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With the rapid development of marine resource exploitation and the increasing
demand for underwater robot inspection, achieving reliable target perception in
turbid, low-illumination, and spectrally limited underwater environments has
become a key challenge that urgently needs to be addressed in the field of
computer vision. This paper proposes DyAqua-YOLO, a dynamic adaptive model
specifically designed to address the critical challenges of low-contrast blurred
targets and pervasive small-object detection in complex underwater optical
environments. Central to our approach are three core innovations: 1) The
Dynamic Scale Sequence Feature Fusion (DySSFF) module, which replaces
static upsampling with a dynamic grid generator to preserve spatial details of
blurred and small targets; 2) The DyC3k2 module, which introduces dynamic
kernel weighting into the reparameterization process, enabling adaptive feature
extraction for degraded underwater images; 3) A unified Focaler-Wise
Normalized Wasserstein Distance (FWNWD) loss, not a mere combination but
a hierarchical framework where WloU provides gradient modulation, Focaler-loU
handles hard-easy sample bias, and NWD ensures small-object sensitivity,
working in concert to resolve optimization conflicts. On the DUO dataset
containing 74,515 instances, the DyAqua-YOLO model achieves mAP@O0.5 of
91.8% and mAP@[0.5:0.95] of 72.2%, demonstrating outstanding accuracy.
Compared to the baseline (YOLO11n), these metrics have improved by 3.9%
and 3.7%, respectively. On the OrangePi Alpro platform (8TOPS NPU, 16GB RAM),
the enhanced model achieves an inference speed of 21 FPS, striking an optimal
balance between accuracy and efficiency. Ablation experiments show that the
DyC3k2 module increases mAP@O0.5 by 1.2% and mAP@[0.5:0.95] by 1.7%
compared to the YOLO11 baseline model, while reducing FLOPs by 3.2%,
thereby enhancing model accuracy and optimizing computational efficiency.
The FWNWD loss function improves the recall of small targets by 3.6% compared
to the CloU loss function, effectively balancing the optimization conflicts
between hard examples and small targets and improving localization accuracy.
This research provides a new approach for high-precision real-time detection in
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underwater embedded devices, and its dynamic and adjustable architecture has
broad applicability guiding value for application in other scenarios with

similar challenges.
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1 Introduction

Underwater object detection, as a core technology in fields such
as marine resource exploration, underwater robot navigation, and
ecological monitoring, has received extensive attention in recent
years. With the increasing global demand for marine resource
development [according to the United Nations report on ocean
affairs, the scale of the ocean economy is expected to reach 3 trillion
US dollars by 2030 (United Nations, 2022)], efficient and accurate
underwater target recognition algorithms have become a key
bottleneck restricting the application of this technology. However,
the complex optical environment underwater leads to significant
degradation in image quality. Irregular light scattering and
differential absorption in water cause severe color distortion and
contrast attenuation in underwater images (Liu et al., 2020). The
low detectability of underwater targets poses a dual challenge of
high false detection and missed detection rates for underwater
object detection. At the same time, to ensure the mobility and
flexibility of underwater detectors, the computing power of
underwater embedded devices is greatly constrained, making it
difficult to meet the requirements of rapidity and real-time
performance for underwater object detection. In summary,
designing an accurate, fast, and lightweight underwater object
detection model has become a challenging issue.

Currently, object detection technologies include traditional
target recognition algorithms and deep learning-based object
detection algorithms (Xu et al., 2023). Traditional target
recognition algorithms use feature extractors to extract image
features, such as Histogram of Oriented Gradients (HOG) (Dalal
and Triggs, 2005) and Viola-Jones detector (Viola and Jones, 2001).
Compared with traditional target recognition algorithms, deep
learning-based object detection algorithms, starting with R-CNN
(Girshick et al., 2014), have established multi-structured network
models and designed adaptive feature extraction algorithms,
effectively improving detection speed, accuracy, and robustness in
complex environments (Amjoud and Amrouch, 2023). Since then,
the field of object detection has continued to make new
breakthroughs, with the emergence of algorithms such as Fast
R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2017),
SPPNet (He et al, 2015), R-FCN (Dai et al., 2016), SSD (Liu
et al,, 2016), and YOLO (You Only Look Once; Redmon et al,
2016) series (Zaidi et al., 2022). YOLO (Redmon et al., 2016), as a
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single-stage object detector, achieves efficient real-time detection by
directly regressing bounding box coordinates and class
probabilities, demonstrating great potential in the embedded
deployment of underwater equipment. However, due to the
complex underwater environment, such as light scattering, low
contrast, and noise interference, traditional YOLO models face
numerous challenges in underwater object detection tasks (Luo
and Feng, 2025; Zheng and Yu, 2024). Based on this, researchers
have proposed a series of improvement strategies.

Feature extraction is one of the core steps in object detection. In
underwater environments, the complex background and low-
quality images make it difficult for traditional feature extraction
methods to effectively capture the key information of the target
(Luo and Feng, 2025; Zheng and Yu, 2024). Therefore, many studies
have focused on optimizing the design of the feature extraction
module to enhance the model’s ability to recognize underwater
targets. A common approach is to introduce attention mechanisms,
such as CBAM (Convolutional Block Attention Module), which can
adaptively adjust the weights in the channel and spatial dimensions,
thereby highlighting the information in important regions (Luo and
Feng, 2025; Zheng and Yu, 2024). Another approach is to utilize the
dynamic sparse attention mechanism (BiFormer) combined with
the Ghost Bottleneck module, further reducing computational costs
and improving detection accuracy (Chen et al., 2024; Zhang et al.,
2024). To address the wide distribution of target sizes in underwater
scenarios, multi-scale feature fusion technology has become a
research focus (Lu et al., 2024). RG-YOLO integrates the GDFPN
feature pyramid network, the reparameterized multi-scale fusion
module (RMF), and the dynamic head module, effectively
aggregating cross-level features, thereby enhancing the model’s
detection ability for small and dense targets, achieving an mAP@
0.5 of 86.1% on the DUO dataset (Zheng and Yu, 2024). Similarly,
MarineYOLO improves the Feature Pyramid Network (FPN) and
incorporates the Efficient Multi-scale Attention (EMA) module in
the backbone network, enhancing the fine-grained expression of
small targets through global modeling of feature channels (Liu et al.,
2024), achieving an average accuracy of 88.1% on the URPC dataset
and 78.5% on the RUOD dataset. Additionally, some works utilize
spatial pyramid pooling (SPP) or lightweight convolutional
modules to improve the utilization of multi-scale features (Cheng
et al,, 2024; Luo et al,, 2024). By introducing the SPP module or
multi-layer perceptron (MLP), the model’s adaptability to targets of
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different scales can be effectively enhanced (Liu et al, 2024).
Meanwhile, some studies have attempted to combine traditional
attention mechanisms with deformable convolutions to better
capture information in key regions (Luo and Feng, 2025; Zheng
and Yu, 2024). To address the problem of high proportion of small
targets and easy missed detections in underwater scenes, scholars
generally take the following measures: introducing shape-sensitive
similarity metrics (such as Shape-IoU), and designing specialized
modules for capturing fine-grained features (such as OMNI-
Dynamic Convolution) (Lu et al,, 2024; Cheng et al., 2024).
Moreover, the dynamic sparse attention mechanism not only
reduces computational costs but also significantly improves the
detection accuracy of small targets (Zheng et al., 2024). In the actual
deployment process, especially in embedded devices, the limited
computing resources make traditional high-parameter models
difficult to apply. Therefore, developing algorithms that can
maintain high detection accuracy while having low computational
costs becomes particularly important. YOLO_GN builds a
lightweight backbone network based on GhostNetV2 and
combines the sparse attention mechanism BiFormer, significantly
reducing the computational cost (Chen et al., 2024). It demonstrates
strong application potential on embedded devices, achieving a
detection accuracy of 85.35% when training the URPC dataset on
the Raspberry Pi 4B platform, far exceeding the performance of
similar products (Chen et al., 2024; Zhang et al., 2024). Similarly,
RTL-YOLOvVS8n, through means such as the lightweight coupled
detection head (LCD-Head), reduces the computational load by
31.6% compared to the original YOLOv8n model while increasing
mAP@0.5 by 1.5%, successfully achieving a good balance between
performance and efficiency (Feng et al., 2024). Additionally, studies
have shown that replacing standard convolution operations with
grouped convolution or depthwise convolution can effectively
reduce the number of parameters and accelerate the inference
process (Zhang et al., 2024; Hu et al., 2025).

This paper proposes an underwater object detection model
based on YOLOlln. The main contributions of this paper are
as follows:

1. To address the issue of multi-scale features of underwater
targets, the ASF-YOLO framework is applied to the
YOLO11 model. By combining spatial and scale features,
the detection and performance in scenarios with small and
dense targets are significantly enhanced.

2. In the Scale Sequence Feature Fusion (SSFF) module of
ASF-YOLO, DySample lightweight dynamic upsampling is
used to replace the traditional linear interpolation
upsampling, and Dynamic Scale Sequence Feature Fusion
(DySSFF) is proposed. This improves the multi-scale
feature fusion ability and the detection performance of
small targets without significantly increasing the
computational burden.

3. The DyC3k2 feature extraction module is designed to
enhance the model’s adaptability to complex underwater
environments through dynamic convolution kernel weight
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allocation, thereby improving the model’s feature
extraction ability.

4. In the training stage, a joint loss optimization strategy is
adopted, which combines the WIoU dynamic focusing
mechanism and Focaler-IoU bounding box loss, and
integrates the NWD metric for small targets. A novel
FWNWD loss function is proposed, which improves the
accuracy of the model when training on underwater
datasets and the recall of small object detection.

Experiments show that on the DUO dataset, DyAqua-YOLO
achieves 91.8% mAP®@0.5 and 72.2% mAP@[0.5:0.95], with an
inference speed of 21 FPS (OrangePi Alpro, 8TOPS NPU, 16GB
RAM), meeting the real-time requirements. To systematically
explain this work, the subsequent structure of the paper is as
follows: The Methodology section elaborates on the overall
architecture of the DyAqua-YOLO models and the design
principles of its core innovative modules - Dynamic Scale
Sequence Feature Fusion (DySSFF), dynamic convolution
(DyC3k2), and the joint loss function (FWNWD); the
Experiment and Discussion section reports detailed experimental
settings, result comparisons, and ablation analyses based on the
DUO dataset, quantitatively verifying the effectiveness and
superiority of the model; the Conclusion section summarizes the
core findings and contributions, and discusses future directions.

2 Methodology
2.1 Overall framework design

YOLOI11 (Khanam and Hussain, 2024, preprint) is a new
generation of object detection algorithm developed by Ultralytics
based on the YOLOVS8 architecture. It incorporates new modules
such as C3k2, SPPF, and C2PSA, and offers five model variants (n/s/
m/1/x) for tasks of different scales. Figure 1 shows the basic network
framework of YOLO11:

YOLOL11 continues the classic three-part architecture of the YOLO
series - Backbone, Neck, and Head. Its core innovation lies in the deep
optimization of traditional modules. The Backbone section adopts the
C2PSA module, integrating channel and spatial attention mechanisms
to enhance feature selection capabilities, and introduces the
dynamically reparameterized C3k2 module, which uses multi-branch
convolution during training to improve feature extraction capabilities
while merging into a single 3x3 convolution during inference to
maintain efficiency. At the end, an improved SPPF pyramid pooling
is used to fuse multi-scale context information. The Neck section is
based on the Path Aggregation Network (PAN) structure and uses the
C3k2 module to collaboratively optimize the up/down sampling
process: in the up-sampling stage, deep semantic features are fused
with shallow detail features to enhance the detection of small targets,
and in the down-sampling stage, semantic information transmission is
reinforced in reverse, forming an adaptive multi-scale feature flow. The
Head section adopts a decoupled design to separate classification and
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FIGURE 1
Network structure of the YOLO11 model.

localization tasks and innovatively embeds depthwise separable
convolution to replace standard convolution layers, significantly
reducing computational costs while maintaining accuracy. Compared
to YOLOVS, YOLOL11, through the three technical breakthroughs of
C3k2 reparameterization, C2PSA attention mechanism, and depthwise
separable convolution, provides a more robust basic architecture for
complex underwater scenarios (such as low-contrast targets in turbid
water), which also serves as the key foundation for the dynamic
optimization of the DyAqua-YOLO model.

The detection model proposed in this study is based on the
YOLOI11 + ASF-YOLO architecture. Figure 2 shows the improved
network structure diagram:

2.2 Module improvements

2.2.1 DyASF network

ASF-YOLO (Kang et al., 2024) is a new model based on YOLO,
proposed by the research team from Monash University Malaysia in
2024. ASF-YOLO integrates the attention scale sequence into the
YOLO framework, significantly improving the detection and
segmentation performance in scenarios with small and dense
targets. Its main structure diagram is shown in Figure 3:

The ASF-YOLO framework is mainly composed of the
following components:

1. The SSFF module (Scale Sequence Feature Fusion)

This is used to enhance the ability to extract multi-scale
information. It normalizes the feature maps of different scales
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(such as P3, P4, P5) to the same size and resizes them through
nearest neighbor interpolation (Equations 1, 2):

PP4 = Upsamplenearest (FP4> (HP3> WPS)) (1)

FPS = Upsample nearest (FPSa (HP3’ WP})) (2)

Using 3D convolution combined with multi-scale features
(Equations 3, 4):

V = Concat(Fps, Fpy, Fps) € R HXWxC 3)

Fsgpp = Conv3Ds,3,3(V) (4)

This module can effectively integrate feature information at
difterent scales, thereby improving the detection and segmentation
performance for small targets.

2. TFE Module (Triple Feature Encoder)

It enhances the detection capability for small targets. By
concatenating feature maps of three sizes (large, medium, and
small), it performs maximum pooling and average pooling
downsampling on the large-scale features (Equation 5):

Fl;\rge =1 (MaxPool (Flarge ) + AvgPool (Flarge )) (5)

Perform nearest-neighbor interpolation upsampling on small-
scale features to retain high-resolution features and prevent the loss
of small target features (Equation 6):

Fsmall = Upsamplenearest (Fsmall > (Hmed > Wmed )) (6)
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Finally, concatenate the multi-resolution features (Equation 7): Final output fused features (Equation 13):
FTFE = Concat (Fllarge) Fmedium) Fémall) (7) FCPAM =Sw ® $h ® Fcombined (13)

3. CPAM Mechanism (Channel and Position Attention
Mechanism)

The CPAM attention mechanism integrates the feature
information of the SSFF and TFE modules. Through the channel
attention network and the position attention network, it focuses on
the information-rich channels and the position information related
to small targets respectively, thereby improving the detection
performance. This mechanism can further extract the feature
information and enhance the detection effect for small targets.
The formula is as follows:

Enhancing key features through channel attention (Equations
8, 9):

1
HxW

H W
> > Erpg(is ji ), we = 6(Conv1Dy(2)) (8)
i=1j=1

zZ. =

Fchannel =w. 0 FTFE (9)
Feombined = Fehannel + FSSFF (10)

Precisely locate through positional attention (Equations 10-12):
14 . 1w .
Pw= 72Fcumbined( :>])> P = 72Fcombined(l> : ) (1 1)
Hi5 wia

Sw»Sh = Split(Convy ., (Concat(p,,, pp))) (12)
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Based on the original ASF network, we replaced the traditional
upsampling operation in the SSFF module of ASF-YOLO with the
DySample dynamic upsampling method, obtaining DySSFF (Liu
et al,, 2023). DySample generates offsets related to the upsampling
scale through a linear layer, superimposes them onto the original
sampling grid to construct a dynamic sampling set, and implements
feature reconstruction based on bilinear interpolation. Compared
with traditional upsampling methods, this method adopts a grouped
upsampling strategy to reduce interference between channels, and
introduces a learnable dynamic range factor to adaptively adjust the
intensity of the offset, enhancing feature representation capability and
spatial adaptability while maintaining computational efficiency, and
improving feature expression.

2.2.2 DyC3k2 module

The traditional C3k2 module employs fixed-parameter
convolution kernels, which are difficult to adapt to the dynamic
changes of light intensity and the complexity of local features in
underwater environments (such as turbid water body false targets
and low-contrast biological objects), resulting in limited feature
expression capabilities. Figure 4 shows the structure diagram of the
C3k2 module. When C3k=False, C3k2 is equivalent to C2f. In the
underwater target recognition task, in order to enhance the model’s
feature extraction ability and adaptability to complex marine
environments, we introduced the DynamicConv dynamic
convolution mechanism (Han et al, 2024) on the basis of the
C3k2 module and designed the DyC3k2 module.
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FIGURE 3

Network structure of the ASF-YOLO model.

DynamicConv is a dynamic convolution mechanism that
dynamically generates convolution kernel parameters, enabling the
model to adaptively adjust the feature extraction method based on the
characteristics of the input data. It significantly increases the model’s
parameters while improving its performance while maintaining low
computational complexity (FLOPs). The core idea is to introduce
multiple expert convolution kernels and generate dynamic coefficients
through a dynamic coefficient generator based on the characteristics of
the input samples, which are then used to weight and fuse the weights
of these expert convolution kernels and applied to the input feature
map. The calculation formula of DynamicConv is as follows:

The input feature map X is obtained as a vector after global
average pooling, and then coefficients are generated through two
layers of multi-layer perceptrons (MLPs) and an activation function

for generating probability distributions (Softmax) (Equation 14):
o = softmax(MLP(Pool(X))) (14)

The generated weight coefficients are multiplied by the
corresponding expert convolution kernels respectively and then
summed to obtain the dynamic convolution kernel with a total of M
experts (Equation 15):

(15)
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Convolve the input feature map X with the generated dynamic
convolution and obtain the output Y (Equation 16):

Y = Xo W' (16)

2.2.3 FWNWD module

IoU, also known as the Intersection over Union (IoU) (Zhou
etal, 2019), is an indicator widely used in the object detection task
to measure the similarity between the detected results and the true
annotations. In the object detection task, bounding boxes
(Bounding Box, Bbox) are usually parameterized by their center
point coordinates, width, and height. Specifically, the true bounding
box can be represented as Bgt = (xgt, Vet Weps hgt), and the predicted
bounding box can be represented as B = (x, y, w, h). The IoU
between them is defined as the ratio of their intersection area to
their union area, and its mathematical expression is as follows
(Equation 17):

Area of overlap (By,B)
Area of union (Bgt ,B)

IoU(By, B) = (17)

This indicator quantifies the degree of overlap between the
predicted bounding box and the true annotated bounding box.
Figure 5 is a geometric illustration of IoU.

frontiersin.org


https://doi.org/10.3389/fmars.2025.1678417
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Li and Peng

10.3389/fmars.2025.1678417

(C3k2

C3k=True

e
C3k2

C3k=False

r N

Bottleneck

Bottleneck

A 4

Concat

|
I
I
I
I
I
I
I
I
L

— IS
Shortcut=?

_ 4

FIGURE 4
Structure diagram of C3k2 module.

In the basic model of YOLO11, the CIoU (Complete
Intersection over Union) loss function (Zheng et al., 2020) is
used. It integrates the overlapping area, center point distance, and
aspect ratio constraints to construct a multi-dimensional geometric
supervision mechanism. It introduces a normalized center distance
penalty term and a width-to-height similarity measurement term
based on IoU, and dynamically balances the geometric feature
optimization weights to effectively alleviate the problems of aspect
ratio distortion and center offset in bounding box regression.
Compared with GIoU (Rezatofighi et al., 2019), it significantly
improves the positioning accuracy and accelerates the
model convergence.

The complex degradation characteristics of underwater images
pose unique challenges for optimizing object detection: gradient
interference from low-quality samples, optimization bias caused by
uneven distribution of easy and hard samples, and missed
detections due to the high sensitivity of small objects to positional

’ W \
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FIGURE 5

Geometric illustration of intersection over union (loU)
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deviations. Existing CIoU loss functions exhibit certain limitations
in addressing these challenges. To this end, we propose a unified
loss function framework named FWNWD (Focaler-Wise
Normalized Wasserstein Distance), whose core design concept is
to provide an adaptive, multi-objective optimization solution for
underwater scenarios through the synergistic integration of three
advanced loss mechanisms. The formula proposed in this study for
FWNWD is as follows (Equations 18, 19):

Lewnwp = R X Lpwioy + (1= R) X Lywp (18)

LFWIoU =rX RWloU X (1 _ IOUfocaler ) (19)

Here, Lrwioy is the Focaler-WIoU term that integrates dynamic
gradient modulation and sample weighting, Lywp denotes the
Normalized Wasserstein Distance (Wang et al., 2021, preprint)
that enhances sensitivity to small objects, r and Ryy are the
dynamic focusing coefficient and distance attention term from
WIoUv3 (Tong et al, 2023, preprint), ToU™<ler is the interval-
mapped IoU from Focaler-IoU (Zhang and Zhang, 2024, preprint).
The configuration of all hyperparameters related to the loss
function is provided in Table 1 of Section 3.2.

The construction of FWNWD is based on three core
components, with its design motivation stemming from
addressing specific optimization challenges in underwater
detection tasks: First, to suppress harmful gradient interference
caused by low-quality samples, we introduce a dynamic gradient
modulation mechanism based on WIoUv3 (Tong et al, 2023,
preprint). This mechanism enables adaptive evaluation of sample
quality and gradient redistribution by constructing an outlier metric
and a dynamic focusing coefficient. By integrating its dynamic
focusing coefficient r, FWNWD can automatically identify
blurred samples and outliers in underwater environments,
effectively enhancing training stability. Second, to tackle the
optimization bias caused by uneven distribution of easy and hard
samples in underwater scenarios, we adopt the easy-hard sample
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TABLE 1 Hyperparameter configuration for the FWNWD loss function.

Component Hyperparameter Description
Focaler-IoU d Lower confidence limit
u Upper confidence limit
NWD C A constant related to the dataset
FWNWD R Xjfiht balancing Ly, and

10.3389/fmars.2025.1678417

Value Rationale
0 Recommended value from (Zhang and Zhang, 2024,
preprint)
0.95 Recommended value from (Zhang and Zhang, 2024,
’ preprint)
12.8 Recommended value from (Wang et al., 2021, preprint)
0.5 Determined by ablation study (Sec. 3.4.2)

balancing strategy of Focaler-IoU (Zhang and Zhang, 2024,
preprint). This strategy redefines the IoU loss function by
establishing confidence upper and lower bounds, enabling the
model to perform differentiated learning based on sample
difficulty. We construct the IoU™ term using its interval
mapping method to achieve targeted learning for hard samples,
mitigating the model’s tendency to overfit easy samples. Finally, to
address the sensitivity to positional deviations in small object
detection, we incorporate the NWD-based small object sensitivity
metric (Wang et al., 2021, preprint). This method models bounding
boxes as Gaussian distributions and computes the Wasserstein
distance, constructing a metric more robust to minor positional
variations. By introducing the Lywp term, we significantly alleviate
the gradient vanishing problem for small objects during training,
thereby markedly improving the recall rate of small objects.

The innovation of FWNWD lies in its systematic synergistic
architecture design: the aforementioned three technologies are not
simply stacked but form a hierarchical optimization framework. The
dynamic mechanism of WIoUv3 provides the foundational framework
for gradient regulation in the loss function, Focaler-IoU enables
differentiated learning for easy and hard samples based on this
foundation, and NWD specifically ensures optimization efficiency for
small objects. The three components form an organic whole,
systematically resolving the complex problem of coexisting multiple
types of optimization conflicts in underwater object detection. As

shown in the ablation experiments (Section 3.4.2), this combined loss
function demonstrates significant advantages in small object recall
while comprehensively improving model accuracy.

3 Experiment and discussion

3.1 Dataset

This study utilized the DUO (Dense Underwater Objects)
public dataset (Liu et al., 2021a). The DUO dataset was
systematically integrated from mainstream datasets such as the
URPC (Underwater Robot Picking Challenge) series (URPC, n.d.)
and the UDD (Underwater Detection Dataset) (Liu et al., 2021b),
and image duplicate removal processing was carried out using the
Perceptual Hashing Algorithm (PHash). Eventually, a standardized
dataset consisting of 7782 images was formed, including 6671
training images and 1111 test images. This effectively addressed
the issues of missing test set annotations, high image redundancy,
and varying annotation quality in the URPC series datasets and the
UDD dataset, providing a benchmark platform for underwater
object detection algorithm research. Figure 6 shows representative
images from the DUO dataset.

Compared to the existing datasets, DUO demonstrates three
core advantages:

FIGURE 6
Samples of the DUO dataset.
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1. Ecological representativeness: It contains 74,515 labeled
instances, covering four key species (sea cucumber 10.6%,
sea urchin 67.3%, scallop 2.6%, sea star 19.5%), reflecting
both the natural long-tail distribution and diverse
underwater environmental conditions.

2. Small target dominance: Over 83% of the targets occupy an
image area of 0.3 - 1.5%, accurately reproducing the
essential challenge of detecting marine organisms in high-
resolution underwater images.

3. Dense instance distribution: Each image contains 5-15
organisms (mean: 9.57 + 3.24), with an instance density
that is higher than that of traditional datasets, more
realistically simulating the actual detection scenarios.

3.2 Experimental environment and
parameter configuration

The experimental environment was set up on the Windows 11
operating system, which has a NVIDIA GeForce RTX 4060 graphics
card with a memory size of 8GB and a processor of Intel® Core™
i9-14900HX. The used YOLO framework is Ultralytics 8.3.9, the
deep learning framework is torch-2.6.0+cul24, and the
development environment is Python 3.11.12.

The training parameter configuration is shown in Table 2:

The rest are set to default.

Furthermore, the proposed FWNWD loss function integrates
several advanced mechanisms, whose corresponding
hyperparameter settings are crucial to the model’s performance.
Table 1 details the key hyperparameters involved in FWNWD and
its components, including their descriptions, configured values, and
the rationale behind their selection. These parameters were either
adopted from the default recommendations in their original
publications or determined empirically through ablations on the
validation split of the underwater DUO dataset to ensure optimal
adaptability for our specific task.

3.3 Algorithm evaluation indicators
The performance of the target recognition algorithm needs to be
systematically evaluated through multiple quantitative indicators.

This section, based on three core dimensions of detection accuracy,

TABLE 2 Training hyper-parameters on DUO datasets.

Config Parameter

Input image size 640x640
Epochs 100
Batch size 16

Start learning rate 0.01
Optimizer SGD
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robustness, and computational efficiency, elaborates on the
definitions, calculation methods, and scientific significance of the
mainstream evaluation indicators.

3.3.1 Precision and recall

Based on the confusion matrix, precision measures the
proportion of correct predictions in the detection results, and
recall reflects the proportion of true targets that are correctly
detected (Equations 20, 21):

Precision = i (20)
Recall = % (21)

TP: True Positive count, which requires both correct
classification and IoU > threshold;

TN: True Negative count;

FP: False Positive count, representing false detection;

FN: False Negative count, representing missed detection.

3.3.2 Average precision

AP calculates the area under the Precision-Recall curve (Area
Under Curve, AUC) to comprehensively evaluate the classification
and localization performance of the model at different recall
(Equation 22):

AP = / 1 P(R)dR (22)
0

3.3.3 Mean average precision

mAP is the arithmetic mean of the AP values for all categories
and is the core comprehensive indicator of object detection. Its
derivative forms include (Equation 23):

_ SR
mAP = 25— (23)

mAP@0.5: This is a performance metric when the IoU threshold
is 0.5, applicable to scenarios with loose positioning.

mAP®@[0.5:0.95]: This is a standard metric for the COCO
dataset, calculating the average mAP value for IoU thresholds
ranging from 0.5 to 0.95 (with a step size of 0.05), to evaluate the
model’s robustness in terms of positioning accuracy.

3.3.4 Algorithm complexity metric

Parameter quantity: This refers to the total sum of all
parameters that need to be learned in the model, which includes
but is not limited to the weights of convolutional layers, the weights
of fully connected layers, and bias terms, etc. The parameter
quantity directly relates to the storage requirements of the model
and the memory consumption during training. The formula for
calculating the parameter quantity is as follows (Equation 24):

Param = (K, x K,, x C;,,) x C,,; + bias (24)

Here, C;, represents the number of input channels, C,,;
represents the number of output channels, and K, x K,
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represents the size of the convolution kernel. (K, x K,, x C;,) %
C,.: represents the weight parameters of the convolution kernel.
bias represents the parameter of the bias term, which is a vector of
size C,,;.

FLOPs: It measures the number of floating-point operations
performed by the model during forward propagation, including
addition, subtraction, multiplication, and division, etc. It is an
indicator for evaluating the computational cost of the model
during operation.

The formula for calculating FLOPs is as follows (Equation 25):

FLOPs =2 x (K}, x K,, X C;; X Hyyy X Wy X Cop) (25)

Here, H,, and W,,; represent the size of the output
feature map.

3.4 Experimental comparison and
evaluation

3.4.1 Comparison experiment of backbone
network models

To comprehensively evaluate the performance of the DyAqua-
YOLO model proposed in this study in the underwater object
detection task, a comparison experiment was conducted on the
DUO dataset using the latest benchmark models of the YOLO series
(YOLOV5/v6/v8/v10/11/v12). As shown in Table 3:

The training accuracy comparison chart of different YOLO
models is shown in Figure 7. It can be seen that the accuracy
indicators of the YOLO11 model framework are close but slightly
lower than those of the best-performing benchmark model
YOLOV8. The FLOPs are 6.3G, which is close but slightly lower
than that of the best-performing benchmark model YOLOv5n
(5.8G). However, DyAqua-YOLO is comprehensively ahead with
0.918 mAP@0.5 and 0.722 mAP®@[0.5:0.95]. Compared to the
benchmark model (YOLO11n), it has improved by 3.9% and
3.7% respectively, proving the superiority of its dynamic feature
fusion and adaptive convolution mechanism for underwater targets.
Additionally, DyAqua-YOLO has a particularly significant
improvement in recall for small targets (Recall: 0.841 vs
YOLOv8n 0.810), attributed to its dynamic upsampling and

10.3389/fmars.2025.1678417

optimized loss function mechanism, confirming its adaptability to
underwater dense small targets. While maintaining high accuracy,
DyAqua-YOLO also has efficiency balance. The parameter size
(4.43M) is 65.1% higher than that of YOLOv8n, but the FLOPs
(7.5G) only increase by 10.3%, demonstrating the computational
benefits of the dynamic architecture.

Due to the lack of publicly available code for direct comparison
with several recent underwater-specific models (e.g., MarineYOLO,
RG-YOLO), we evaluate the efficacy of our proposed method by
comparing its performance against the comprehensive benchmark
of general-purpose detectors established in the foundational DUO
publication (Liu et al., 2021a). As detailed in Table 3, our model
achieves a mAP@0.5 of 91.8%, which significantly outperforms the
best result (RepPoints at 80.2% mAP@0.5) reported in the original
benchmark. Furthermore, our model achieves a real-time inference
speed of 21 FPS (Orange Pi Alpro, 8TOPS NPU, 16GB RAM). This
speed is approximately 3x faster than the fastest model
benchmarked (FSAF, 7.4FPS, Jetson AGX Xavier; Liu et al,
2021a). Given the marked improvements in both accuracy and
efficiency over the established benchmark performance on the DUO
dataset, we consider that our method demonstrates highly
competitive performance.

3.4.2 Ablation experiment

To validate the effectiveness of each proposed component and
determine the optimal hyperparameter for the FWNWD loss, we
conduct extensive ablation studies based on the YOLO11n baseline.
Firstly, we analyze the impact of the balancing coefficient R in the
FWNWD loss. R is designed to trade off the contributions between
the Lpwioy term and the Lywp term. We evaluate the model
performance on the validation set with different values of R, and
the results are summarized in Table 4.

With a small R value (e.g., R = 0.1), the NWD term dominates
the optimization, and the model achieves peak performance in both
Recall and mAP@0.5 (0.849 and 92.2%, respectively). This confirms
the exceptional effectiveness of NWD in reducing missed detections
of small objects and improving detection coverage. As the value of R
increases, the influence of the FWIoU term becomes more
pronounced. We observe that the model’s performance on the
stricter and more comprehensive evaluation metric, mAP@

TABLE 3 Comparative experimental results of different YOLO models on the DUO dataset.

mAP@

Model Precision Recall mAP@0.5 [0.5:0.95] Param(M) FLOPs(G)
YOLOvV5n 0.865 0.789 0.872 0.671 2.182 5.8

YOLOvo6n 0.841 0.764 0.847 0.654 4.155 11.5

YOLOv8n 0.869 0.81 0.886 0.694 2.685 6.8

YOLOv10n 0.851 0.798 0.877 0.658 2.266 6.5

YOLO11ln 0.864 0.799 0.879 0.685 2.583 6.3

YOLOvI12n 0.858 0.771 0.861 0.666 2.509 58

Ours 0.896 0.841 0918 0.722 4.433 7.5
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[0.5:0.95], peaks at R = 0.5 (72.2%). This indicates that assigning a
higher weight to FWIoU, while sacrificing a small amount of Recall,
enhances the overall localization accuracy of the bounding boxes.
Thus, R = 0.5 represents the optimal trade-off between the ‘quantity’
and ‘quality’ of detections. It ensures that both components of the
FWNWD loss function collaborate effectively, rather than being
dominated by a single one. Consequently, we select R = 0.5 as the
final configuration to prioritize the demanding requirement for
precise target localization in high-precision underwater
detection tasks.

Following the determination of R, we proceed to the ablation
studies of other modules. The adaptive feature fusion module
(ASF), dynamic upsampling (DySample), dynamic convolution
(DyC3k2), WIoU bounding box loss, Focaler-IoU loss, and
normalized Wasserstein distance (NWD) module were gradually
introduced. Table 5 shows the experimental groups of the ablation

precision

10.3389/fmars.2025.1678417

experiment, and Table 6 presents the experimental results of the
ablation experiment. Baseline is YOLO11n.

The experimental results reveal the following key findings:

1. The progressive contribution of the backbone network modules

The training accuracy comparison chart of Baseline-Group4 is
shown in Figure 8. From this, we can compare and determine the
contribution of each backbone network module to the improvement
of the accuracy indicators:

* ASF module (Group 1): Increases mAP@0.5 by 0.4% (0.883
vs 0.879), but at the cost of a 12.7% increase in FLOPs (7.1G
vs 6.3G), indicating that it is effective for blurry targets but
the computational efficiency needs to be optimized;
DyASF module (Group 2): Compared to Group 1, it has
improved detection accuracy and small target recall,
especially mAP@[0.5:0.95] has increased by 1.4% (0.698

recall

—— DyAqua-YOLO —— DyAqua-YOLO
—— YOLOv5n —— YOLOv5n
0.2 —— YOLOv6Nn 0.2 4 —— YOLOv6Nn
—— YOLOv8n —— YOLOv8n
YOLOv10n YOLOv10n
YOLO11ln YOLO11ln
0.0 —— YOLOv12n 0.0 —— YOLOv12n
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
mMAP@0.5 mAP®@[0.5:0.95]
0.8 1
0.6
0.4
—— DyAqua-YOLO —— DyAqua-YOLO
—— YOLOv5n 0.2 A —— YOLOv5n
0.2 1 —— YOLOv6Nn —— YOLOv6Nn
—— YOLOv8n 014 —— YOLOv8n
YOLOv10n ’ YOLOv10n
YOLO11ln YOLO11ln
0.0 1 —— YOLOv12n 0.0 —— YOLOv12n
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
FIGURE 7
Comparison chart of four indicators for different YOLO models.
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TABLE 4 Ablation study on the hyperparameter R.

R Precision Recall mAP@O0.5 mAP@[0.5:0.95]

0 0.900 0.842 0919 0.717

0.1 0.903 0.849 0.922 0.719

03 0.890 0.849 0918 0.719

0.5 0.896 0.841 0.918 0.722

0.7 0.898 0.835 0917 0.721

0.9 0.899 0.836 0916 0.720

1 0.889 0.836 0913 0.719
vs 0.684), indicating that the addition of DySample has 1.2% (0.891 vs 0.879), mAP@[0.5:0.95] increases by 1.7%
made the model have higher detection accuracy, but FLOPs (0.702 vs 0.685), and FLOPs decrease by 3.2% (6.1G vs
have increased by 12.7%. 6.3G), proving that it can adaptively adjust feature extraction

* DyC3k2 dynamic convolution combination (Group 3): With to effectively enhance feature representation capability and
only an increase of 0.878M parameters, mAP@0.5 increases by optimize computational efficiency.
TABLE 5 Grouping of ablation experiments for the DyAqua-YOLO model.

Exp. ASF DySample DyC3k2 WiloU Focaler-loU NWD

Baseline x x x x x x

Groupl v x x X X X

Group2 v v X X X X

Group3 X X v X X X

Group4 4 v v X X X

Group5 4 v v X X v

Group6 v v v v x x

Group? v v v v v x

Group8 v v v v X v

Ours v v v v v v

The symbol 'v" indicates the inclusion of the corresponding module or component in the model configuration for that specific experiment. Conversely, the symbol 'x' indicates its exclusion.

TABLE 6

Results of ablation experiments for the DyAqua-YOLO model.

Precision Recall ngsPéa 95] Param(M) FLOPs(G)
Baseline 0.864 0.799 0.879 0.685 2.583 6.3
Groupl 0.867 0.803 0.883 0.684 2.675 7.1
Group2 0.869 0.807 0.887 0.698 3.000 7.7
Group3 0.872 0.809 0.891 0.702 3.461 6.1
Group4 0.886 0.805 0.895 0.711 4433 7.5
Group5 0.890 0.836 0.913 0.720 4.433 7.5
Group6 0.890 0.833 0.911 0.721 4.433 7.5
Group?7 0.889 0.836 0.913 0.719 4.433 7.5
Group8 0.897 0.832 0.915 0.720 4.433 7.5
Ours 0.896 0.841 0.918 0.722 4.433 7.5
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FIGURE 8
Comparative diagram of model ablation experiments based on YOLO11.

e Multi-module combination (Group 4): After adding Compared with Group4, using the NWD module alone
multiple modules, a combined effect was produced. (Group5) and the WIoU loss (Group6) can both increase
Compared to the baseline, mAP@0.5 increased by 1.6% detection accuracy without increasing computational
(0.895 vs 0.879), mAP@[0.5:0.95] increased by 2.6% burden. The mAP@0.5 is improved by 1.8% (0.913 wvs
(0.711 vs 0.685), and FLOPs increased by 19% (7.5G 0.895) and 1.6% (0.911 vs 0.895) respectively, and the
vs 6.3G). mAP@[0.5:0.95] is increased by 0.9% (0.720 vs 0.711) and

1.0% (0.721 vs 0.711) respectively. The recall of small targets
2. Synergistic effect of the loss function has significantly increased by 3.1% and 2.8% respectively,
The training accuracy comparison chart of Group4-Ours is indicating that these two loss functions can effectively
shown in Figure 9, and the training loss comparison chart is shown improve the positioning accuracy of fuzzy targets and
in Figure 10. It can be seen that the dependent variable in this case is reduce false detection and missed detection rates.
the loss function. From this, we can compare and determine the Compared with WIoU (Groupé6), Focaler-WIoU (Group7)
contribution of our newly proposed FWNWD loss function. improves mAP@0.5 by 0.2% without increasing
Figure 9 is a line chart showing the impact of different loss computational burden, but the mAP@[0.5:0.95] decreases
functions on the model training accuracy, and Figure 10 is a by 0.2%. The recall of small targets increases by 0.3%. This
chart showing the influence of different loss functions on the shows that Focaler-WIoU has certain efficacy in focusing
model training loss. on difficult samples.
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FIGURE 9

The impact of different loss functions on the training accuracy of the model.

* A single loss function is difficult to balance the retrieval of

small targets and the positioning accuracy of multi-scale,

but when the three are coordinated and complement each

other, the model can simultaneously consider the recall and

accuracy indicators of small targets and achieve better

results. Compared with using the CIoU loss function,
after adding the FWNWD loss function module,
mAP@0.5 and mAP@[0.5:0.95] increase by 2.3% and
1.1% respectively, and the recall of small targets increases

by 3.6%.

3.4.3 Detection effect presentation
To verify the performance superiority of the DyAqua-YOLO

model proposed in this study compared to the mainstream models,

we selected four representative underwater images from the test set

for visual comparison and analysis of the detection results.

Frontiers in Marine Science

Figure 11 shows the original images and the prediction results of
YOLOV5, YOLOv6, YOLOV8, YOLOvV10, YOLO11, YOLOVI12, and
the DyAqua-YOLO model of this study, corresponding to the eight

columns in the figure respectively.

In Figure 11, The ground truths are denoted by purple boxes

and labels, while the predictions of our model are denoted by red

boxes and labels. Image (a) has an original size of 3840x2160 pixels,

with a total of 16 annotated objects. The image features high

resolution, partial occlusion of some objects, and generally small

target sizes (the smallest occupying 0.076% of the image area, the

largest 1.10%). During the training phase, image compression can
easily lead to the loss of features in small objects, increasing the
difficulty of detection. Compared to other models, DyAqua-YOLO
demonstrates excellent small object detection capability, with no

missed detections and only 2 false positives. Image (b) has an

original size of 1920x1080 pixels. Due to turbid water and motion

blur, the image is blurred, posing significant challenges for object
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FIGURE 10
The impact of different loss functions on the training loss of the model.

detection. Except for DyAqua-YOLO and YOLOVS5, all other
models exhibit missed or false detections. Further comparison
between DyAqua-YOLO and YOLOvV5 shows that the former
demonstrates superior localization accuracy. Image (c) has an
original size of 720x405 pixels, containing 30 annotated objects
with dense distribution, occlusion, and overlapping. DyAqua-
YOLO successfully detects 29 objects, with only 1 missed
detection. Although its perception mechanism for low-quality
samples introduces a small number of false positives, the overall
detection performance is significantly better than that of other
compared models. Image (d) has an original size of 3840x2160
pixels, with a complex background and two occluded objects.
Models including YOLOv5, YOLOvV8, YOLOv10, YOLOv11, and
YOLOV12 are affected by the complex background and occlusion,
resulting in missed or false detections. Although YOLOVG6 is not
interfered by the background, it still misses one occluded object.
DyAqua-YOLO demonstrates strong anti-interference capability in
this image, delivering robust detection results.

Overall, the DyAqua-YOLO model demonstrates superior
comprehensive performance across a variety of challenging
underwater scenarios. It exhibits strong anti-interference
capability, effectively suppressing false positives and missed
detections caused by complex backgrounds and occlusions. In the
presence of dense targets, partial occlusion, or small targets, the
model achieves a higher detection rate. Furthermore, compared to
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other models in the YOLO series (including YOLOVS5, v6, v8, v10,
vll, and v12), which occasionally suffer from detection box
misalignment or localization drift, DyAqua-YOLO produces
bounding boxes that are generally more accurate and consistent
with the actual targets, indicating more stable performance. These
experimental results clearly demonstrate that DyAqua-YOLO holds
significant advantages over current mainstream YOLO models
when addressing key challenges in underwater object detection,
such as occlusion, blurry imagery, target density, and complex
background noise.

4 Conclusion and outlook

This study addresses the core algorithmic challenges presented
by underwater environments, specifically the detection of blurred,
low-contrast, and small targets that result from complex optical
degradation. It innovatively proposes the DyAqua-YOLO model
based on a dynamically adjustable architecture. The key
breakthrough lies not in the individual modules but in their
systematic co-design, which creates a synergistic effect greater
than the sum of its parts. By deeply integrating the DySSFF and
the DyC3Kk2, it achieves the collaborative dynamic optimization of
multi-scale feature representation and convolution kernel weights.
Additionally, the designed FWNWD loss function innovatively
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FIGURE 11

Visual comparison of detection results from different models on four challenging underwater scenes. (a) high-resolution image with small and
partially occluded objects, (b) blurred image in turbid water, (c) scene with dense and overlapping objects, (d) complex background with occlusions.

combines the WIoU dynamic focusing mechanism, Focaler-IoU
sample weighting strategy, and NWD small target metric,
significantly enhancing the model’s robustness for detecting
targets in turbid water bodies. Systematic experiments on the
DUO dataset demonstrate that DyAqua-YOLO significantly
improves underwater object detection performance by 91.8%
mAP@0.5 and 72.2% mAP@(0.5:0.95], outperforming the baseline
model by 3.9%, and meeting real-time requirements at 21FPS
(OrangePi Alpro, 8TOPS NPU, 16GB RAM). Ablation
experiments further reveal the cascading gain effect of the
dynamic module - DyC3k2 increases the small target recall by
3.6%, while the FWNWD loss effectively resolves the trade-off
between difficult sample optimization and micro-object detection.

Frontiers in Marine Science

Although DyAqua-YOLO demonstrates promising performance in
underwater object detection, several research directions deserve further
exploration to enhance its capabilities and practical applicability. Firstly,
to alleviate the information loss caused by image downsampling, we
plan to develop adaptive high-resolution processing strategies, such as
adaptive image tiling and multi-scale inference mechanisms. These
approaches aim to preserve fine-grained features of small objects while
maintaining computational efficiency. In addition, underwater image
enhancement techniques—including deblurring, contrast enhancement,
and color correction—will be investigated to improve input image
quality and provide more reliable visual information for detection.
Second, we will focus on lightweight and hardware-aware model
optimization to facilitate deployment on resource-constrained
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embedded platforms. Techniques such as neural architecture search
(NAS), quantization, and pruning will be employed to reduce
computational and memory overhead without significantly
compromising detection accuracy. Furthermore, to address perception
challenges in complex underwater optical environments, we intend to
construct an acoustic-optical multi-modal perception framework. This
system will leverage acoustic imaging to compensate for the lack of
visual information in highly turbid water, thereby improving detection
robustness in low-visibility conditions. Finally, the dynamic architecture
and loss function proposed in this study show potential for
generalization beyond underwater detection. We plan to extend their
application to other vision tasks such as aerial image analysis and
medical image recognition, evaluating their adaptability and
effectiveness across diverse domains.
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