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Introduction: Underwater image quality is commonly affected by problems such
as insufficient illumination, extensive background noise, and target occlusion.
Conventional biological detection methods suffer from the limitations of weak
feature extraction, high computation, and low detection efficiency.

Methods: We propose an efficient and lightweight YOLO network for robots to
realize high-precision underwater biological detection. Firstly, a backbone
network based on hybrid dilated attention (HDA) is designed to expand the
receptive field and focus on key features effectively. Secondly, a mixed
aggregation star (MAS) network for the neck is constructed to enhance
complex structural features and detailed textures of underwater organisms.
Finally, the detection head is lightweighted using multi-scale content
enhancement (MCE) modules to adaptively enhance key target channel
information and suppress underwater noise.

Results: Compared to state-of-the-art target detection algorithms in
underwater robots, our method achieves 85.7.% and 87.9% mAP@O0.5 on the
URPC2021 and the DUO datasets, respectively, with a model size of 5.19 M, a
FLOP of 6.3 G, and a FPS of 16.54.

Discussion: The proposed method has excellent detection performance in
underwater environments with low light, turbid water, and target occlusion.

KEYWORDS

underwater robot, biological detection, lightweight YOLO network, hybrid dilated
attention, mixed aggregation star network, multi-scale content enhancement module

1 Introduction

Underwater target detection is a key technical means to realize the exploration of
marine resources and promote the practice of marine engineering (Wang et al., 2024; Li
et al, 2025). The underwater robot operates autonomously in different underwater
environments through optical imaging devices and edge computing devices to
accomplish the task of monitoring underwater biological targets, as shown in Figure 1.
In particular, in the protection of rare and endangered species, underwater robots can
utilize their advanced sensors and imaging technology to detect and count organisms, thus
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FIGURE 1
The process for underwater robotic biological detection.

grasping the changes in population size and providing a scientific
basis for protection work. However, robots are in motion during
underwater exploration, and it is difficult to obtain visually clear
images, making accurate detection of underwater organisms still a
significant technical bottleneck (Zheng et al., 2023).

Traditional underwater target detection techniques often follow
the generalized framework of region proposal box generation,
manual feature design, and classifier discrimination (Rout et al.,
2024; Du et al.,
environments, manually designed feature descriptors are difficult

2025). Due to the diversity of underwater

to adapt to organisms in different waters, depths, and lighting
conditions, and cannot effectively extract multi-category
organism features.

In the field of deep learning, neural networks excel in feature
extraction and fitting capabilities (Abirami et al., 2025). The field of
computer vision has also made some progress in underwater
biomonitoring (Wang et al.,, 2024a; Wang et al., 2025). Currently,
the two-stage algorithm improves the detection accuracy of
underwater targets based on the framework of generating
2025). The
single-stage algorithm directly utilizes category regression to

proposal regions to reclassify targets (Sun et al,

significantly reduce underwater target detection time, making the
model more suitable for resource-limited platforms (Huang et al.,
2024; Li et al., 2024; Wang et al., 2024).

However, in real underwater biological detection, robots face
multiple challenges. (1) The underwater image quality is poor,
suffering from color distortion, low contrast, and uneven lighting
(Wang et al,
categories, large size changes, and obvious morphological

2024b). (2) Underwater organisms have diverse

differences, and the target may be obscured, tilted, or partially
visible, which requires good robustness of the model. (3) The
underwater environment is complex and variable, and the image
background contains sand, rocks, corals, water plants, etc., with
similar textures to the target, which increases the possibility of false
detection. Therefore, further research on target detection
algorithms applicable to underwater robots is needed to lighten
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the model structure and improve detection accuracy (Wang et al.,
2024; Guo et al., 2025).

Given the computational limitations of underwater robotic
platforms, we selected the YOLOv11 network as the foundational
model for our algorithm. Although not the latest iteration of the
YOLO architecture, YOLOvI11 offers a mature deployment
toolchain and exhibits low hardware requirements. Therefore, we
innovate and optimize the YOLO11 network by combining the
characteristics of underwater imaging and propose a lightweight
YOLO network for robotic underwater biological detection.
Specifically, in the backbone network, the HDA module is
combined with the C3k2 module to enhance the model’s ability
to capture multi-scale features from underwater organisms. In the
neck network, key features of low-contrast underwater organisms
are enhanced by introducing the MAS network. In the probe head,
the MCE module is used to accurately localize the contours of
underwater organisms, effectively solving underwater detection
challenges such as size variation, edge blurring, and background
interference. The main contributions of this paper are as follows:

* An HDA module is constructed for extracting multi-scale
target features from underwater images with color
distortion, scale variation, and blurring degradation. The
key features are effectively extracted by utilizing multi-scale
null convolution fusion and hierarchical residual
linkage strategies.

e To construct different-sized feature dependencies, the MAS
network for feature fusion is designed. The key features of
underwater organisms are adaptively enhanced through the
star operation structure and a multi-branch fusion scheme.

e A lightweight MCE module for feature enhancement is
proposed to improve the recognition ability of blurred
underwater organisms. Through parallel multi-scale expansion
of the convolutional structure and a shared parameter
mechanism, the blurred features and multi-scale information
of underwater organisms are dynamically enhanced.
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» Extensive experiments on public datasets demonstrate that
the proposed method has the advantages of excellent
detection performance, lightweight models, and fast
inference speed. Our method achieved 85.7% and 87.9%
mAP@0.5 on the URPC2021 and DUO datasets,
respectively. The model size is 5.19 MB, with 2.43 M
parameters and 6.3 GFLOPs. The detection speed on a
Jetson Nano 2GB device is 16.54 FPS.

The other sections are organized as follows: Section 2
summarizes related work. Section 3 introduces the innovative
points of the proposed method. Section 4 describes the
experimental setup and analyzes the experimental results. Section
5 presents the conclusions and future plans.

2 Related work

2.1 Underwater biological detection
methods

Existing underwater target detection methods are mainly
optimized based on generic target detection methods. These
methods include the use of classical detection frameworks
combined with techniques such as multi-scale feature fusion (Liu
et al., 2025), feature weighting (Li et al.,, 2025), deformable
convolution (Ouyang et al., 2024), and attention mechanisms
(Tsai et al., 2025) to enhance detection.

Padmapriya et al. combined image enhancement techniques with
deep convolutional neural networks, utilizing color correction, edge
enhancement, and other operations to significantly enhance the
expression of underwater target features, thereby addressing issues
such as significant noise, low visibility, and uneven lighting
conditions in underwater environments (Padmapriya et al.,, 2023).
Liu et al. constructed a dual-path pyramid visual transformer feature
extraction network, which cleverly utilized global features to enhance
the differences between the foreground and background of images,
thereby solving the problem of low accuracy in underwater fish
detection (Liu et al., 2024). Li et al. proposed a self-supervised marine
organism detection framework and designed an attention module
specifically for underwater targets, thereby eliminating the
dependence of underwater image data on annotation information
(Li et al., 2024). However, the above methods have problems such as
over-reliance on image preprocessing operations and high model
complexity. It is difficult to be deployed in platforms with limited
resources that cannot meet the requirements of real-time target

detection in underwater scenes.

2.2 Lightweight methods

In practical underwater biological detection tasks, the challenge
of limited computing and storage capacity of underwater detection
equipment needs to be faced. The lightweight model can better
adapt to the hardware conditions, quickly and accurately detect
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biological, meet the real-time requirements, and consume low
energy, which can extend the range of the equipment and
improve the detection efficiency. Therefore, many researchers
have carried out research on the lightweighting of underwater
biological detection models and achieved good results.

Li et al. proposed a lightweight underwater biological detection
method by integrating a frequency attention mechanism with a
dynamic convolution module, which improved feature extraction
capabilities and solved the problems of large model parameters and
high computational requirements (Li et al., 2025). Chen et al.
proposed a lightweight aggregated underwater target detection
network by constructing a multi-branch architecture combining
convolutional and contextual attention, effectively solving the
problem of target omission in biological target detection in
complex underwater environments (Chen et al., 2024). Li et al.
utilized reparameterization and global response normalization
techniques to construct a feature enhancement and fusion
network for underwater fuzzy object recognition, effectively
reducing the impact of suspended particles in water on
underwater target detection (Li and Cai, 2025). By using different
network optimization techniques, the above method achieves
lightweighting in the model structure, but there is still room for
improvement in the detection of occluded biological and small-
sized targets in complex underwater scenes.

2.3 Underwater target detection with
YOLO

YOLO, as an end-to-end network, can reduce the error
accumulation caused by complex underwater illumination and
turbid water, effectively resist the interference of complex
underwater environments (e.g., blurring, low-contrast, occlusion),
and enhance the detection robustness. Therefore, the innovation and
optimization of the YOLO network are of great significance to achieve
high-precision biological detection in low-quality underwater images.

Zheng et al. innovatively introduced a reparameterized multi-
scale fusion module and an aggregated distributed feature pyramid
network into the YOLOvV7 network, enabling the model to learn
multi-scale features and thereby improving the detection
performance for small underwater targets (Zheng and Yu, 2025).
Liu et al. optimized the YOLOv8 network structure by using
reparameterization techniques and spatial pyramid decomposition
convolution to reduce target detail loss. And the introduction of
cross-layer local attention in the detection header further reduces
the computational cost and makes the model easier to deploy for
edge computing devices (Liu et al., 2025). Ouyang et al. improved
the YOLOVY network using an attention block mechanism and an
inflated large kernel network to enhance the local feature extraction
and denoising capabilities, enabling the model to focus on
underwater targets of different sizes (Ouyang and Li, 2025). Pan
et al. constructed a lightweight marine biological detection model by
improving YOLOv10. By introducing AKVanillaNet and
DysnakeConv modules to enhance the target feature expression
ability, and integrating Powerful-IOU loss function to optimize the

frontiersin.org


https://doi.org/10.3389/fmars.2025.1673437
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Huang et al.

model training process, the performance of the model for target
detection in underwater images with different lighting is improved
(Pan et al., 2025). Therefore, by fully leveraging the rapid detection
advantages of the YOLO network and innovatively optimizing its
structure, the model’s accuracy in detecting underwater targets of
various sizes can be effectively improved, thereby meeting the
practical needs of robotic underwater exploration.

3 Materials and methods

A lightweight YOLO network for underwater biological
detection by robots is presented in this paper to achieve high-
precision, rapid detection of small, occluded targets in low-light
underwater images. The network structure of the proposed method
is shown in Figure 2, where the spatial pyramid pooling fast (SPPF)
and convolutional block with parallel spatial attention (C2PSA)
modules are the original models of the YOLO11 network. Firstly,
the HDA modules are introduced into the feature extraction
network to capture multi-scale target features using different
expansion rates, thus allowing the model to focus more on targets
with large differences in size and shape in the underwater scene.
Secondly, the MAS network in the neck region adaptively enhances
feature expression and constructs feature information interaction
channels at different scales through star computation and multi-

—_——
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branch feature fusion strategies. Finally, the adaptive feature
enhancement property of the MCE module in the detection head
is utilized to reduce the underwater noise interference and enhance
the texture and edge features of low-contrast organisms to achieve
the biological detection of complex underwater environments.

3.1 HDA module

In underwater multi-species, multi-size biological detection, the
C3k2 module relies solely on a pure convolutional stacking
structure, which cannot dynamically adjust the receptive field,
making it difficult to effectively capture the features of underwater
targets with different sizes. Moreover, the C3k2 module is difficult to
establish global dependencies when extracting local features, and
the global relationship between the target and its surroundings in
the underwater scene is not taken into account, leading to limited
detection accuracy in complex scenes. In this paper, we construct a
C3k2_HDA feature extraction module based on hybrid dilated
attention. The structure of the C3k2_HDA module is shown in
Figure 3, where (A) denotes the C3k2 module, (B) denotes the C3k
module, and (C) denotes the HDA module. The C3k2_HDA
module is capable of effectively expanding the receptive field and
focusing on key features by combining multi-scale hybrid cavity
convolution (DConv), channel attention block (CAB), and

/ I r r
| Backbone ! | Neck || Head |1 SPPF 1ocopsa )
|
| C2psA : MAS  —Li> MEC Deteet || | : | | !
| |
| SI?FF | | L I ] |11 Cony |1 Cony |
: 3 | :—> UpSample Concat | : : : i : : l [
I C3k2 HDA : | l T : : : | MaxPool2d | : split :
R |
: t : :—» Concat DownSample : I I i ' : ! :
| Conv L l T ! : | MaxPool2d |l : PSA [
! | K % l—>' | '
' 3k2 ADA —U MAS MAS —> MEC _Detect | : I l I
: ? | : l T ) | | MaxPool2d : I PSA :
| Iy I I
: Lo | : UpSample Concat L [ l : | l :
| L I 't Concat <!  Concat |
| C3k2 HDA {—L l T : | I l P l |
| t | Concat DownSample | : : : [ : [
: Conv I : T I I C(lnv : I Colnv :
I | I I
| * | ’ ' ' | |
| MAS  —34—+» MEC Detect | \ (
ek DA I N ) ool mooooool
| t : : : : [ Conv |
: Co?nv | Lippys: INput image Loyspur: OUtpUL IMage ~ : 5 - :
| 24 < g Q = Q
: g | HDA: hybrid dilated attention : - % — § g — ,3 — :
] = n
- ﬁ— ———  SPPF: spatial pyramid pooling fast : © Z }'

MASN: mixed aggregation star network

FIGURE 2
The network structure of the proposed method
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C2PSA: convolutional block with parallel spatial attention

PSA: partial spatial attention

MEC: multi-scale context enhancer
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FIGURE 3

The structure of the C3k2_HDA model, where (A-C) represent the structures of the C3k2, C3k, and HDA models, respectively.

lightweight residual connectivity to extract multi-scale feature
information of underwater organisms.

When given an input feature, the workflow of the C3k2_HDA
module is as follows: Firstly, the feature channel is compressed
using a convolution layer with a kernel of 1x1., which provides a
finer representation of the feature for the subsequent convolutional
operations, reducing the computational complexity, meanwhile
highlighting the key features. Secondly, a fourth-order feature
pyramid (3 x 3, 7 x 7, 13 x 13, 21 x 21) is constructed by
gradually expanding the perceptual domain with a dilation rate of
1 to 4 through deep convolution. This ensures that the network can
capture features at multiple scales, adapt to the diversity of shapes
and sizes of underwater organisms, and is particularly useful for
small targets that require a large receptive field. Thirdly, dynamic
weighting between channels is achieved through a channel attention
block (CAB), enabling the network to concentrate on key feature
channels, suppress unimportant features, enhance the contrast
between the target and the background, and reduce the impact of
color distortion and noise interference in underwater images. The
feature processing of CAB can be expressed as Equation 1.

CAB(y) = x @ 0(Conv; 1 (ReLU(Conv, 1 (AAP(x))))) (1)

where x and y represent input features and output features,
respectively. o is the Sigmoid activation function, AAP is the
adaptive average pooling function, and ® is the channel-
level multiplication.

Finally, by introducing a residual feature fusion mechanism and
utilizing lightweight path connections to optimize detailed
information, the integrity and accuracy of features are ensured,
effectively reducing the impact of underwater image blurring and
detail loss on biological detection. Therefore, the C3k2_HDA
module helps the YOLOI1 network extract as much feature
information as possible from underwater images with color
distortion and noise interference, thereby improving the accuracy,
robustness, and adaptability of underwater biological detection.

Frontiers in Marine Science

3.2 MAS network

To enhance the blurred biometric expression of low-contrast
underwater images, the MAS networks are introduced in the neck to
replace the C3k2 module. The MAS network significantly optimizes
underwater biological detection performance through a multi-
branch feature fusion mechanism and a four-layer structure of
star computation. The core idea is to utilize the 7x7 depth-separated
convolution and two-way gating operation of the star module to
expand the receptive field to suppress water turbidity and light
noise, and to adaptively enhance the response of key regions such as
biological contours and textures. The multi-branch structure then
fuses features of different granularity (from edge details to semantic
information) to enhance robustness to scale-variable, occluded
targets. The design dramatically improves detection accuracy
while maintaining computational efficiency. The structure of the
MAS network is shown in Figure 4.

Given an input feature x with channel number ¢, the MAS network
first performs feature decoupling by upscaling the feature channel to 2¢
through a convolution with a kernel 1 x 1, and subsequently splits it
into four independent paths. The underwater target base features are
extracted by a convolution with kernel of 1 x 1 in path 1, the spatial
context information of the features is captured using a depth-separated
convolution in path 2, the original feature is obtained by row-channel
slicing operation in path 3, and a star operation is performed on the
separated features in path 4 to get a richer and more expressive feature
representation. In the star operation, a large receptive field is
established by a 7 x 7 deep convolution to suppress underwater
noise. Subsequently, x; and x, with a channel number of 3¢ are
obtained using parallel convolution with kernel 1 x 1, and the ReLU6
activation function is applied to x;, and then multiplied element-by-
element with x, to realize feature filtering. The feature processing of
star operation can be expressed as Equation 2.

y1 = ReLU6(W | = DWConv,,(x)) © (W, x* DWConv,,.,(x)) (2)
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FIGURE 4

The structure of the MAS network.

where y; denotes the output after element-wise multiplication,
W, and W, denote convolutional weights with kernel 1 x 1, and ©
denotes element-wise multiplication.

The channel compression and spatial information fusion are
accomplished by the convolution with a kernel 1 x 1 and depth-wise
convolution with a kernel 7 x 7. Combine the original input and
output through the residual structure to obtain y,, thus effectively
ensuring the completeness of the features. The process can be
expressed as Equation 3.

3)

Finally, the initial four-path features are concatenated with the

¥y, =x+ DWConv,,,(Convyy1(y1))

optimized features from the star module, fusing the multi-
granularity information and outputting the enhanced feature
map, which greatly strengthens the importance of pixels in the
underwater target area. The process can be expressed as Equation 4.

n
Ymas = Convyy <)’p1 Dy © Y3 D ypy @ 2}’;m> (4)
k=1
where yy45 denotes the output of the MAS network, y,1, ¥
Yp3» and y,4 denote the outputs of the four paths, respectively, yya,
denotes the output of the star module, and @ denotes the
concatenation operation.
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3.3 MCE module

To address the limitations of the YOLOI1 network detector
head in dealing with small-sized, irregular, and densely occluded
targets underwater, we propose a multi-scale content enhancement
module and combine it with a shared convolution detector to form
a lightweight and highly efficient LSCD_MEC detector as shown in
Figure 5. The core idea of the MEC module is to use three-way
dilated convolutions (dilation = 2/4/6) to capture different receptive
fields of contextual information, thereby constructing feature data
dependencies at different scales and achieving data fusion. The
channel attention mechanism can further dynamically enhance
biometric features and suppress interference from murky water
backgrounds. Finally, the original feature is introduced in the fusion
stage to avoid the loss of high-frequency detail information.
Therefore, the feature sharing and lightweight design of the
LSCD_MEC detector optimizes the model structure, reduces the
number of parameters, and improves the stability of multi-scale
biological detection.

When three different scale features from the neck are input to
the head, the LSCD_MEC module first performs hierarchical
preprocessing of the features using a group normalization
operation to extract the initial features of the underwater target.
Subsequently, in the MCE module, the features are divided into four

06 frontiersin.org
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FIGURE 5
The structure of the LSCD_MCE module.

equal parts along the channel dimension. Local details, medium
sensory fields, and large-scale contexts are captured using depth-
wise convolution with three different expansion rates. The features
are fused and transmitted to the channel attention (CA) module to
improve the model’s focus on important features of underwater
organisms. The channel attention weighting process can be
expressed as Equation 5.

yea = 0(Wy(ReLU(W,(GAP(x))))) ©)

where yc4 and GAP represent the output of the CA module and
the global average pooling operation, respectively.

Finally, two convolutions with a kernel of 1 x 1 are used to
construct a regression branch and a classification branch,
outputting the bounding box parameters and the category
probabilities, and completing the accurate detection of
underwater targets.

4 Experiment preparation
4.1 Experimental setting and parameters

All the ablation experiments and comparison tests in this paper
were conducted under a device equipped with a deep learning

framework. The model training parameters and device’s detailed
configuration are shown in Table 1.
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4.2 Datasets

In this paper, the publicly available underwater scene biological
image dataset, the underwater robot programming contest 2021
(URPC2021), and detecting underwater objects (DUO) are utilized
to test the performance of the proposed method in underwater
biological detection. The two datasets involve consistent categories,
namely holothurian, echinus, scallop, and starfish. Both datasets
contain complex underwater scenes containing low light, low
contrast, target occlusion, size inconsistency, etc., which can
comprehensively evaluate the practicality of the optimized
YOLOI11 model for biological detection in complex
underwater scenes.

The UPRC2021 dataset contains 7,600 annotated underwater
images, which are divided into training and testing sets at a ratio of
8:2 during training. The original annotations are in Pascal VOC
standard XML format, which is converted to YOLO format before
the experiment.

The DUO dataset integrates the datasets from the URPC
Challenge over the years, removes the duplicates, and re-labels
the erroneous labels. The DUO dataset contains a total of 7,782
accurately annotated images, with a training set to test set ratio of
8:2. The images of the DUO dataset present excellent bias, low
contrast, and uneven illumination, blurring and high noise and
other typical underwater image characteristics, which pose certain
challenges for accurate detection of different aquaculture organisms,

frontiersin.org
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TABLE 1 Detailed information on device configuration and model
training parameters.

Experimental

Parameters Value
setup
operating system Windows 11
® ™
cPU 13th Intel® Core
19-13900KF 3.00 GHz
Experimental L X
. Nvidia GeForce GTX 3090 with
device GPU
CUDA 12.4 and cuDNN 8.9
RAM 128GB
framework PyTorch 2.5.0, Python 3.8.11
learning rate 0.01
momentum 0.937
epochs 500
batch size 64
images size 640 x 640
close mosaic 10
weight decay 0.0005
Training
parameters device 1
optimizer SGD
automatic mixed
. true
precision
degrees 60
scale 0.5
shear 60
perspective 0.001

meanwhile largely reflecting the problems faced by real marine
environment detection targets, and providing a unified benchmark
for the evaluation of underwater target detection algorithms.

4.3 Evaluation metrics

In this paper, the following metrics are introduced: accuracy,
recall rate, mAP50, model parameters, model size, and GFLOPs to
objectively evaluate the performance of various methods on
biological detection in complex underwater scenes (Girshick
et al.,, 2014).

Precision reflects the reliability of the model’s prediction of
positive samples of underwater organisms, while recall indicates the
probability that the model correctly identifies positive samples of
underwater organisms. The calculation of precision and recall can
be expressed as Equations 6, 7.

TP

TP + FP ©)

Precision =
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TP

Recall = ———
ccall = 5" FN

7)

where TP denotes a predicted positive sample of underwater
organisms and an actual positive sample of underwater organisms,
FP denotes a predicted positive sample of underwater organisms
and an actual negative sample of underwater organisms, and FN
denotes a predicted negative sample of underwater organisms but
an actual positive sample of underwater organisms.

The average precision (AP) is used to comprehensively evaluate
the accuracy of a model at different recall levels. The mean average
precision (mAP) can measure the overall performance of a model
for all categories. The calculations for AP and mAP can be
expressed as Equations 8, 9.

1
AP = / Precision(Recall)d(Recall) (8)
0
1N
AP =— N AP; 9
m NE ; )

where N denotes the number of categories, N = 4. mAP@0.5 and
mAP@0.95 represent the mAP values when IoU=0.5 and
IoU=0.95, respectively.

Model parameters are used to measure model scale and
complexity. Model size is used to determine the ease of
deployment and resource consumption of the model for
underwater detection. Floating point operations (FLOPs) are
directly related to model inference latency and hardware
computing power requirements.

5 Experimental results and analysis
5.1 Ablation experiments

To quantitatively demonstrate the improvement in underwater
biological detection performance achieved by each innovation
module, ablation experiments are conducted on the URPC2021
dataset, with the results shown in Table 2.

The YOLO11 model, without any innovation point, achieves
82.4% mAP@0.5 and 49.8% mAP@0.95, with a model size of
5.25MB, FLOPs of 6.4G, and a parameter of 2.59x10°. After
inserting the HDA module into the backbone network, mAP@0.5
and mAP@0.95 improve by 1.2% and 1.1%, but the model size,
FLOPs, and parameters increase by 0.09MB, 0.3G, and 0.02x10°.
After introducing the MAS network in the neck network, mAP@0.5
and mAP@0.95 increased to 84.6% and 51.8%, respectively, with the
model size of 5.42 MB, FLOPs of 6.9, and parameters of 2.69x10°.
After using the MCE module in the head, mnAP@0.5 and mAP@0.95
reach 85.7% and 52.9%, respectively, and the model size is only 5.19
M, the FLOPs are 6.3 G, and the parameters are 2.43 M. Therefore,
the introduction of the HDA module and MAS network can
effectively improve the detection performance of underwater
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TABLE 2 Effectiveness of innovation points for detection.

10.3389/fmars.2025.1673437

YOLO11 HDA MAS MCE mAP@0.5/% mAP@0.95/% Modelsize/MB FLOPs/G Parameter/10°
v 82.4% 0.498 5.25 6.4 2.59
v v 83.6% 0.509 5.34 6.7 2.61
v v v 84.6% 0518 5.42 6.9 2.69
v v v v 85.7% 0.529 5.19 6.3 243

The bold text indicates the best scores achieved in the experiments.

organisms, while the introduction of the MCE module significantly
reduces the memory footprint and computational complexity. The
proposed method is more favorable for deployment in equipment
with limited resources.

To visualize the effect of innovation points in underwater
biological detection, gradient-weighted class-activation mapping is
introduced to generate heatmaps for the YOLO11 model and each
innovation point. The results are shown in Figure 6, where (a) is the
original input image, (b) is the heat map of YOLO11, (c)-(e) are the
heat maps generated by introducing the HDA, MAS, and MCE
modules, respectively, and (f) is the ground-truth image. The red
areas in the heat map indicate that the model contributes more to the
detection of underwater organisms. The three groups of images
represent color distortion images, normal underwater images, and
low-light images, respectively. In images with color distortion,
YOLOLI1 only focuses on objects with a large target scale, missing
small-sized targets. On the contrary, after introducing the HDA,
MAS, and MCE modules, the model’s attention gradually covered
small targets, indicating that the optimized YOLO11 can effectively
capture underwater biological features of different scales. In normal
underwater images, YOLOI11 only focuses on targets with obvious
features and omits occluded targets. With the HDA, MAS, and MCE
modules, the model not only effectively detects the occluded targets
but also can reduce the background interference and successfully

detects the starfish with a similar color to the seabed. In low-light
images, YOLO11 cannot effectively distinguish the area where the
target is located and suffers from detection errors. The proposed
method can effectively find out the targets hidden in a low-light
environment and realize the accurate detection of organisms.

5.2 Comparative experiments

To further validate the proposed method’s ability to accurately
identify underwater organisms in complex underwater
environments, Faster RCNN, YOLOvV5, and other methods are
introduced to compare the performance of URPC2021 and DUO
datasets. The performance index scores are shown in Tables 3 and
4, respectively.

Table 3 shows that among the various methods, Faster RCNN
scored the lowest in the evaluation metrics, with the largest model
size, FLOPs, and number of parameters, indicating the highest
computational complexity and the greatest resource requirements
for underwater organism detection. YOLOv5s and RTD-YOLOv5
achieve good results in precision, recall, and mAP metrics, but do
not have an advantage in model size. YOLOvV7 network scores
poorly in all evaluation metrics, which not only has low underwater
target detection accuracy, but also consumes more memory for

FIGURE 6

Heat maps of YOLO11 model and innovation points, where (A) shows the original image, (B) displays the YOLO11 heatmap, and (C—E) present
heatmaps generated after integrating the HDA, MAS, and MCE modules into YOLO11, respectively. (F) represents the ground-truth image.

Frontiers in Marine Science

09

frontiersin.org


https://doi.org/10.3389/fmars.2025.1673437
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Huang et al.

TABLE 3 The detection scores of each method on the URPC2021 dataset.

10.3389/fmars.2025.1673437

Method Precision/% Recal/% mAP@0.5/% mAP@0.95/% Model Size/MB FLOPs/G = Parameter/10°
Faster RCNN
75.2 64.6 74.3 415 413 210 1347
(Ren et al., 2016)
YOLOv5s
1 2.4 46. 16.1 16. 2
(Zhu et al., 2021) 8 76 8 65 6 65 7
RTD-YOLOV5
84.3 728 82.4 459 14.6 123 59
(Yuan et al., 2024)
YOLOv7
816 75.2 82.4 472 72.1 103.3 365
(Wang et al,, 2023)
YOLOVS8 826 76.3 823 489 6.2 8.7 32
YOLOVS-LA
84.9 76.8 84.7 50.2 59 75 24
(Qu et al.,, 2024)
YOLOV10s 85.2 77.9 83.7 512 75 245 8.0
YOLO11 84.4 76.6 82.4 498 53 6.4 26
Ours 85.9 78.2 85.7 52.9 5.19 6.3 243

The bold text indicates the best scores achieved in the experiments.

model deployment. The YOLOv8 and YOLOV8-LA methods
achieved excellent results across all evaluation metrics, not only
accurately detecting biological objects in complex underwater
environments but also featuring compact model sizes and low
computational complexity, making them suitable for underwater
robots. Compared to other YOLO methods, YOLOv10s has greater
computational requirements. The method proposed in this paper
outperforms the YOLOv11 network by 1.5% and 1.6% in precision
and recall, respectively. Furthermore, mAP@0.5 and mAP@0.95
achieve the highest scores, with the smallest model size, number of
parameters, and FLPOs. Therefore, our method can accurately
detect small organisms that are obscured in complex underwater
scenes, effectively solving the problem of target detection misses.

TABLE 4 The detection scores of each method on the DUO dataset.

The model is small in size and low in computational complexity,
enabling it to efficiently perform real-time underwater organism
detection tasks.

In the DUO dataset test, the Cascade R-CNN and Boosting
RCNN methods achieved the smallest mAP scores, and their large
model sizes and high computational complexity are not conducive
to efficient underwater target detection. The Deformable DET and
RTMDet models, although they achieved better scores in detection
performance, are limited by the resources consumed by the models.
Compared with YOLO10s, YOLOv7, and YOLOL11, their model
sizes and FLOPs require more resources. YOLOv5s and YOLOv8
models achieved 0.834 and 0.851 mAP@0.5, which showed
excellent detection performance, but their model sizes and FLOPs

Method mAP@O0.5/% mAP@0.95/%  Model Size/MB  FLOPs/G = Parameter/10°
Cascade R-CNN (Cai and Vasconcelos, 2018) 82.1 61.2 44.5 91.1 68.9
Deformable DET (Zhu et al., 2020) 84.4 63.7 44.7 173 40.0
Boosting R-CNN (Song et al., 2023) 78.5 63.5 125.1 532 43.6
RTMDet (Lyu et al,, 2022) 83.2 63.8 125.5 39.1 24.7
YOLOV5s (Zhu et al., 2021) 83.4 62.1 16.1 16.5 7.2
YOLOvV7 (Wang et al,, 2023) 82.6 61.4 18.6 103.3 59
YOLOV8 85.1 65 39.4 284 11.1
YOLOV10s (Wang et al., 2024) 84.6 64.8 7.5 24.5 8.0
YOLO11 80.2 60.4 52 204 6.4
RG-YOLO (Zheng and Yu, 2025) 86.1 65.7 7.4 31.1 10.1
Ours 87.9 67.3 5.19 6.3 2.43

The bold text indicates the best scores achieved in the experiments.
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FIGURE 7
Detection scores for each category using the proposed method, where (A) corresponds to the URPC2021 dataset and (B) corresponds to the DUO dataset.
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FIGURE 8
The detection results of the proposed method on URPC2021 dataset.
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FIGURE 9
The detection results of the proposed method on the DUO dataset.
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required more resources than YOLO10s and YOLO11. RG-YOLO
improved the YOLO method and achieved significant improvement
in detection performance, but there is still much room for
improvement in the model’s computational complexity. The
method in this paper achieved 87.9% and 67.3% on mAP@0.5
and mAP@0.95, with a model size of 5.19 M, FLOPS of 6.3 G, and
parameter number of 2.43 x 106, which not only demonstrated the
most excellent detection performance, but also low computational
complexity and low parameter number, which provided an effective
technological solution for real-time and efficient biological
detection in complex underwater scenes.

The detection mAP scores of the proposed method for each
category are shown in Figure 7, (a) for the URPC2021 dataset and
(b) for the DUO dataset. The proposed model performed best in
echinus, which achieves the highest score among the four
categories, but has weakest detection performance for holothurian
due to the fact that holothurian is similar to the seabed in imaging.
Overall, the proposed method presents excellent underwater
biological detection performance.

Figures 8 and 9 show the results of biological detection using
our method on the URPC2021 and DUO datasets. In the
URPC2021 and DUO datasets, the proposed method shows
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excellent detection accuracy in underwater environments with
multi-sized targets, low light, color distortion, blurring, and noise.
In particular, the proposed method also accurately detects imaging-
obscured mimicry biological detection, which is able to adapt to
complex and changing underwater environments. In addition, we
deploy the YOLO series methods on Jetson Nano 2GB devices for
testing, with results shown in Table 5. Our method achieved 16.54
FPS in the test of the Jetson Nano 2GB device, demonstrating the
feasibility of the method for underwater robotic deployment.

TABLE 5 The FPS of the YOLO network on Jetson Nano 2GB devices.

Method FPS
YOLOV5s (Zhu et al., 2021) 8.39
YOLOv7 12.61

YOLOV8 9.33
YOLOV10s (Wang et al., 2024) 11.42
YOLO11 14.92

Ours 16.54

The bold text indicates the best scores achieved in the experiments.
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6 Conclusions

A lightweight YOLO network for robotic underwater biological
detection is proposed, aiming to help underwater robots efficiently
accomplish underwater resource exploration tasks. The backbone
network based on the HDA module effectively suppresses
underwater image noise interference and improves the model’s
attention to targets in low-light environments. The MAS network is
designed to achieve feature dynamic optimization and efficient
multi-scale information interactive fusion, which solves the
problem that target detection is easy to miss under the occlusion
of underwater scenes. A MCE module is proposed to adaptively
enhance key information of multiple-scale features, thereby
improving the detection performance of fuzzy targets. Finally, the
proposed method obtained the highest detection scores in both
URPC2021 and DUO datasets in the comparison experiments.
Moreover, the feasibility of the proposed method for underwater
robotic deployment was verified in a Jetson Nano 2GB device.
Therefore, our method demonstrates outstanding detection
performance in underwater biological detection, meeting the
requirements of actual underwater resource exploration projects
for effectiveness and real-time performance.

In subsequent work, we will apply this method to underwater
robotic systems, cross-validate the algorithm using stereoscopic
camera systems underwater, and investigate the impact of
different water body parameters on underwater detection
performance. Through additional practical underwater
exploration missions, we will continuously optimize the model’s
performance and practicality.
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