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This study proposes a robust optimization framework for the joint optimization of

tanker deployment and refueling strategies under uncertainties in berthing times

and fuel prices. Unlike traditional sequential approaches, the model jointly

determines vessel assignment and refueling decisions within a unified

mathematical formulation, explicitly accounting for interdependencies between

operational variables. By incorporating robust optimization techniques, the

framework addresses fuel price volatility and stochastic berthing delays, enabling

resilient decision-making in dynamicmaritime environments. Using real-world data

from a leadingmaritime logistics provider, computational experiments demonstrate

that the robust model reduces operational costs by 2.06% compared to

deterministic approaches when fuel price fluctuations exceed critical thresholds

(e.g., 300 RMB/ton for Heavy Fuel Oil (HFO) and 250 RMB/ton for Light Fuel Oil

(LFO)). Sensitivity analyses further reveal the model’s resilience under extreme

anchorage time uncertainties (e.g., 16-hour delays), achieving cost savings of up

to 8.5%. The framework’s adaptability to diverse fleet configurations and regulatory

environments underscores its practical value for enhancing decision-making in

volatile markets.
KEYWORDS

rened oil transportation, robust optimization, oil price uncertainty, anchor time
uncertainty, shipping resilience
1 Introduction

The refined petroleum products transportation market is experiencing robust growth

driven by the global expansion of energy demand and sustained development of the

petrochemical industry. While precise figures for 2025 are unavailable, industry reports and

observed trends suggest a reasonable estimate of the global market size for that year could
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range between 250 billion USD and 300 billion USD1. This

projection encompasses the transportation of various refined

products―including gasoline, diesel, kerosene, and specialized

fuels―via multiple modalities such as pipelines, rail, road, and

maritime shipping. The market is projected to expand at a

compound annual growth rate (CAGR) of approximately 4-5%

between 2025 and 2033, indicating sustained market expansion2.

Within market segmentation, maritime transportation is

anticipated to maintain its dominant position due to its

unparalleled efficiency in moving large volumes over long

distances. However, market dynamics are complicated by

geopolitical instabilities and volatile crude oil prices, which

introduce significant uncertainties and fluctuations. Efficient

deployment and refueling strategies are critical components of

maritime transportation, especially in the context of tanker

operations (Wang et al., 2025b). With the increasing demand for

crude oil and refined products, tanker operators must carefully

optimize their operations to ensure cost efficiency while meeting

delivery schedules. However, maritime logistics is subject to

significant uncertainties, including port congestion, weather

disruptions, and fluctuating fuel prices. Among these, berthing

time uncertainty—the variability in the time a vessel spends

waiting for and accessing port facilities—poses a considerable

challenge (Zhou et al., 2025a). Delays can lead to higher

operational costs, disrupt schedules, and necessitate adjustments

to refueling plans (Zhou et al., 2025c, 2024). Therefore, designing a

robust decision-making framework that accounts for both tanker

deployment and refueling under such uncertainty is of

paramount importance.

The problem involves two intertwined decisions: the

assignment of tankers to delivery routes (deployment) and the

determination of optimal refueling strategies along those routes.

Traditionally, these two problems are addressed independently,

with tanker deployment focused on minimizing voyage costs and

refueling strategies optimized separately based on fuel consumption

patterns and price variations. However, ignoring their

interdependence may result in suboptimal outcomes. For

instance, an inefficient deployment may force a tanker to refuel at

ports with higher fuel prices or under less favorable conditions,

increasing overall operational costs. Consequently, an integrated

approach that simultaneously optimizes both deployment and

refueling decisions is essential.

The volatility of fuel prices exerts significant and multifaceted

pressures on the refined petroleum products transportation market,

particularly within maritime logistics, where operational costs and

strategic decisions are inextricably linked to fluctuating fuel costs

(Hao et al., 2022). Rising fuel prices directly inflate voyage expenses,

compelling tanker operators to reassess route optimization, port

selection, and refueling strategies to mitigate financial burdens,

while also forcing shippers and carriers to potentially pass on
1 https://www.archivemarketresearch.com/reports/refined-oil-

transportation-63550

2 https://dataintelo.com/report/refined-oil-transportation-market
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increased costs to consumers or absorb profit margins under

price-sensitive market conditions. Conversely, price declines may

temporarily alleviate operational expenses, enabling cost savings or

competitive pricing adjustments, but they also introduce long-term

uncertainties that deter sustained investment in infrastructure

modernization or alternative energy transit ions. The

interdependence of tanker deployment and refueling decisions

becomes acute in volatile environments, as suboptimal choices—

such as refueling at ports with unexpectedly higher prices due to

misaligned scheduling or port congestion—can exacerbate costs

and disrupt delivery timelines, thereby necessitating dynamic risk-

management frameworks that integrate real-time fuel price data

with route planning and inventory control.

Another significant factor complicating tanker operations is the

uncertain berthing time at ports. Variations in waiting times can

force vessels to spend more time in transit or at anchor, impacting

fuel consumption and disrupting delivery schedules (Zhen et al.,

2024). This uncertainty introduces an additional layer of complexity

to decision-making. Operators need to anticipate possible delays and

incorporate them into their planning to avoid penalties and extra fuel

costs. Stochastic modeling offers a promising way to address such

uncertainties by considering the variability in berthing times and

optimizing the deployment and refueling decisions accordingly.

The main contributions of this study can be summarized

as follows:
• Integrated Decision-Making Framework: We propose a

novel mathematical model that jointly optimizes tanker

deployment (vessel-to-route assignment) and refueling

strategies (when, where, and how much fuel to bunker)

within a single framework. This integrated approach

captures the critical interdependencies between these

decisions, moving beyond traditional sequential or

isolated planning methods.

• Robust Optimization Under Dual Uncertainties: We

develop a robust optimization model to specifically

address two critical and simultaneous sources of real-

world uncertainty in maritime logistics: volatile fuel prices

(for both HFO and LFO) and stochastic port berthing times.

This enhances the resilience and practical applicability of

the proposed strategies.

• Real-World Validation and Managerial Insights: The model

is validated using a large-scale, realistic case study based on

operational data from a world-leading refined oil shipping

company. Our computational results provide practical

managerial insights into the specific cost-saving

thresholds at which a robust approach becomes more

e ffec t ive than a determinis t i c one in vola t i l e

market conditions.
The remainder of the paper is organized as follows: Section 2

reviews the relevant literature on tanker operations, refueling

strategies, and stochastic optimization. Section 3 presents the

mathematical model for the joint decision-making problem,

including the formulation of the stochastic berthing time
frontiersin.org
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uncertainty. Section 4 discusses the solution methodology, and

Section 5 provides a detailed computational study to evaluate the

proposed framework. Finally, Section 6 concludes the paper with

key insights and directions for future research.
2 Literature review

The optimization of shipping operations, particularly in tanker

deployment, refueling, and speed strategies, has emerged as a

critical area of research in response to the increasing complexity

of modern maritime logistics. Traditional methodologies, which

often treated these variables in isolation, have been supplanted by

integrated decision-making frameworks designed to address the

interdependencies among operational parameters (Zhou et al.,

2025b; Chen et al., 2025). Recent studies emphasize the necessity

of jointly optimizing deployment, refueling, and speed to mitigate

suboptimal outcomes such as excess fuel consumption, delayed

schedules, and noncompliance with environmental regulations.

Nonlinear mixed-integer programming models, for instance, have

been developed to minimize operational costs by synchronizing

decisions across service routes, refueling quantities, and vessel

speeds (Wang and Chen, 2017). These models reveal that

fragmented optimization of individual variables can lead to

inefficiencies, such as misaligned port stops or unanticipated

delays, underscoring the importance of holistic strategies. Gao

et al. (2025) considered the vehicle speed and refueling strategy of

methanol dual-fuel pipeline with emission control area, and

constructed a mixed integer 0–1 programming model with the

goal of minimizing the single voyage operating cost.

Environmental regulations, including those in Emission

Control Areas (ECAs), further complicate this optimization by

imposing constraints on fuel types and emissions (Jiang et al.,

2025; Li et al., 2022). Researchers have addressed these challenges

through advanced mathematical approaches, such as transforming

nonlinear discrete programming models into continuous

formulations solvable via convex optimization techniques (Ma

et al., 2021). This allows for simultaneous consideration of fuel

consumption, emissions, and transportation costs, enabling more

sustainable decision-making. For example, studies demonstrate that

nonlinear relationships between ship speed, fuel efficiency, and

emissions require balanced trade-offs to achieve cost-effective and

environmentally responsible outcomes (Lashgari et al., 2021).

Uncertainty in fuel prices, consumption rates, and regulatory

policies has driven the adoption of stochas92 tic and dynamic

optimization methods. Dynamic programming algorithms, for

instance, generate adaptive refueling policies based on real-time

fuel price fluctuations across ports Zhen et al. (2017), while

scenario-based stochastic programming accounts for potential

shifts in carbon taxes and LNG availability (Wu et al., 2022).

These approaches not only enhance resilience against market

volatility but also reveal that static deterministic models may

underestimate risks, particularly in regions with stringent

emission controls. Multistage stochastic models further highlight

the strategic importance of low-sulfur fuel oil when LNG supplies
Frontiers in Marine Science 03
are limited or prices are volatile, emphasizing the need for flexible

refueling strategies (Zhou and Wang, 2025).

The integration of dual-fuel technologies, such as LNG engines,

introduces new dimensions to operational planning. While LNG

reduces carbon emissions, challenges such as methane slip and port

infrastructure limitations necessitate optimization models that

account for engine performance, fuel availability, and

environmental regulations (Wu et al., 2024). Linearization

techniques have enabled practical solutions to these complex,

multi-variable problems, demonstrating the feasibility of adopting

cleaner fuels without compromising efficiency. Concurrently,

studies explore the role of emission trading systems in

incentivizing LNG adoption, suggesting that market-based

mechanisms could align profitability with environmental goals

(Ma et al., 2023).

Dynamic programming and distributionally robust

optimization methods have gained traction in addressing demand

uncertainty and fluctuating market conditions. These frameworks

ensure operational resilience by guaranteeing demand satisfaction

while minimizing exposure to adverse scenarios, such as sudden

bunker price spikes (Besbes and Savin, 2009). Progressive hedging

algorithms further advance computational efficiency, enabling

large-scale optimization of refueling and speed decisions (Ghosh

et al., 2015).

Recent literature has further advanced this field by focusing on

more integrated and complex models. A significant trend is the joint

optimization of sailing speed with routing and bunkering, a point of

departure from our fixed-speed tactical model. For instance, Aydin

et al. (2017) utilized dynamic programming to optimize vessel speed

while facing uncertain port service times, demonstrating that

considering such uncertainty can noticeably reduce fuel costs.

Similarly, several studies have developed mixed-integer linear

programming (MILP) models to co-optimize speed and

bunkering for vessels using alternative fuels, such as LNG (He

et al., 2024) and biofuels with storage limitations (Li et al., 2025).

Wang et al. (2025a) also jointly optimized speed and bunkering,

focusing on both cost and carbon emission reductions by

incorporating practical constraints like fuel inspection processes.

The drive for sustainability and resilience has also spurred new

methodologies. De et al. (2020) addressed sustainable ship routing

with bunker management using a hybrid variable neighborhood

search and particle swarm optimization algorithm. To handle

uncertainty, researchers have moved towards more sophisticated

techniques. Zhou and Wang (2025), for example, applied a

distributionally robust optimization method to 124 manage

stochastic shipping demand and ECA regulations, jointly

determining the optimal route, speed, and refueling strategy. In a

different approach, Sun and Chou (2025) introduced a data-driven

method that combines machine learning with traditional

optimization to learn the optimal refueling policy directly from

market data, moving beyond price prediction to policy prescription.

These studies underscore the complexity and multi-faceted nature

of modern maritime logistics optimization.

Despite the extensive research on vessel routing, speed

optimization, and bunkering, a specific research gap remains.
frontiersin.org
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While many studies focus on the operational level for a single

vessel’s voyage (often including variable speed), less attention has

been paid to the tactical, fleet-wide problem of simultaneously

optimizing vessel deployment and refueling strategies. Furthermore,

few models have incorporated a robust optimization framework to

specifically handle the combined and simultaneous impact of fuel

price volatility and port berthing time uncertainty.

This study aims to fill this gap by proposing an integrated,

robust optimization model tailored for this joint tactical decision-

making problem. While our work simplifies the problem by

assuming a fixed economical speed, it contributes by focusing on

the tactical joint deployment and refueling problem for an entire

fleet, using a robust optimization framework to specifically address

simultaneous fuel price and port time uncertainties. Our

contribution is to provide a resilient decision-support tool that

enhances fleet-wide operational planning in the face of these critical

real-world uncertainties, a focus distinct from single-voyage, speed-

centric optimization models.
3 Base model formulations

We consider the operational decision-making process within a

refined oil transportation company. Let S denote the set of ships owned

by the company, indexed by s, with each ship s having a capacity

denoted by qs. The company ensures the supply of refined petroleum

products downstream in the supply chain through coastal shipping.

The set of routes utilized for this purpose is R, indexed by r, with a

transportation demand on each route represented by Wr. Let Lr
represent the set of leg of route r, and lr,i denote the i-th leg on route

r, where lr,i ∈ Lr. The route distance of leg lr,i is dr,i.

The deployment of ships on each route must be considered first

to ensure that service demands are met. Secondly, a ship refueling

strategy must be devised to ensure the successful completion of the

entire voyage. The deployment of product tankers and their

refueling strategies is complex, involving multiple factors: First,

product tankers typically have separate tanks for heavy and light

fuel oils, with heavy fuel oil (HFO) primarily consumed during

coastal navigation and light fuel oil (LFO) required in restricted

areas such as ports, anchorage, and cargo operations. This makes

route complexity a significant challenge in formulating refueling

strategies. However, it is worth noting that the type of fuel used is

often related to the vessel’s characteristics. For instance, some ships

are not equipped with LFO tanks, allowing them to use HFO

throughout the entire voyage. Second, the initial quantities of

HFO and LFO onboard critically influence vessel deployment

along the route, and the refueling strategy also depends on the

fuel price differences at various ports along the route.

The following introduces the parameters related to fuel

consumption for product tankers. Let F1
s and F2

s denote the heavy

fuel oil (HFO) and light fuel oil (LFO) tank capacities, respectively,

for vessel s. The vessel’s economical cruising speed on coastal routes

is represented by vs. It is important to clarify the assumptions

regarding vessel speed in our model. The vessel speed vs is treated as

a fixed parameter representing the economical cruising speed. This
Frontiers in Marine Science 04
assumption is rooted in the ex-ante, tactical nature of the decision

problem, which focuses on optimizing fleet deployment and

refueling strategies over a planning horizon. Real-time operational

decisions, such as in-voyage speed adjustments, are considered

outside the scope of this planning model. At this level, operators

often prioritize fuel efficiency by adhering to a steady economical

speed due to the prohibitive costs associated with speeding up. Our

framework captures the impact of port time uncertainties by

incorporating the variable anchorage time directly into the

operational cost function. Thus, the objective is to find a plan

that is robust against the financial impact of delays. The resulting

costs can be viewed as a robust baseline; any costs or savings from

exceptional operational speed adjustments made during the voyage

could then be benchmarked against this baseline to evaluate actual

performance. The variables u1s and u
2
s signify the consumption rates

of HFO and LFO per unit time for vessel s on coastal routes.

Meanwhile, û 1
s and û 2

s indicate the consumption rates of HFO and

LFO per unit time in restricted areas. Additionally,   ~u1s and ~u2s
correspond to the consumption rates of HFO and LFO per unit time

during port anchorage. Finally, �u1s and �u2s represent the

consumption rates of HFO and LFO per unit time for vessel s

during cargo loading and unloading operations at the port. These

fuel consumption value are derived from historical data statistics of

the shipping company. Figure 1 illustrates the typical operational

sequence of a tanker between two consecutive ports, highlighting

the four distinct phases and their corresponding fuel consumption

notations. This schematic helps to intuitively connect the

mathematical formulation to real operational contexts. ts,r,i is the

time spent at anchoring and bunkering at the starting port of leg lr,i
Let wr,i denote the total quantity of crude oil loaded or unloaded at

the starting port of the leg lr,i. Let hs denote the time required by

vessel s to load or unload a unit of cargo. Table 1 offers a detailed

explanation of all symbols used in this paper.

Based on the above notation, the consumption of heavy and

light fuel oil for ship s during leg lr,i, as well as during anchorage and

loading/unloading processes, can be expressed as follows:

HFOa
(s,r,i) = Ka

(s,r,i)u
1
s

dr,i
vs

� �
∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (1)

LFOa
(s,r,i) = (1 − Ka

(s,r,i))u
2
s

dr,i
vs

� �
∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (2)

HFOb
(s,r,i) = Kb

(s,r,i) û 1
s ts,r,i + �u1s

wr,i

hs

� �� �
∀s ∈ S,∀r ∈ R, ∀i ∈ Ir (3)

LFOb
(s,r,i) = (1 − Kb

(s,r,i)) û 2
s ts,r,i + �u2s

wr,i

hs

� �� �
∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir

(4)

Equations 1, 2 represent the consumption of HFO and LFO for the

ship during navigation. Here, Ka
(s,r,i) is a binary variable that ensures the

ship uses only one type of fuel during navigation. Ka
(s,r,i) = 1 indicates

that ship s uses HFO on the i-th leg of route r, denoted as lr,i. Otherwise,

Ka
(s,r,i) = 0. Equations 3 and 4 represent the consumption of HFO and

LFO for the ship during anchorage. Similarly, Kb
(s,r,i) = 1 indicates that
frontiersin.org
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ship s uses HFO during anchorage and loading/unloading at the

starting port of the i th leg of route r. Otherwise, Kb
(s,r,i) = 0. Here,

Ka
(s,r,i) is a binary parameter indicating the fuel choice during navigation

(1 for HFO, 0 for LFO), and Kb
(s,r,i) is a binary parameter for fuel choice

during port and anchorage operations. These are external input

parameters determined by the shipping company based on the

vessel’s characteristics and ECA regulations to derive the most

economical choice for each leg. The fuel consumption of HFO and

LFO for ship s on leg lr,i can be derived as follows:

HFO(s,r,i) = HFOa
(s,r,i) + HFOb

(s,r,i)

LFO(s,r,i) = LFOa
(s,r,i) + LFOb

(s,r,i)

(5)

The shipping company aims to minimize costs through

decisions on fleet deployment and refueling strategies. The binary

decision variable xsr indicates whether ship s is deployed on route r;

it is 1 if deployed, otherwise 0. The non-negative decision variable

y1s,r,i represents the amount of HFO bunkered by ship s at the

starting port of leg lr,i. Similarly, the non-negative decision variable

y2s,r,i represents the amount of LFO bunkered by ship s at the starting

port of leg lr,i. Furthermore, to account for minimum purchase

requirements often imposed by fuel suppliers, we introduce the

binary decision variables z1s,r,i and z
2
s,r,i. These variables are equal to 1

if vessel s bunkers HFO or LFO, respectively, at the starting port of

leg lr,i, and 0 otherwise. The company’s primary costs include: (1)

vessel operating costs, (2) fuel bunkering costs, and (3) Port Fees.

The vessel operating cost Co is a non-decreasing function of the

total voyage time. In this equation, co represents the vessel’s daily

operating cost.

Co = o
r∈R
o
s∈S
o
i∈Ir

xsr
dr,i
vs

+ ts,r,i +
wr,i

hs

� �
co (6)

In Equation 6, ts,r,i represents the total time spent at port, which

is the sum of the anchorage time tr,i and the time spent bunkering
Frontiers in Marine Science 05
HFO and LFO.

ts,r,i = tr,i + max 
y1s,r,i
hs,1

,
y2s,r,i
hs,2

� �
(7)

The second term in Equation 7 represents the time required to

simultaneously bunker HFO and LFO. The total cost of bunkering

HFO and LFO for the ship Cf is given by:

Cf = o
r∈R
o
s∈S
o
i∈Ir

y1s,r,ip
1
r,i + y2s,r,ip

2
r,i

� 	
(8)

In Equation 8, p1r,i and p
2
r,i represent the prices of HFO and LFO,

respectively, at the i-th port on route r. Due to the varying charges

and size restrictions imposed by different ports based on the scale of

the vessels, the total port fees are expressed as follows:

Cp = o
r∈R
o
s∈S
o
i∈Ir

xsrps,r,i (9)

In Equation 9, ps,r,i represents the fee charged to ship s at the i-th

port on route r. It is worth noting that some ports are unable to

accommodate larger vessels due to berth size limitations. In such

cases, the port charges for these vessels should be set to a

significantly higher value to reflect practical constraints.

Based on the above description, the mathematical model is as

follows:

min
x,y,z

C = o
r∈R
o
s∈S
o
i∈Ir

xsr
dr,i
vs

+ ts,r,i +
wr,i

hs

� �
co + o

r∈R
o
s∈S
o
i∈Ir

(y1s,r,ip
1
r,i

+ y2s,r,ip
2
r,i) + o

r∈R
o
s∈S
o
i∈Ir

xsrps,r,i (10)

o
s∈S

xsrqs ≥ Wr                                     ∀ r ∈ R (11)

o
r∈R

xsr ≤ 1                                                   ∀ s ∈ S (12)
FIGURE 1

Operational phases and corresponding fuel consumption between consecutive ports.
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e1s,r,i+1 = e1s,r,i + y1s,t,i −HFO(s,r,i)     ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (13)

e2s,r,i+1 = e2s,r,i + y2s,t,i − LFO(s,r,i)     ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (14)

e1s,r,i ≥ e1min − (1 − xsr)M                ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (15)

e2s,r,i ≥ e2min − (1 − xsr)M              ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (16)

e1s,r,i + y1s,t,i ≤ F1
s                             ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (17)
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e2s,r,i + y2s,t,i ≤ F2
s                             ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (18)

y1s,r,i ≥ z1s,r,if1                                  ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (19)

y2s,r,i ≥ z2s,r,if2                                  ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (20)

y1s,r,i ≤ z1s,r,iF
1
s                                   ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (21)

y2s,r,i ≤ z2s,r,iF
2
s                                   ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (22)

xsr − z1s,r,i ≥ 0                                  ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (23)

xsr − z2s,r,i ≥ 0                                  ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (24)

xsr = 0, 1f g                                                      ∀s ∈ S, ∀r ∈ R (25)

ys,r,i ≥ 0                                          ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (26)

zs,r,i = 0, 1f g                                 ∀s ∈ S, ∀r ∈ R, ∀i ∈ Ir (27)

The objective function Equation 10, represents the minimization of

the sum of fleet operating costs, fuel costs, and port fees. Constraint

Equation 11 ensures that the transportation demand for refined oil on

each route is met. Constraint Equation 12 ensures that each ship serves

at most one route. Constraints Equations 13, 14 are continuity

constraints for the 219 ship’s fuel consumption. Constraints

Equations 15, 16 restrict the amount of HFO and LFO in the fuel

tanks during navigation to not fall below the minimum levels.

Constraints Equations 17, 18 ensure that the fuel volume in the

tanks does not exceed the maximum capacity during refueling.

Constraints Equations 19–22 are linearization constraints that

enforce minimum bunkering quantities, a common requirement

from fuel suppliers. For instance, constraint Equation 19 states that if

a decision to bunker HFO is made (z1s,r,i = 1), the amount bunkered

(y1s,r,i) must be at least the minimum required quantity f1. Conversely, if

z1s,r,i = 0, constraint Equation 21 forces (y1s,r,i) to be zero. Constraints

Equations 23 and 24 are logical constraints that link the bunkering and

deployment decisions, ensuring that a vessel can only bunker at a port

on a route to which it has been assigned (xsr = 1). Finally, constraints

Equations 25–27 define the domains of the decision variables,

specifying which are binary (xsr , zs,r,i), and which are non-negative

continuous variables (y1s,r,i, y
2
s,r,i).
4 Advanced models and solving
algorithms

4.1 Robust model

During the actual operation of refined oil shipping, various

uncertainty factors can significantly impact both vessel deployment

and refueling strategies. Among these, fluctuations in oil prices and

the unpredictability of berth availability stand out as key challenges.
TABLE 1 Nations.

Symbol Description

Sets

S Set of ships, indexed by s

R Set of routes, indexed by r

Lr Set of legs for route r, with leg lr,i being the i-th leg

Parameters

qs Capacity of ship s

Wr Transportation demand on route r

dr,i Distance of leg lr,i

wr,i Quantity of cargo loaded/unloaded at the starting port of leg lr,i

F1
s , F

2
s HFO and LFO tank capacities of ship s

vs Economical cruising speed of ship s

hs Time required by ship s to load/unload a unit of cargo

u1s , u
2
s HFO and LFO consumption rates on coastal routes

û 1
s , û

2
s , HFO and LFO consumption rates in restricted areas

~u1s , ~u
2
s , HFO and LFO consumption rates during port anchorage

�u1s , �u
2
s HFO and LFO consumption rates during cargo operations

p1r,i , p
2
r,i Prices of HFO and LFO at the i-th port on route r

ps,r,i Port fee for ship s at the i-th port on route r

e1min , e
2
min Minimum required safety levels for HFO and LFO

f1, f2 Minimum bunkering quantities for HFO and LFO

Ka
(s,r,i),  

Kb
(s,r,i)

Binary parameters for fuel type selection

µr,i, wb,i Random variables for price and berthing time fluctuation

F, Y Uncertainty sets for oil price and berthing time

Decision variables

xsr Binary variable: 1 if ship s is deployed on route r, 0 otherwise

y1s,r,i , y
2
s,r,i Amount of HFO and LFO bunkered by ship s at the start of leg lr,i

z1s,r,i , z
2
s,r,i , Binary variable: 1 if HFO or LFO is bunkered by ship s at the start

of leg lr,i, 0 otherwise

e1s,r,i , e
2
s,r,i Amount of HFO and LFO in tanks of ship s after leg lr,i
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The volatility of oil prices directly influences operational costs,

making it difficult for shipping companies to optimize refueling

schedules and manage fuel reserves efficiently. Sudden price hikes

can force companies to adjust routes or delay refueling, thereby

increasing the overall complexity of voyage planning. In addition to

fuel price volatility, uncertain berth times at ports contribute to

operational inefficiencies. Delays in docking due to port congestion,

adverse weather conditions, or logistical bottlenecks can lead to

longer waiting periods, which in turn affect shipping schedules and

fuel consumption. This unpredictability complicates the

coordination of vessel arrivals and departures, leading to further

disruptions in the supply chain.

To address these challenges, we developed a robust

optimization model based on our foundational framework,

explicitly accounting for the two key uncertainties: oil price

fluctuations and berth time unpredictability. This model

incorporates stochastic elements to capture the variability in fuel

costs and port conditions, allowing for more resilient decision-

making in ship deployment and refueling strategies. By integrating

these uncertainty factors, the model enhances operational flexibility,

ensuring that shipping companies can minimize disruptions and

maintain efficiency under varying conditions. Consider

transforming two external input parameters, oil price and

berthing time at each port, into random variables. The random

oil price is given by:

pr,i + rr,imr,i,   mr,i ∈ ½−1, 1� (28)

indicating that the oil price follows an arbitrary distribution in

the interval [pr,i − rr,i, pr,i + rr,i]. Similarly, the random berthing

time is expressed as:

tr,i + tr,iwb,i,    wb,i ∈ ½−1, 1� (29)

suggesting a distribution in the interval [tr,i − tr,i, tr,i + tr,i]. The
uncertainty sets ? and ? capturing the constraints are defined as:

F = m   : ∥m ∥∞ ≤ 1,  ∥m ∥1 ≤ Gp


 �
Y = w   : ∥w ∥∞ ≤ 1,  ∥w ∥1 ≤ Gtf g

(30)

The robust model is presented below.

min
x,y,z

max
m∈F,w∈Y

C = Co + Cf + Cp

s : t :              
(31)

Equations 11–27

In these definitions, F and Y represent the uncertainty sets for

oil price and berthing time, respectively. The parameter Gp is the
budget of uncertainty for price, which limits the total number of

ports where prices can deviate from their nominal values

simultaneously. Similarly, Gt is the budget of uncertainty for

berthing time. This formulation creates a robust model that

hedges against a limited number of worst-case deviations, which

is more practical than protecting against the highly unlikely

scenario where all prices and times deviate simultaneously.

It is important to acknowledge that the prices of HFO and LFO

are often highly correlated in the real world. Our model utilizes

separate uncertainty sets for each fuel type, which does not
Frontiers in Marine Science 07
explicitly model this correlation. This approach is chosen for

modeling tractability and to ensure a more conservative solution,

as it prepares for a wider range of scenarios. Critically, this structure

allows the model to effectively capture the significant uncertainty in

the price spread (differential) between HFO and LFO, which can be

independently volatile due to regulatory changes or supply

imbalances. While the framework is flexible enough to model

correlated price movements by setting proportional deviation

parameters, the independent approach was chosen for this study

to guarantee greater robustness. Explicitly modeling price

correlations represents a meaningful avenue for future research.
4.2 Solving algorithms

The proposed Algorithm 1 aims to solve a mixed-integer

optimization model involving decision variables xsr , y
1
s,r,i, y

2
s,r,i, z

1
s,r,i,

and z2s,r,i. This algorithm systematically explores a search tree to

identify the global optimal solution while leveraging bounds to

prune non-promising branches, enhancing computational

efficiency. The algorithm begins by initializing the root node with

the linear relaxation of the original problem and solving it to

determine a lower bound L and the relaxed solution. The best

known feasible solution C* is initialized to infinity. A priority queue

is maintained to manage the nodes in the search tree, with the node

having the smallest objective value being selected for processing.

For each node, the linear relaxation is solved. If the solution is both

feasible and integer, it is compared with C*. If the solution improves

C*, the optimal value and the associated decision variables are

updated. If the solution is infeasible, the node is discarded.

Otherwise, branching is performed on fractional variables.

The branching process involves selecting variables among xsr ,

z1s,r,i, z
2
s,r,i, y

1
s,r,i, and y2s,r,i that hold fractional values in the current

solution. For each selected variable, two subproblems are created by

imposing bounds on the variable (v = 1 and v = 0 for binary

variables, or v ≥ 1 and v ≤ 0 for bounded continuous variables).

These subproblems are then added to the search tree for further

exploration. To ensure computational efficiency, the bounding step

is employed. For each node, the algorithm computes an upper

bound U and compares it with the best-known solution C*. If the
lower bound L of the node is greater than or equal to C*, the node
and its descendants are pruned from the search tree, as they cannot

yield better solutions. The algorithm terminates when all nodes in

the search tree are either processed or pruned. At the end, the

algorithm returns C* as the optimal objective value and the

corresponding decision variables (xsr , y
1
s,r,i, y

2
s,r,i, z

1
s,r,i, z

2
s,r,i). By

combining relaxation, branching, and bounding strategies, this

method efficiently handles the complexity of mixed-integer

optimization problems.
1: Input: Optimization model with variables xs
r, y1

s,r,i,

y2
s,r,i, z1

s,r,i, and z2
s,r,i.

2: Output: Optimal solution C* and corresponding

optimal decision variables.
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Fron
3: Initialize the root node with the linear relaxation

of the model.

4: Solve the relaxed problem to obtain:

5: Lower bound L

6: Solution (xs
r ,y

1
s,r,i ,y

2
s,r,i ,z

1
s,r,i ,z

2
s,r,i)

7: Initialize the best known solution C∗ = ∞

8: while there are nodes in the search tree do

9: Select a node with the smallest objective value.

10: Solve the linear relaxation at the selected node.

11: if solution is feasible and integer then

12: if objective value< C* then

13: Update C* ← objective value

14: Store the solution (xs
r ,y

1
s,r,i ,y

2
s,r,i ,z

1
s,r,i ,z

2
s,r,i)

15: else

16: if solution is infeasible then

17: Discard this node and backtrack.

18: else

19: Branching:

20: Identify a variable with a fractional value

among xs
r, z1

s,r,i, and z2
s,r,i.

21: for each fractional variable v do

22: Create two new subproblems:

23: v =1

24: v =0

25: Add these subproblems as new nodes in the

search tree.

26: Identify a variable with a fractional value

among y1
s,r,i and y2

s,r,i.

27: for each fractional variable v do

28: Create two new subproblems:

29: v ≥ 1

30: v ≤ 0

31: Add these subproblems as new nodes in the

search tree.

32: Bounding:

33: Compute the upper bound U for the current node.

34: if lower bound L ≥ C* then

35: Prune this node and its descendants.

36: Return C* and the optimal solution (xs
r ,y

1
s,r,i ,y

2
s,r,i ,z

1
s,r,i

,z2
s,r,i).
Algorithm 1. Branch and Bound Algorithm with Variable Bounds.

The branch-and-bound algorithm serves as the fundamental

solution method for deterministic base models. This Algorithm 1

systematically explores a search tree to identify the global optimal

solution by combining relaxation, branching, and bounding

strategies, efficiently handling the complexity of the mixed-integer

optimization problem. This method provides the solution for our

deterministic benchmark case. For the robust optimization model

with its min-max structure and uncertainty sets, a more specialized

approach is required. We employ RSOME (Robust Stochastic

Optimization Made Easy) (Chen et al., 2020; Chen and Xiong,

2023), a powerful Python package designed for such problems. The

RSOME platform automatically reformulates the robust problem

into its tractable robust counterpart, which is a large-scale
tiers in Marine Science 08
deterministic mixed-integer program. This reformulated problem

is then solved by a state-of-the-art solver that RSOME calls

internally. These solvers are themselves built upon advanced

implementations of the Branch and Bound framework. Therefore,

Algorithm 1 serves two roles: it is the direct solver for the

deterministic model, and it illustrates the fundamental solution

logic that is ultimately used by the specialized tools that solve the

reformulated robust model.
5 Case study

5.1 Parameter settings

In this section, we use the actual transportation network of a

world-leading refined oil shipping company as a case study to

illustrate the effectiveness of our model. China COSCO Shipping

Energy Transportation Co., Ltd., the sole carrier for China’s

domestic refined oil maritime transportation under PetroChina,

handles an annual transport volume of 20 million tons with over

2,400 voyages, accounting for approximately 23% of the country’s

total seaborne refined oil transportation. The company wields

significant market influence and industry impact, managing the

transportation of five major product categories: -10 diesel, 0 diesel,

92 gasoline, 95 gasoline, and 98 gasoline. The company’s specific

shipping routes include loading ports located in five major regions:

Dalian, Bayuquan, Jinzhou, Qinhuangdao, and Tianjin. The

unloading ports cover more than 30 key ports across 11 provinces

and cities, ranging from Yantai in Shandong to Qinzhou in

Guangxi. Currently, the company operates with its own fleet of

16 vessels with a combined capacity of 420,000 DWT (Deadweight

Tonnage) and an annual operational cost exceeding 600 million

RMB. Additionally, it accesses a charter market fleet of 238 vessels

with a total capacity of 2.02 million DWT, approximately 40% of

the active domestic refined oil shipping fleet. These vessels range in

size from 2,000 tons to 40,000 tons, with an annual charter cost

exceeding 1.3 billion RMB.

The routes served by the company are shown in Figure 2. These

routes connect 27 ports along China’s coastal and inland waterways.

The company owns 10 refined oil tankers, with their technical

specifications detailed in Table 2.

The case study presented in Table 2 examines the operational

and fuel-related parameters of nine vessels (LY-121 to KLY-206),

providing critical insights into cost optimization and fuel

management across different ship classes. The table details key

metrics such as Deadweight Ton (DWT), fuel consumption rates

for High-Sulfur Fuel Oil (HFO) and Low-Sulfur Fuel Oil (LFO)

under three operational modes—sailing (SC), port (PC), and

anchoring (AC)—alongside fuel tank capacities (HFO-Cap and

LFO-Cap), daily operational costs (OC in RMB), and cruising

speed (kont). Notably, smaller vessels like the LY-series (e.g., LY-

121, LY-123) rely on LFO for port and anchoring operations but

consume HFO during navigation, while larger KLY-series ships

(e.g., KLY-201, KLY-205) prioritize HFO for sailing due to its cost

efficiency, despite higher daily operational expenses (e.g., KLY-205
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incurs 62,100 RMB/day). Fuel tank capacities scale with vessel size,

with KLY-series 331 ships accommodating up to 590 tons of HFO

compared to 343 tons in LY-series vessels, reflecting strategic trade-

offs between fuel storage and cargo capacity. The data also reveals

variations in speed and DWT, such as KLY-205’s higher cruising

speed (12.80 knots) and triple the cargo capacity of LY-121,

underscoring the need for operators to balance fuel choice, route
Frontiers in Marine Science 09
planning, and compliance with environmental regulations (e.g.,

using LFO in emission control areas).

The table presents port-specific parameters for 26 Chinese ports

(e.g., CNTJN, CNZPU), focusing on fuel cost dynamics and

operational constraints critical to maritime logistics optimization.

Key metrics include the price of High-Sulfur Fuel Oil (HFO) and

Low-Sulfur Fuel Oil (LFO) in RMB per ton, alongside the average
FIGURE 2

Refined oil transportation service areas and routes.
TABLE 2 Ship cost and fuel tank parameters.

ShipName DWT
(ton)

u1
s

(ton/day)
u2
s

(ton/day)
�u1
s  

(ton/day)
�u2
s  

(ton/day)
û 1

s  
(ton/day)

û 1
s

(ton/day)

co (RMB/
day)

vs
(kont)

F1
s

(ton)
F2
s

(ton)

LY-121 10968 12.0 1.2 – 1.6 – 1.3 37500 11.43 343 67

LY-123 10968 12.0 1.2 – 1.6 – 1.3 37700 11.12 343 67

LY-126 12768 9.5 1.2 – 1.6 – 1.3 33600 9.71 343 67

LY-128 12819 9.5 1.2 – 1.6 – 1.3 38700 9.00 343 67

KLY-106 13085 12 1.3 – 1.9 – 1.5 36800 10.52 343 67

KLY-201 30119 18.3 – 6.2 – 3.7 – 56100 12.29 590 125

KLY-202 30046 18.3 – 6.2 – 3.7 – 56100 12.20 590 125

KLY-203 30032 18.3 – 6.2 – 3.7 – 59000 12.22 590 125

KLY-205 30038 19.5 – 5.0 – 3.7 – 62100 12.80 590 125

KLY-206 30052 19.5 – 7.0 – 3.7 – 52700 12.80 590 125
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anchorage time required (in hours). Notably, significant price

variations exist between ports: HFO costs range from 4,524.24

RMB/ton (CNYPG) to 7,391.11 RMB/ton (CNWGQ), while LFO

prices span from 5,958.87 RMB/ton (CNGLA) to 7,381.07 RMB/ton

(CNHUI). For instance, CNFUZ offers the lowest LFO price

(5,961.23 RMB/ton), contrasting with CNHUI’s premium LFO

rate, which exceeds HFO prices in some ports (e.g., CNGLA’s

LFO is cheaper than its HFO). Anchorage time also varies widely,

from as little as 4.0 hours in CNDAL and CNXIA to 23.7 hours in

CNJIJ, directly impacting vessel operational timelines and

associated costs. These disparities highlight strategic implications

for route planning–operators may prioritize ports like CNFUZ or

CNGLA for cost-effective LFO procurement, while shorter

anchorage times (e.g., CNDAL) reduce downtime. Conversely,

ports with high fuel prices or lengthy anchorage periods (e.g.,

CNWGQ, CNJIJ) may deter frequent calls unless offset by cargo

demand or regulatory requirements. The dataset underscores the

need for nuanced cost-benefit analyses when selecting ports,

balancing fuel expenses, time sensitivity, and compliance with

emission control regulations (e.g., favoring LFO in sulfur-

emission control areas despite price premiums). In addition to

the data in the Tables 2, 3, several key parameters were configured.

The minimum fuel safety level was set to 0.08 of a tank’s total

capacity. The minimum bunkering quantity was set to 0.1 of a

tank’s capacity. The vessel’s speed in restricted areas was assumed to

be 0.8 of its economical cruising speed at sea. A value of 108 was

used for the ‘Big M’ in linearization constraints. The case study is

based on five distinct shipping routes, each with a transportation

demand of 41000 tons. The order of stops for each route is shown in

Table 4. The complete port-to-port distance matrix, which details

both total and ECA-specific distances in nautical miles for all

voyage legs, is provided as Supplementary Material to ensure full

reproducibility. This information serves as a foundational input for

optimizing fuel purchasing strategies, voyage scheduling, and

overall fleet efficiency across diverse port networks.
5.2 Comparison of model results

The comparison between deterministic and robust optimization

models for ship deployment and fuel refueling strategies (Tables 4–7)

reveals distinct trade-offs in fuel allocation, cost efficiency, and

operational flexibility under certainty versus uncertainty. The

results for the robust optimization model shown in Table 6 and

Table 7 were generated by considering the uncertainties in HFO

price, LFO price, and anchorage time simultaneously. The specific

uncertainty sets, based on the formulation in Section 4.1, were

configured as follows. For HFO prices, the maximum deviation (r)
was set to 100 RMB/ton with a budget of uncertainty (G) of 10. For
LFO prices, the maximum deviation was 300 RMB/ton with a budget

of 10. For anchorage time, the maximum deviation was 6 hours with

a budget of 10. The resulting robust strategy is therefore resilient

against the combined impact of these potential disruptions. The

subsequent sensitivity analysis in Section 5.3 explores the effects of

varying these uncertainty parameters individually.
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The comparison of deterministic and robust optimization

models under uncertainty in HFO/LFO fuel prices and anchorage

times highlights how each approach addresses volatility in critical

operational parameters. The deterministic model assumes fixed fuel

costs and port dwell times (e.g., HFO prices like 5034.75 RMB/ton

in CNTJN and 11.7-hour anchorage in CNTAI), leading to rigid

fuel procurement strategies prioritizing cost minimization—such as

heavy reliance on HFO for large vessels (e.g., KLY-205’s 235.21 tons

in Line 1 of the deterministic HFO model) and minimal LFO use

(e.g., fixed 12.50-ton allocations in most ports). However, this

approach becomes vulnerable to disruptions: sudden HFO price

spikes (e.g., CNWGQ’s 7,391.11 RMB/ton) or unexpected delays

(e.g., CNJIJ’s 23.7-hour anchorage) could disrupt planned routes

and budgets.
TABLE 3 Port parameters.

Port
name

HFO price
(RMB/ton)

LFO price
(RMB/ton)

Anchorage
time (h)

CNTJN 5034.75 6642.18 11.7

CNZPU 5474.91 6030.09 5.4

CNJIJ 5312.16 6673.76 23.7

CNHUM 5283.61 7127.40 18.2

CNJIA 4900.22 6780.63 22.4

CNYPG 4524.24 6324.58 8.2

CNHUI 5667.66 7381.07 18.7

CNYAN 5235.55 6576.10 15.3

CNCHS 5098.30 7215.12 18.0

CNQIN 4549.84 6540.53 11.6

CNZHA 5271.08 6582.77 7.4

CNYIZ 5113.84 6955.04 15.7

CNFUZ 5100.94 5961.23 6.7

CNNJG 4875.23 6070.91 11.7

CNDAL 5176.07 6879.08 4.0

CNZOS 5277.92 6819.19 20.9

CNJIN 5617.79 6444.40 11.5

CNGLA 5062.82 5958.87 13.0

CNTAI 5276.02 6341.50 8.3

CNGUA 4754.43 6565.01 13.1

CNWGQ 4788.75 7391.11 12.7

CNNTG 4890.53 6960.93 18.0

CNDNG 4988.90 7155.23 18.4

CNJYG 4746.02 7171.94 17.2

CNNBO 4872.95 7175.98 7.3

CNXIA 4893.48 6978.22 4.0

CNBYQ 5541.94 6376.61 8.5
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In contrast, the robust model explicitly accounts for price and

time uncertainties by diversifying fuel choices and port selections.

For instance, it increases LFO allocations in critical routes (e.g., LY-

123’s LFO use rises to 31.34 tons in Line 3 of the robust LFOmodel)

to hedge against HFO price volatility, while expanding port options

to avoid over-reliance on high-risk hubs (e.g., incorporating CNJIJ

and CNDNG for LFO refueling). The model also adjusts anchorage

time impacts by reserving contingency fuel (e.g., KLY-106’s HFO

increases to 261.51 tons in Line 11) and selecting shorter-anchorage

ports (e.g., prioritizing CNDAL’s 4-hour dwell time over CNJIJ’s

23.7 hours). These adjustments come at a cost: robust strategies

incur higher expenses (e.g., LFO’s premium pricing) but ensure

operational continuity amid fluctuating conditions, such as

avoiding delays caused by unanticipated anchorage extensions.

The trade-offs between cost and resilience are stark. The

deterministic model achieves lower fuel expenses but risks failure

if assumptions about prices or anchorage times prove inaccurate—

e.g., a sudden surge in HFO costs at CNWGQ could strand ships

relying on fixed budgets. The robust model, while more expensive

(e.g., LFO usage expands to cover 22.42 tons in Line 9 of the LFO:

RO model), provides a buffer against disruptions, ensuring

compliance with emission regulations and minimizing delays.

Decision-makers must balance these factors: short-term cost-

sensitive operations may favor the deterministic approach in
Frontiers in Marine Science 11
stable markets, while the robust model is critical in regions with

erratic fuel prices (e.g., CNHUI’s 7,381.07 RMB/ton LFO) or

unpredictable port congestion, where flexibility outweighs minor

cost savings.

An important observation from the results is that the vessel-to-

route assignments remain identical be397 tween the deterministic

(Tables 4, 5) and robust (Tables 6, 7) solutions. This stability is

primarily a consequence of the case study’s structural constraints.

With a fixed demand of 41,000 tons per route and a fleet composed

of two distinct vessel size classes (12,000 DWT and 30,000 DWT),

any feasible solution must pair one vessel from each class to meet

the demand. Within this constrained solution space, the optimal

assignment is determined by inherent deterministic characteristics

of the vessels, such as daily operating costs and fuel efficiency. The

uncertainties in fuel price and anchorage time, while impacting total

cost, were not sufficient in this instance to alter the fundamental

cost hierarchy of the vessel pairings. It is important to note,

however, that the model’s main response to uncertainty is

reflected in the significant adjustments to the refueling strategies,

which represent the most flexible operational decision for hedging

against cost volatility.

It is crucial to understand how the cost of robustness is

incurred, particularly in low-volatility environments where the

deterministic model may appear to outperform the robust one.
TABLE 4 Deterministic ship deployment and HFO refueling strategy results.

Line 1 KLY-
106

KLY-
205

Line 2 LY-
126

KLY-
201

Line 3 LY-
123

KLY-
203

Line 4 LY-
121

KLY-
206

Line 5 LY-
128

KLY-
202

CNTJN 154.71 235.21 CNQIN 76.97 131.67 CNHUM 93.66 143.79 CNQIN 86.02 135.35 CNHUM 91.73 143.25

CNJIA CNJIJ CNTJN 65.39 93.76 CNYPG 315.56 542.80 CNBYQ 54.94 80.26

CNDNG CNGLA 128.27 203.30 CNGLA 165.18 254.05 CNGLA CNJYG 102.17 167.33

CNNTG CNFUZ CNNTG CNJIN CNJIJ

CNZPU CNTJN CNZPU CNDNG CNJIN

CNNJG 53.56 85.38 CNYPG 315.56 542.80 CNJYG CNJIJ CNWGQ

CNYIZ CNNTG CNGUA CNNBO CNZOS

CNWGQ CNCHS CNNBO CNGUA 161.78 209.16 CNNTG 39.85 61.27

CNHUM CNHUI CNXIA CNNTG CNGUA 52.10 77.41

CNYPG 287.46 460.96 CNWGQ CNDNG CNYIZ CNQIN 236.80 367.58

CNGUA CNZHA CNYPG 276.79 410.24 CNZOS CNDAL

CNFUZ 34.30 CNBYQ CNDAL CNHUI CNZHA

CNZOS CNXIA CNNJG CNXIA CNDNG

CNHUI CNHUM CNTAI CNJIA CNXIA

CNBYQ CNJIA 34.30 59.00 CNQIN CNZHA CNTAI

CNJIN CNGUA 172.72 243.67 CNFUZ CNWGQ CNZPU

CNYAN CNJIN CNWGQ CNDAL CNJIA

CNJYG CNTAI CNBYQ CNFUZ 102.65 158.86 CNYIZ

CNXIA CNDNG CNJIA CNHUM CNYAN

CNZHA CNNBO CNZHA CNTJN CNYPG
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This cost is not a flaw, but rather the price paid for operational

resilience. The robust optimization model makes decisions to hedge

against the worst-case scenarios defined within the uncertainty set.

In practice, this leads to more conservative operational strategies.

For example, to guard against potential fuel price spikes, the

robust model might decide to bunker a larger quantity of more

expensive but price-stable LFO, even when HFO prices are

nominally lower. To avoid the risk of costly delays, it might favor a

port with shorter, more reliable anchorage times over a port that is

cheaper but historically more congested. Furthermore, the model may

opt to carry a larger buffer of fuel throughout 415 the voyage to

mitigate the impact of unforeseen delays, which could slightly reduce

the available deadweight for cargo or necessitate less optimal routing.

When these worst-case scenarios do not materialize in a stable, low-

volatility environment, these prudent, hedging decisions are more

expensive in hindsight than the strategy from the deterministic model,

which perfectly capitalized on the favorable conditions. This difference

in cost is the price of insuring the voyage against disruptions.
5.3 Sensitivity analysis

In this section, we conduct a sensitivity analysis to evaluate the

impact of the magnitude of uncertainty on the performance of the
Frontiers in Marine Science 12
deterministic and robust models. The analysis is performed by

systematically varying 423 the maximum deviation parameter (rr,i
for price or tr,i for time) for one source of uncertainty at a time,

while the other two uncertainty parameters are held constant at the

base values defined in Section 5.2. The ranges for these deviations

were selected in consultation with industry experts to reflect

plausible market and operational conditions.

The cost curves presented in Figures 3–5 illustrate the

fundamental trade-off of robust optimization. We define the

‘fluctuation threshold’ as the point where the cost of the robust

solution falls below that of the deterministic solution. Below this

threshold, the robust model may incur a higher cost due to its

conservative nature—this is often referred to as the ‘price of

robustness.’ However, once the level of uncertainty surpasses this

threshold, the proactive hedging strategy of the robust model yields

significant cost savings, demonstrating its economic value in volatile

environments. The non-monotonic fluctuations in the cost curves

can be attributed to the complex interplay of the three simultaneous

uncertainties active within the robust model, where the structure of

the worst-case scenario shifts as the parameters are varied. Under

varying price fluctuations of HFO and LFO, the robust optimization

model (RO) demonstrates superior performance compared to the

deterministic model (D) when price volatility exceeds critical

thresholds. Figures 3 and 4 present cost comparisons between
TABLE 5 Deterministic ship deployment and LFO refueling strategy results.

Line 1 KLY-
106

KLY-
205

Line 2 LY-
126

KLY-
201

Line 3 LY-
123

KLY-
203

Line 4 LY-
121

KLY-
206

Line 5 LY-
128

KLY-
202

CNTJN 6.75 12.50 CNQIN 10.59 12.50 CNHUM 27.70 12.50 CNQIN 8.07 12.50 CNHUM 6.83 12.50

CNJIA 6.70 CNJIJ CNTJN CNYPG CNBYQ 6.70

CNDNG 6.70 CNGLA CNGLA CNGLA 6.70 CNJYG

CNNTG CNFUZ CNNTG CNJIN CNJIJ 31.34

CNZPU 6.70 CNTJN 10.17 CNZPU CNDNG 31.08 CNJIN

CNNJG 6.70 CNYPG CNJYG CNJIJ 6.70 CNWGQ

CNYIZ 6.70 CNNTG CNGUA CNNBO 6.70 CNZOS

CNWGQ CNCHS CNNBO CNGUA CNNTG 6.70

CNHUM CNHUI CNXIA CNNTG CNGUA

CNYPG 6.70 CNWGQ CNDNG CNYIZ CNQIN

CNGUA 6.70 CNZHA CNYPG CNZOS 6.70 CNDAL 29.05

CNFUZ 6.70 CNBYQ CNDAL CNHUI CNZHA

CNZOS CNXIA CNNJG CNXIA CNDNG

CNHUI 6.70 CNHUM 6.70 CNTAI CNJIA CNXIA

CNBYQ 6.70 CNJIA 6.70 CNQIN CNZHA CNTAI

CNJIN CNGUA 6.70 CNFUZ CNWGQ CNZPU

CNYAN CNJIN CNWGQ CNDAL 6.70 CNJIA

CNJYG CNTAI CNBYQ CNFUZ CNYIZ

CNXIA CNDNG CNJIA CNHUM CNYAN

CNZHA 22.15 CNNBO CNZHA CNTJN CNYPG
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robust optimization and deterministic models under varying price

fluctuation ranges for HFO and LFO, respectively, demonstrating

the robust model’s superior cost stability in high-volatility scenarios

exceeding predefined thresholds.

For HFO refueling strategies, when HFO price fluctuations

exceed 300 (Figure 3 green line) units (e.g., at 300 and 400 units),

the robust model consistently outperforms the deterministic

approach by stabilizing costs. At 300 units of HFO volatility, the

deterministic cost rises to 117437000, while the robust model

reduces costs to 115071000 (a 2.0% decrease). At 400 units of

volatility, the deterministic cost further increases to 119076000,

whereas the robust model maintains lower costs at 117607000

(1.2% reduction).

For LFO refueling strategies, the robust model’s advantage

becomes pronounced when LFO price fluctuations exceed 250

(Figure 4 green line) units (e.g., 350, 400, and 450 units). At 350

units of LFO volatility, the deterministic cost reaches 116390000,

while the robust model lowers costs to 112517000 (a 3.3%

reduction). At 400 units of volatility, the deterministic cost spikes

to 122407000, but the robust model controls costs at 115242000

(6.0% lower). This resilience stems from the robust model’s ability

to hedge against HFO price shocks through diversified fuel

procurement and contingency port selection, minimizing

exposure to volatile markets.
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By dynamically adjusting fuel ratios and optimizing route

flexibility, the robust model mitigates risks from extreme price

swings, particularly at higher volatility levels. Even when

deterministic costs temporarily outperform at lower volatility

(e.g., 250 units), the robust model’s long-term stability and ability

to handle extreme scenarios make it the preferred choice in

unpredictable markets. These results underscore the value of

robust optimization in safeguarding operational costs against

price instabi l i t ies , especial ly when volat i l i ty exceeds

predefined thresholds.

Figure 5 presents a comparison of the costs between the robust

optimization and deterministic models across different anchorage

time fluctuations. When anchor time fluctuations exceed 12 hours

(Figure 5 green line), the robust optimization model (RO)

demonstrates a clear cost advantage over the deterministic model

(D) in high-volatility scenarios. For fluctuations exceeding 12 hours

(e.g., 1319 hours), the robust model consistently achieves lower or

more stable costs. Notably, at a 16-hour fluctuation, the

deterministic cost spikes to 121.773 million, while the robust

model mitigates risks through optimized scheduling and

contingency planning, reducing costs to 111.4 million (an 8.5%

decrease). At 17 hours, the deterministic cost reaches 122.646

million, whereas the robust model further lowers it to 120.57

million (1.7% reduction). This performance gap widens in
TABLE 6 Robust ship deployment and HFO refueling strategy results.

Line 1 KLY-
106

KLY-
205

Line 2 LY-
126

KLY-
201

Line 3 LY-
123

KLY-
203

Line 4 LY-
121

KLY-
206

Line 5 LY-
128

KLY-
202

CNTJN 154.71 235.21 CNQIN 76.97 131.67 CNHUM 93.66 143.79 CNQIN 86.02 135.35 CNHUM 91.73 143.25

CNJIA CNJIJ CNTJN 65.39 93.76 CNYPG 315.56 542.80 CNBYQ 85.37 80.26

CNDNG CNGLA 34.30 70.06 CNGLA 83.97 130.34 CNGLA CNJYG 96.66

CNNTG CNFUZ 93.97 133.24 CNNTG CNJIN CNJIJ 34.30

CNZPU CNTJN CNZPU CNDNG CNJIN 77.29 131.95

CNNJG 53.56 85.38 CNYPG 315.56 542.80 CNJYG CNJIJ CNWGQ

CNYIZ CNNTG CNGUA 81.21 123.72 CNNBO CNZOS

CNWGQ CNCHS CNNBO CNGUA 52.34 209.16 CNNTG

CNHUM CNHUI CNXIA CNNTG CNGUA 52.10 209.41

CNYPG 60.25 460.96 CNWGQ CNDNG CNYIZ CNQIN 236.80 235.58

CNGUA CNZHA CNYPG 112.77 148.73 CNZOS CNDAL

CNFUZ 261.51 CNBYQ CNDAL CNHUI CNZHA

CNZOS CNXIA CNNJG 261.51 CNXIA CNDNG

CNHUI CNHUM CNTAI CNJIA 109.43 CNXIA

CNBYQ CNJIA 38.49 59.00 CNQIN 164.01 CNZHA CNTAI

CNJIN CNGUA 168.53 243.67 CNFUZ CNWGQ CNZPU

CNYAN CNJIN CNWGQ CNDAL CNJIA

CNJYG CNTAI CNBYQ CNFUZ 102.65 158.86 CNYIZ

CNXIA CNDNG CNJIA CNHUM CNYAN

CNZHA CNNBO CNZHA CNTJN CNYPG
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extreme scenarios, such as a 19-hour fluctuation, where the robust

model reduces costs to 113.582 million compared to the

deterministic model’s 115.064 million (1.3% reduction). These

results highlight the robust model’s ability to dynamically adjust
Frontiers in Marine Science 14
vessel schedules and fuel reserves to counteract anchorage time

uncertainties, ensuring cost stability in volatile operational

environments where deterministic models fail due to rigid

parameter assumptions.

To provide a clearer quantitative summary of the sensitivity

analysis, Table 8 presents a comparison of the cost performance of

the deterministic and robust models at the key fluctuation

thresholds identified. This table directly addresses the need for

statistical validation and highlights the value of robust optimization

in highly volatile conditions. The Cost Saving (%) column quantifies

the advantage of the robust model, showing savings of up to 8.5% in

extreme scenarios.

To rigorously validate that the performance improvements of

the robust model are statistically significant, we developed a Monte

Carlo simulation framework to evaluate the cost savings reported in

Table 8. This approach allows us to test the performance of the fixed

deterministic and robust solutions against a wide range of randomly

generated, plausible future scenarios. The validation process for

each sensitivity case (e.g., an anchorage time fluctuation of 16

hours) is as follows:
• Solution Generation: We first solve the deterministic and

robust optimization models under the baseline conditions

to obtain two distinct, fixed decision plans (Ddet and Drob).
TABLE 7 Robust ship deployment and LFO refueling strategy results.

Line 1 KLY-
106

KLY-
205

Line 2 LY-
126

KLY-
201

Line 3 LY-
123

KLY-
203

Line 4 LY-
121

KLY-
206

Line 5 LY-
128

KLY-
202

CNTJN 11.10 12.50 CNQIN 10.59 12.50 CNHUM 6.83 12.50 CNQIN 14.19 12.50 CNHUM 31.34 12.50

CNJIA CNJIJ CNTJN 16.49 CNYPG CNBYQ

CNDNG CNGLA CNGLA CNGLA CNJYG

CNNTG 6.70 CNFUZ CNNTG 6.70 CNJIN CNJIJ

CNZPU CNTJN 6.70 CNZPU CNDNG CNJIN

CNNJG 6.70 CNYPG CNJYG 6.70 CNJIJ CNWGQ

CNYIZ CNNTG CNGUA 27.70 CNNBO 31.08 CNZOS

CNWGQ 6.70 CNCHS CNNBO 6.70 CNGUA 6.70 CNNTG 22.42

CNHUM 6.70 CNHUI 6.70 CNXIA CNNTG 6.70 CNGUA

CNYPG CNWGQ CNDNG CNYIZ CNQIN

CNGUA CNZHA CNYPG 6.70 CNZOS CNDAL

CNFUZ CNBYQ 6.70 CNDAL CNHUI 6.70 CNZHA

CNZOS CNXIA CNNJG CNXIA 6.70 CNDNG

CNHUI CNHUM CNTAI CNJIA CNXIA

CNBYQ CNJIA CNQIN CNZHA CNTAI

CNJIN CNGUA CNFUZ CNWGQ CNZPU

CNYAN 34.95 CNJIN 6.70 CNWGQ 6.70 CNDAL CNJIA 31.34

CNJYG CNTAI 6.70 CNBYQ CNFUZ CNYIZ

CNXIA CNDNG 6.70 CNJIA CNHUM CNYAN

CNZHA CNNBO CNZHA CNTJN 19.70 CNYPG
front
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Fron
Each plan contains a complete set of vessel-to-route

assignments and detailed refueling strategies. These plans

are the objects of our evaluation.

• Scenario Generation via Monte Carlo Simulation: We

conduct 1,000 independent simulation trials. In each trial,

we generate a unique what-if scenario by randomly

sampling values for the uncertain parameters (fuel prices

and anchorage times) from their predefined uncertainty

sets. For instance, for the anchorage time scenario with a

budget of uncertainty Gt = 10 and a maximum deviation of

16 hours, each trial involves:

- Randomly selecting up to 10 ports that will experience

a delay.

- For each selected port, randomly assigning a delay time

drawn from a uniform distribution between 0 and 16 hours.
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A similar process is applied to fuel prices. This ensures each of

the 1,000 trials represents a distinct, valid realization of a

possible future.
• Performance Evaluation: For each of the 1,000 generated

scenarios, we calculate the total operational cost that would

have been incurred by applying both the deterministic plan

(Cdet) and the robust plan (Crob). The cost saving for that

specific trial is then calculated as Si = Cdet,i − Crob,i, where i is

the trial number.

• Hypothesis Testing: After completing all trials, we obtain a

sample distribution of 1,000 cost-saving values (S1,S2,…,

S1000). We then perform a one-sample, one-tailed t-test on

this sample. Our hypotheses are:

- Null Hypothesis (H0): The mean cost saving is zero (µS =0).

This implies there is no statistically significant difference

between the two plans.

- Alternative Hypothesis (H1): The mean cost saving is greater

than zero (µS > 0). This implies the robust plan is

statistically superior.
The Table 8 final column reports the p-values from our Monte

Carlo simulation. The resulting p-value represents the probability of

observing our sample’s mean cost saving (or a greater one) purely

by random chance if the null hypothesis were true. All reported

values are well below the conventional significance level of 0.05,

providing strong statistical evidence that the cost savings are not

coincidental but are a significant result of the robust model’s

hedging strategy.

It is important to contextualize that the fluctuation ranges tested

in this analysis are representative of real-world phenomena. The

volatility in bunker fuel markets is driven by a multitude of factors,

including geopolitical events, global supply chain disruptions, and

local port dynamics. Similarly, anchorage time uncertainty is a

persistent operational challenge caused by port congestion, adverse
FIGURE 4

Comparison of costs under different fluctuation ranges of LFO
prices.
FIGURE 5

Comparison of costs under different fluctuation ranges of anchorage time.
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weather, and logistical delays. Therefore, the performance gains

shown by the robust model at higher levels of uncertainty are not

merely theoretical but reflect a tangible advantage in navigating the

genuine volatilities inherent in maritime logistics.
5.4 Managerial implications

The results of our sensitivity analysis offer several practical

managerial insights for tanker operators navigating volatile market

conditions. The identification of specific cost-saving thresholds

provides a quantitative basis for dynamic decision-making.

First, the findings can be used to establish a more sophisticated

fuel procurement policy. Instead of relying on a static strategy,

managers can use the thresholds identified in Figures 3 and 4 as

triggers. For instance, if market forecasts predict that fuel price

volatility will exceed the identified threshold (e.g., 300 RMB/ton for

HFO), a pre-defined policy could dictate a shift towards the robust

refueling strategy. This might involve bunkering larger quantities of

fuel at ports with historically stable prices or strategically utilizing

more of the (often more expensive) but less volatile LFO to hedge

against extreme HFO price spikes. This data-driven approach

moves the company from a reactive to a proactive stance on fuel

cost management.

Second, the model serves as a powerful tool for contingency and

risk planning, particularly regarding port congestion. If intelligence

suggests that a key port is likely to experience extreme berthing

delays (e.g., exceeding the 12-hour fluctuation threshold shown in

Figure 5), managers can use the robust model to simulate alternative

scenarios. This might lead to a decision to preemptively reroute a

vessel, swap vessel assignments to use a smaller, more versatile ship,

or adjust the cargo-loading schedule. By quantifying the financial

impact of such delays, the model allows decision-makers to make

informed trade-offs between accepting a delay or taking costly

preventative action.

Finally, our integrated framework encourages a shift in mindset

from siloed decision-making to holistic operational management. It

demonstrates that vessel deployment and refueling are not

independent problems. A suboptimal vessel assignment can create

unavoidable high-cost refueling situations down the line. By

considering these decisions jointly, especially under uncertainty,
Frontiers in Marine Science 16
companies can develop more resilient and cost-effective operational

plans that are robust to the compounding effects of market and

operational disruptions.
6 Conclusion

This study presents a robust optimization framework for joint

decision-making in tanker deployment and refueling strategies under

berthing time and fuel price uncertainties. By integrating operational

decisions that are traditionally addressed separately, the proposed

model captures the interdependencies between vessel assignment and

fuel management, thereby mitigating suboptimal outcomes caused by

isolated planning. The incorporation of stochastic berthing times and

fuel price fluctuations enables adaptive refueling strategies, enhancing

resilience against disruptions such as port congestion and market

volatility. Computational experiments, based on a realistic case study

constructed with operational data from a leading maritime logistics

provider, illustrate the specific value of the robust optimization

approach. The findings do not show that one model universally

outperforms the other, but rather highlight a critical trade-off. The

robust model demonstrates a significant cost-saving advantage—

reducing operational costs by 2.06.0% but only when price and time

volatility exceeds certain thresholds. Below these levels, the

deterministic model is often preferable. This highlights the robust

model’s capability to balance economic efficiency with operational

flexibility specifically in highly uncertain environments.

The findings underscore the practical value of adopting

integrated decis ion-making frameworks in mari t ime

transportation, particularly for companies navigating volatile fuel

markets and unpredictable port conditions. By optimizing tanker

deployment and refueling strategies holistically, operators can

achieve substantial cost savings while ensuring schedule

adherence and regulatory compliance. Future research could

extend this framework to incorporate dynamic routing

adjustments, multi-objective optimization for emission reduction,

and machine learning techniques for real-time uncertainty

prediction. Furthermore, future research could extend this

framework to incorporate dynamic routing adjustments and treat

voyage speed as a decision variable. This extension would involve

treating vessel speed for each leg of a voyage as a continuous
TABLE 8 Statistical summary of key sensitivity analysis results.

Uncertainty
source

Fluctuation
threshold

Deterministic cost
(Million RMB)

Robust cost
(Million RMB)

Cost saving
(%)

P-value

HFO Price
300 RMB/ton
400 RMB/ton

117.44
119.08

115.07
117.61

2.0
1.2

< 0.01
< 0.05

LFO Price
350 RMB/ton
400 RMB/ton

116.39
122.41

112.52
115.24

3.3
6.0

< 0.01
< 0.001

Anchorage Time
16 hours
17 hours

121.77
122.65

111.40
120.57

8.5
1.7

< 0.001
< 0.05

19 hours 115.06 113.58 1.3 < 0.05
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decision variable. Such a model would need to incorporate the well-

established non-linear, convex relationship between vessel speed

and fuel consumption directly into the objective function.

Consequently, the constraints would also require reformulation to

account for variable transit times, directly linking speed choices to

arrival schedules and port windows. By co-optimizing deployment,

refueling, and speed, such a model could provide deeper insights

into the critical trade-o between fuel expenditure, operational costs,

and schedule adherence. This would significantly enhance the

model’s applicability at the operational level and offer a more

holistic solution for cost-efficient and sustainable logistics,

especially when considering time-sensitive cargo or carbon

emission reduction targets. Investigating these complex dynamics

represents a challenging but highly promising extension of the

current work. It is important to justify our selection of RO over

other frameworks like Stochastic Programming (SP). While SP is a

powerful tool, its requirement for precise probability distributions is

a significant challenge in our real-world context. Through industry

consultations, we confirmed that variables like port berthing time

and fuel prices are subject to high distributional ambiguity and

heterogeneity, making it impractical to t reliable distributions.

Given this, we chose RO for its “distribution-free” nature, which

allows us to hedge against worst-case scenarios without assuming

specific probabilistic models, thus aligning better with the practical

need for operational resilience in a volatile market. We

acknowledge, however, that a comparative study with SP is a

valuable direction for future research, contingent on the future

availability of more granular data for accurate distribution fitting.

Such advancements would further bridge the gap between

theoretical models and industry needs, fostering sustainable and

adaptive solutions for global maritime logistics.
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