
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Oscar Schofield,
Rutgers, The State University of New Jersey,
United States

REVIEWED BY

Hao Wang,
Laoshan National Laboratory, China
Fickrie Muhammad,
Bandung Institute of Technology, Indonesia

*CORRESPONDENCE

Jianwei Huang

15559110766@163.com

RECEIVED 25 July 2025
ACCEPTED 24 October 2025

PUBLISHED 11 November 2025

CITATION

Huang Y, Huang J and Huang M (2025) A
lightweight YOLO network for robotic
underwater biological detection.
Front. Mar. Sci. 12:1673437.
doi: 10.3389/fmars.2025.1673437

COPYRIGHT

© 2025 Huang, Huang and Huang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 11 November 2025

DOI 10.3389/fmars.2025.1673437
A lightweight YOLO network
for robotic underwater
biological detection
Yanyu Huang1, Jianwei Huang2,3* and Meihong Huang1

1College of Transportation and Navigation, Quanzhou Normal University, Quanzhou, China, 2Naval
University of Engineering, Wuhan, China, 3Maritime College, Fujian Chuanzheng Communications
College, Fuzhou, China
Introduction: Underwater image quality is commonly affected by problems such

as insufficient illumination, extensive background noise, and target occlusion.

Conventional biological detection methods suffer from the limitations of weak

feature extraction, high computation, and low detection efficiency.

Methods: We propose an efficient and lightweight YOLO network for robots to

realize high-precision underwater biological detection. Firstly, a backbone

network based on hybrid dilated attention (HDA) is designed to expand the

receptive field and focus on key features effectively. Secondly, a mixed

aggregation star (MAS) network for the neck is constructed to enhance

complex structural features and detailed textures of underwater organisms.

Finally, the detection head is lightweighted using multi-scale content

enhancement (MCE) modules to adaptively enhance key target channel

information and suppress underwater noise.

Results: Compared to state-of-the-art target detection algorithms in

underwater robots, our method achieves 85.7.% and 87.9% mAP@0.5 on the

URPC2021 and the DUO datasets, respectively, with a model size of 5.19 M, a

FLOP of 6.3 G, and a FPS of 16.54.

Discussion: The proposed method has excellent detection performance in

underwater environments with low light, turbid water, and target occlusion.
KEYWORDS

underwater robot, biological detection, lightweight YOLO network, hybrid dilated
attention, mixed aggregation star network, multi-scale content enhancement module
1 Introduction

Underwater target detection is a key technical means to realize the exploration of

marine resources and promote the practice of marine engineering (Wang et al., 2024; Li

et al., 2025). The underwater robot operates autonomously in different underwater

environments through optical imaging devices and edge computing devices to

accomplish the task of monitoring underwater biological targets, as shown in Figure 1.

In particular, in the protection of rare and endangered species, underwater robots can

utilize their advanced sensors and imaging technology to detect and count organisms, thus
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grasping the changes in population size and providing a scientific

basis for protection work. However, robots are in motion during

underwater exploration, and it is difficult to obtain visually clear

images, making accurate detection of underwater organisms still a

significant technical bottleneck (Zheng et al., 2023).

Traditional underwater target detection techniques often follow

the generalized framework of region proposal box generation,

manual feature design, and classifier discrimination (Rout et al.,

2024; Du et al., 2025). Due to the diversity of underwater

environments, manually designed feature descriptors are difficult

to adapt to organisms in different waters, depths, and lighting

conditions, and cannot effectively extract multi-category

organism features.

In the field of deep learning, neural networks excel in feature

extraction and fitting capabilities (Abirami et al., 2025). The field of

computer vision has also made some progress in underwater

biomonitoring (Wang et al., 2024a; Wang et al., 2025). Currently,

the two-stage algorithm improves the detection accuracy of

underwater targets based on the framework of generating

proposal regions to reclassify targets (Sun et al., 2025). The

single-stage algorithm directly utilizes category regression to

significantly reduce underwater target detection time, making the

model more suitable for resource-limited platforms (Huang et al.,

2024; Li et al., 2024; Wang et al., 2024).

However, in real underwater biological detection, robots face

multiple challenges. (1) The underwater image quality is poor,

suffering from color distortion, low contrast, and uneven lighting

(Wang et al., 2024b). (2) Underwater organisms have diverse

categories, large size changes, and obvious morphological

differences, and the target may be obscured, tilted, or partially

visible, which requires good robustness of the model. (3) The

underwater environment is complex and variable, and the image

background contains sand, rocks, corals, water plants, etc., with

similar textures to the target, which increases the possibility of false

detection. Therefore, further research on target detection

algorithms applicable to underwater robots is needed to lighten
Frontiers in Marine Science 02
the model structure and improve detection accuracy (Wang et al.,

2024; Guo et al., 2025).

Given the computational limitations of underwater robotic

platforms, we selected the YOLOv11 network as the foundational

model for our algorithm. Although not the latest iteration of the

YOLO architecture, YOLOv11 offers a mature deployment

toolchain and exhibits low hardware requirements. Therefore, we

innovate and optimize the YOLO11 network by combining the

characteristics of underwater imaging and propose a lightweight

YOLO network for robotic underwater biological detection.

Specifically, in the backbone network, the HDA module is

combined with the C3k2 module to enhance the model’s ability

to capture multi-scale features from underwater organisms. In the

neck network, key features of low-contrast underwater organisms

are enhanced by introducing the MAS network. In the probe head,

the MCE module is used to accurately localize the contours of

underwater organisms, effectively solving underwater detection

challenges such as size variation, edge blurring, and background

interference. The main contributions of this paper are as follows:
• An HDA module is constructed for extracting multi-scale

target features from underwater images with color

distortion, scale variation, and blurring degradation. The

key features are effectively extracted by utilizing multi-scale

null convolution fusion and hierarchical residual

linkage strategies.

• To construct different-sized feature dependencies, the MAS

network for feature fusion is designed. The key features of

underwater organisms are adaptively enhanced through the

star operation structure and a multi-branch fusion scheme.

• A lightweight MCE module for feature enhancement is

proposed to improve the recognition ability of blurred

underwater organisms. Through parallel multi-scale expansion

of the convolutional structure and a shared parameter

mechanism, the blurred features and multi-scale information

of underwater organisms are dynamically enhanced.
FIGURE 1

The process for underwater robotic biological detection.
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Fron
• Extensive experiments on public datasets demonstrate that

the proposed method has the advantages of excellent

detection performance, lightweight models, and fast

inference speed. Our method achieved 85.7% and 87.9%

mAP@0.5 on the URPC2021 and DUO datasets,

respectively. The model size is 5.19 MB, with 2.43 M

parameters and 6.3 GFLOPs. The detection speed on a

Jetson Nano 2GB device is 16.54 FPS.
The other sections are organized as follows: Section 2

summarizes related work. Section 3 introduces the innovative

points of the proposed method. Section 4 describes the

experimental setup and analyzes the experimental results. Section

5 presents the conclusions and future plans.
2 Related work

2.1 Underwater biological detection
methods

Existing underwater target detection methods are mainly

optimized based on generic target detection methods. These

methods include the use of classical detection frameworks

combined with techniques such as multi-scale feature fusion (Liu

et al., 2025), feature weighting (Li et al., 2025), deformable

convolution (Ouyang et al., 2024), and attention mechanisms

(Tsai et al., 2025) to enhance detection.

Padmapriya et al. combined image enhancement techniques with

deep convolutional neural networks, utilizing color correction, edge

enhancement, and other operations to significantly enhance the

expression of underwater target features, thereby addressing issues

such as significant noise, low visibility, and uneven lighting

conditions in underwater environments (Padmapriya et al., 2023).

Liu et al. constructed a dual-path pyramid visual transformer feature

extraction network, which cleverly utilized global features to enhance

the differences between the foreground and background of images,

thereby solving the problem of low accuracy in underwater fish

detection (Liu et al., 2024). Li et al. proposed a self-supervised marine

organism detection framework and designed an attention module

specifically for underwater targets, thereby eliminating the

dependence of underwater image data on annotation information

(Li et al., 2024). However, the above methods have problems such as

over-reliance on image preprocessing operations and high model

complexity. It is difficult to be deployed in platforms with limited

resources that cannot meet the requirements of real-time target

detection in underwater scenes.
2.2 Lightweight methods

In practical underwater biological detection tasks, the challenge

of limited computing and storage capacity of underwater detection

equipment needs to be faced. The lightweight model can better

adapt to the hardware conditions, quickly and accurately detect
tiers in Marine Science 03
biological, meet the real-time requirements, and consume low

energy, which can extend the range of the equipment and

improve the detection efficiency. Therefore, many researchers

have carried out research on the lightweighting of underwater

biological detection models and achieved good results.

Li et al. proposed a lightweight underwater biological detection

method by integrating a frequency attention mechanism with a

dynamic convolution module, which improved feature extraction

capabilities and solved the problems of large model parameters and

high computational requirements (Li et al., 2025). Chen et al.

proposed a lightweight aggregated underwater target detection

network by constructing a multi-branch architecture combining

convolutional and contextual attention, effectively solving the

problem of target omission in biological target detection in

complex underwater environments (Chen et al., 2024). Li et al.

utilized reparameterization and global response normalization

techniques to construct a feature enhancement and fusion

network for underwater fuzzy object recognition, effectively

reducing the impact of suspended particles in water on

underwater target detection (Li and Cai, 2025). By using different

network optimization techniques, the above method achieves

lightweighting in the model structure, but there is still room for

improvement in the detection of occluded biological and small-

sized targets in complex underwater scenes.
2.3 Underwater target detection with
YOLO

YOLO, as an end-to-end network, can reduce the error

accumulation caused by complex underwater illumination and

turbid water, effectively resist the interference of complex

underwater environments (e.g., blurring, low-contrast, occlusion),

and enhance the detection robustness. Therefore, the innovation and

optimization of the YOLO network are of great significance to achieve

high-precision biological detection in low-quality underwater images.

Zheng et al. innovatively introduced a reparameterized multi-

scale fusion module and an aggregated distributed feature pyramid

network into the YOLOv7 network, enabling the model to learn

multi-scale features and thereby improving the detection

performance for small underwater targets (Zheng and Yu, 2025).

Liu et al. optimized the YOLOv8 network structure by using

reparameterization techniques and spatial pyramid decomposition

convolution to reduce target detail loss. And the introduction of

cross-layer local attention in the detection header further reduces

the computational cost and makes the model easier to deploy for

edge computing devices (Liu et al., 2025). Ouyang et al. improved

the YOLOv9 network using an attention block mechanism and an

inflated large kernel network to enhance the local feature extraction

and denoising capabilities, enabling the model to focus on

underwater targets of different sizes (Ouyang and Li, 2025). Pan

et al. constructed a lightweight marine biological detection model by

improving YOLOv10. By introducing AKVanillaNet and

DysnakeConv modules to enhance the target feature expression

ability, and integrating Powerful-IOU loss function to optimize the
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model training process, the performance of the model for target

detection in underwater images with different lighting is improved

(Pan et al., 2025). Therefore, by fully leveraging the rapid detection

advantages of the YOLO network and innovatively optimizing its

structure, the model’s accuracy in detecting underwater targets of

various sizes can be effectively improved, thereby meeting the

practical needs of robotic underwater exploration.
3 Materials and methods

A lightweight YOLO network for underwater biological

detection by robots is presented in this paper to achieve high-

precision, rapid detection of small, occluded targets in low-light

underwater images. The network structure of the proposed method

is shown in Figure 2, where the spatial pyramid pooling fast (SPPF)

and convolutional block with parallel spatial attention (C2PSA)

modules are the original models of the YOLO11 network. Firstly,

the HDA modules are introduced into the feature extraction

network to capture multi-scale target features using different

expansion rates, thus allowing the model to focus more on targets

with large differences in size and shape in the underwater scene.

Secondly, the MAS network in the neck region adaptively enhances

feature expression and constructs feature information interaction

channels at different scales through star computation and multi-
Frontiers in Marine Science 04
branch feature fusion strategies. Finally, the adaptive feature

enhancement property of the MCE module in the detection head

is utilized to reduce the underwater noise interference and enhance

the texture and edge features of low-contrast organisms to achieve

the biological detection of complex underwater environments.
3.1 HDA module

In underwater multi-species, multi-size biological detection, the

C3k2 module relies solely on a pure convolutional stacking

structure, which cannot dynamically adjust the receptive field,

making it difficult to effectively capture the features of underwater

targets with different sizes. Moreover, the C3k2 module is difficult to

establish global dependencies when extracting local features, and

the global relationship between the target and its surroundings in

the underwater scene is not taken into account, leading to limited

detection accuracy in complex scenes. In this paper, we construct a

C3k2_HDA feature extraction module based on hybrid dilated

attention. The structure of the C3k2_HDA module is shown in

Figure 3, where (A) denotes the C3k2 module, (B) denotes the C3k

module, and (C) denotes the HDA module. The C3k2_HDA

module is capable of effectively expanding the receptive field and

focusing on key features by combining multi-scale hybrid cavity

convolution (DConv), channel attention block (CAB), and
FIGURE 2

The network structure of the proposed method.
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lightweight residual connectivity to extract multi-scale feature

information of underwater organisms.

When given an input feature, the workflow of the C3k2_HDA

module is as follows: Firstly, the feature channel is compressed

using a convolution layer with a kernel of 1×1., which provides a

finer representation of the feature for the subsequent convolutional

operations, reducing the computational complexity, meanwhile

highlighting the key features. Secondly, a fourth-order feature

pyramid (3 × 3, 7 × 7, 13 × 13, 21 × 21) is constructed by

gradually expanding the perceptual domain with a dilation rate of

1 to 4 through deep convolution. This ensures that the network can

capture features at multiple scales, adapt to the diversity of shapes

and sizes of underwater organisms, and is particularly useful for

small targets that require a large receptive field. Thirdly, dynamic

weighting between channels is achieved through a channel attention

block (CAB), enabling the network to concentrate on key feature

channels, suppress unimportant features, enhance the contrast

between the target and the background, and reduce the impact of

color distortion and noise interference in underwater images. The

feature processing of CAB can be expressed as Equation 1.

CAB(y) = x⊗s (Conv1�1(ReLU(Conv1�1(AAP(x))))) (1)

where x and y represent input features and output features,

respectively. s is the Sigmoid activation function, AAP is the

adaptive average pooling function, and ⊗ is the channel-

level multiplication.

Finally, by introducing a residual feature fusion mechanism and

utilizing lightweight path connections to optimize detailed

information, the integrity and accuracy of features are ensured,

effectively reducing the impact of underwater image blurring and

detail loss on biological detection. Therefore, the C3k2_HDA

module helps the YOLO11 network extract as much feature

information as possible from underwater images with color

distortion and noise interference, thereby improving the accuracy,

robustness, and adaptability of underwater biological detection.
Frontiers in Marine Science 05
3.2 MAS network

To enhance the blurred biometric expression of low-contrast

underwater images, the MAS networks are introduced in the neck to

replace the C3k2 module. The MAS network significantly optimizes

underwater biological detection performance through a multi-

branch feature fusion mechanism and a four-layer structure of

star computation. The core idea is to utilize the 7×7 depth-separated

convolution and two-way gating operation of the star module to

expand the receptive field to suppress water turbidity and light

noise, and to adaptively enhance the response of key regions such as

biological contours and textures. The multi-branch structure then

fuses features of different granularity (from edge details to semantic

information) to enhance robustness to scale-variable, occluded

targets. The design dramatically improves detection accuracy

while maintaining computational efficiency. The structure of the

MAS network is shown in Figure 4.

Given an input feature xwith channel number c, theMAS network

first performs feature decoupling by upscaling the feature channel to 2c

through a convolution with a kernel 1 × 1, and subsequently splits it

into four independent paths. The underwater target base features are

extracted by a convolution with kernel of 1 × 1 in path 1, the spatial

context information of the features is captured using a depth-separated

convolution in path 2, the original feature is obtained by row-channel

slicing operation in path 3, and a star operation is performed on the

separated features in path 4 to get a richer and more expressive feature

representation. In the star operation, a large receptive field is

established by a 7 × 7 deep convolution to suppress underwater

noise. Subsequently, x1 and x2 with a channel number of 3c are

obtained using parallel convolution with kernel 1 × 1, and the ReLU6

activation function is applied to x1, and then multiplied element-by-

element with x2 to realize feature filtering. The feature processing of

star operation can be expressed as Equation 2.

y1 = ReLU6(W1 ∗DWConv7�7(x))⊙ (W2 ∗DWConv7�7(x)) (2)
FIGURE 3

The structure of the C3k2_HDA model, where (A–C) represent the structures of the C3k2, C3k, and HDA models, respectively.
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where y1 denotes the output after element-wise multiplication,

W1 and W2 denote convolutional weights with kernel 1 × 1, and ⊙
denotes element-wise multiplication.

The channel compression and spatial information fusion are

accomplished by the convolution with a kernel 1 × 1 and depth-wise

convolution with a kernel 7 × 7. Combine the original input and

output through the residual structure to obtain y2, thus effectively

ensuring the completeness of the features. The process can be

expressed as Equation 3.

y2 = x + DWConv7�7(Conv1�1(y1)) (3)

Finally, the initial four-path features are concatenated with the

optimized features from the star module, fusing the multi-

granularity information and outputting the enhanced feature

map, which greatly strengthens the importance of pixels in the

underwater target area. The process can be expressed as Equation 4.

yMAS = Conv1�1 yp1 ⊕ yp2 ⊕ yp3 ⊕ yp4 ⊕o
n

k=1

ystar

 !
(4)

where yMAS denotes the output of the MAS network, yp1, yp2,

yp3, and yp4 denote the outputs of the four paths, respectively, ystar
denotes the output of the star module, and ⊕ denotes the

concatenation operation.
Frontiers in Marine Science 06
3.3 MCE module

To address the limitations of the YOLO11 network detector

head in dealing with small-sized, irregular, and densely occluded

targets underwater, we propose a multi-scale content enhancement

module and combine it with a shared convolution detector to form

a lightweight and highly efficient LSCD_MEC detector as shown in

Figure 5. The core idea of the MEC module is to use three-way

dilated convolutions (dilation = 2/4/6) to capture different receptive

fields of contextual information, thereby constructing feature data

dependencies at different scales and achieving data fusion. The

channel attention mechanism can further dynamically enhance

biometric features and suppress interference from murky water

backgrounds. Finally, the original feature is introduced in the fusion

stage to avoid the loss of high-frequency detail information.

Therefore, the feature sharing and lightweight design of the

LSCD_MEC detector optimizes the model structure, reduces the

number of parameters, and improves the stability of multi-scale

biological detection.

When three different scale features from the neck are input to

the head, the LSCD_MEC module first performs hierarchical

preprocessing of the features using a group normalization

operation to extract the initial features of the underwater target.

Subsequently, in the MCEmodule, the features are divided into four
FIGURE 4

The structure of the MAS network.
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equal parts along the channel dimension. Local details, medium

sensory fields, and large-scale contexts are captured using depth-

wise convolution with three different expansion rates. The features

are fused and transmitted to the channel attention (CA) module to

improve the model’s focus on important features of underwater

organisms. The channel attention weighting process can be

expressed as Equation 5.

yCA = s (W2(ReLU(W1(GAP(x))))) (5)

where yCA and GAP represent the output of the CA module and

the global average pooling operation, respectively.

Finally, two convolutions with a kernel of 1 × 1 are used to

construct a regression branch and a classification branch,

outputting the bounding box parameters and the category

probabilities, and completing the accurate detection of

underwater targets.
4 Experiment preparation

4.1 Experimental setting and parameters

All the ablation experiments and comparison tests in this paper

were conducted under a device equipped with a deep learning

framework. The model training parameters and device’s detailed

configuration are shown in Table 1.
Frontiers in Marine Science 07
4.2 Datasets

In this paper, the publicly available underwater scene biological

image dataset, the underwater robot programming contest 2021

(URPC2021), and detecting underwater objects (DUO) are utilized

to test the performance of the proposed method in underwater

biological detection. The two datasets involve consistent categories,

namely holothurian, echinus, scallop, and starfish. Both datasets

contain complex underwater scenes containing low light, low

contrast, target occlusion, size inconsistency, etc., which can

comprehensively evaluate the practicality of the optimized

YOLO11 model for bio logica l detec t ion in complex

underwater scenes.

The UPRC2021 dataset contains 7,600 annotated underwater

images, which are divided into training and testing sets at a ratio of

8:2 during training. The original annotations are in Pascal VOC

standard XML format, which is converted to YOLO format before

the experiment.

The DUO dataset integrates the datasets from the URPC

Challenge over the years, removes the duplicates, and re-labels

the erroneous labels. The DUO dataset contains a total of 7,782

accurately annotated images, with a training set to test set ratio of

8:2. The images of the DUO dataset present excellent bias, low

contrast, and uneven illumination, blurring and high noise and

other typical underwater image characteristics, which pose certain

challenges for accurate detection of different aquaculture organisms,
FIGURE 5

The structure of the LSCD_MCE module.
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meanwhile largely reflecting the problems faced by real marine

environment detection targets, and providing a unified benchmark

for the evaluation of underwater target detection algorithms.
4.3 Evaluation metrics

In this paper, the following metrics are introduced: accuracy,

recall rate, mAP50, model parameters, model size, and GFLOPs to

objectively evaluate the performance of various methods on

biological detection in complex underwater scenes (Girshick

et al., 2014).

Precision reflects the reliability of the model’s prediction of

positive samples of underwater organisms, while recall indicates the

probability that the model correctly identifies positive samples of

underwater organisms. The calculation of precision and recall can

be expressed as Equations 6, 7.

Precision =
TP

TP + FP
(6)
Frontiers in Marine Science 08
Recall =
TP

TP + FN
(7)

where TP denotes a predicted positive sample of underwater

organisms and an actual positive sample of underwater organisms,

FP denotes a predicted positive sample of underwater organisms

and an actual negative sample of underwater organisms, and FN

denotes a predicted negative sample of underwater organisms but

an actual positive sample of underwater organisms.

The average precision (AP) is used to comprehensively evaluate

the accuracy of a model at different recall levels. The mean average

precision (mAP) can measure the overall performance of a model

for all categories. The calculations for AP and mAP can be

expressed as Equations 8, 9.

AP =
Z 1

0
Precision(Recall)d(Recall) (8)

mAP =
1
No

N

i=1
APi (9)

where N denotes the number of categories,N = 4. mAP@0.5 and

mAP@0.95 represent the mAP values when IoU=0.5 and

IoU=0.95, respectively.

Model parameters are used to measure model scale and

complexity. Model size is used to determine the ease of

deployment and resource consumption of the model for

underwater detection. Floating point operations (FLOPs) are

directly related to model inference latency and hardware

computing power requirements.
5 Experimental results and analysis

5.1 Ablation experiments

To quantitatively demonstrate the improvement in underwater

biological detection performance achieved by each innovation

module, ablation experiments are conducted on the URPC2021

dataset, with the results shown in Table 2.

The YOLO11 model, without any innovation point, achieves

82.4% mAP@0.5 and 49.8% mAP@0.95, with a model size of

5.25MB, FLOPs of 6.4G, and a parameter of 2.59×106. After

inserting the HDA module into the backbone network, mAP@0.5

and mAP@0.95 improve by 1.2% and 1.1%, but the model size,

FLOPs, and parameters increase by 0.09MB, 0.3G, and 0.02×106.

After introducing the MAS network in the neck network, mAP@0.5

and mAP@0.95 increased to 84.6% and 51.8%, respectively, with the

model size of 5.42 MB, FLOPs of 6.9, and parameters of 2.69×106.

After using the MCEmodule in the head, mAP@0.5 and mAP@0.95

reach 85.7% and 52.9%, respectively, and the model size is only 5.19

M, the FLOPs are 6.3 G, and the parameters are 2.43 M. Therefore,

the introduction of the HDA module and MAS network can

effectively improve the detection performance of underwater
TABLE 1 Detailed information on device configuration and model
training parameters.

Experimental
setup

Parameters Value

Experimental
device

operating system Windows 11

CPU
13th Intel® Core™
i9-13900KF 3.00 GHz

GPU
Nvidia GeForce GTX 3090 with
CUDA 12.4 and cuDNN 8.9

RAM 128GB

framework PyTorch 2.5.0, Python 3.8.11

Training
parameters

learning rate 0.01

momentum 0.937

epochs 500

batch size 64

images size 640 × 640

close mosaic 10

weight decay 0.0005

device 1

optimizer SGD

automatic mixed
precision

true

degrees 60

scale 0.5

shear 60

perspective 0.001
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organisms, while the introduction of the MCE module significantly

reduces the memory footprint and computational complexity. The

proposed method is more favorable for deployment in equipment

with limited resources.

To visualize the effect of innovation points in underwater

biological detection, gradient-weighted class-activation mapping is

introduced to generate heatmaps for the YOLO11 model and each

innovation point. The results are shown in Figure 6, where (a) is the

original input image, (b) is the heat map of YOLO11, (c)-(e) are the

heat maps generated by introducing the HDA, MAS, and MCE

modules, respectively, and (f) is the ground-truth image. The red

areas in the heat map indicate that the model contributes more to the

detection of underwater organisms. The three groups of images

represent color distortion images, normal underwater images, and

low-light images, respectively. In images with color distortion,

YOLO11 only focuses on objects with a large target scale, missing

small-sized targets. On the contrary, after introducing the HDA,

MAS, and MCE modules, the model’s attention gradually covered

small targets, indicating that the optimized YOLO11 can effectively

capture underwater biological features of different scales. In normal

underwater images, YOLO11 only focuses on targets with obvious

features and omits occluded targets. With the HDA, MAS, and MCE

modules, the model not only effectively detects the occluded targets

but also can reduce the background interference and successfully
Frontiers in Marine Science 09
detects the starfish with a similar color to the seabed. In low-light

images, YOLO11 cannot effectively distinguish the area where the

target is located and suffers from detection errors. The proposed

method can effectively find out the targets hidden in a low-light

environment and realize the accurate detection of organisms.
5.2 Comparative experiments

To further validate the proposed method’s ability to accurately

identify underwater organisms in complex underwater

environments, Faster RCNN, YOLOv5, and other methods are

introduced to compare the performance of URPC2021 and DUO

datasets. The performance index scores are shown in Tables 3 and

4, respectively.

Table 3 shows that among the various methods, Faster RCNN

scored the lowest in the evaluation metrics, with the largest model

size, FLOPs, and number of parameters, indicating the highest

computational complexity and the greatest resource requirements

for underwater organism detection. YOLOv5s and RTD-YOLOv5

achieve good results in precision, recall, and mAP metrics, but do

not have an advantage in model size. YOLOv7 network scores

poorly in all evaluation metrics, which not only has low underwater

target detection accuracy, but also consumes more memory for
TABLE 2 Effectiveness of innovation points for detection.

YOLO11 HDA MAS MCE mAP@0.5/% mAP@0.95/% Model size/MB FLOPs/G Parameter/106

✓ 82.4% 0.498 5.25 6.4 2.59

✓ ✓ 83.6% 0.509 5.34 6.7 2.61

✓ ✓ ✓ 84.6% 0.518 5.42 6.9 2.69

✓ ✓ ✓ ✓ 85.7% 0.529 5.19 6.3 2.43
The bold text indicates the best scores achieved in the experiments.
FIGURE 6

Heat maps of YOLO11 model and innovation points, where (A) shows the original image, (B) displays the YOLO11 heatmap, and (C–E) present
heatmaps generated after integrating the HDA, MAS, and MCE modules into YOLO11, respectively. (F) represents the ground-truth image.
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model deployment. The YOLOv8 and YOLOv8-LA methods

achieved excellent results across all evaluation metrics, not only

accurately detecting biological objects in complex underwater

environments but also featuring compact model sizes and low

computational complexity, making them suitable for underwater

robots. Compared to other YOLO methods, YOLOv10s has greater

computational requirements. The method proposed in this paper

outperforms the YOLOv11 network by 1.5% and 1.6% in precision

and recall, respectively. Furthermore, mAP@0.5 and mAP@0.95

achieve the highest scores, with the smallest model size, number of

parameters, and FLPOs. Therefore, our method can accurately

detect small organisms that are obscured in complex underwater

scenes, effectively solving the problem of target detection misses.
Frontiers in Marine Science 10
The model is small in size and low in computational complexity,

enabling it to efficiently perform real-time underwater organism

detection tasks.

In the DUO dataset test, the Cascade R-CNN and Boosting

RCNN methods achieved the smallest mAP scores, and their large

model sizes and high computational complexity are not conducive

to efficient underwater target detection. The Deformable DET and

RTMDet models, although they achieved better scores in detection

performance, are limited by the resources consumed by the models.

Compared with YOLO10s, YOLOv7, and YOLO11, their model

sizes and FLOPs require more resources. YOLOv5s and YOLOv8

models achieved 0.834 and 0.851 mAP@0.5, which showed

excellent detection performance, but their model sizes and FLOPs
TABLE 3 The detection scores of each method on the URPC2021 dataset.

Method Precision/% Recall/% mAP@0.5/% mAP@0.95/% Model Size/MB FLOPs/G Parameter/106

Faster RCNN
(Ren et al., 2016)

75.2 64.6 74.3 41.5 41.3 210 1347

YOLOv5s
(Zhu et al., 2021)

83.1 76 82.4 46.5 16.1 16.5 7.2

RTD-YOLOv5
(Yuan et al., 2024)

84.3 72.8 82.4 45.9 14.6 12.3 5.9

YOLOv7
(Wang et al., 2023)

81.6 75.2 82.4 47.2 72.1 103.3 36.5

YOLOv8 82.6 76.3 82.3 48.9 6.2 8.7 3.2

YOLOv8-LA
(Qu et al., 2024)

84.9 76.8 84.7 50.2 5.9 7.5 2.4

YOLOv10s 85.2 77.9 83.7 51.2 7.5 24.5 8.0

YOLO11 84.4 76.6 82.4 49.8 5.3 6.4 2.6

Ours 85.9 78.2 85.7 52.9 5.19 6.3 2.43
The bold text indicates the best scores achieved in the experiments.
TABLE 4 The detection scores of each method on the DUO dataset.

Method mAP@0.5/% mAP@0.95/% Model Size/MB FLOPs/G Parameter/106

Cascade R-CNN (Cai and Vasconcelos, 2018) 82.1 61.2 44.5 91.1 68.9

Deformable DET (Zhu et al., 2020) 84.4 63.7 44.7 173 40.0

Boosting R-CNN (Song et al., 2023) 78.5 63.5 125.1 53.2 43.6

RTMDet (Lyu et al., 2022) 83.2 63.8 125.5 39.1 24.7

YOLOv5s (Zhu et al., 2021) 83.4 62.1 16.1 16.5 7.2

YOLOv7 (Wang et al., 2023) 82.6 61.4 18.6 103.3 5.9

YOLOv8 85.1 65 39.4 28.4 11.1

YOLOv10s (Wang et al., 2024) 84.6 64.8 7.5 24.5 8.0

YOLO11 80.2 60.4 5.2 20.4 6.4

RG-YOLO (Zheng and Yu, 2025) 86.1 65.7 7.4 31.1 10.1

Ours 87.9 67.3 5.19 6.3 2.43
The bold text indicates the best scores achieved in the experiments.
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FIGURE 7

Detection scores for each category using the proposed method, where (A) corresponds to the URPC2021 dataset and (B) corresponds to the DUO dataset.
FIGURE 8

The detection results of the proposed method on URPC2021 dataset.
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required more resources than YOLO10s and YOLO11. RG-YOLO

improved the YOLOmethod and achieved significant improvement

in detection performance, but there is still much room for

improvement in the model’s computational complexity. The

method in this paper achieved 87.9% and 67.3% on mAP@0.5

and mAP@0.95, with a model size of 5.19 M, FLOPS of 6.3 G, and

parameter number of 2.43 × 106, which not only demonstrated the

most excellent detection performance, but also low computational

complexity and low parameter number, which provided an effective

technological solution for real-time and efficient biological

detection in complex underwater scenes.

The detection mAP scores of the proposed method for each

category are shown in Figure 7, (a) for the URPC2021 dataset and

(b) for the DUO dataset. The proposed model performed best in

echinus, which achieves the highest score among the four

categories, but has weakest detection performance for holothurian

due to the fact that holothurian is similar to the seabed in imaging.

Overall, the proposed method presents excellent underwater

biological detection performance.

Figures 8 and 9 show the results of biological detection using

our method on the URPC2021 and DUO datasets. In the

URPC2021 and DUO datasets, the proposed method shows
Frontiers in Marine Science 12
excellent detection accuracy in underwater environments with

multi-sized targets, low light, color distortion, blurring, and noise.

In particular, the proposed method also accurately detects imaging-

obscured mimicry biological detection, which is able to adapt to

complex and changing underwater environments. In addition, we

deploy the YOLO series methods on Jetson Nano 2GB devices for

testing, with results shown in Table 5. Our method achieved 16.54

FPS in the test of the Jetson Nano 2GB device, demonstrating the

feasibility of the method for underwater robotic deployment.
FIGURE 9

The detection results of the proposed method on the DUO dataset.
TABLE 5 The FPS of the YOLO network on Jetson Nano 2GB devices.

Method FPS

YOLOv5s (Zhu et al., 2021) 8.39

YOLOv7 12.61

YOLOv8 9.33

YOLOv10s (Wang et al., 2024) 11.42

YOLO11 14.92

Ours 16.54
The bold text indicates the best scores achieved in the experiments.
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6 Conclusions

A lightweight YOLO network for robotic underwater biological

detection is proposed, aiming to help underwater robots efficiently

accomplish underwater resource exploration tasks. The backbone

network based on the HDA module effectively suppresses

underwater image noise interference and improves the model’s

attention to targets in low-light environments. The MAS network is

designed to achieve feature dynamic optimization and efficient

multi-scale information interactive fusion, which solves the

problem that target detection is easy to miss under the occlusion

of underwater scenes. A MCE module is proposed to adaptively

enhance key information of multiple-scale features, thereby

improving the detection performance of fuzzy targets. Finally, the

proposed method obtained the highest detection scores in both

URPC2021 and DUO datasets in the comparison experiments.

Moreover, the feasibility of the proposed method for underwater

robotic deployment was verified in a Jetson Nano 2GB device.

Therefore, our method demonstrates outstanding detection

performance in underwater biological detection, meeting the

requirements of actual underwater resource exploration projects

for effectiveness and real-time performance.

In subsequent work, we will apply this method to underwater

robotic systems, cross-validate the algorithm using stereoscopic

camera systems underwater, and investigate the impact of

different water body parameters on underwater detection

performance. Through additional practical underwater

exploration missions, we will continuously optimize the model’s

performance and practicality.
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