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This study proposes a robust optimization framework for the joint optimization of
tanker deployment and refueling strategies under uncertainties in berthing times
and fuel prices. Unlike traditional sequential approaches, the model jointly
determines vessel assignment and refueling decisions within a unified
mathematical formulation, explicitly accounting for interdependencies between
operational variables. By incorporating robust optimization techniques, the
framework addresses fuel price volatility and stochastic berthing delays, enabling
resilient decision-making in dynamic maritime environments. Using real-world data
from a leading maritime logistics provider, computational experiments demonstrate
that the robust model reduces operational costs by 2.06% compared to
deterministic approaches when fuel price fluctuations exceed critical thresholds
(e.g., 300 RMB/ton for Heavy Fuel Oil (HFO) and 250 RMB/ton for Light Fuel Oil
(LFO)). Sensitivity analyses further reveal the model's resilience under extreme
anchorage time uncertainties (e.g., 16-hour delays), achieving cost savings of up
to 8.5%. The framework’s adaptability to diverse fleet configurations and regulatory
environments underscores its practical value for enhancing decision-making in
volatile markets.

KEYWORDS

rened oil transportation, robust optimization, oil price uncertainty, anchor time
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1 Introduction

The refined petroleum products transportation market is experiencing robust growth
driven by the global expansion of energy demand and sustained development of the
petrochemical industry. While precise figures for 2025 are unavailable, industry reports and
observed trends suggest a reasonable estimate of the global market size for that year could

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fmars.2025.1677919/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1677919/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1677919/full
https://www.frontiersin.org/articles/10.3389/fmars.2025.1677919/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2025.1677919&domain=pdf&date_stamp=2025-11-07
mailto:wm1998@dlmu.edu.cn
https://doi.org/10.3389/fmars.2025.1677919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2025.1677919
https://www.frontiersin.org/journals/marine-science

Du et al.

range between 250 billion USD and 300 billion USD'. This
projection encompasses the transportation of various refined

products including gasoline, diesel, kerosene, and specialized

fuels

via multiple modalities such as pipelines, rail, road, and
maritime shipping. The market is projected to expand at a
compound annual growth rate (CAGR) of approximately 4-5%
between 2025 and 2033, indicating sustained market expansion”.

Within market segmentation, maritime transportation is
anticipated to maintain its dominant position due to its
unparalleled efficiency in moving large volumes over long
distances. However, market dynamics are complicated by
geopolitical instabilities and volatile crude oil prices, which
introduce significant uncertainties and fluctuations. Efficient
deployment and refueling strategies are critical components of
maritime transportation, especially in the context of tanker
operations (Wang et al., 2025b). With the increasing demand for
crude oil and refined products, tanker operators must carefully
optimize their operations to ensure cost efficiency while meeting
delivery schedules. However, maritime logistics is subject to
significant uncertainties, including port congestion, weather
disruptions, and fluctuating fuel prices. Among these, berthing
time uncertainty—the variability in the time a vessel spends
waiting for and accessing port facilities—poses a considerable
challenge (Zhou et al., 2025a). Delays can lead to higher
operational costs, disrupt schedules, and necessitate adjustments
to refueling plans (Zhou et al., 2025¢, 2024). Therefore, designing a
robust decision-making framework that accounts for both tanker
deployment and refueling under such uncertainty is of
paramount importance.

The problem involves two intertwined decisions: the
assignment of tankers to delivery routes (deployment) and the
determination of optimal refueling strategies along those routes.
Traditionally, these two problems are addressed independently,
with tanker deployment focused on minimizing voyage costs and
refueling strategies optimized separately based on fuel consumption
patterns and price variations. However, ignoring their
interdependence may result in suboptimal outcomes. For
instance, an inefficient deployment may force a tanker to refuel at
ports with higher fuel prices or under less favorable conditions,
increasing overall operational costs. Consequently, an integrated
approach that simultaneously optimizes both deployment and
refueling decisions is essential.

The volatility of fuel prices exerts significant and multifaceted
pressures on the refined petroleum products transportation market,
particularly within maritime logistics, where operational costs and
strategic decisions are inextricably linked to fluctuating fuel costs
(Hao et al., 2022). Rising fuel prices directly inflate voyage expenses,
compelling tanker operators to reassess route optimization, port
selection, and refueling strategies to mitigate financial burdens,
while also forcing shippers and carriers to potentially pass on

1 https://www.archivemarketresearch.com/reports/refined-oil-
transportation-63550

2 https://dataintelo.com/report/refined-oil-transportation-market
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increased costs to consumers or absorb profit margins under
price-sensitive market conditions. Conversely, price declines may
temporarily alleviate operational expenses, enabling cost savings or
competitive pricing adjustments, but they also introduce long-term
uncertainties that deter sustained investment in infrastructure
modernization or alternative energy transitions. The
interdependence of tanker deployment and refueling decisions
becomes acute in volatile environments, as suboptimal choices—
such as refueling at ports with unexpectedly higher prices due to
misaligned scheduling or port congestion—can exacerbate costs
and disrupt delivery timelines, thereby necessitating dynamic risk-
management frameworks that integrate real-time fuel price data
with route planning and inventory control.

Another significant factor complicating tanker operations is the
uncertain berthing time at ports. Variations in waiting times can
force vessels to spend more time in transit or at anchor, impacting
fuel consumption and disrupting delivery schedules (Zhen et al,
2024). This uncertainty introduces an additional layer of complexity
to decision-making. Operators need to anticipate possible delays and
incorporate them into their planning to avoid penalties and extra fuel
costs. Stochastic modeling offers a promising way to address such
uncertainties by considering the variability in berthing times and
optimizing the deployment and refueling decisions accordingly.

The main contributions of this study can be summarized
as follows:

* Integrated Decision-Making Framework: We propose a
novel mathematical model that jointly optimizes tanker
deployment (vessel-to-route assignment) and refueling
strategies (when, where, and how much fuel to bunker)
within a single framework. This integrated approach
captures the critical interdependencies between these
decisions, moving beyond traditional sequential or
isolated planning methods.

e Robust Optimization Under Dual Uncertainties: We
develop a robust optimization model to specifically
address two critical and simultaneous sources of real-
world uncertainty in maritime logistics: volatile fuel prices
(for both HFO and LFO) and stochastic port berthing times.
This enhances the resilience and practical applicability of
the proposed strategies.

* Real-World Validation and Managerial Insights: The model
is validated using a large-scale, realistic case study based on
operational data from a world-leading refined oil shipping
company. Our computational results provide practical
managerial insights into the specific cost-saving
thresholds at which a robust approach becomes more
effective than a deterministic one in volatile

market conditions.

The remainder of the paper is organized as follows: Section 2
reviews the relevant literature on tanker operations, refueling
strategies, and stochastic optimization. Section 3 presents the
mathematical model for the joint decision-making problem,
including the formulation of the stochastic berthing time

frontiersin.org


https://www.archivemarketresearch.com/reports/refined-oil-transportation-63550
https://www.archivemarketresearch.com/reports/refined-oil-transportation-63550
https://dataintelo.com/report/refined-oil-transportation-market
https://doi.org/10.3389/fmars.2025.1677919
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Du et al.

uncertainty. Section 4 discusses the solution methodology, and
Section 5 provides a detailed computational study to evaluate the
proposed framework. Finally, Section 6 concludes the paper with
key insights and directions for future research.

2 Literature review

The optimization of shipping operations, particularly in tanker
deployment, refueling, and speed strategies, has emerged as a
critical area of research in response to the increasing complexity
of modern maritime logistics. Traditional methodologies, which
often treated these variables in isolation, have been supplanted by
integrated decision-making frameworks designed to address the
interdependencies among operational parameters (Zhou et al,
2025b; Chen et al., 2025). Recent studies emphasize the necessity
of jointly optimizing deployment, refueling, and speed to mitigate
suboptimal outcomes such as excess fuel consumption, delayed
schedules, and noncompliance with environmental regulations.
Nonlinear mixed-integer programming models, for instance, have
been developed to minimize operational costs by synchronizing
decisions across service routes, refueling quantities, and vessel
speeds (Wang and Chen, 2017). These models reveal that
fragmented optimization of individual variables can lead to
inefficiencies, such as misaligned port stops or unanticipated
delays, underscoring the importance of holistic strategies. Gao
et al. (2025) considered the vehicle speed and refueling strategy of
methanol dual-fuel pipeline with emission control area, and
constructed a mixed integer 0-1 programming model with the
goal of minimizing the single voyage operating cost.

Environmental regulations, including those in Emission
Control Areas (ECAs), further complicate this optimization by
imposing constraints on fuel types and emissions (Jiang et al.,
2025; Li et al., 2022). Researchers have addressed these challenges
through advanced mathematical approaches, such as transforming
nonlinear discrete programming models into continuous
formulations solvable via convex optimization techniques (Ma
et al,, 2021). This allows for simultaneous consideration of fuel
consumption, emissions, and transportation costs, enabling more
sustainable decision-making. For example, studies demonstrate that
nonlinear relationships between ship speed, fuel efficiency, and
emissions require balanced trade-offs to achieve cost-effective and
environmentally responsible outcomes (Lashgari et al., 2021).

Uncertainty in fuel prices, consumption rates, and regulatory
policies has driven the adoption of stochas92 tic and dynamic
optimization methods. Dynamic programming algorithms, for
instance, generate adaptive refueling policies based on real-time
fuel price fluctuations across ports Zhen et al. (2017), while
scenario-based stochastic programming accounts for potential
shifts in carbon taxes and LNG availability (Wu et al., 2022).
These approaches not only enhance resilience against market
volatility but also reveal that static deterministic models may
underestimate risks, particularly in regions with stringent
emission controls. Multistage stochastic models further highlight
the strategic importance of low-sulfur fuel oil when LNG supplies
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are limited or prices are volatile, emphasizing the need for flexible
refueling strategies (Zhou and Wang, 2025).

The integration of dual-fuel technologies, such as LNG engines,
introduces new dimensions to operational planning. While LNG
reduces carbon emissions, challenges such as methane slip and port
infrastructure limitations necessitate optimization models that
account for engine performance, fuel availability, and
environmental regulations (Wu et al., 2024). Linearization
techniques have enabled practical solutions to these complex,
multi-variable problems, demonstrating the feasibility of adopting
cleaner fuels without compromising efficiency. Concurrently,
studies explore the role of emission trading systems in
incentivizing LNG adoption, suggesting that market-based
mechanisms could align profitability with environmental goals
(Ma et al., 2023).

Dynamic programming and distributionally robust
optimization methods have gained traction in addressing demand
uncertainty and fluctuating market conditions. These frameworks
ensure operational resilience by guaranteeing demand satisfaction
while minimizing exposure to adverse scenarios, such as sudden
bunker price spikes (Besbes and Savin, 2009). Progressive hedging
algorithms further advance computational efficiency, enabling
large-scale optimization of refueling and speed decisions (Ghosh
et al., 2015).

Recent literature has further advanced this field by focusing on
more integrated and complex models. A significant trend is the joint
optimization of sailing speed with routing and bunkering, a point of
departure from our fixed-speed tactical model. For instance, Aydin
etal. (2017) utilized dynamic programming to optimize vessel speed
while facing uncertain port service times, demonstrating that
considering such uncertainty can noticeably reduce fuel costs.
Similarly, several studies have developed mixed-integer linear
programming (MILP) models to co-optimize speed and
bunkering for vessels using alternative fuels, such as LNG (He
et al.,, 2024) and biofuels with storage limitations (Li et al., 2025).
Wang et al. (2025a) also jointly optimized speed and bunkering,
focusing on both cost and carbon emission reductions by
incorporating practical constraints like fuel inspection processes.

The drive for sustainability and resilience has also spurred new
methodologies. De et al. (2020) addressed sustainable ship routing
with bunker management using a hybrid variable neighborhood
search and particle swarm optimization algorithm. To handle
uncertainty, researchers have moved towards more sophisticated
techniques. Zhou and Wang (2025), for example, applied a
distributionally robust optimization method to 124 manage
stochastic shipping demand and ECA regulations, jointly
determining the optimal route, speed, and refueling strategy. In a
different approach, Sun and Chou (2025) introduced a data-driven
method that combines machine learning with traditional
optimization to learn the optimal refueling policy directly from
market data, moving beyond price prediction to policy prescription.
These studies underscore the complexity and multi-faceted nature
of modern maritime logistics optimization.

Despite the extensive research on vessel routing, speed
optimization, and bunkering, a specific research gap remains.
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While many studies focus on the operational level for a single
vessel’s voyage (often including variable speed), less attention has
been paid to the tactical, fleet-wide problem of simultaneously
optimizing vessel deployment and refueling strategies. Furthermore,
few models have incorporated a robust optimization framework to
specifically handle the combined and simultaneous impact of fuel
price volatility and port berthing time uncertainty.

This study aims to fill this gap by proposing an integrated,
robust optimization model tailored for this joint tactical decision-
making problem. While our work simplifies the problem by
assuming a fixed economical speed, it contributes by focusing on
the tactical joint deployment and refueling problem for an entire
fleet, using a robust optimization framework to specifically address
simultaneous fuel price and port time uncertainties. Our
contribution is to provide a resilient decision-support tool that
enhances fleet-wide operational planning in the face of these critical
real-world uncertainties, a focus distinct from single-voyage, speed-
centric optimization models.

3 Base model formulations

We consider the operational decision-making process within a
refined oil transportation company. Let S denote the set of ships owned
by the company, indexed by s, with each ship s having a capacity
denoted by g,. The company ensures the supply of refined petroleum
products downstream in the supply chain through coastal shipping.
The set of routes utilized for this purpose is R, indexed by r, with a
transportation demand on each route represented by W,. Let L,
represent the set of leg of route , and ,; denote the i-th leg on route
1, where [; € L,. The route distance of leg [, ; is d, .

The deployment of ships on each route must be considered first
to ensure that service demands are met. Secondly, a ship refueling
strategy must be devised to ensure the successful completion of the
entire voyage. The deployment of product tankers and their
refueling strategies is complex, involving multiple factors: First,
product tankers typically have separate tanks for heavy and light
fuel oils, with heavy fuel oil (HFO) primarily consumed during
coastal navigation and light fuel oil (LFO) required in restricted
areas such as ports, anchorage, and cargo operations. This makes
route complexity a significant challenge in formulating refueling
strategies. However, it is worth noting that the type of fuel used is
often related to the vessel’s characteristics. For instance, some ships
are not equipped with LFO tanks, allowing them to use HFO
throughout the entire voyage. Second, the initial quantities of
HFO and LFO onboard critically influence vessel deployment
along the route, and the refueling strategy also depends on the
fuel price differences at various ports along the route.

The following introduces the parameters related to fuel
consumption for product tankers. Let F! and F? denote the heavy
fuel oil (HFO) and light fuel oil (LFO) tank capacities, respectively,
for vessel s. The vessel’s economical cruising speed on coastal routes
is represented by v, It is important to clarify the assumptions
regarding vessel speed in our model. The vessel speed v, is treated as
a fixed parameter representing the economical cruising speed. This
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assumption is rooted in the ex-ante, tactical nature of the decision
problem, which focuses on optimizing fleet deployment and
refueling strategies over a planning horizon. Real-time operational
decisions, such as in-voyage speed adjustments, are considered
outside the scope of this planning model. At this level, operators
often prioritize fuel efficiency by adhering to a steady economical
speed due to the prohibitive costs associated with speeding up. Our
framework captures the impact of port time uncertainties by
incorporating the variable anchorage time directly into the
operational cost function. Thus, the objective is to find a plan
that is robust against the financial impact of delays. The resulting
costs can be viewed as a robust baseline; any costs or savings from
exceptional operational speed adjustments made during the voyage
could then be benchmarked against this baseline to evaluate actual
performance. The variables u! and u? signify the consumption rates
of HFO and LFO per unit time for vessel s on coastal routes.
Meanwhile, @2} and #? indicate the consumption rates of HFO and
LFO per unit time in restricted areas. Additionally, #! and #?
correspond to the consumption rates of HFO and LFO per unit time
during port anchorage. Finally, #} and u} represent the
consumption rates of HFO and LFO per unit time for vessel s
during cargo loading and unloading operations at the port. These
fuel consumption value are derived from historical data statistics of
the shipping company. Figure 1 illustrates the typical operational
sequence of a tanker between two consecutive ports, highlighting
the four distinct phases and their corresponding fuel consumption
notations. This schematic helps to intuitively connect the
mathematical formulation to real operational contexts. t;,; is the
time spent at anchoring and bunkering at the starting port of leg ,.;
Let w,,; denote the total quantity of crude oil loaded or unloaded at
the starting port of the leg [,;. Let h, denote the time required by
vessel s to load or unload a unit of cargo. Table 1 offers a detailed
explanation of all symbols used in this paper.

Based on the above notation, the consumption of heavy and
light fuel oil for ship s during leg I, ;, as well as during anchorage and
loading/unloading processes, can be expressed as follows:

d..
HFO{, ) = K{,us (f) Vs ES,Vr ERVIEI 1)
s

d..
LFO(,; = (1 - K&,,,-))uf( ”)Vs ESVreERVIEL (2)

Vs

-K?

(s,1,1)

HFO?

(s,11)

[ﬁits,,,,- +l <1Zr’i)}Vs ESVIERVIEL (3)

S

LFO] = (1-K/ ) [uzt + 1 (”Z)} VsESVrERVIEL

(4)

Equations 1, 2 represent the consumption of HFO and LFO for the
ship during navigation. Here, K}, ;) is a binary variable that ensures the
ship uses only one type of fuel during navigation. K¢, ; = 1 indicates
that ship s uses HFO on the i-th leg of route 7, denoted as [, ;. Otherwise,
K, = 0. Equations 3 and 4 represent the consumption of HFO and

LFO for the ship during anchorage. Similarly, K’ ) = 1 indicates that

(s,1oi
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Operational phases and corresponding fuel consumption between consecutive ports

ship s uses HFO during anchorage and loading/unloading at the
starting port of the i th leg of route r. Otherwise, K(/im.) = 0. Here,
K, ;) is abinary parameter indicating the fuel choice during navigation
(1 for HFO, 0 for LFO), and K (o is  binary parameter for fuel choice
during port and anchorage operations. These are external input
parameters determined by the shipping company based on the
vessel’s characteristics and ECA regulations to derive the most
economical choice for each leg. The fuel consumption of HFO and
LFO for ship s on leg I,; can be derived as follows:

HFO(,,, = HFO{, , + HFO]

(s,11) (5)

LFO,, = LFOZ, , + LFOP

(s,150)

The shipping company aims to minimize costs through
decisions on fleet deployment and refueling strategies. The binary
decision variable x; indicates whether ship s is deployed on route ;
it is 1 if deployed, otherwise 0. The non-negative decision variable
yi,i represents the amount of HFO bunkered by ship s at the
starting port of leg [, ;. Similarly, the non-negative decision variable
y2,.; represents the amount of LFO bunkered by ship s at the starting
port of leg I,;. Furthermore, to account for minimum purchase
requirements often imposed by fuel suppliers, we introduce the
binary decision variables z_, ; and zZ, ;. These variables are equal to 1
if vessel s bunkers HFO or LFO, respectively, at the starting port of
leg I,;, and 0 otherwise. The company’s primary costs include: (1)
vessel operating costs, (2) fuel bunkering costs, and (3) Port Fees.

The vessel operating cost C, is a non-decreasing function of the
total voyage time. In this equation, ¢, represents the vessel’s daily
operating cost.

C - Ezzx <7+tsrz %>Ca (6)

rERSESIE],

In Equation 6, f, .; represents the total time spent at port, which
is the sum of the anchorage time t,; and the time spent bunkering
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HFO and LFO.

1 2
ys,r,i ys,r,i }
t;,; = t,; + max e (7)
> { hs,l hs,Z

The second term in Equation 7 represents the time required to
simultaneously bunker HFO and LFO. The total cost of bunkering

HFO and LFO for the ship Cyis given by:

Cr =323 sribri +VariPhs) ®)
FERESIEL,

In Equation 8, p!; and p?; represent the prices of HFO and LFO,
respectively, at the i-th port on route r. Due to the varying charges
and size restrictions imposed by different ports based on the scale of
the vessels, the total port fees are expressed as follows:

CP = E 2 Exips,r,i (9)
rERESIEL
In Equation 9, p; ., represents the fee charged to ship s at the i-th
port on route . It is worth noting that some ports are unable to
accommodate larger vessels due to berth size limitations. In such
cases, the port charges for these vessels should be set to a
significantly higher value to reflect practical constraints.
Based on the above description, the mathematical model is as
follows:

minC = 222( )wEEEymm,

rERsESIE], rERsESIE],
+y52,r,ip%,i) + 2 E inps,r,i (10)
r&RsESIE],
Sxgs = W, VrER (11)
SES
>x <1 VsES (12)

r&R
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TABLE 1 Nations.

Sets
N Set of ships, indexed by s
R Set of routes, indexed by r
L, Set of legs for route r, with leg I,,; being the i-th leg
Parameters
qs Capacity of ship s
w, Transportation demand on route r
dr,i Distance of leg I,,;
wr,i Quantity of cargo loaded/unloaded at the starting port of leg I, ;
F, F? HFO and LFO tank capacities of ship s
Vg Economical cruising speed of ship s
h Time required by ship s to load/unload a unit of cargo
ul, u? HFO and LFO consumption rates on coastal routes
ul, u?, HFO and LFO consumption rates in restricted areas
!, i, HFO and LFO consumption rates during port anchorage
!, w? HFO and LFO consumption rates during cargo operations
Dro Phi Prices of HFO and LFO at the i-th port on route r
Psri Port fee for ship s at the i-th port on route r
Chiins Conin Minimum required safety levels for HFO and LFO
fv o Minimum bunkering quantities for HFO and LFO
K0 Binary parameters for fuel type selection
K(lz,m)
Uri> Wi Random variables for price and berthing time fluctuation
D, Uncertainty sets for oil price and berthing time
Decision variables
x5 Binary variable: 1 if ship s is deployed on route , 0 otherwise
Vi Veri Amount of HFO and LFO bunkered by ship s at the start of leg I,,;
Zhris Zoris Binary variable: 1 if HFO or LFO is bunkered by ship s at the start
of leg I,;, 0 otherwise
et € Amount of HFO and LFO in tanks of ship s after leg [,;
elris1 =€ tya —HFO(,) VsESVrERVIEL (13)

i1 = €t Yo —LFO(,,) VsESVrERVIEL (14)

€iri = epin — (1= X)M VsESVrERVIEL  (15)

2 2

€ri 2 Emin — (1 —x))M VsESVrERVIEIL  (16)

eryi+ v < F VsESVrERYIEL  (17)
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Cri+Yori S F VsESVrERVIEL  (18)

Veri =z VsESVrERVIETL  (19)

2

Veri 2 Zeris VseSVrERVIETL  (20)

Yari < ZapiFs VsESVrERVIEL  (21)
Yiri < ZniF VsESVrERVIEL (22)

X -z 20 VsESVrERYIEL,  (23)

X =20 20 VseSVreERYIiEL,  (24)
x5 ={0,1} VsESVrER  (25)
Ysri 20 VsES,VrERViIiET (26)
z,,; ={0,1} VseESVreERYIEL  (27)

The objective function Equation 10, represents the minimization of
the sum of fleet operating costs, fuel costs, and port fees. Constraint
Equation 11 ensures that the transportation demand for refined oil on
each route is met. Constraint Equation 12 ensures that each ship serves
at most one route. Constraints Equations 13, 14 are continuity
constraints for the 219 ship’s fuel consumption. Constraints
Equations 15, 16 restrict the amount of HFO and LFO in the fuel
tanks during navigation to not fall below the minimum levels.
Constraints Equations 17, 18 ensure that the fuel volume in the
tanks does not exceed the maximum capacity during refueling.
Constraints Equations 19-22 are linearization constraints that
enforce minimum bunkering quantities, a common requirement
from fuel suppliers. For instance, constraint Equation 19 states that if
a decision to bunker HFO is made (z}mi = 1), the amount bunkered
(y:,;) must be at least the minimum required quantity f,. Conversely, if
zi,; = 0, constraint Equation 21 forces (y.,;) to be zero. Constraints
Equations 23 and 24 are logical constraints that link the bunkering and
deployment decisions, ensuring that a vessel can only bunker at a port
on a route to which it has been assigned (x; = 1). Finally, constraints
Equations 25-27 define the domains of the decision variables,
specifying which are binary (x7,z;,;), and which are non-negative
continuous variables (yi,,, yZ,.)-

4 Advanced models and solving
algorithms

4.1 Robust model

During the actual operation of refined oil shipping, various
uncertainty factors can significantly impact both vessel deployment
and refueling strategies. Among these, fluctuations in oil prices and
the unpredictability of berth availability stand out as key challenges.
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The volatility of oil prices directly influences operational costs,
making it difficult for shipping companies to optimize refueling
schedules and manage fuel reserves efficiently. Sudden price hikes
can force companies to adjust routes or delay refueling, thereby
increasing the overall complexity of voyage planning. In addition to
fuel price volatility, uncertain berth times at ports contribute to
operational inefficiencies. Delays in docking due to port congestion,
adverse weather conditions, or logistical bottlenecks can lead to
longer waiting periods, which in turn affect shipping schedules and
fuel consumption. This unpredictability complicates the
coordination of vessel arrivals and departures, leading to further
disruptions in the supply chain.

To address these challenges, we developed a robust
optimization model based on our foundational framework,
explicitly accounting for the two key uncertainties: oil price
fluctuations and berth time unpredictability. This model
incorporates stochastic elements to capture the variability in fuel
costs and port conditions, allowing for more resilient decision-
making in ship deployment and refueling strategies. By integrating
these uncertainty factors, the model enhances operational flexibility,
ensuring that shipping companies can minimize disruptions and
maintain efficiency under varying conditions. Consider
transforming two external input parameters, oil price and
berthing time at each port, into random variables. The random
oil price is given by:

Pri t Prillri> Uy = [_1’ 1} (28)

indicating that the oil price follows an arbitrary distribution in
the interval [p,; — p,» pri + Pri]. Similarly, the random berthing

time is expressed as:

bei + TriWeis Wy € [-1,1] (29)

suggesting a distribution in the interval [t,; - T, t,,; + 7,;]. The

uncertainty sets ? and ? capturing the constraints are defined as:

O={u full.<l, Jul <T
( L
Y={w:lwle.<1 lwl <T}
The robust model is presented below.
min max C=C,+C+C,
XY,Z UED,WEY (31)
s.t. Equations 11-27

In these definitions, @ and ¥ represent the uncertainty sets for
oil price and berthing time, respectively. The parameter I', is the
budget of uncertainty for price, which limits the total number of
ports where prices can deviate from their nominal values
simultaneously. Similarly, I'; is the budget of uncertainty for
berthing time. This formulation creates a robust model that
hedges against a limited number of worst-case deviations, which
is more practical than protecting against the highly unlikely
scenario where all prices and times deviate simultaneously.

It is important to acknowledge that the prices of HFO and LFO
are often highly correlated in the real world. Our model utilizes
separate uncertainty sets for each fuel type, which does not
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explicitly model this correlation. This approach is chosen for
modeling tractability and to ensure a more conservative solution,
as it prepares for a wider range of scenarios. Critically, this structure
allows the model to effectively capture the significant uncertainty in
the price spread (differential) between HFO and LFO, which can be
independently volatile due to regulatory changes or supply
imbalances. While the framework is flexible enough to model
correlated price movements by setting proportional deviation
parameters, the independent approach was chosen for this study
to guarantee greater robustness. Explicitly modeling price
correlations represents a meaningful avenue for future research.

4.2 Solving algorithms

The proposed Algorithm 1 aims to solve a mixed-integer
optimization model involving decision variables x5, yt,;, 2,5, Zorss
and zZ,;. This algorithm systematically explores a search tree to
identify the global optimal solution while leveraging bounds to
prune non-promising branches, enhancing computational
efficiency. The algorithm begins by initializing the root node with
the linear relaxation of the original problem and solving it to
determine a lower bound L and the relaxed solution. The best
known feasible solution C* is initialized to infinity. A priority queue
is maintained to manage the nodes in the search tree, with the node
having the smallest objective value being selected for processing.
For each node, the linear relaxation is solved. If the solution is both
feasible and integer, it is compared with C*. If the solution improves
C*, the optimal value and the associated decision variables are
updated. If the solution is infeasible, the node is discarded.
Otherwise, branching is performed on fractional variables.

The branching process involves selecting variables among x;,
Ziri Zevis Yeri» and y2,; that hold fractional values in the current
solution. For each selected variable, two subproblems are created by
imposing bounds on the variable (v = 1 and v = 0 for binary
variables, or v > 1 and v < 0 for bounded continuous variables).
These subproblems are then added to the search tree for further
exploration. To ensure computational efficiency, the bounding step
is employed. For each node, the algorithm computes an upper
bound U and compares it with the best-known solution C*. If the
lower bound L of the node is greater than or equal to C¥, the node
and its descendants are pruned from the search tree, as they cannot
yield better solutions. The algorithm terminates when all nodes in
the search tree are either processed or pruned. At the end, the
algorithm returns C* as the optimal objective value and the
corresponding decision variables (3, ., ¥ Zerir Zori)- BY
combining relaxation, branching, and bounding strategies, this
method efficiently handles the complexity of mixed-integer
optimization problems.

1: Input: Optimization model with variables x?, yi, ;.

2

2 1
ys,r,i ’ Zs,r,i ’ and Zs,r,i .

2: Output: Optimal solution c* and corresponding
optimal decision variables.
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3: Initialize the root node with the linear relaxation
of the model.

4: Solve the relaxed problem to obtain:

5 Lower bound L

6:  Solution (X%,y& i»YerirZsrirZari)

7: Initialize the best known solution C* =w

8: while there are nodes in the search tree do

9: Select a node with the smallest objective value.
10:  Solve the linear relaxation at the selected node.
11: if solution is feasible and integer then

12: if objective value< C* then

13: Update C* objective value

14: Store the solution (x,yk  ;,V2, 1,2 5,22 05)
15: else

16: if solution is infeasible then

17: Discard this node and backtrack.

18: else

19: Branching:

20 Identify avariable with a fractional value
among X3, zt,;, and z2 ;.

21: for each fractional variable v do

22: Create two new subproblems:

23: v =1

24 v =0

25: Add these subproblems as new nodes in the
search tree.

26: Identify a variable with a fractional value

1 2
among yg,r,i and YS,r,i .

27: for each fractional variable v do

28: Create two new subproblems:

29: vzl

30: v=0

31: Add these subproblems as new nodes in the

search tree.
32: Bounding:

33: Compute the upper bound U for the current node.
34: if lower bound L = C* then
35: Prune this node and its descendants.

36: Return C* and the optimal solution (X YE i Yo rirZt

s,r,i

s Z51) -

Algorithm 1. Branch and Bound Algorithm with Variable Bounds.

The branch-and-bound algorithm serves as the fundamental
solution method for deterministic base models. This Algorithm 1
systematically explores a search tree to identify the global optimal
solution by combining relaxation, branching, and bounding
strategies, efficiently handling the complexity of the mixed-integer
optimization problem. This method provides the solution for our
deterministic benchmark case. For the robust optimization model
with its min-max structure and uncertainty sets, a more specialized
approach is required. We employ RSOME (Robust Stochastic
Optimization Made Easy) (Chen et al., 2020; Chen and Xiong,
2023), a powerful Python package designed for such problems. The
RSOME platform automatically reformulates the robust problem
into its tractable robust counterpart, which is a large-scale
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deterministic mixed-integer program. This reformulated problem
is then solved by a state-of-the-art solver that RSOME calls
internally. These solvers are themselves built upon advanced
implementations of the Branch and Bound framework. Therefore,
Algorithm 1 serves two roles: it is the direct solver for the
deterministic model, and it illustrates the fundamental solution
logic that is ultimately used by the specialized tools that solve the
reformulated robust model.

5 Case study
5.1 Parameter settings

In this section, we use the actual transportation network of a
world-leading refined oil shipping company as a case study to
illustrate the effectiveness of our model. China COSCO Shipping
Energy Transportation Co., Ltd., the sole carrier for China’s
domestic refined oil maritime transportation under PetroChina,
handles an annual transport volume of 20 million tons with over
2,400 voyages, accounting for approximately 23% of the country’s
total seaborne refined oil transportation. The company wields
significant market influence and industry impact, managing the
transportation of five major product categories: -10 diesel, 0 diesel,
92 gasoline, 95 gasoline, and 98 gasoline. The company’s specific
shipping routes include loading ports located in five major regions:
Dalian, Bayuquan, Jinzhou, Qinhuangdao, and Tianjin. The
unloading ports cover more than 30 key ports across 11 provinces
and cities, ranging from Yantai in Shandong to Qinzhou in
Guangxi. Currently, the company operates with its own fleet of
16 vessels with a combined capacity of 420,000 DWT (Deadweight
Tonnage) and an annual operational cost exceeding 600 million
RMB. Additionally, it accesses a charter market fleet of 238 vessels
with a total capacity of 2.02 million DWT, approximately 40% of
the active domestic refined oil shipping fleet. These vessels range in
size from 2,000 tons to 40,000 tons, with an annual charter cost
exceeding 1.3 billion RMB.

The routes served by the company are shown in Figure 2. These
routes connect 27 ports along China’s coastal and inland waterways.
The company owns 10 refined oil tankers, with their technical
specifications detailed in Table 2.

The case study presented in Table 2 examines the operational
and fuel-related parameters of nine vessels (LY-121 to KLY-206),
providing critical insights into cost optimization and fuel
management across different ship classes. The table details key
metrics such as Deadweight Ton (DWT), fuel consumption rates
for High-Sulfur Fuel Oil (HFO) and Low-Sulfur Fuel Oil (LFO)
under three operational modes—sailing (SC), port (PC), and
anchoring (AC)—alongside fuel tank capacities (HFO-Cap and
LFO-Cap), daily operational costs (OC in RMB), and cruising
speed (kont). Notably, smaller vessels like the LY-series (e.g., LY-
121, LY-123) rely on LFO for port and anchoring operations but
consume HFO during navigation, while larger KLY-series ships
(e.g., KLY-201, KLY-205) prioritize HFO for sailing due to its cost
efficiency, despite higher daily operational expenses (e.g., KLY-205
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FIGURE 2
Refined oil transportation service areas and routes.

incurs 62,100 RMB/day). Fuel tank capacities scale with vessel size,
with KLY-series 331 ships accommodating up to 590 tons of HFO
compared to 343 tons in LY-series vessels, reflecting strategic trade-
offs between fuel storage and cargo capacity. The data also reveals
variations in speed and DWT, such as KLY-205’s higher cruising
speed (12.80 knots) and triple the cargo capacity of LY-121,
underscoring the need for operators to balance fuel choice, route

TABLE 2 Ship cost and fuel tank parameters.

planning, and compliance with environmental regulations (e.g.,
using LFO in emission control areas).

The table presents port-specific parameters for 26 Chinese ports
(e.g., CNTJN, CNZPU), focusing on fuel cost dynamics and
operational constraints critical to maritime logistics optimization.
Key metrics include the price of High-Sulfur Fuel Oil (HFO) and
Low-Sulfur Fuel Oil (LFO) in RMB per ton, alongside the average

ShipName ut u? at at o (RMB/ Vs = FZ
(ton/day) (ton/day) (ton/day) (ton/day) (ton/day) (ton/day) day) (kont) (ton) (ton)

LY-121 10968 12.0 1.2 - 1.6 - 1.3 37500 11.43 343 67
LY-123 10968 12.0 1.2 - 1.6 - 1.3 37700 11.12 343 67
LY-126 12768 9.5 1.2 - 1.6 - 1.3 33600 9.71 343 67
LY-128 12819 9.5 1.2 - 1.6 - 1.3 38700 9.00 343 67
KLY-106 13085 12 1.3 - 1.9 - 1.5 36800 10.52 343 67
KLY-201 30119 18.3 - 6.2 - 3.7 - 56100 12.29 590 125
KLY-202 30046 18.3 - 6.2 - 3.7 - 56100 12.20 590 125
KLY-203 30032 18.3 - 6.2 - 37 - 59000 12.22 590 125
KLY-205 30038 19.5 - 5.0 - 3.7 - 62100 12.80 590 125
KLY-206 30052 19.5 - 7.0 - 3.7 - 52700 12.80 590 125
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anchorage time required (in hours). Notably, significant price
variations exist between ports: HFO costs range from 4,524.24
RMB/ton (CNYPG) to 7,391.11 RMB/ton (CNWGQ), while LFO
prices span from 5,958.87 RMB/ton (CNGLA) to 7,381.07 RMB/ton
(CNHUI). For instance, CNFUZ offers the lowest LFO price
(5,961.23 RMB/ton), contrasting with CNHUI's premium LFO
rate, which exceeds HFO prices in some ports (e.g., CNGLA’s
LFO is cheaper than its HFO). Anchorage time also varies widely,
from as little as 4.0 hours in CNDAL and CNXIA to 23.7 hours in
CNJIJ, directly impacting vessel operational timelines and
associated costs. These disparities highlight strategic implications
for route planning-operators may prioritize ports like CNFUZ or
CNGLA for cost-effective LFO procurement, while shorter
anchorage times (e.g., CNDAL) reduce downtime. Conversely,
ports with high fuel prices or lengthy anchorage periods (e.g.,
CNWGQ, CNJIJ) may deter frequent calls unless offset by cargo
demand or regulatory requirements. The dataset underscores the
need for nuanced cost-benefit analyses when selecting ports,
balancing fuel expenses, time sensitivity, and compliance with
emission control regulations (e.g., favoring LFO in sulfur-
emission control areas despite price premiums). In addition to
the data in the Tables 2, 3, several key parameters were configured.
The minimum fuel safety level was set to 0.08 of a tank’s total
capacity. The minimum bunkering quantity was set to 0.1 of a
tank’s capacity. The vessel’s speed in restricted areas was assumed to
be 0.8 of its economical cruising speed at sea. A value of 10® was
used for the ‘Big M in linearization constraints. The case study is
based on five distinct shipping routes, each with a transportation
demand of 41000 tons. The order of stops for each route is shown in
Table 4. The complete port-to-port distance matrix, which details
both total and ECA-specific distances in nautical miles for all
voyage legs, is provided as Supplementary Material to ensure full
reproducibility. This information serves as a foundational input for
optimizing fuel purchasing strategies, voyage scheduling, and
overall fleet efficiency across diverse port networks.

5.2 Comparison of model results

The comparison between deterministic and robust optimization
models for ship deployment and fuel refueling strategies (Tables 4-7)
reveals distinct trade-offs in fuel allocation, cost efficiency, and
operational flexibility under certainty versus uncertainty. The
results for the robust optimization model shown in Table 6 and
Table 7 were generated by considering the uncertainties in HFO
price, LFO price, and anchorage time simultaneously. The specific
uncertainty sets, based on the formulation in Section 4.1, were
configured as follows. For HFO prices, the maximum deviation (p)
was set to 100 RMB/ton with a budget of uncertainty (I') of 10. For
LFO prices, the maximum deviation was 300 RMB/ton with a budget
of 10. For anchorage time, the maximum deviation was 6 hours with
a budget of 10. The resulting robust strategy is therefore resilient
against the combined impact of these potential disruptions. The
subsequent sensitivity analysis in Section 5.3 explores the effects of
varying these uncertainty parameters individually.
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TABLE 3 Port parameters.

Port HFO price LFO price Anchorage
name (RMB/ton) (RMB/ton) time (h)
CNTJN 5034.75 6642.18 11.7
CNZPU 547491 6030.09 5.4
CNJJ 5312.16 6673.76 237
CNHUM 5283.61 7127.40 18.2
CNJIA 4900.22 6780.63 224
CNYPG 452424 6324.58 8.2
CNHUI 5667.66 7381.07 18.7
CNYAN 5235.55 6576.10 153
CNCHS 5098.30 7215.12 18.0
CNQIN 4549.84 6540.53 116
CNZHA 5271.08 6582.77 7.4
CNYIZ 5113.84 6955.04 15.7
CNFUZ 5100.94 5961.23 6.7
CNNJG 487523 6070.91 117
CNDAL 5176.07 6879.08 4.0
CNZOS 5277.92 6819.19 209
CNJIN 5617.79 6444.40 115
CNGLA 5062.82 5958.87 13.0
CNTAI 5276.02 6341.50 8.3
CNGUA 4754.43 6565.01 13.1
CNWGQ 4788.75 7391.11 12.7
CNNTG 4890.53 6960.93 18.0
CNDNG 4988.90 7155.23 18.4
CNJYG 4746.02 7171.94 17.2
CNNBO 4872.95 7175.98 73
CNXIA 4893.48 6978.22 40
CNBYQ 5541.94 6376.61 8.5

The comparison of deterministic and robust optimization
models under uncertainty in HFO/LFO fuel prices and anchorage
times highlights how each approach addresses volatility in critical
operational parameters. The deterministic model assumes fixed fuel
costs and port dwell times (e.g., HFO prices like 5034.75 RMB/ton
in CNTJN and 11.7-hour anchorage in CNTAI), leading to rigid
fuel procurement strategies prioritizing cost minimization—such as
heavy reliance on HFO for large vessels (e.g., KLY-205’s 235.21 tons
in Line 1 of the deterministic HFO model) and minimal LFO use
(e.g., fixed 12.50-ton allocations in most ports). However, this
approach becomes vulnerable to disruptions: sudden HFO price
spikes (e.g., CNWGQ’s 7,391.11 RMB/ton) or unexpected delays
(e.g., CNJIJ’s 23.7-hour anchorage) could disrupt planned routes
and budgets.
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TABLE 4 Deterministic ship deployment and HFO refueling strategy results.

10.3389/fmars.2025.1677919

Linel KLY- KLY- Line2
106 205

CNTJN | 15471 23521  CNQIN | 7697 | 131.67 CNHUM @ 9366 14379  CNQIN | 8602 | 13535  CNHUM | 9173 14325
CNJIA CNJIJ CNTJN 6539 | 9376 CNYPG | 31556 54280 | CNBYQ 5494 8026
CNDNG CNGLA 12827 20330  CNGLA | 16518 25405  CNGLA CNJYG | 10217 16733
CNNTG CNFUZ CNNTG CNJIN CNJIJ

CNZPU CNTJN CNZPU CNDNG CNJIN

CNNJG | 53.56 85.38 CNYPG 31556 54280 = CNJYG CNJIJ CNWGQ

CNYIZ CNNTG CNGUA CNNBO CNZOS

CNWGQ CNCHS CNNBO CNGUA | 16178  209.16 | CNNTG  39.85 6127
CNHUM CNHUI CNXIA CNNTG CNGUA 5210 7741
CNYPG | 28746 46096 = CNWGQ CNDNG CNYIZ CNQIN | 23680 367.58
CNGUA CNZHA CNYPG 27679 | 41024  CNZOS CNDAL

CNFUZ | 3430 CNBYQ CNDAL CNHUI CNZHA

CNZOS CNXIA CNNJG CNXIA CNDNG

CNHUI CNHUM CNTAI CNJIA CNXIA

CNBYQ CNJIA 3430 | 59.00 CNQIN CNZHA CNTAI

CNJIN CNGUA 17272 24367  CNFUZ CNWGQ CNZPU

CNYAN CNJIN CNWGQ CNDAL CNJIA

CNJYG CNTAI CNBYQ CNFUZ | 10265 | 15886 | CNYIZ

CNXIA CNDNG CNJIA CNHUM CNYAN

CNZHA CNNBO CNZHA CNTIN CNYPG

In contrast, the robust model explicitly accounts for price and
time uncertainties by diversifying fuel choices and port selections.
For instance, it increases LFO allocations in critical routes (e.g., LY-
123’s LFO use rises to 31.34 tons in Line 3 of the robust LFO model)
to hedge against HFO price volatility, while expanding port options
to avoid over-reliance on high-risk hubs (e.g., incorporating CNJIJ
and CNDNG for LFO refueling). The model also adjusts anchorage
time impacts by reserving contingency fuel (e.g., KLY-106’s HFO
increases to 261.51 tons in Line 11) and selecting shorter-anchorage
ports (e.g., prioritizing CNDAL’s 4-hour dwell time over CNJIJ’s
23.7 hours). These adjustments come at a cost: robust strategies
incur higher expenses (e.g., LFO’s premium pricing) but ensure
operational continuity amid fluctuating conditions, such as
avoiding delays caused by unanticipated anchorage extensions.

The trade-offs between cost and resilience are stark. The
deterministic model achieves lower fuel expenses but risks failure
if assumptions about prices or anchorage times prove inaccurate—
e.g., a sudden surge in HFO costs at CNWGQ could strand ships
relying on fixed budgets. The robust model, while more expensive
(e.g., LFO usage expands to cover 22.42 tons in Line 9 of the LFO:
RO model), provides a buffer against disruptions, ensuring
compliance with emission regulations and minimizing delays.
Decision-makers must balance these factors: short-term cost-
sensitive operations may favor the deterministic approach in

Frontiers in Marine Science

11

stable markets, while the robust model is critical in regions with
erratic fuel prices (e.g, CNHUTIs 7,381.07 RMB/ton LFO) or
unpredictable port congestion, where flexibility outweighs minor
cost savings.

An important observation from the results is that the vessel-to-
route assignments remain identical be397 tween the deterministic
(Tables 4, 5) and robust (Tables 6, 7) solutions. This stability is
primarily a consequence of the case study’s structural constraints.
With a fixed demand of 41,000 tons per route and a fleet composed
of two distinct vessel size classes (12,000 DWT and 30,000 DWT),
any feasible solution must pair one vessel from each class to meet
the demand. Within this constrained solution space, the optimal
assignment is determined by inherent deterministic characteristics
of the vessels, such as daily operating costs and fuel efficiency. The
uncertainties in fuel price and anchorage time, while impacting total
cost, were not sufficient in this instance to alter the fundamental
cost hierarchy of the vessel pairings. It is important to note,
however, that the model’s main response to uncertainty is
reflected in the significant adjustments to the refueling strategies,
which represent the most flexible operational decision for hedging
against cost volatility.

It is crucial to understand how the cost of robustness is
incurred, particularly in low-volatility environments where the
deterministic model may appear to outperform the robust one.
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TABLE 5 Deterministic ship deployment and LFO refueling strategy results.

KLY-  KLY- Line2 LY- KLY- Line3 LY- KLY- LY-  KLY-
106 205 126 201 123 203 121 206

CNTIN | 675 1250 CNQIN | 1059 | 1250 CNHUM | 2770 1250 CNQIN | 807 1250 CNHUM | 6.83 12.50
CNJIA | 670 CNJIJ CNTIN CNYPG CNBYQ | 6.70
CNDNG | 6.70 CNGLA CNGLA CNGLA  6.70 CNJYG
CNNTG CNFUZ CNNTG CNJIN CNJIJ 31.34
CNZPU | 6.70 CNTJN | 10.17 CNZPU CNDNG | 31.08 CNJIN
CNNJG | 670 CNYPG CNJYG CNJIJ 6.70 CNWGQ
CNYIZ | 670 CNNTG CNGUA CNNBO  6.70 CNZOS
CNWGQ CNCHS CNNBO CNGUA CNNTG | 6.70
CNHUM CNHUI CNXIA CNNTG CNGUA
CNYPG | 670 CNWGQ CNDNG CNYIZ CNQIN
CNGUA | 6.70 CNZHA CNYPG CNZOS  6.70 CNDAL | 29.05
CNFUZ | 670 CNBYQ CNDAL CNHUI CNZHA
CNZOS CNXIA CNNJG CNXIA CNDNG
CNHUI | 670 CNHUM | 6.70 CNTAI CNJIA CNXIA
CNBYQ | 670 CNJIA | 670 CNQIN CNZHA CNTAI
CNJIN CNGUA | 6.70 CNFUZ CNWGQ CNZPU
CNYAN CNJIN CNWGQ CNDAL  6.70 CNJIA
CNJYG CNTAI CNBYQ CNFUZ CNYIZ
CNXIA CNDNG CNJIA CNHUM CNYAN
CNZHA | 2215 CNNBO CNZHA CNTIN CNYPG

This cost is not a flaw, but rather the price paid for operational
resilience. The robust optimization model makes decisions to hedge
against the worst-case scenarios defined within the uncertainty set.
In practice, this leads to more conservative operational strategies.

For example, to guard against potential fuel price spikes, the
robust model might decide to bunker a larger quantity of more
expensive but price-stable LFO, even when HFO prices are
nominally lower. To avoid the risk of costly delays, it might favor a
port with shorter, more reliable anchorage times over a port that is
cheaper but historically more congested. Furthermore, the model may
opt to carry a larger buffer of fuel throughout 415 the voyage to
mitigate the impact of unforeseen delays, which could slightly reduce
the available deadweight for cargo or necessitate less optimal routing.
When these worst-case scenarios do not materialize in a stable, low-
volatility environment, these prudent, hedging decisions are more
expensive in hindsight than the strategy from the deterministic model,
which perfectly capitalized on the favorable conditions. This difference
in cost is the price of insuring the voyage against disruptions.

5.3 Sensitivity analysis
In this section, we conduct a sensitivity analysis to evaluate the

impact of the magnitude of uncertainty on the performance of the

Frontiers in Marine Science

deterministic and robust models. The analysis is performed by
systematically varying 423 the maximum deviation parameter (p,;
for price or 7,; for time) for one source of uncertainty at a time,
while the other two uncertainty parameters are held constant at the
base values defined in Section 5.2. The ranges for these deviations
were selected in consultation with industry experts to reflect
plausible market and operational conditions.

The cost curves presented in Figures 3-5 illustrate the
fundamental trade-off of robust optimization. We define the
‘fluctuation threshold’ as the point where the cost of the robust
solution falls below that of the deterministic solution. Below this
threshold, the robust model may incur a higher cost due to its
conservative nature—this is often referred to as the ‘price of
robustness.” However, once the level of uncertainty surpasses this
threshold, the proactive hedging strategy of the robust model yields
significant cost savings, demonstrating its economic value in volatile
environments. The non-monotonic fluctuations in the cost curves
can be attributed to the complex interplay of the three simultaneous
uncertainties active within the robust model, where the structure of
the worst-case scenario shifts as the parameters are varied. Under
varying price fluctuations of HFO and LFO, the robust optimization
model (RO) demonstrates superior performance compared to the
deterministic model (D) when price volatility exceeds critical
thresholds. Figures 3 and 4 present cost comparisons between
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TABLE 6 Robust ship deployment and HFO refueling strategy results.

10.3389/fmars.2025.1677919

Line1l @ KLY-

106
CNTJN | 15471 23521  CNQIN | 7697 | 131.67 CNHUM @ 9366 14379  CNQIN | 8602 | 13535  CNHUM | 9173 14325
CNJIA CNJIJ CNTJN 6539 | 9376 CNYPG | 31556 54280 | CNBYQ 8537 8026
CNDNG CNGLA | 3430 | 70.06 CNGLA | 8397 | 13034  CNGLA CNJYG 96.66
CNNTG CNFUZ 9397 13324  CNNTG CNJIN CNJIJ 3430
CNZPU CNTJN CNZPU CNDNG CNJIN 7729 13195
CNNJG | 53.56 85.38 CNYPG | 31556 @ 54280  CNJYG CNJIJ CNWGQ
CNYIZ CNNTG CNGUA | 8121 | 12372  CNNBO CNZOS
CNWGQ CNCHS CNNBO CNGUA | 5234 | 209.16 | CNNTG
CNHUM CNHUI CNXIA CNNTG CNGUA | 5210 20941
CNYPG | 60.25 46096 | CNWGQ CNDNG CNYIZ CNQIN | 23680 23558
CNGUA CNZHA CNYPG 11277 | 14873  CNZOS CNDAL
CNFUZ | 26151 CNBYQ CNDAL CNHUI CNZHA
CNZOS CNXIA CNNJG 26151 CNXIA CNDNG
CNHUI CNHUM CNTAI CNJIA 109.43 CNXIA
CNBYQ CNJIA 3849 | 59.00 CNQIN | 16401 CNZHA CNTAI
CNJIN CNGUA 16853 24367  CNFUZ CNWGQ CNZPU
CNYAN CNJIN CNWGQ CNDAL CNJIA
CNJYG CNTAI CNBYQ CNFUZ | 10265 @ 15886 | CNYIZ
CNXIA CNDNG CNJIA CNHUM CNYAN
CNZHA CNNBO CNZHA CNTIN CNYPG

robust optimization and deterministic models under varying price
fluctuation ranges for HFO and LFO, respectively, demonstrating
the robust model’s superior cost stability in high-volatility scenarios
exceeding predefined thresholds.

For HFO refueling strategies, when HFO price fluctuations
exceed 300 (Figure 3 green line) units (e.g., at 300 and 400 units),
the robust model consistently outperforms the deterministic
approach by stabilizing costs. At 300 units of HFO volatility, the
deterministic cost rises to 117437000, while the robust model
reduces costs to 115071000 (a 2.0% decrease). At 400 units of
volatility, the deterministic cost further increases to 119076000,
whereas the robust model maintains lower costs at 117607000
(1.2% reduction).

For LFO refueling strategies, the robust model’s advantage
becomes pronounced when LFO price fluctuations exceed 250
(Figure 4 green line) units (e.g., 350, 400, and 450 units). At 350
units of LFO volatility, the deterministic cost reaches 116390000,
while the robust model lowers costs to 112517000 (a 3.3%
reduction). At 400 units of volatility, the deterministic cost spikes
to 122407000, but the robust model controls costs at 115242000
(6.0% lower). This resilience stems from the robust model’s ability
to hedge against HFO price shocks through diversified fuel
procurement and contingency port selection, minimizing
exposure to volatile markets.
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By dynamically adjusting fuel ratios and optimizing route
flexibility, the robust model mitigates risks from extreme price
swings, particularly at higher volatility levels. Even when
deterministic costs temporarily outperform at lower volatility
(e.g., 250 units), the robust model’s long-term stability and ability
to handle extreme scenarios make it the preferred choice in
unpredictable markets. These results underscore the value of
robust optimization in safeguarding operational costs against
price instabilities, especially when volatility exceeds
predefined thresholds.

Figure 5 presents a comparison of the costs between the robust
optimization and deterministic models across different anchorage
time fluctuations. When anchor time fluctuations exceed 12 hours
(Figure 5 green line), the robust optimization model (RO)
demonstrates a clear cost advantage over the deterministic model
(D) in high-volatility scenarios. For fluctuations exceeding 12 hours
(e.g., 1319 hours), the robust model consistently achieves lower or
more stable costs. Notably, at a 16-hour fluctuation, the
deterministic cost spikes to 121.773 million, while the robust
model mitigates risks through optimized scheduling and
contingency planning, reducing costs to 111.4 million (an 8.5%
decrease). At 17 hours, the deterministic cost reaches 122.646
million, whereas the robust model further lowers it to 120.57
million (1.7% reduction). This performance gap widens in
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TABLE 7 Robust ship deployment and LFO refueling strategy results.

10.3389/fmars.2025.1677919

KLY-  KLY- Line2 LY- KLY- Line3 LY- KLY- Line4 LY- KLY- Line5 LY-
106 205 126 201 123 203 121 206 128
CNTJN | 1110 1250 CNQIN | 1059 | 1250 CNHUM | 6.83 12.50 CNQIN | 1419 1250 CNHUM | 3134 1250
CNJIA CNJIJ CNTIN | 1649 CNYPG CNBYQ
CNDNG CNGLA CNGLA CNGLA CNJYG
CNNTG | 6.70 CNFUZ CNNTG | 6.70 CNJIN CNJIJ
CNZPU CNTJN | 6.70 CNZPU CNDNG CNJIN
CNNJG | 670 CNYPG CNJYG | 670 CNJIJ CNWGQ
CNYIZ CNNTG CNGUA | 2770 CNNBO | 31.08 CNZOS
CNWGQ | 6.70 CNCHS CNNBO | 6.70 CNGUA  6.70 CNNTG | 22.42
CNHUM | 6.70 CNHUI | 6.70 CNXIA CNNTG  6.70 CNGUA
CNYPG CNWGQ CNDNG CNYIZ CNQIN
CNGUA CNZHA CNYPG | 6.70 CNZOS CNDAL
CNFUZ CNBYQ | 6.70 CNDAL CNHUI  6.70 CNZHA
CNZOS CNXIA CNNJG CNXIA 670 CNDNG
CNHUI CNHUM CNTAI CNJIA CNXIA
CNBYQ CNJIA CNQIN CNZHA CNTAI
CNJIN CNGUA CNFUZ CNWGQ CNZPU
CNYAN | 3495 CNJIN | 670 CNWGQ | 6.70 CNDAL CNJIA | 3134
CNJYG CNTAL | 670 CNBYQ CNFUZ CNYIZ
CNXIA CNDNG | 6.70 CNJIA CNHUM CNYAN
CNZHA CNNBO CNZHA CNTJN | 19.70 CNYPG

extreme scenarios, such as a 19-hour fluctuation, where the robust
model reduces costs to 113.582 million compared to the
deterministic model’s 115.064 million (1.3% reduction). These
results highlight the robust model’s ability to dynamically adjust
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FIGURE 3

Comparison of costs under different fluctuation ranges of HFO prices.
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vessel schedules and fuel reserves to counteract anchorage time
uncertainties, ensuring cost stability in volatile operational
environments where deterministic models fail due to rigid
parameter assumptions.

To provide a clearer quantitative summary of the sensitivity
analysis, Table 8 presents a comparison of the cost performance of
the deterministic and robust models at the key fluctuation
thresholds identified. This table directly addresses the need for
statistical validation and highlights the value of robust optimization
in highly volatile conditions. The Cost Saving (%) column quantifies
the advantage of the robust model, showing savings of up to 8.5% in
extreme scenarios.

To rigorously validate that the performance improvements of
the robust model are statistically significant, we developed a Monte
Carlo simulation framework to evaluate the cost savings reported in
Table 8. This approach allows us to test the performance of the fixed
deterministic and robust solutions against a wide range of randomly
generated, plausible future scenarios. The validation process for
each sensitivity case (e.g., an anchorage time fluctuation of 16
hours) is as follows:

¢ Solution Generation: We first solve the deterministic and

robust optimization models under the baseline conditions
to obtain two distinct, fixed decision plans (D4, and D,,p).
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Comparison of costs under different fluctuation ranges of LFO
prices.

Each plan contains a complete set of vessel-to-route
assignments and detailed refueling strategies. These plans
are the objects of our evaluation.

* Scenario Generation via Monte Carlo Simulation: We
conduct 1,000 independent simulation trials. In each trial,
we generate a unique what-if scenario by randomly
sampling values for the uncertain parameters (fuel prices
and anchorage times) from their predefined uncertainty
sets. For instance, for the anchorage time scenario with a
budget of uncertainty I'; = 10 and a maximum deviation of
16 hours, each trial involves:

- Randomly selecting up to 10 ports that will experience
a delay.

- For each selected port, randomly assigning a delay time
drawn from a uniform distribution between 0 and 16 hours.

1.24

10.3389/fmars.2025.1677919

A similar process is applied to fuel prices. This ensures each of
the 1,000 trials represents a distinct, valid realization of a
possible future.

* Performance Evaluation: For each of the 1,000 generated
scenarios, we calculate the total operational cost that would
have been incurred by applying both the deterministic plan
(Caer) and the robust plan (C,.p). The cost saving for that
specific trial is then calculated as S; = Cj,; — Cyop,;» Where i is
the trial number.

* Hypothesis Testing: After completing all trials, we obtain a
sample distribution of 1,000 cost-saving values (S;,S,,...,
S1000).- We then perform a one-sample, one-tailed t-test on
this sample. Our hypotheses are:

- Null Hypothesis (Hy): The mean cost saving is zero (yg =0).
This implies there is no statistically significant difference
between the two plans.

- Alternative Hypothesis (H;): The mean cost saving is greater
than zero (us > 0). This implies the robust plan is
statistically superior.

The Table 8 final column reports the p-values from our Monte
Carlo simulation. The resulting p-value represents the probability of
observing our sample’s mean cost saving (or a greater one) purely
by random chance if the null hypothesis were true. All reported
values are well below the conventional significance level of 0.05,
providing strong statistical evidence that the cost savings are not
coincidental but are a significant result of the robust model’s
hedging strategy.

It is important to contextualize that the fluctuation ranges tested
in this analysis are representative of real-world phenomena. The
volatility in bunker fuel markets is driven by a multitude of factors,
including geopolitical events, global supply chain disruptions, and
local port dynamics. Similarly, anchorage time uncertainty is a
persistent operational challenge caused by port congestion, adverse
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FIGURE 5

Comparison of costs under different fluctuation ranges of anchorage time.
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TABLE 8 Statistical summary of key sensitivity analysis results.

Uncertainty Fluctuation Deterministic cost Robust cost Cost saving

. o P-value
source threshold (Million RMB) (Million RMB) (%)
B 117.44 115. 2. 01
HFO Price 300 RMB/ton 7 5.07 0 < 0.0
400 RMB/ton 119.08 117.61 1.2 < 0.05
N 350 RMB/ton 116.39 112.52 33 < 0.01
LFO Price
400 RMB/ton 122.41 115.24 6.0 < 0.001
. 16 hours 121.77 111.40 8.5 < 0.001
Anchorage Time
17 hours 122.65 120.57 1.7 < 0.05
19 hours 115.06 113.58 1.3 < 0.05

weather, and logistical delays. Therefore, the performance gains  companies can develop more resilient and cost-effective operational
shown by the robust model at higher levels of uncertainty are not  plans that are robust to the compounding effects of market and
merely theoretical but reflect a tangible advantage in navigating the ~ operational disruptions.

genuine volatilities inherent in maritime logistics.

6 Conclusion
5.4 Managerial implications
This study presents a robust optimization framework for joint
The results of our sensitivity analysis offer several practical  decision-making in tanker deployment and refueling strategies under
managerial insights for tanker operators navigating volatile market  berthing time and fuel price uncertainties. By integrating operational
conditions. The identification of specific cost-saving thresholds  decisions that are traditionally addressed separately, the proposed
provides a quantitative basis for dynamic decision-making. model captures the interdependencies between vessel assignment and
First, the findings can be used to establish a more sophisticated  fuel management, thereby mitigating suboptimal outcomes caused by
fuel procurement policy. Instead of relying on a static strategy, isolated planning. The incorporation of stochastic berthing times and
managers can use the thresholds identified in Figures 3 and 4 as  fuel price fluctuations enables adaptive refueling strategies, enhancing
triggers. For instance, if market forecasts predict that fuel price  resilience against disruptions such as port congestion and market
volatility will exceed the identified threshold (e.g., 300 RMB/ton for  volatility. Computational experiments, based on a realistic case study
HFO), a pre-defined policy could dictate a shift towards the robust  constructed with operational data from a leading maritime logistics
refueling strategy. This might involve bunkering larger quantities of ~ provider, illustrate the specific value of the robust optimization
fuel at ports with historically stable prices or strategically utilizing  approach. The findings do not show that one model universally
more of the (often more expensive) but less volatile LFO to hedge  outperforms the other, but rather highlight a critical trade-off. The
against extreme HFO price spikes. This data-driven approach  robust model demonstrates a significant cost-saving advantage—
moves the company from a reactive to a proactive stance on fuel  reducing operational costs by 2.06.0% but only when price and time
cost management. volatility exceeds certain thresholds. Below these levels, the
Second, the model serves as a powerful tool for contingency and  deterministic model is often preferable. This highlights the robust
risk planning, particularly regarding port congestion. If intelligence = model’s capability to balance economic efficiency with operational
suggests that a key port is likely to experience extreme berthing  flexibility specifically in highly uncertain environments.
delays (e.g., exceeding the 12-hour fluctuation threshold shown in The findings underscore the practical value of adopting
Figure 5), managers can use the robust model to simulate alternative ~ integrated decision-making frameworks in maritime
scenarios. This might lead to a decision to preemptively reroute a  transportation, particularly for companies navigating volatile fuel
vessel, swap vessel assignments to use a smaller, more versatile ship, ~ markets and unpredictable port conditions. By optimizing tanker
or adjust the cargo-loading schedule. By quantifying the financial ~ deployment and refueling strategies holistically, operators can
impact of such delays, the model allows decision-makers to make  achieve substantial cost savings while ensuring schedule
informed trade-offs between accepting a delay or taking costly — adherence and regulatory compliance. Future research could
preventative action. extend this framework to incorporate dynamic routing
Finally, our integrated framework encourages a shift in mindset ~ adjustments, multi-objective optimization for emission reduction,
from siloed decision-making to holistic operational management. It ~ and machine learning techniques for real-time uncertainty
demonstrates that vessel deployment and refueling are not  prediction. Furthermore, future research could extend this
independent problems. A suboptimal vessel assignment can create  framework to incorporate dynamic routing adjustments and treat
unavoidable high-cost refueling situations down the line. By  voyage speed as a decision variable. This extension would involve
considering these decisions jointly, especially under uncertainty, treating vessel speed for each leg of a voyage as a continuous
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decision variable. Such a model would need to incorporate the well-
established non-linear, convex relationship between vessel speed
and fuel consumption directly into the objective function.
Consequently, the constraints would also require reformulation to
account for variable transit times, directly linking speed choices to
arrival schedules and port windows. By co-optimizing deployment,
refueling, and speed, such a model could provide deeper insights
into the critical trade-o between fuel expenditure, operational costs,
and schedule adherence. This would significantly enhance the
model’s applicability at the operational level and offer a more
holistic solution for cost-efficient and sustainable logistics,
especially when considering time-sensitive cargo or carbon
emission reduction targets. Investigating these complex dynamics
represents a challenging but highly promising extension of the
current work. It is important to justify our selection of RO over
other frameworks like Stochastic Programming (SP). While SP is a
powerful tool, its requirement for precise probability distributions is
a significant challenge in our real-world context. Through industry
consultations, we confirmed that variables like port berthing time
and fuel prices are subject to high distributional ambiguity and
heterogeneity, making it impractical to t reliable distributions.
Given this, we chose RO for its “distribution-free” nature, which
allows us to hedge against worst-case scenarios without assuming
specific probabilistic models, thus aligning better with the practical
need for operational resilience in a volatile market. We
acknowledge, however, that a comparative study with SP is a
valuable direction for future research, contingent on the future
availability of more granular data for accurate distribution fitting.
Such advancements would further bridge the gap between
theoretical models and industry needs, fostering sustainable and
adaptive solutions for global maritime logistics.
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