underwater environment, such as light scattering, low

contrast, and noise interference, traditional YOLO models face

numerous challenges in underwater object detection tasks (Luo

and Feng, 2025; Zheng and Yu, 2024). Based on this, researchers

have proposed a series of improvement strategies.

Feature extraction is one of the core steps in object detection. In

underwater environments, the complex background and low-

quality images make it difficult for traditional feature extraction

methods to effectively capture the key information of the target

(Luo and Feng, 2025; Zheng and Yu, 2024). Therefore, many studies

have focused on optimizing the design of the feature extraction

module to enhance the model’s ability to recognize underwater

targets. A common approach is to introduce attention mechanisms,

such as CBAM (Convolutional Block Attention Module), which can

adaptively adjust the weights in the channel and spatial dimensions,

thereby highlighting the information in important regions (Luo and

Feng, 2025; Zheng and Yu, 2024). Another approach is to utilize the

dynamic sparse attention mechanism (BiFormer) combined with

the Ghost Bottleneck module, further reducing computational costs

and improving detection accuracy (Chen et al., 2024; Zhang et al.,

2024). To address the wide distribution of target sizes in underwater

scenarios, multi-scale feature fusion technology has become a

research focus (Lu et al., 2024). RG-YOLO integrates the GDFPN

feature pyramid network, the reparameterized multi-scale fusion

module (RMF), and the dynamic head module, effectively

aggregating cross-level features, thereby enhancing the model’s

detection ability for small and dense targets, achieving an mAP@

0.5 of 86.1% on the DUO dataset (Zheng and Yu, 2024). Similarly,

MarineYOLO improves the Feature Pyramid Network (FPN) and

incorporates the Efficient Multi-scale Attention (EMA) module in

the backbone network, enhancing the fine-grained expression of

small targets through global modeling of feature channels (Liu et al.,

2024), achieving an average accuracy of 88.1% on the URPC dataset

and 78.5% on the RUOD dataset. Additionally, some works utilize

spatial pyramid pooling (SPP) or lightweight convolutional

modules to improve the utilization of multi-scale features (Cheng

et al., 2024; Luo et al., 2024). By introducing the SPP module or

multi-layer perceptron (MLP), the model’s adaptability to targets of
frontiersin.org
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different scales can be effectively enhanced (Liu et al., 2024).

Meanwhile, some studies have attempted to combine traditional

attention mechanisms with deformable convolutions to better

capture information in key regions (Luo and Feng, 2025; Zheng

and Yu, 2024). To address the problem of high proportion of small

targets and easy missed detections in underwater scenes, scholars

generally take the following measures: introducing shape-sensitive

similarity metrics (such as Shape-IoU), and designing specialized

modules for capturing fine-grained features (such as OMNI-

Dynamic Convolution) (Lu et al., 2024; Cheng et al., 2024).

Moreover, the dynamic sparse attention mechanism not only

reduces computational costs but also significantly improves the

detection accuracy of small targets (Zheng et al., 2024). In the actual

deployment process, especially in embedded devices, the limited

computing resources make traditional high-parameter models

difficult to apply. Therefore, developing algorithms that can

maintain high detection accuracy while having low computational

costs becomes particularly important. YOLO_GN builds a

lightweight backbone network based on GhostNetV2 and

combines the sparse attention mechanism BiFormer, significantly

reducing the computational cost (Chen et al., 2024). It demonstrates

strong application potential on embedded devices, achieving a

detection accuracy of 85.35% when training the URPC dataset on

the Raspberry Pi 4B platform, far exceeding the performance of

similar products (Chen et al., 2024; Zhang et al., 2024). Similarly,

RTL-YOLOv8n, through means such as the lightweight coupled

detection head (LCD-Head), reduces the computational load by

31.6% compared to the original YOLOv8n model while increasing

mAP@0.5 by 1.5%, successfully achieving a good balance between

performance and efficiency (Feng et al., 2024). Additionally, studies

have shown that replacing standard convolution operations with

grouped convolution or depthwise convolution can effectively

reduce the number of parameters and accelerate the inference

process (Zhang et al., 2024; Hu et al., 2025).

This paper proposes an underwater object detection model

based on YOLO11n. The main contributions of this paper are

as follows:
Fron
1. To address the issue of multi-scale features of underwater

targets, the ASF-YOLO framework is applied to the

YOLO11 model. By combining spatial and scale features,

the detection and performance in scenarios with small and

dense targets are significantly enhanced.

2. In the Scale Sequence Feature Fusion (SSFF) module of

ASF-YOLO, DySample lightweight dynamic upsampling is

used to replace the traditional linear interpolation

upsampling, and Dynamic Scale Sequence Feature Fusion

(DySSFF) is proposed. This improves the multi-scale

feature fusion ability and the detection performance of

small targets without significantly increasing the

computational burden.

3. The DyC3k2 feature extraction module is designed to

enhance the model’s adaptability to complex underwater

environments through dynamic convolution kernel weight
tiers in Marine Science 03
allocation, thereby improving the model’s feature

extraction ability.

4. In the training stage, a joint loss optimization strategy is

adopted, which combines the WIoU dynamic focusing

mechanism and Focaler-IoU bounding box loss, and

integrates the NWD metric for small targets. A novel

FWNWD loss function is proposed, which improves the

accuracy of the model when training on underwater

datasets and the recall of small object detection.
Experiments show that on the DUO dataset, DyAqua-YOLO

achieves 91.8% mAP@0.5 and 72.2% mAP@[0.5:0.95], with an

inference speed of 21 FPS (OrangePi AIpro, 8TOPS NPU, 16GB

RAM), meeting the real-time requirements. To systematically

explain this work, the subsequent structure of the paper is as

follows: The Methodology section elaborates on the overall

architecture of the DyAqua-YOLO models and the design

principles of its core innovative modules - Dynamic Scale

Sequence Feature Fusion (DySSFF), dynamic convolution

(DyC3k2), and the joint loss function (FWNWD); the

Experiment and Discussion section reports detailed experimental

settings, result comparisons, and ablation analyses based on the

DUO dataset, quantitatively verifying the effectiveness and

superiority of the model; the Conclusion section summarizes the

core findings and contributions, and discusses future directions.
2 Methodology

2.1 Overall framework design

YOLO11 (Khanam and Hussain, 2024, preprint) is a new

generation of object detection algorithm developed by Ultralytics

based on the YOLOv8 architecture. It incorporates new modules

such as C3k2, SPPF, and C2PSA, and offers five model variants (n/s/

m/l/x) for tasks of different scales. Figure 1 shows the basic network

framework of YOLO11:

YOLO11 continues the classic three-part architecture of the YOLO

series - Backbone, Neck, and Head. Its core innovation lies in the deep

optimization of traditional modules. The Backbone section adopts the

C2PSA module, integrating channel and spatial attention mechanisms

to enhance feature selection capabilities, and introduces the

dynamically reparameterized C3k2 module, which uses multi-branch

convolution during training to improve feature extraction capabilities

while merging into a single 3×3 convolution during inference to

maintain efficiency. At the end, an improved SPPF pyramid pooling

is used to fuse multi-scale context information. The Neck section is

based on the Path Aggregation Network (PAN) structure and uses the

C3k2 module to collaboratively optimize the up/down sampling

process: in the up-sampling stage, deep semantic features are fused

with shallow detail features to enhance the detection of small targets,

and in the down-sampling stage, semantic information transmission is

reinforced in reverse, forming an adaptive multi-scale feature flow. The

Head section adopts a decoupled design to separate classification and
frontiersin.org
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localization tasks and innovatively embeds depthwise separable

convolution to replace standard convolution layers, significantly

reducing computational costs while maintaining accuracy. Compared

to YOLOv8, YOLO11, through the three technical breakthroughs of

C3k2 reparameterization, C2PSA attention mechanism, and depthwise

separable convolution, provides a more robust basic architecture for

complex underwater scenarios (such as low-contrast targets in turbid

water), which also serves as the key foundation for the dynamic

optimization of the DyAqua-YOLO model.

The detection model proposed in this study is based on the

YOLO11 + ASF-YOLO architecture. Figure 2 shows the improved

network structure diagram:
2.2 Module improvements

2.2.1 DyASF network
ASF-YOLO (Kang et al., 2024) is a new model based on YOLO,

proposed by the research team fromMonash University Malaysia in

2024. ASF-YOLO integrates the attention scale sequence into the

YOLO framework, significantly improving the detection and

segmentation performance in scenarios with small and dense

targets. Its main structure diagram is shown in Figure 3:

The ASF-YOLO framework is mainly composed of the

following components:

1. The SSFF module (Scale Sequence Feature Fusion)

This is used to enhance the ability to extract multi-scale

information. It normalizes the feature maps of different scales
Frontiers in Marine Science 04
(such as P3, P4, P5) to the same size and resizes them through

nearest neighbor interpolation (Equations 1, 2):

~FP4 = Upsamplenearest (FP4, (HP3,WP3)) (1)

~FP5 = Upsample nearest (FP5, (HP3,WP3)) (2)

Using 3D convolution combined with multi-scale features

(Equations 3, 4):

V = Concat(FP3, ~FP4, ~FP5) ∈ R3�H�W�C (3)

FSSFF = Conv3D3�3�3(V) (4)

This module can effectively integrate feature information at

different scales, thereby improving the detection and segmentation

performance for small targets.

2. TFE Module (Triple Feature Encoder)

It enhances the detection capability for small targets. By

concatenating feature maps of three sizes (large, medium, and

small), it performs maximum pooling and average pooling

downsampling on the large-scale features (Equation 5):

F
0
large  =

1
2 MaxPool Flarge 

� �
+ AvgPool Flarge 

� �� �
(5)

Perform nearest-neighbor interpolation upsampling on small-

scale features to retain high-resolution features and prevent the loss

of small target features (Equation 6):

F
0
small  = Upsamplenearest  Fsmall , Hmed ,Wmed ð Þð Þ (6)
FIGURE 1

Network structure of the YOLO11 model.
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Finally, concatenate the multi-resolution features (Equation 7):

FTFE = Concat F0
large, Fmedium, F

0
small

� �
(7)

3. CPAM Mechanism (Channel and Position Attention

Mechanism)

The CPAM attention mechanism integrates the feature

information of the SSFF and TFE modules. Through the channel

attention network and the position attention network, it focuses on

the information-rich channels and the position information related

to small targets respectively, thereby improving the detection

performance. This mechanism can further extract the feature

information and enhance the detection effect for small targets.

The formula is as follows:

Enhancing key features through channel attention (Equations

8, 9):

zc =
1

H �Wo
H

i=1
o
W

j=1
FTFE(i, j, c),wc = s (Conv1Dk(z)) (8)

Fchannel   = wc ⊙ FTFE (9)

Fcombined = Fchannel + FSSFF (10)

Precisely locate through positional attention (Equations 10–12):

pw =
1
Ho

H

j=1
Fcombined( :, j),  ph =

1
Wo

W

i=1
Fcombined(i, : ) (11)

sw, sh = Split Conv1�1 Concat(pw, ph)ð Þð Þ (12)
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Final output fused features (Equation 13):

FCPAM = sw ⊗ sh ⊗ Fcombined (13)

Based on the original ASF network, we replaced the traditional

upsampling operation in the SSFF module of ASF-YOLO with the

DySample dynamic upsampling method, obtaining DySSFF (Liu

et al., 2023). DySample generates offsets related to the upsampling

scale through a linear layer, superimposes them onto the original

sampling grid to construct a dynamic sampling set, and implements

feature reconstruction based on bilinear interpolation. Compared

with traditional upsampling methods, this method adopts a grouped

upsampling strategy to reduce interference between channels, and

introduces a learnable dynamic range factor to adaptively adjust the

intensity of the offset, enhancing feature representation capability and

spatial adaptability while maintaining computational efficiency, and

improving feature expression.

2.2.2 DyC3k2 module
The traditional C3k2 module employs fixed-parameter

convolution kernels, which are difficult to adapt to the dynamic

changes of light intensity and the complexity of local features in

underwater environments (such as turbid water body false targets

and low-contrast biological objects), resulting in limited feature

expression capabilities. Figure 4 shows the structure diagram of the

C3k2 module. When C3k=False, C3k2 is equivalent to C2f. In the

underwater target recognition task, in order to enhance the model’s

feature extraction ability and adaptability to complex marine

environments, we introduced the DynamicConv dynamic

convolution mechanism (Han et al., 2024) on the basis of the

C3k2 module and designed the DyC3k2 module.
FIGURE 2

Network structure of DyAqua-YOLO model.
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DynamicConv is a dynamic convolution mechanism that

dynamically generates convolution kernel parameters, enabling the

model to adaptively adjust the feature extraction method based on the

characteristics of the input data. It significantly increases the model’s

parameters while improving its performance while maintaining low

computational complexity (FLOPs). The core idea is to introduce

multiple expert convolution kernels and generate dynamic coefficients

through a dynamic coefficient generator based on the characteristics of

the input samples, which are then used to weight and fuse the weights

of these expert convolution kernels and applied to the input feature

map. The calculation formula of DynamicConv is as follows:

The input feature map X is obtained as a vector after global

average pooling, and then coefficients are generated through two

layers of multi-layer perceptrons (MLPs) and an activation function

for generating probability distributions (Softmax) (Equation 14):

a = sof tmax MLP Pool Xð Þð Þð Þ (14)

The generated weight coefficients are multiplied by the

corresponding expert convolution kernels respectively and then

summed to obtain the dynamic convolution kernel with a total of M

experts (Equation 15):

W 0 =o
M

i=1
aiWi (15)
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Convolve the input feature map X with the generated dynamic

convolution and obtain the output Y (Equation 16):

Y = X*W
0 (16)
2.2.3 FWNWD module
IoU, also known as the Intersection over Union (IoU) (Zhou

et al., 2019), is an indicator widely used in the object detection task

to measure the similarity between the detected results and the true

annotations. In the object detection task, bounding boxes

(Bounding Box, Bbox) are usually parameterized by their center

point coordinates, width, and height. Specifically, the true bounding

box can be represented as Bgt = (xgt, ygt, wgt, hgt), and the predicted

bounding box can be represented as B = (x, y, w, h). The IoU

between them is defined as the ratio of their intersection area to

their union area, and its mathematical expression is as follows

(Equation 17):

IoU(Bgt,B ) =
 Area of overlap (Bgt ,B  )
 Area of union (Bgt ,B  )

(17)

This indicator quantifies the degree of overlap between the

predicted bounding box and the true annotated bounding box.

Figure 5 is a geometric illustration of IoU.
FIGURE 3

Network structure of the ASF-YOLO model.
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In the basic model of YOLO11, the CIoU (Complete

Intersection over Union) loss function (Zheng et al., 2020) is

used. It integrates the overlapping area, center point distance, and

aspect ratio constraints to construct a multi-dimensional geometric

supervision mechanism. It introduces a normalized center distance

penalty term and a width-to-height similarity measurement term

based on IoU, and dynamically balances the geometric feature

optimization weights to effectively alleviate the problems of aspect

ratio distortion and center offset in bounding box regression.

Compared with GIoU (Rezatofighi et al., 2019), it significantly

improves the positioning accuracy and accelerates the

model convergence.

The complex degradation characteristics of underwater images

pose unique challenges for optimizing object detection: gradient

interference from low-quality samples, optimization bias caused by

uneven distribution of easy and hard samples, and missed

detections due to the high sensitivity of small objects to positional
Frontiers in Marine Science 07
deviations. Existing CIoU loss functions exhibit certain limitations

in addressing these challenges. To this end, we propose a unified

loss function framework named FWNWD (Focaler-Wise

Normalized Wasserstein Distance), whose core design concept is

to provide an adaptive, multi-objective optimization solution for

underwater scenarios through the synergistic integration of three

advanced loss mechanisms. The formula proposed in this study for

FWNWD is as follows (Equations 18, 19):

LFWNWD   = R� LFWIoU   + (1 − R)� LNWD (18)

LFWIoU   = r� RWIoU � (1 − IoUfocaler  ) (19)

Here, LFWIoU  is the Focaler-WIoU term that integrates dynamic

gradient modulation and sample weighting, LNWD denotes the

Normalized Wasserstein Distance (Wang et al., 2021, preprint)

that enhances sensitivity to small objects, r and RWIoU are the

dynamic focusing coefficient and distance attention term from

WIoUv3 (Tong et al., 2023, preprint), IoUfocaler  is the interval-

mapped IoU from Focaler-IoU (Zhang and Zhang, 2024, preprint).

The configuration of all hyperparameters related to the loss

function is provided in Table 1 of Section 3.2.

The construction of FWNWD is based on three core

components, with its design motivation stemming from

addressing specific optimization challenges in underwater

detection tasks: First, to suppress harmful gradient interference

caused by low-quality samples, we introduce a dynamic gradient

modulation mechanism based on WIoUv3 (Tong et al., 2023,

preprint). This mechanism enables adaptive evaluation of sample

quality and gradient redistribution by constructing an outlier metric

and a dynamic focusing coefficient. By integrating its dynamic

focusing coefficient r, FWNWD can automatically identify

blurred samples and outliers in underwater environments,

effectively enhancing training stability. Second, to tackle the

optimization bias caused by uneven distribution of easy and hard

samples in underwater scenarios, we adopt the easy-hard sample
FIGURE 4

Structure diagram of C3k2 module.
FIGURE 5

Geometric illustration of intersection over union (IoU).
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balancing strategy of Focaler-IoU (Zhang and Zhang, 2024,

preprint). This strategy redefines the IoU loss function by

establishing confidence upper and lower bounds, enabling the

model to perform differentiated learning based on sample

difficulty. We construct the IoUfocaler  term using its interval

mapping method to achieve targeted learning for hard samples,

mitigating the model’s tendency to overfit easy samples. Finally, to

address the sensitivity to positional deviations in small object

detection, we incorporate the NWD-based small object sensitivity

metric (Wang et al., 2021, preprint). This method models bounding

boxes as Gaussian distributions and computes the Wasserstein

distance, constructing a metric more robust to minor positional

variations. By introducing the LNWD term, we significantly alleviate

the gradient vanishing problem for small objects during training,

thereby markedly improving the recall rate of small objects.

The innovation of FWNWD lies in its systematic synergistic

architecture design: the aforementioned three technologies are not

simply stacked but form a hierarchical optimization framework. The

dynamic mechanism ofWIoUv3 provides the foundational framework

for gradient regulation in the loss function, Focaler-IoU enables

differentiated learning for easy and hard samples based on this

foundation, and NWD specifically ensures optimization efficiency for

small objects. The three components form an organic whole,

systematically resolving the complex problem of coexisting multiple

types of optimization conflicts in underwater object detection. As
Frontiers in Marine Science 08
shown in the ablation experiments (Section 3.4.2), this combined loss

function demonstrates significant advantages in small object recall

while comprehensively improving model accuracy.
3 Experiment and discussion

3.1 Dataset

This study utilized the DUO (Dense Underwater Objects)

public dataset (Liu et al., 2021a). The DUO dataset was

systematically integrated from mainstream datasets such as the

URPC (Underwater Robot Picking Challenge) series (URPC, n.d.)

and the UDD (Underwater Detection Dataset) (Liu et al., 2021b),

and image duplicate removal processing was carried out using the

Perceptual Hashing Algorithm (PHash). Eventually, a standardized

dataset consisting of 7782 images was formed, including 6671

training images and 1111 test images. This effectively addressed

the issues of missing test set annotations, high image redundancy,

and varying annotation quality in the URPC series datasets and the

UDD dataset, providing a benchmark platform for underwater

object detection algorithm research. Figure 6 shows representative

images from the DUO dataset.

Compared to the existing datasets, DUO demonstrates three

core advantages:
TABLE 1 Hyperparameter configuration for the FWNWD loss function.

Component Hyperparameter Description Value Rationale

Focaler-IoU d Lower confidence limit 0
Recommended value from (Zhang and Zhang, 2024,
preprint)

u Upper confidence limit 0.95
Recommended value from (Zhang and Zhang, 2024,
preprint)

NWD C A constant related to the dataset 12.8 Recommended value from (Wang et al., 2021, preprint)

FWNWD R
Weight balancing LFWIoU  and
LNWD

0.5 Determined by ablation study (Sec. 3.4.2)
FIGURE 6

Samples of the DUO dataset.
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1. Ecological representativeness: It contains 74,515 labeled

instances, covering four key species (sea cucumber 10.6%,

sea urchin 67.3%, scallop 2.6%, sea star 19.5%), reflecting

both the natural long-tail distribution and diverse

underwater environmental conditions.

2. Small target dominance: Over 83% of the targets occupy an

image area of 0.3 - 1.5%, accurately reproducing the

essential challenge of detecting marine organisms in high-

resolution underwater images.

3. Dense instance distribution: Each image contains 5–15

organisms (mean: 9.57 ± 3.24), with an instance density

that is higher than that of traditional datasets, more

realistically simulating the actual detection scenarios.
3.2 Experimental environment and
parameter configuration

The experimental environment was set up on the Windows 11

operating system, which has a NVIDIA GeForce RTX 4060 graphics

card with a memory size of 8GB and a processor of Intel® Core™

i9-14900HX. The used YOLO framework is Ultralytics 8.3.9, the

deep learning framework is torch-2.6.0+cu124, and the

development environment is Python 3.11.12.

The training parameter configuration is shown in Table 2:

The rest are set to default.

Furthermore, the proposed FWNWD loss function integrates

severa l advanced mechanisms, whose corresponding

hyperparameter settings are crucial to the model’s performance.

Table 1 details the key hyperparameters involved in FWNWD and

its components, including their descriptions, configured values, and

the rationale behind their selection. These parameters were either

adopted from the default recommendations in their original

publications or determined empirically through ablations on the

validation split of the underwater DUO dataset to ensure optimal

adaptability for our specific task.
3.3 Algorithm evaluation indicators

The performance of the target recognition algorithm needs to be

systematically evaluated through multiple quantitative indicators.

This section, based on three core dimensions of detection accuracy,
tiers in Marine Science 09
robustness, and computational efficiency, elaborates on the

definitions, calculation methods, and scientific significance of the

mainstream evaluation indicators.

3.3.1 Precision and recall
Based on the confusion matrix, precision measures the

proportion of correct predictions in the detection results, and

recall reflects the proportion of true targets that are correctly

detected (Equations 20, 21):

Precision = TP
TP+FP (20)

Recall = TP
TP+FN (21)

TP: True Positive count, which requires both correct

classification and IoU ≥ threshold;

TN: True Negative count;

FP: False Positive count, representing false detection;

FN: False Negative count, representing missed detection.

3.3.2 Average precision
AP calculates the area under the Precision-Recall curve (Area

Under Curve, AUC) to comprehensively evaluate the classification

and localization performance of the model at different recall

(Equation 22):

AP =
Z 1

0
P(R)dR (22)
3.3.3 Mean average precision
mAP is the arithmetic mean of the AP values for all categories

and is the core comprehensive indicator of object detection. Its

derivative forms include (Equation 23):

mAP = oM
i=1

AP,i
M

(23)

mAP@0.5: This is a performance metric when the IoU threshold

is 0.5, applicable to scenarios with loose positioning.

mAP@[0.5:0.95]: This is a standard metric for the COCO

dataset, calculating the average mAP value for IoU thresholds

ranging from 0.5 to 0.95 (with a step size of 0.05), to evaluate the

model’s robustness in terms of positioning accuracy.

3.3.4 Algorithm complexity metric
Parameter quantity: This refers to the total sum of all

parameters that need to be learned in the model, which includes

but is not limited to the weights of convolutional layers, the weights

of fully connected layers, and bias terms, etc. The parameter

quantity directly relates to the storage requirements of the model

and the memory consumption during training. The formula for

calculating the parameter quantity is as follows (Equation 24):

Param = (Kh � Kw � Cin)� Cout + bias (24)

Here, Cin represents the number of input channels, Cout

represents the number of output channels, and Kh � Kw
TABLE 2 Training hyper-parameters on DUO datasets.

Config Parameter

Input image size 640×640

Epochs 100

Batch size 16

Start learning rate 0.01

Optimizer SGD
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represents the size of the convolution kernel. (Kh � Kw � Cin)�
Cout represents the weight parameters of the convolution kernel.

bias represents the parameter of the bias term, which is a vector of

size Cout .

FLOPs: It measures the number of floating-point operations

performed by the model during forward propagation, including

addition, subtraction, multiplication, and division, etc. It is an

indicator for evaluating the computational cost of the model

during operation.

The formula for calculating FLOPs is as follows (Equation 25):

FLOPs = 2� (Kh � Kw � Cin �Hout �Wout � Cout) (25)

Here, Hout  and Wout  represent the size of the output

feature map.
3.4 Experimental comparison and
evaluation

3.4.1 Comparison experiment of backbone
network models

To comprehensively evaluate the performance of the DyAqua-

YOLO model proposed in this study in the underwater object

detection task, a comparison experiment was conducted on the

DUO dataset using the latest benchmark models of the YOLO series

(YOLOv5/v6/v8/v10/11/v12). As shown in Table 3:

The training accuracy comparison chart of different YOLO

models is shown in Figure 7. It can be seen that the accuracy

indicators of the YOLO11 model framework are close but slightly

lower than those of the best-performing benchmark model

YOLOv8. The FLOPs are 6.3G, which is close but slightly lower

than that of the best-performing benchmark model YOLOv5n

(5.8G). However, DyAqua-YOLO is comprehensively ahead with

0.918 mAP@0.5 and 0.722 mAP@[0.5:0.95]. Compared to the

benchmark model (YOLO11n), it has improved by 3.9% and

3.7% respectively, proving the superiority of its dynamic feature

fusion and adaptive convolution mechanism for underwater targets.

Additionally, DyAqua-YOLO has a particularly significant

improvement in recall for small targets (Recall: 0.841 vs

YOLOv8n 0.810), attributed to its dynamic upsampling and
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optimized loss function mechanism, confirming its adaptability to

underwater dense small targets. While maintaining high accuracy,

DyAqua-YOLO also has efficiency balance. The parameter size

(4.43M) is 65.1% higher than that of YOLOv8n, but the FLOPs

(7.5G) only increase by 10.3%, demonstrating the computational

benefits of the dynamic architecture.

Due to the lack of publicly available code for direct comparison

with several recent underwater-specific models (e.g., MarineYOLO,

RG-YOLO), we evaluate the efficacy of our proposed method by

comparing its performance against the comprehensive benchmark

of general-purpose detectors established in the foundational DUO

publication (Liu et al., 2021a). As detailed in Table 3, our model

achieves a mAP@0.5 of 91.8%, which significantly outperforms the

best result (RepPoints at 80.2% mAP@0.5) reported in the original

benchmark. Furthermore, our model achieves a real-time inference

speed of 21 FPS (Orange Pi AIpro, 8TOPS NPU, 16GB RAM). This

speed is approximately 3x faster than the fastest model

benchmarked (FSAF, 7.4FPS, Jetson AGX Xavier; Liu et al.,

2021a). Given the marked improvements in both accuracy and

efficiency over the established benchmark performance on the DUO

dataset, we consider that our method demonstrates highly

competitive performance.

3.4.2 Ablation experiment
To validate the effectiveness of each proposed component and

determine the optimal hyperparameter for the FWNWD loss, we

conduct extensive ablation studies based on the YOLO11n baseline.

Firstly, we analyze the impact of the balancing coefficient R in the

FWNWD loss. R is designed to trade off the contributions between

the LFWIoU term and the LNWD term. We evaluate the model

performance on the validation set with different values of R, and

the results are summarized in Table 4.

With a small R value (e.g., R = 0.1), the NWD term dominates

the optimization, and the model achieves peak performance in both

Recall and mAP@0.5 (0.849 and 92.2%, respectively). This confirms

the exceptional effectiveness of NWD in reducing missed detections

of small objects and improving detection coverage. As the value of R

increases, the influence of the FWIoU term becomes more

pronounced. We observe that the model’s performance on the

stricter and more comprehensive evaluation metric, mAP@
TABLE 3 Comparative experimental results of different YOLO models on the DUO dataset.

Model Precision Recall mAP@0.5
mAP@
[0.5:0.95]

Param(M) FLOPs(G)

YOLOv5n 0.865 0.789 0.872 0.671 2.182 5.8

YOLOv6n 0.841 0.764 0.847 0.654 4.155 11.5

YOLOv8n 0.869 0.81 0.886 0.694 2.685 6.8

YOLOv10n 0.851 0.798 0.877 0.658 2.266 6.5

YOLO11n 0.864 0.799 0.879 0.685 2.583 6.3

YOLOv12n 0.858 0.771 0.861 0.666 2.509 5.8

Ours 0.896 0.841 0.918 0.722 4.433 7.5
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[0.5:0.95], peaks at R = 0.5 (72.2%). This indicates that assigning a

higher weight to FWIoU, while sacrificing a small amount of Recall,

enhances the overall localization accuracy of the bounding boxes.

Thus, R = 0.5 represents the optimal trade-off between the ‘quantity’

and ‘quality’ of detections. It ensures that both components of the

FWNWD loss function collaborate effectively, rather than being

dominated by a single one. Consequently, we select R = 0.5 as the

final configuration to prioritize the demanding requirement for

precise target localization in high-precision underwater

detection tasks.

Following the determination of R, we proceed to the ablation

studies of other modules. The adaptive feature fusion module

(ASF), dynamic upsampling (DySample), dynamic convolution

(DyC3k2), WIoU bounding box loss, Focaler-IoU loss, and

normalized Wasserstein distance (NWD) module were gradually

introduced. Table 5 shows the experimental groups of the ablation
Frontiers in Marine Science 11
experiment, and Table 6 presents the experimental results of the

ablation experiment. Baseline is YOLO11n.

The experimental results reveal the following key findings:

1. The progressive contribution of the backbone network modules

The training accuracy comparison chart of Baseline-Group4 is

shown in Figure 8. From this, we can compare and determine the

contribution of each backbone network module to the improvement

of the accuracy indicators:
• ASF module (Group 1): Increases mAP@0.5 by 0.4% (0.883

vs 0.879), but at the cost of a 12.7% increase in FLOPs (7.1G

vs 6.3G), indicating that it is effective for blurry targets but

the computational efficiency needs to be optimized;

• DyASF module (Group 2): Compared to Group 1, it has

improved detection accuracy and small target recall,

especially mAP@[0.5:0.95] has increased by 1.4% (0.698
FIGURE 7

Comparison chart of four indicators for different YOLO models.
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vs 0.684), indicating that the addition of DySample has

made the model have higher detection accuracy, but FLOPs

have increased by 12.7%.

• DyC3k2 dynamic convolution combination (Group 3): With

only an increase of 0.878M parameters, mAP@0.5 increases by
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1.2% (0.891 vs 0.879), mAP@[0.5:0.95] increases by 1.7%

(0.702 vs 0.685), and FLOPs decrease by 3.2% (6.1G vs

6.3G), proving that it can adaptively adjust feature extraction

to effectively enhance feature representation capability and

optimize computational efficiency.
TABLE 4 Ablation study on the hyperparameter R.

R Precision Recall mAP@0.5 mAP@[0.5:0.95]

0 0.900 0.842 0.919 0.717

0.1 0.903 0.849 0.922 0.719

0.3 0.890 0.849 0.918 0.719

0.5 0.896 0.841 0.918 0.722

0.7 0.898 0.835 0.917 0.721

0.9 0.899 0.836 0.916 0.720

1 0.889 0.836 0.913 0.719
TABLE 5 Grouping of ablation experiments for the DyAqua-YOLO model.

Exp. ASF DySample DyC3k2 WIoU Focaler-IoU NWD

Baseline × × × × × ×

Group1 ✓ × × × × ×

Group2 ✓ ✓ × × × ×

Group3 × × ✓ × × ×

Group4 ✓ ✓ ✓ × × ×

Group5 ✓ ✓ ✓ × × ✓

Group6 ✓ ✓ ✓ ✓ × ×

Group7 ✓ ✓ ✓ ✓ ✓ ×

Group8 ✓ ✓ ✓ ✓ × ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓
The symbol '✓' indicates the inclusion of the corresponding module or component in the model configuration for that specific experiment. Conversely, the symbol 'x' indicates its exclusion.
TABLE 6 Results of ablation experiments for the DyAqua-YOLO model.

Group Precision Recall mAP@0.5
mAP@
[0.5:0.95]

Param(M) FLOPs(G)

Baseline 0.864 0.799 0.879 0.685 2.583 6.3

Group1 0.867 0.803 0.883 0.684 2.675 7.1

Group2 0.869 0.807 0.887 0.698 3.000 7.7

Group3 0.872 0.809 0.891 0.702 3.461 6.1

Group4 0.886 0.805 0.895 0.711 4.433 7.5

Group5 0.890 0.836 0.913 0.720 4.433 7.5

Group6 0.890 0.833 0.911 0.721 4.433 7.5

Group7 0.889 0.836 0.913 0.719 4.433 7.5

Group8 0.897 0.832 0.915 0.720 4.433 7.5

Ours 0.896 0.841 0.918 0.722 4.433 7.5
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• Multi-module combination (Group 4): After adding

multiple modules, a combined effect was produced.

Compared to the baseline, mAP@0.5 increased by 1.6%

(0.895 vs 0.879), mAP@[0.5:0.95] increased by 2.6%

(0.711 vs 0.685), and FLOPs increased by 19% (7.5G

vs 6.3G).
2. Synergistic effect of the loss function

The training accuracy comparison chart of Group4-Ours is

shown in Figure 9, and the training loss comparison chart is shown

in Figure 10. It can be seen that the dependent variable in this case is

the loss function. From this, we can compare and determine the

contribution of our newly proposed FWNWD loss function.

Figure 9 is a line chart showing the impact of different loss

functions on the model training accuracy, and Figure 10 is a

chart showing the influence of different loss functions on the

model training loss.
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• Compared with Group4, using the NWD module alone

(Group5) and the WIoU loss (Group6) can both increase

detection accuracy without increasing computational

burden. The mAP@0.5 is improved by 1.8% (0.913 vs

0.895) and 1.6% (0.911 vs 0.895) respectively, and the

mAP@[0.5:0.95] is increased by 0.9% (0.720 vs 0.711) and

1.0% (0.721 vs 0.711) respectively. The recall of small targets

has significantly increased by 3.1% and 2.8% respectively,

indicating that these two loss functions can effectively

improve the positioning accuracy of fuzzy targets and

reduce false detection and missed detection rates.

• Compared with WIoU (Group6), Focaler-WIoU (Group7)

improves mAP@0.5 by 0.2% without increasing

computational burden, but the mAP@[0.5:0.95] decreases

by 0.2%. The recall of small targets increases by 0.3%. This

shows that Focaler-WIoU has certain efficacy in focusing

on difficult samples.
FIGURE 8

Comparative diagram of model ablation experiments based on YOLO11.
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• A single loss function is difficult to balance the retrieval of

small targets and the positioning accuracy of multi-scale,

but when the three are coordinated and complement each

other, the model can simultaneously consider the recall and

accuracy indicators of small targets and achieve better

results. Compared with using the CIoU loss function,

after adding the FWNWD loss function module,

mAP@0.5 and mAP@[0.5:0.95] increase by 2.3% and

1.1% respectively, and the recall of small targets increases

by 3.6%.
3.4.3 Detection effect presentation
To verify the performance superiority of the DyAqua-YOLO

model proposed in this study compared to the mainstream models,

we selected four representative underwater images from the test set

for visual comparison and analysis of the detection results.
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Figure 11 shows the original images and the prediction results of

YOLOv5, YOLOv6, YOLOv8, YOLOv10, YOLO11, YOLOv12, and

the DyAqua-YOLO model of this study, corresponding to the eight

columns in the figure respectively.

In Figure 11, The ground truths are denoted by purple boxes

and labels, while the predictions of our model are denoted by red

boxes and labels. Image (a) has an original size of 3840×2160 pixels,

with a total of 16 annotated objects. The image features high

resolution, partial occlusion of some objects, and generally small

target sizes (the smallest occupying 0.076% of the image area, the

largest 1.10%). During the training phase, image compression can

easily lead to the loss of features in small objects, increasing the

difficulty of detection. Compared to other models, DyAqua-YOLO

demonstrates excellent small object detection capability, with no

missed detections and only 2 false positives. Image (b) has an

original size of 1920×1080 pixels. Due to turbid water and motion

blur, the image is blurred, posing significant challenges for object
FIGURE 9

The impact of different loss functions on the training accuracy of the model.
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detection. Except for DyAqua-YOLO and YOLOv5, all other

models exhibit missed or false detections. Further comparison

between DyAqua-YOLO and YOLOv5 shows that the former

demonstrates superior localization accuracy. Image (c) has an

original size of 720×405 pixels, containing 30 annotated objects

with dense distribution, occlusion, and overlapping. DyAqua-

YOLO successfully detects 29 objects, with only 1 missed

detection. Although its perception mechanism for low-quality

samples introduces a small number of false positives, the overall

detection performance is significantly better than that of other

compared models. Image (d) has an original size of 3840×2160

pixels, with a complex background and two occluded objects.

Models including YOLOv5, YOLOv8, YOLOv10, YOLOv11, and

YOLOv12 are affected by the complex background and occlusion,

resulting in missed or false detections. Although YOLOv6 is not

interfered by the background, it still misses one occluded object.

DyAqua-YOLO demonstrates strong anti-interference capability in

this image, delivering robust detection results.

Overall, the DyAqua-YOLO model demonstrates superior

comprehensive performance across a variety of challenging

underwater scenarios. It exhibits strong anti-interference

capability, effectively suppressing false positives and missed

detections caused by complex backgrounds and occlusions. In the

presence of dense targets, partial occlusion, or small targets, the

model achieves a higher detection rate. Furthermore, compared to
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other models in the YOLO series (including YOLOv5, v6, v8, v10,

v11, and v12), which occasionally suffer from detection box

misalignment or localization drift, DyAqua-YOLO produces

bounding boxes that are generally more accurate and consistent

with the actual targets, indicating more stable performance. These

experimental results clearly demonstrate that DyAqua-YOLO holds

significant advantages over current mainstream YOLO models

when addressing key challenges in underwater object detection,

such as occlusion, blurry imagery, target density, and complex

background noise.
4 Conclusion and outlook

This study addresses the core algorithmic challenges presented

by underwater environments, specifically the detection of blurred,

low-contrast, and small targets that result from complex optical

degradation. It innovatively proposes the DyAqua-YOLO model

based on a dynamically adjustable architecture. The key

breakthrough lies not in the individual modules but in their

systematic co-design, which creates a synergistic effect greater

than the sum of its parts. By deeply integrating the DySSFF and

the DyC3k2, it achieves the collaborative dynamic optimization of

multi-scale feature representation and convolution kernel weights.

Additionally, the designed FWNWD loss function innovatively
FIGURE 10

The impact of different loss functions on the training loss of the model.
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combines the WIoU dynamic focusing mechanism, Focaler-IoU

sample weighting strategy, and NWD small target metric,

significantly enhancing the model’s robustness for detecting

targets in turbid water bodies. Systematic experiments on the

DUO dataset demonstrate that DyAqua-YOLO significantly

improves underwater object detection performance by 91.8%

mAP@0.5 and 72.2% mAP@[0.5:0.95], outperforming the baseline

model by 3.9%, and meeting real-time requirements at 21FPS

(OrangePi AIpro, 8TOPS NPU, 16GB RAM). Ablation

experiments further reveal the cascading gain effect of the

dynamic module - DyC3k2 increases the small target recall by

3.6%, while the FWNWD loss effectively resolves the trade-off

between difficult sample optimization and micro-object detection.
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Although DyAqua-YOLO demonstrates promising performance in

underwater object detection, several research directions deserve further

exploration to enhance its capabilities and practical applicability. Firstly,

to alleviate the information loss caused by image downsampling, we

plan to develop adaptive high-resolution processing strategies, such as

adaptive image tiling and multi-scale inference mechanisms. These

approaches aim to preserve fine-grained features of small objects while

maintaining computational efficiency. In addition, underwater image

enhancement techniques—including deblurring, contrast enhancement,

and color correction—will be investigated to improve input image

quality and provide more reliable visual information for detection.

Second, we will focus on lightweight and hardware-aware model

optimization to facilitate deployment on resource-constrained
FIGURE 11

Visual comparison of detection results from different models on four challenging underwater scenes. (a) high-resolution image with small and
partially occluded objects, (b) blurred image in turbid water, (c) scene with dense and overlapping objects, (d) complex background with occlusions.
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embedded platforms. Techniques such as neural architecture search

(NAS), quantization, and pruning will be employed to reduce

computational and memory overhead without significantly

compromising detection accuracy. Furthermore, to address perception

challenges in complex underwater optical environments, we intend to

construct an acoustic-optical multi-modal perception framework. This

system will leverage acoustic imaging to compensate for the lack of

visual information in highly turbid water, thereby improving detection

robustness in low-visibility conditions. Finally, the dynamic architecture

and loss function proposed in this study show potential for

generalization beyond underwater detection. We plan to extend their

application to other vision tasks such as aerial image analysis and

medical image recognition, evaluating their adaptability and

effectiveness across diverse domains.
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