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Evaluation of satellite-based sea
surface salinity derived from two
distinct spectral domains over
the coastal waters of the St.
Lawrence Estuary and Gulf
Julien Laliberté 1*, Guillaume Guénard1, Jacqueline Dumas1,
Peter S. Galbraith1, Sarah Hall2, David S. Trossman3

and Steve Vissault1

1Department of Fisheries and Oceans Canada, Mont-Joli, QC, Canada, 2Global Science and
Technology, Greenbelt, MD, United States, 3Cooperative Institute for Satellite Earth System Studies
(CISESS)/Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park,
MD, United States
Brightness temperature is operationally used to retrieve sea surface salinity

(TB-SSS) over the global ocean, but is contaminated by land and sea ice in

close proximity. Ocean color can be used to retrieve SSS (OC-SSS) via the

relation between color and salinity, but this relation is only valid over the coastal

ocean with terrestrial influence. Important ecological areas exist where both

spectral domains can provide SSS estimates. Here we compare these estimates

over the St. Lawrence Estuary and Gulf in Eastern Canada, where a large collection

of near-surface in situ salinity measurements is available. While TB-SSS faces a

significant limitation in undersampling spatial variability, OC-SSS is predominantly

hindered by cloud cover. Offshore, TB-SSS data are considerably more abundant

than OC-SSS data, the latter of which are available only about 30% as often as the

former. However, OC-SSS estimates extend into more nearshore areas, such as

the St. Lawrence Estuary. Additionally, OC-SSS estimates are more accurate, with

a root mean square difference of 0.46 g kg−1 compared to 0.79 g kg−1 for TB-SSS.

We employed each of these satellite-derived SSS products to compare the

pronounced freshwater pulse of 2017 and post-tropical storm Dorian of fall

2019, finding that short-lived events were better captured by the OC-SSS

product. In contrast, the TB-SSS product offered more extensive temporal

coverage but smoothed out such events. Our analyses underscore the need for

higher-resolution satellite salinity-sensors in coastal studies. In the meantime,

ocean color data resolves submesoscale features and can help enhance our

understanding of these dynamic environments.
KEYWORDS
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1 Introduction

Satellites have been revealing the dynamics of Earth’s oceans

and marginal seas for decades, from capturing the vernal ice

breakup in the Gulf of St. Lawrence as early as 1961 (Gloersen

and Salomonson, 1975) to assessing sea surface temperature half a

century ago (Minnett et al., 2019). Other major satellite monitoring

milestones include determining sea surface height (Morrow et al.,

2023) and ocean color (McClain et al., 2022), changing our

perspectives on oceanography over four decades ago. However, it

is only since 2010 that the era of satellite salinity-sensors began

(Lagerloef et al., 2008).

Tidal and wind mixing, precipitation, freshwater runoff, surface

processes such as air-ocean heat fluxes contributing to fall

convective mixing, ice melt and brine rejection, all affect sea

surface salinity (SSS). Due to its multifaceted determinants,

satellite remote sensing emerges as a powerful diagnostic tool for

determining marine changes in salinity across extensive

spatiotemporal scales. SSS is an indicator of global climate change

due to its relationship to ocean alkalinity (Fine et al., 2017), ocean

stratification (Olmedo et al., 2022), frontal zone dynamics (Yang

et al., 2024), marine ecosystem functions (Olli et al., 2023) and more

generally the water cycle (Vinogradova and Ponte, 2017; Fournier

et al., 2023).

While current satellite retrievals of SSS are invaluable for

studying the global ocean, they are at the limit of their utility

near the ocean boundary (Vinogradova et al., 2019; Su et al., 2018).

The land-sea exchange in coastal areas and ice-ocean interaction

over high latitudes are not well captured at present. Thus, the

scientific community recognizes coastal salinity remote sensing as a

challenging research frontier, where significant improvements are

still needed (Colliander et al., 2024; Rodrı ́guez-Fernández
et al., 2024).

These challenges are shared by many coastal regions influenced

by riverine input, including the Amazon, Mississippi, Mekong, and

Mackenzie river systems, among many others. The St. Lawrence

Estuary and Gulf (GSLE) is one such example that illustrates these

difficulties well. The region’s dynamic and highly variable

hydrography similarly complicates hydrological modeling, as it is

shaped by the convergence of diverse water masses, an extensive

river network flowing across a vast watershed, and a complex

bathymetry and coastline geometry that further influence water

movement (Lambert et al., 2013). The primary factors influencing

SSS in the GSLE include the large volume of freshwater input from

the Great Lakes to the west, runoff from several major rivers from

the Canadian Shield in the north (Assani, 2024), southwestward

advection of salty Labrador shelf water from the east through the

Strait of Belle Isle (Shaw and Galbraith, 2023) and oceanic water

transport from the south through the Cabot Strait (Chassé, 2001).

The Gaspé Current stands out as the predominant near-surface

circulation feature of the GSLE (Sheng, 2001), as it transports

freshwater outflow from the St. Lawrence River through the

Southern Gulf and down towards the Gulf of Maine (Grodsky

et al., 2021; Ohashi and Sheng, 2013). Changes in SSS across the

Gaspé Current drive occurrences of harmful algal blooms
Frontiers in Marine Science 02
(Therriault et al., 1985; Fauchot et al., 2008; IOCCG, 2021;

Boivin-Rioux et al., 2021, 2022) and may influence blooms of

coccolithophores at the river’s mouth (Xu et al., 2020), while

promoting aggregations of prey for fish and whales at the

entrance of the Gulf (Brennan et al., 2019). Further downstream

the Gaspé Current, near Prince Edward Island, changes in salinity

directly impact mussels and oyster farming (Poirier et al., 2021).

Hence, reliable satellite-derived SSS data could enhance our

comprehension of phytoplankton communities and other food

web components, which are closely associated with fisheries’

economic dynamics and the broader ecological equilibrium (Platt

et al., 2003; Plourde et al., 2014). In fact, extensive research has

demonstrated how synoptic SSS observations could help in

delineating intricate front patterns and mesoscale eddies in the

GSLE shedding light on their ecological repercussions (Mertz et al.,

1989, 1990; Koutitonsky et al., 1990; Therriault, 1991; Savenkoff

et al., 1997).

Conventional satellite-derived SSS rely on L-band microwave

radiometry to provide consistent global ocean coverage (Dinnat

et al., 2019). Numerous studies have utilized these SSS estimates

offshore; for example in the Arabian Sea (Menezes, 2020), the Bay of

Bengal (Akhil et al., 2020), the Mediterranean Sea (Grodsky et al.,

2019), or the Gulf of Mexico (Fournier et al., 2016). The underlying

principle is that the emissivity of the sea surface at 1.4 GHz depends

on SSS, as the dielectric constant of sea water varies with ocean

temperature and salinity. However, SSS is more difficult to retrieve

accurately at low ocean temperatures because of the reduced signal-

to-noise ratio at that temperature range (Lang et al., 2016). Some

studies nevertheless successfully achieve meaningful outcomes in

colder regions such as the Gulf of Maine (Grodsky et al., 2021), the

Arctic Ocean (Supply et al., 2020; Trossman and Bayler, 2022) and

the Gulf of St. Lawrence (Dumas and Gilbert, 2023). Considering

that in situ sampling is inherently punctual in space and time,

Dumas and Gilbert (2023) conducted the first evaluation of the

satellite-based salinity estimates over the GSLE in order to

supplement the availability of salinity field measurements in

future monitoring activities. They compared two products from

Soil Moisture Ocean Salinity (SMOS); “Centre Aval de Traitement

des Données SMOS” (CATDS, Boutin et al., 2020) and Barcelona

Expert Center (BEC, Olmedo et al., 2020), as well as two products

from NASA Soil Moisture Active Passive (SMAP); Jet Propulsion

Laboratory (JPL, Fore et al., 2016) and Remote Sensing Systems

(Meissner et al., 2018). The spatial resolution of these smoothed

Level-3 products is approximately 70 km, offering an improvement

over the Aquarius/SAC-D (June 2011 to June 2015) products that

preceded them. Grid size in the Aquarius product typically resulted

in only a single valid grid cell in the GSLE. The four satellite

products were evaluated with in situ CTDmeasurements. The study

concluded that based on data availability and evaluation metrics,

the JPL product stood out as being the best satellite product for this

region. Yet, severe limitations were identified. First, although

microwave satellite data successfully captured interannual

variability and the annual cycle of SSS, the coarse temporal and

spatial resolutions provided limited support for resolving

circulation features. The Gaspé Current was detectable, but not
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well-defined. Second, the product’s nearshore limitations resulted in

many missing data, preventing its use in monitoring ecologically

and biologically significant areas close to land. Satellite observations

were unable to resolve conditions within the expansive St. Lawrence

River mouth. These issues reflect broader limitations of

conventional SSS products in other coastal regions as well.

Deriving SSS from ocean color satellite remote sensing is also

possible, though it is based on fundamentally different physical

principles compared to microwave-derived SSS. This approach is

less common, as its applicability is largely limited to river-

influenced coastal areas. Different methods to estimate SSS using

ocean color have been developed in a number of coastal locations

worldwide (Figure 1).

Unlike microwave-based techniques, no global operational

methods currently address the requirements of diverse coastal

systems, leading investigators to develop their own empirical

models. The retrievals are commonly based on the presence of

colored dissolved organic matter (CDOM), a mixture of organic

material that leaches out from vegetation. Freshwater from land has

low SSS values and carries large amounts of CDOM, which

progressively degrades and dissolves as it is transported towards

areas characterized by larger SSS (Monahan and Pybus, 1978;

Massicotte et al., 2017; Laliberté et al., 2018). CDOM gives water

a yellow-brown color by absorbing light more readily at the blue

end of the visible spectrum, enabling SSS estimates from ocean color

satellite measurements. With regards to the CDOM-SSS

relationships specific to the GSLE, Nieke et al. (1997) studied the

variations of absorption and fluorescence by CDOM along with

salinity and found a well defined, negative linear relationship over

the salinity gradient of the Upper Estuary, Lower Estuary, and Gulf.

Similarly, Cizmeli (2008) measured several optically significant

biogeochemical variables and found a negative linear relationship

between CDOM and salinity, reporting a decrease in CDOM and an

increase in salinity from west to east. Araújo and Bélanger (2022)

examined the optical complexity of different water masses in the

nearshore GSLE and reported strong relationships between the

optical properties of CDOM and salinity. Furthermore,
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absorption in the GSLE was found to be dominated by CDOM in

the St. Lawrence River by Xie et al. (2012), who suggested using

CDOM obtained from satellites to evaluate salinity fluctuations,

given that a reliable CDOM-inversion exists. All of these studies

asserted the existence of a relationship between CDOM and salinity

in the GSLE, yet none exploited it to predict SSS.

Here, we propose an algorithm to estimate SSS from ocean color

data. We ask whether this approach, complementary to the

established passive microwave approach, can offer additional

insights for researchers investigating the full extent of coastal

regions. Specifically, we assess the strengths and limitations of

each approach based on comparisons with in situ observations

and on their ability to resolve seasonal and episodic salinity

dynamics across the nearshore–offshore continuum of the GSLE.

The GSLE, with its extensive salinity monitoring record (Therriault,

1998), provides an ideal setting to evaluate the reliability of remote

sensing products from different spectral domains in a coastal

marine environment.
2 Data and methods

This section outlines our approach to synthesizing the data

sources into the desired salinity products. Figure 2a showcases three

data sources used in this study for a specific day, 21 June 2018. The

SMAP example presents data from two overlapping scan tracks

captured on the same day, with a global-scale view provided directly

below. SSS has units of parts per thousand, or grams per kilogram

(g kg−1), representing the mass of dissolved salts relative to the mass

of pure water. In situ data serves as a standard reference

characterizing salinity accurately and precisely at various depths

under the sea surface. Of the two satellite products used as input,

one uses microwave radiometry and already describes this surface

salinity (SMAP SSS L2B), and the other uses ocean color radiometry

and requires conversion to salinity values (CCI Rrs). As illustrated

in Figure 2b, the microwave signal is related to the salinity of the top

centimeters (skin) and ocean color integrates the signal over the top
FIGURE 1

A non-exhaustive compilation of studies utilizing ocean color for deriving sea surface salinity (SSS). References cited: Palacios et al., (2009), Khorram
(1982), Urquhart et al., (2012), Chen and Hu, (2017), Molleri et al., (2010), Gouveia et al., (2019), Binding and Bowers, (2003), Shulga and Suslin, (2023),
Zhao et al., (2017), Wong et al., (2007), Sun et al., (2019), Umbert et al., (2021), Qing et al., (2013), Ahn et al., (2008), Bai et al., (2013), Wouthuyzen et
al., (2020).
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FIGURE 2

Summary of the methodology. (a) Examples of in situ SSS, SMAP SSS L2B and CCI Rrs at 412 nm for 2018-06–21 used as source data in this study.
The SMAP SSS L2B plot displays two overlapping scan tracks captured on the same day; (b) Illustration summarizing the key differences between the
products central to this research. Notably, In situ data provide sparse coverage, while ocean color data from the CCI product offer higher spatial
resolution but have gaps due to cloud cover, and brightness temperature data from the SMAP product provide surface information despite clouds
but are frequently affected by land contamination. (c) Flowchart illustrating the relationships between data sources, processing steps, outputs and
analyses, with corresponding figures shown in italics.
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meters (bulk), determined by local optical properties at the surface

(Gordon and McCluney, 1975; Gordon and Clark, 1980; Bailey and

Werdell, 2006). In situ measurements are limited to small spatial

scales, whereas satellite methods provide synoptic views of the

system but remain indirect measurements of the sea’s surface.

Moreover, satellite data from different spectral domains have their

own disadvantages: brightness temperature, with a large footprint,

often leads to land contamination in coastal areas, while ocean color

becomes useless in the presence of cloud cover. Figure 2c presents

an overview of the workflow implemented in this paper, including

the input, processing, output, and analyses. Each component of this

flowchart is detailed in the following subsections.
2.1 Brightness temperature sea surface
salinity

All SSS products derived from L-band microwaves are based on

the relationship between surface emissivity and salinity. In this

study, we used the SMAP-JPL data (Fore et al., 2016) as it is easily

accessible online (https://podaac.jpl.nasa.gov/), which ensures

broad applicability and reproducibility to other regions, and

because Dumas and Gilbert (2023) determined it to have the

highest correlation with in situ data in the Gulf of St. Lawrence

among the microwaves products they evaluated. From the top-of-

atmosphere measurements, the L-band radiometric signal

undergoes land correction, galaxy correction, bias adjustments

and reflector emissivity correction. Observations contaminated by

land surfaces and sea ice are excluded from the dataset. Cross-track

and along-track observations are rescaled to a grid with averaged

fore and aft looks. Thus, four observation types are used as the main

input in the JPL inversion model, representing the horizon and

vertical polarizations from the fore and aft looks. This keeps track of

the azimuthal dependence of the wind direction, which roughens

the sea and impacts the measured brightness temperature (Tb).

Wind speed and SSS are retrieved through inversion by minimizing

the difference of the measured Tb and modeled Tb values, with

constraints provided by ancillary wind and temperature data. We

downloaded the instantaneous SMAP SSS L2B data from the

PO.DAAC (NASA/JPL, 2020) for the years 2015 (beginning of

SMAP operational phase) to 2023 as our source dataset (Figure 2c).

Since these SSS estimates pertain only to the surface layer of the

water column, we applied a conversion to minimize discrepancies

with in situ measurement depths. We applied the correction of

Trossman and Bayler (2022), named TB-correction, to remove bias

and convert from skin-to-bulk SSS. Because of the use of in situ

data, there is a smoothed version of sub-footprint variability-related

adjustment likely accounted for in the correction term as well. In

short, a machine learning-based generalized additive model (GAM),

which is a regression framework that allows for smooth but

nonlinear functions of predictors and their interactions, is used to

develop a correction term. The correction term is tuned with in situ

data and supplemented with the objectively analyzed air-sea fluxes

product (OAFlux, Yu and Jin, 2014). The process was structured

as follows:
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1. In situ SSS measurements taken between the surface and

2 m depth in a given day within 25 km of the center of a

grid element with a valid SMAP SSS L2B retrieval were used

to compute the GAM (the SMAP-JPL product is delivered

on a 25 km grid). We excluded data from 2023 from the

training dataset to serve as an independent dataset for later

evaluation of the satellite products. The GAM model

integrates smoothers and tensor interactions of

environmental predictors. The smoother terms include

Julian day, the satellite-derived SSS, and a first-guess bias-

correction for the satellite-derived SSS. The tensor

interaction terms additionally include evaporation, latent

and sensible heat fluxes, near-surface humidity, sea-surface

temperature, wind stress, and auxiliary thermodynamic

variables, consistent with Equation 1 and Table 1 in

Trossman and Bayler (2022). The resulting predictions

from the GAM, named TB-correction, were mapped onto

a 0.25° longitude and latitude grid using the World

Geodetic System 1984 (WGS84) and temporally averaged

over the entire dataset. To map the TB-correction onto a

regular grid we used a searching radius of 45 km,

employing the processing methodology used in the

operational L2 to L3 processing (NASA/JPL, 2020). This

empirical correction reduces the disparity between the

ocean color product, which captures salinity in the upper

meters of the ocean, and the microwave product, which

captures salinity in the top centimeters.

2. We mapped the irregular L2B satellite overpass data from

2015 to 2023 onto the same 0.25° regular grid using the

same rasterization method, and subsequently applied the

TB-correction across the stack of instantaneous rasters,

each representing SSS from a single satellite overpass. We

discarded estimates below 24 g kg−1 (0.2% of the pixels) and

above 36 g kg−1 (3% of the pixels) to exclude large

deviations from expected values, based on our knowledge

of the area and corresponding in situ dataset. Since these

deviations represent only a small portion of the dataset, the

effects of erroneous L2B retrievals on the TB-SSS

distribution are expected to be small. We removed all

grid cells with fewer than five irregular L2B satellite data

points mapping to a regular grid cell and filtered out all grid

cells with a coefficient of variation (standard deviation

divided by the mean in a 3 × 3 moving window) greater

than 5%, a procedure to screen out residual retrieval failures

(e.g., Werdell et al., 2009).

3. We applied a 3×3 moving window average and a 6-day

rolling average to mitigate retrieval errors while preserving

the dynamics of the time series. Although the operational

L3 SSS product is implemented with an 8-day moving

window, reflecting SMAP’s orbit repeat period, our

region of interest (45.2°N–51.9°N) typically experiences

two overpasses per day (Figure 2a), allowing us to use

reduced smoothing. Finally, the processed data were

bilinearly interpolated to match the OC-SSS spatial

resolution (discussed below) before masking any data
frontiersin.org
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closer than 25 km from the coast. While harmonizing the

spatial resolution was required for consistency, this step

may introduce uncertainties and spatial smoothing, and the

decision to apply a 25 km mask, although designed to

ensure robustness, comes at the cost of reduced nearshore

coverage, which we acknowledge as a limitation of

our procedure.
In summary, our processing methodology is similar to the

operational L2 to L3 processing (NASA/JPL, 2020), but we

included a correction term and maintained a higher temporal

resolution to preserve a good representation of the dynamics of

coastal oceans. We refer to this product as brightness temperature

sea surface salinity (TB-SSS).
2.2 Ocean color sea surface salinity

The SSS product derived from ocean color relies on the

relationship between surface color and salinity. Spectral remote-

sensing reflectance (Rrs, sr−1) was obtained from ocean color satellite

measurements, with corrections applied for the intervening

atmosphere. We downloaded merged Rrs data from multiple

ocean color sensors (https://www.oceancolour.org/), processed by

the European Space Agency’s Ocean Color Climate Change

Initiative (OC-CCI) project version 6.0 (Sathyendranath et al.,

2019). Daily composite images of visible Rrs at 1 km resolution

from January 1998 to December 2023 were atmospherically

corrected using the Polymer algorithm for MERIS, MODIS,

VIIRS and OLCI, and the SeaDAS Standard OBPG atmospheric

correction for SeaWiFS. Remote sensing values with flag warnings

were removed (Jackson et al., 2022). The dataset underwent inter-

sensor bias removal and spectral bands of sensors were shifted with

a high-resolution spectral model to obtain six consistent bands

(412nm, 443nm, 490nm, 510nm, 560nm and 665nm). Figure 2a

shows an example of Rrs 412nm. For consistency, we excluded any

zero Rrs values, of which only four were identified.

Next, we input the source Rrs with in situ data (excluding the

year 2023) into a gradient boost machine (GBM), a machine

learning method designed to estimate SSS. A GBM works by

stacking simple models (i.e., ones involving small numbers of

descriptors and parameters) called weak learners, that are

sequentially combined into a large, more complex and more

powerful model. Thus, the model partitions a challenging, hard-

to-address problem into a series of simpler, easier to handle sub-

problems. This approach allows each constituent model to

specialize in specific aspects of the data while leaving other

components to be managed by complementary tasks. Concretely,

our algorithm proceeds according to the following steps:
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0. Prior to any calculations, center the response on the mean

value to obtain a first set of residual values using this relation:
_y(0)i = yi − y
where _y(0)i denotes the residual for observation i following

the 0th step of the procedure.

1. Fit a simple model (e.g., involving a single or a few

descriptors), represented as some arbitrary function f (j),

on the residuals as follows:

_y(0)i = f (1)(xi; b) + ei

where xi is a vector containing descriptors associated with

observation i, b is a vector containing model parameters for

these descriptors, and ei is a model residual.

2. Apply this model at predicting the residuals of the previous

step, but only partially, to obtain a new set of residuals as

follows:

_y(1)i = _y(0)i −   nf (1)(xi; b)

where n is referred to as the learning rate or shrinkage and is

the hyperparameter controlling how much of the model fitted

values are effectively employed at shrinking the residuals, thus

allowing the model to refine itself based on the data.

3. Recurse steps 1-2, adding newmodels, further shrinking the

residuals with each step:

_y(j)i = _y(j−1)i −   nf (j)(xi; b)

4. Stop after a prescribed number of steps, n, which is another

hyperparameter of the model. The residuals of the model at the

end of this process correspond to _y(n)i = ei. Hyperparameters of

a GBM encompass the learning rate n, the number of sub-

models n, and any parameter influencing the complexity of the

submodels, such as the number of descriptors they use and any

regularization parameters. The nature of sub-models, f (j)(xi; b),

defines the kind of gradient boosting model being

implemented. For this study, we used a tree-based GBM,

where individual sub-models are relatively simple (shallow)

regression trees, each involving only a few descriptors. A

regression tree is a model whereby the data are recursively

split into sub-groups according to sets of dichotomic criteria

involving the descriptors. Splitting criteria encompass threshold

values for quantitative or semi-quantitative variables, or levels
frontiersin.org
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or groups of levels for qualitative variables. For a Gaussian

response, predicted values correspond to the mean response

value of the sub-groups. The tree based GBM used was

XGBoost, which essentially differs from other GBM in that it

implements a more stringent regularization of the sub-models,

involving sub-trees that may have a lower depth than the

prescribed maximum depth, Dmax , set as a hyperparameter.
Next, we estimate the hyperparameters. Models have sets of

quantities, called parameters, that define how they represent the data.

Model estimation also involves quantities, which do not directly define

the data representation, but are involved with the process by which the

model parameters are estimated from the training data. By analogy,

these quantities are called hyperparameters. An adequate set of

hyperparameters yields a model that is generalizable across various

environmental conditions. In the present study, we performed a

hyperparameter search using cross-validation. Cross-validation

involves partitioning the data into multiple subgroups. One or more

of these groups are set aside for external validation and the remaining

groups are used as the cross-validation folds. For each fold, all cross-

validation data with the exception of the ones pertaining to the fold, are

used to build a model and the latter is used to make predictions for the

data pertaining to the fold in question. The process is repeated for all

the cross-validation folds. The data of any given cross-validation fold is

not used to build the model that will be used to make predictions for

that fold. Therefore, the observed values and the predicted values are

obtained independently from one another. The cross-validation error

tends to increase whenever the model is either under- or overfitted and

be minimal for an optimal model. The optimal model is the one which

achieves the maximum predictive power when modeling the

dataset’s response.

All available Rrs wavelengths were included in the model to make

full use of the spectral information. A straightforward approach to

improve predictive power involves incorporating spatial or temporal

descriptors. Since the GSLE is a semi-enclosed marine system with

islands and spatially heterogeneous, localized freshwater inputs, distance

from the coast was not included as a predictor of salinity. Instead, we

introduced temporal effects into the models by transforming the

temporal information in the dataset into three derived variables. The

first variable is the sampling year. This integral variable represents long-

term trends over the years. The next two variables were annual sine

functions representing the seasonal variations. The first sine

synchronizes with the solstices, reaching +1 at the summer solstice, 0

at the autumn equinox, −1 at the winter solstice, 0 at the spring equinox,

before returning to +1 at the next summer solstice, completing the cycle.

Similarly, the second sine synchronizes with the equinoxes, reaching +1

at the spring equinox, 0 at the summer solstice and continues through

the cycle. It is noteworthy that two variables are needed to represent

seasonality. As each variable repeats its value twice a year, whereas the

same pair of values occurs once a year. Because the variable year does

not vary at the same scale as the two seasonal variables, and since the

seasonal variables are in quadrature (90° out-of-phase) with each other,

the three variables are theoretically linearly independent. In practice, the

unevenness of sampling in space and time results in non-

zero correlation.
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Models were estimated and then validated. For validation, the data

were first sorted by increasing observed SSS values and then split into

five groups systematically (e.g., data indexed by i = 1, 6, 11, 16, 21,…,

were assigned to the first group, data indexed by i = 2, 7, 12, 17, 22,…,

to the second group, and so on). Data sorting was used to obtain groups

with similar ranges of SSS values. Data from groups 1–4 were used as

the learning set to estimate themodels, whereas data from group 5 were

kept for model validation. For the XGBoost model, groups 1–4 served

as cross-validation folds for estimating the model’s hyperparameters.

The objective criterion used for the hyperparameter estimation

was the sum of square deviation between the observed yi and

predicted data ŷ i,  which is defined as:

SSE =o
N

i=1
(yi − ŷ i)

2

The accuracy of the model was assessed using the square root of

the SSE, which has the same units as the response (g kg−1), whereas

the model relative predictive power evaluated using the coefficient

of prediction (P2), which is defined as:

P2 = 1 −o
N
i=1(yi − ŷ i)

2

oN
i=1(yi − yi)

2

where y is the mean of the observed value. This metric takes the

value 0 when predictions are, on average, no better than using the

mean of the observed values, and a value of 1 for perfect predictions

(i.e., when SSE = 0), and any negative value for models that are

essentially useless (i.e., on average no better than just taking the

mean observed value for all predicted values).

Hyperparameter estimation was performed using the differential

evolution algorithm implemented in the DEoptim R language package

(Ardia et al., 2011), with a population size of 30 individuals over 200

generations. The raw hyperparameters controlling for the number of

trees and maximum tree depth were raised to the power of two and

rounded to the closest integer before being used by the model estimation

function, whereas the raw hyperparameter controlling for the learning

rate was inverse logit-transformed prior to its use. These transformations

of the parameter space were meant to help in the searching process by

covering a broad array of values of the number of trees and maximum

tree depth with slight fluctuations of the parameter value while ensuring

that the learning rate was strictly bounded between 0 and 1.

We estimated the among-year model accuracy and predictive power

by training models with data from previous years to predict data from a

given year.We performed that exercise in a backwardmanner beginning

from the year 2022 down to the year 1998. As with the TB-SSS product,

the year 2023 was omitted in the training dataset to serve as an

independent basis for later evaluation of the satellite products. Once

the model was completed, we produced the SSS predictions. We refer to

the output as ocean color sea surface salinity (OC-SSS).

2.3 In situ measurements

TheDepartment of Fisheries andOceans Canada collects and hosts

a large number of in situ surface salinity measurements. Samples from

6,856 bottles, 31,524 CTD casts and 1,924,556 measurements from
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meteorological and oceanographic buoys and deployed

thermosalinographs were available in the Oceanographic Data

Management System (Pettigrew et al., 2017) between 1999 and 2023

across the GSLE. Salinity data collected through flow-through systems

on multiple vessels were also available, but were not used due to the

difficulty in determining the measurement depths, which varied based

on ship bow shapes and speeds. Bottles captured water at specific

depths and were subsequently analyzed using either Guildline Portasal

(ship-based) or a Guildline Autosal (lab-based). Both data types were

compiled by the lab technician who produced triplicate measurements

of 10 readings per bottle after flushing with millipore water, allowing

for robust quality control in resulting salinity data. The CTD

instruments were calibrated every winter by electronic technicians.

On ships, CTD profile measurements recorded conductivity after a

three-minute surface soak allowing the instrument to adjust to local

water conditions. Discrete samples were routinely compared to CTD

casts since both record salinity subsequently. On buoys, the CTD

instrument usually took a measurement every 15 minutes during the

open water season. Of particular interest to this study are the Banc des

Orphelins, Shediac Valley, Old Harry and East Southern Gulf buoys

located in Gulf of St. Lawrence, which provide highly resolved time

series at fixed locations. Trained data analysts oversaw the

incorporation of new data and assigned a flag to each entry, which

ensured realistic values. The largest uncertainty sources for salinity

stem from the depth uncertainties. Accordingly, we decided to keep all

data from the 0 m to 2 m to represent surface waters. We gridded in

situ salinity measurements by aggregating measurements falling within

a grid element over a UTC day time and over the depths. Since buoys

are assessed independently in one of our evaluations, we kept different

types of measurements (buoys, profiles, or bottles) separated when

more than one type was available. We refer to this dataset as in situ sea

surface salinity (IS-SSS).

2.4 Matching observations

A common spatial and temporal resolution for this study was

defined by the finest resolutions available from satellite data, that is,
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a nominal spatial resolution of 1 km with a daily time scale. Table 1

summarizes the characteristics of the three main sources of data

used in this study.

After gridding the in situ data and producing the satellite

output, we designed a set of analyses to explore the satellite

products (see Figure 2c, Analyses). We first examined the

characteristics of the temporal and spatial distribution of data. To

this end, we computed the number of predictions for each method,

as well as the SSS mean value (µ), for each grid element (i, j) over

time (t).

mi,j =
1
no

n

t=1
Xi,j,t

Second, matchups between in situ SSS and the two satellite

products were used to evaluate the predicted values. We adopted

the root mean square difference (RMSD) as a metric for evaluating

the performance of the satellite products, as well as P2 (coefficient

of prediction) defined above, accompanied by the number of

observations. We also leveraged the fact that many pixels had

multiple observations within a single day, taken at different times

or from different locations within the 1 km pixel. This range was

used to assess whether the estimate fell within the observed

variability during the matchup exercise. Additionally, in the

context of evaluating the predictions, we gain further insights by

analyzing buoy time series alongside satellite-derived time series,

enabling us to observe the dynamics of SSS products. As

previously mentioned, the year 2023 was excluded from the

training of satellite models to provide an independent basis for

evaluation; consequently we used the buoy time series from that

year for this analysis. Finally, we present practical use cases to

illustrate how the two satellite products function in practical

research applications. We assess whether these products lead to

similar conclusions when analyzed from different perspectives.

Specifically, we examine freshwater pulses through time series and

explore the impact of a post-tropical storm on salinity maps.

Through these tangible applications, we aim to highlight the

strengths and limitations of TB-SSS and OC-SSS.
TABLE 1 Spatio-temporal resolutions of the products used in this study.

Data type
In situ sea surface salinity
(IS-SSS)

Ocean color sea surface
salinity (OC-SSS)

Brightness temperature sea
surface salinity (TB-SSS)

Input temporal range

Bottles (1998–2023),
CTD casts (1998–2023), Network of
meteorological and oceanographic
buoys and thermosalinographs
(1999–2023)

SeaWiFS (1998–2010),
MERIS (2002–2012),
Aqua-MODIS (2002–2019),
S-VIIRS (2012–2019),
S3A OLCI (2016–2023),
S3B OLCI (2018–2023)

SMAP
(2015–2023)

Input depth [0, 2] meters
Top meters (uppermost meter having
the greatest impact)

Top centimeters (corrected to top
meters)

Input spatial resolution 1 m 1 km 25 km

Output
Spatiotemporal resolution

1 km—daily 1 km—daily 1 km—daily
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3 Results and discussion

3.1 Temporal and spatial distribution

One of the key findings of the present study is the difference in

the number of salinity estimates available in the different products.

Figure 3 presents the mean number of monthly estimates from IS-

SSS, OC-SSS and TB-SSS datasets, with their spatial coverage

illustrated by the SSS mean.

Based on the climatological cloud fraction, sun zenithal angle and

sea ice cover (Appendix A), Figure 3a can be described in three

segments. From April to October, IS-SSS has the least available data as

expected, despite most field campaigns being conducted during this

period, followed by OC-SSS. TB-SSS provides the most data, primarily

because it captures information of the surface even under cloudy

conditions. From November to January, when the sea surface is

predominantly ice-free (Galbraith et al., 2024b), this difference

between the satellite products is even more pronounced. At this

time of year, the sun remains low and cloudy conditions prevail,

resulting in fewer valid Rrs and thus fewer OC-SSS estimates (Clay and

Devred, 2023; Laliberté and Larouche, 2023). During the February-

March period, both satellite methods are unable to capture

information below sea ice. In fact, the reduced availability of data is

evident across all products (Figure 3a). In situ data are

underrepresented because buoys are not deployed during winter to

avoid the crushing damage caused by sea ice. As for the satellite

products, certain regions with partial ice-cover are best observed with

ocean color satellites, whose finer spatial resolution enables
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observations between sea ice floes, providing data in inaccessible and

rarely studied environments. Conversely, microwave satellite sensors,

with their coarser resolution, can suffer from subpixel contamination

caused by sea ice, resulting in inaccurate and unreliable SSS retrievals

(Fournier et al., 2019; Meissner and Manaster, 2021).

Across the GSLE, IS-SSS accounted for only 0.3% of OC-SSS

data, which itself represented 55% of TB-SSS data (Figure 3a).

Although there are many OC-SSS estimates in the estuary and

nearshore, TB-SSS has a considerably greater amount of estimates

offshore. In fact, in offshore areas where TB-SSS estimates were

available, coincident OC-SSS data were found in only 29% of cases.

Figure 3b shows that the western GSLE has lower salinity (below 28

g kg−1) than the eastern GSLE (above 28 g kg−1). The highest in situ

value of the dataset is 33 g kg−1. Figure 3b allows for a qualitative

comparison between products. The Estuarine and Southern Gulf regions

have the most extensive in situ coverage, but the salinity gradient from

west to east, as suggested in the figure, lacks sharp definition. Each panel

displays the low-salinity water outflow from the St. Lawrence Estuary,

forming the Gaspé Current, which spreads towards the Magdalen

Shallows and over Cape Breton. Other secondary features, such as the

freshwater input from the North Shore rivers, are visible in the OC-SSS

product. These freshwater inputs quickly mix with offshore saltier water

and generally do not extend far into the Gulf. Accordingly, these features

are not visible with TB-SSS due to land contamination caused by the

coarse native spatial resolution.

In summary, the limitation of the OC-SSS is obvious from the

number of monthly estimates (Figure 3a), while the limitation of TB-

SSS is obvious from the spatial coverage and resolution (Figure 3b).
ibution of available surface salinity values from in situ (IS-SSS), ocean color (OC-SSS) and brightness temperature (TB-
FIGURE 3

Temporal and spatial distr SSS);
(a) The top panel shows the distribution of monthly data counts from January to December summarised over all years using boxplots, calculated
based on the 1 km grid and daily time resolution shared by all three datasets. The IS-SSS values were multiplied by 100 to align them with the scale
of the other plots; (b) The bottom panel displays the extent of data availability color-coded by salinity values, represented by the SSS mean for
satellite observations. The color scale transitions at two different rates within the color space, one for each palette.
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3.2 Evaluating the predictions

The instantaneous and punctual in situ data were merged into

87,138 observations mapped to the daily 1 km grid for comparison

with the satellite data. Of these, only 36,799 observations were

collected after 2014, when both satellite products were available.

Figure 4 shows the observations matching valid satellite retrievals

over this period, along with their corresponding evaluation metrics.

More details on the OC-SSS predictive model are provided in

Appendices B, C.

Contrary to expectations, there are more matchups with the

ocean color product, because nearshore salinity measurements are

easier to collect than offshore ones (Figures 2a, 3b). TB-SSS are

clustered in salinity levels exceeding 25 g kg−1, primarily due to the

lack of estimates in nearshore areas where the salinity is typically

lower. The TB-correction improved the RMSD by 0.22 g kg−1,

further enhancing agreement with in situ observations. Moreover,

the combined effect of the correction, gridding, filtering, and

smoothing steps reduced the RMSD by about 1.3 g kg−1, relative

to direct matchups with raw L2B data. The points from OC-SSS

align well with IS-SSS, even at low salinity values. Compared with

TB-SSS, the OC-SSS matchups cluster more tightly around the one-

to-one line, with evaluation metrics indicating superior

performance. Furthermore, by utilizing the intra-day and intra-

pixel variability from in situ measurements, we found that 47% of

OC-SSS estimates were within the daily range of salinity for a pixel,

while only 10% of estimates for TB-SSS were within that range.

Nevertheless, the difference between measurements and satellite

estimates may only serve as an imperfect metric of their precision

and accuracy, because most matchups were also used to train the

GBM and served to define the TB-correction, and consequently, the
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objectivity of this assessment is limited. To offer a complementary

perspective, we exploit buoy measurements from the year 2023,

which were not used to develop the products (Figure 5).

All TB-SSS estimates coincided with an IS-SSS data point,

whereas only 30% of OC-SSS estimates matched data in the buoy

time series, a ratio that is comparable to the one reported above

(29%). The longest gaps in the OC-SSS time series lasted 14 days at

Old Harry in July, 13 days at Shediac Valley in September, 12 days

in the Eastern Southern Gulf in September, and 11 days at Banc des

Orphelins in June. Here again, OC-SSS aligned more closely with

the measurements. The RMSD for OC-SSS (0.06 g kg−1) is

considerably lower than that of TB-SSS (0.68 g kg−1), and lower

than those shown in Figure 4. The strong retrieval performance of

OC-SSS is largely due to the abundance of training data from

similar environmental conditions, often obtained from the same

buoys prior to 2023. Because the training and validation datasets

include these highly resolved time series, spatial clustering likely

inflate performance metrics, which represents a limitation of our

analysis. For the other matchups of 2023 (other buoys, bottles, and

profiles), the performances were comparable for TB-SSS (0.79 g

kg−1) and slightly worse, though still better than for the entire

dataset, for OC-SSS (0.30 g kg−1). Although the buoys are located at

varying distances from land (roughly 40 km for Shediac Valley and

Eastern Southern Gulf, and about 70 km for Old Harry and 100 km

for Banc des Orphelins), the RMSD values are similar across sites

(0.778, 0.539, 0.644, and 0.776 g kg−1, respectively), confirming that

land contamination is not the main driver of discrepancies. Overall,

the retrieval performance of TB-SSS compares favorably with the

evaluation of the SMAP-JPL L3 product over the global coastal

ocean reported by Jarugula et al. (2025), where the average RMSD

exceeded 1.49 g kg−1.
FIGURE 4

Scatterplot comparing satellite-derived products with in situ data. The left panel shows TB-SSS against in situ measurements, while the right panel
presents OC-SSS compared to in situ data. The coefficient of prediction (P2, dimensionless), root mean square difference (RMSD, g kg−1) and number
of observations (n, unitless) are shown in the scatterplots.
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Different mechanisms affect the salinity at the different buoy

locations. An important result from Figure 5 is that the overall

seasonal cycle is well captured by both satellite products, despite the

different mechanisms influencing salinity at the various buoy

locations. However, transient or localized events are better detected

by OC-SSS, while TB-SSS exhibits greater variability around the

rapidly fluctuating IS-SSS time series. This variability sometimes

appears as an overestimation and other times as an underestimation

relative to in situ measurements. Part of the discrepancy with in situ

measurements in the TB-SSS time series can be explained by

unresolved submesoscale processes in the water volumes observed

by the sensors, which ultimately leads to lower performance metrics

(Boutin et al., 2016).
3.3 Practical use cases

3.3.1 Freshwater transfer variability
We analyzed the satellite data record to investigate salinity

variability associated with the movement of water between the land

and the Atlantic Ocean (Figure 6). We included flows through

major surface circulation features of the Gulf of St. Lawrence (GSL),

specifically the transfer from the Gaspé Current (-63.7°, 48.8°), the

northeast GSL, likely influenced by inflow from the Strait of Belle

Isle (-60.0°, 49.9°), as well as inflow through the Cabot Strait

(-59.90°, 48.0°). To study this variability, we extracted all pixels
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within a 12.5 km radius (25 km diameter circle) for these three key

locations. A 14-day running mean was applied to smooth each

product’s three extracted time series. The distribution of the series,

represented by the 10th to 90th percentiles of all values, was

calculated for each satellite product. We highlighted the years

2017 and overlaid it on the percentiles, as Galbraith et al. (2024a)

indicated that the year 2017 had among the largest annual

freshwater runoff since 1974.

First, we examine the results from the percentile distribution

(Figure 6a, ribbons), as comparing these distributions reveals

general patterns of seasonal variations. Early in the year, large

variations and breaks in the time series occur because of sea ice,

with the longest period of missing data occurring in the Gaspé

Current. Sea ice is typically present for longer periods in the Gaspé

Current region due to its role in transporting sea ice from the St

Lawrence Estuary (Galbraith et al., 2024b). A small fraction (less

than 0.4%) of the values from the OC-SSS time series during

February and March were found to be suspiciously low.

Investigation with sentinel-2 higher resolution true color satellite

images showed that a mix of sea ice made it through the CCI

flagging and thus unrealistic values were produced by the GBM.

Bélanger et al. (2007) previously documented this issue,

demonstrating that specific configurations of ice floes can

influence Rrs due to adjacency effects and sub-pixel

contamination. These salinity retrievals had to be manually

removed, warranting that caution should be used when using
FIGURE 5

Dynamics of the satellite products at a daily time scale shown for the year 2023. The seasonal variability of IS-SSS at the Banc des Orphelins, Old
Harry, Shediac Valley and Eastern Southern Gulf buoys compared to the OC-SSS and TB-SSS products extracted at those locations. Note that the
year 2023 was excluded from the training of satellite products.
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ocean color data in subpolar regions. During winter, following brine

rejection, the values peak for the year across all extracted time series

and both products. However, pinpointing the exact timing of this

maximum is challenging due to missing data early in the year.

Salinity decreases due to snow and sea ice melt along with spring

runoff, reaching a minimum in summer. This pattern is consistent

with expectations (Galbraith et al., 2024a), indicating that runoff

outweighs the combined effects of evaporation and precipitation.

The cycle is seen in both products. For the Gaspé Current location,

the minimum in the OC-SSS time series remains stable for a period

starting in mid-June for OC-SSS and in mid-July for TB-SSS,

continuing to September for both products. At the northeast GSL

location, the minimum spans from mid-June to early August for

OC-SSS, and from August to October for TB-SSS. For the Cabot

Strait location, both products show a minimum in September, with

the timing of the minimum slightly shorter and later here than at

other locations. After reaching this minimum, salinity gradually

increases, likely due to a combination of factors including changing

heat fluxes, fall precipitations and wind stress, eventually leveling off

at fall levels, which lie between the spring and summer salinity

values. Overall, both products discern more pronounced seasonal

variations in the Gaspé Current and northeast GSL compared to

Cabot Strait. However, the timing of these events does not always

align precisely between the two products. Notably, seasonal

variations are also more prominent in TB-SSS than in OC-SSS.

We now discuss the year 2017, which stands out in the data

record for its distinct salinity patterns, as presented through the two

satellite products (Figure 6a, red lines). In the Gaspé Current area,

two freshwater pulses were observed in each product. The first pulse

occurred in late May for OC-SSS and early June for TB-SSS. The

second, longer pulse was detected at the end of June in both
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products. Here, the two satellite-derived SSS show agreement in

the timing of events, with both pulses exhibiting minima within

three days of each other when compared across the two products.

The peak of freshwater runoff at Québec City, much further

upstream, shows a maximum in April and May in 2017 (Fisheries

and Oceans Canada, 2023). Despite noting stronger seasonal

variations in the distribution of percentiles for TB-SSS above,

here the OC-SSS product shows slightly more extreme values,

with minimum salinities of 23 g kg−1 compared to 26 g kg−1, and

25 g kg−1 compared to 25.8 g kg−1 (outside the plot, to preserve

scale). In contrast, the 2017 minimum of northeast GSL Strait is

evident in OC-SSS, where a low salinity plume appeared to stretch

unusually far from the North Shore towards Newfoundland over

the extracted zone (not shown). However, this 2017 minimum does

not appear in the corresponding TB-SSS time series. There were no

in situ data in that area to verify the magnitude of this plume. In

comparison with the two other locations, both 2017 time series at

the Cabot Strait location show little difference relative to the

percentile distribution, as would be expected given the current

direction shown in Figure 6b. Together with the metrics from the

evaluation section, these findings suggest that short-lived events

tend to more accurately captured by the OC-SSS product while they

are smoothed out in the TB-SSS product. Apart from studying

differences between salinity products, this type of analysis could be

used to track harmful algal blooms, since such events are known to

occur under unusually low salinity conditions (Boivin-Rioux et al.,

2021; IOCCG, 2021). Deviations from typical seasonal cycles could

be identified and further examined through ocean color radiometry

that enables retrieval of phytoplankton functional types,

either retrospectively or continuously using near-real time

satellite information.
FIGURE 6

Salinity variability in three major circulation features of the Gulf of St. Lawrence; (a) The percentile distribution of salinity for the OC-SSS and TB-SSS
satellite products in the Gaspé Current, northeast GSL, and Cabot Strait regions along with observations for 2017; (b) Map showing the 25 km
diameter polygons used to extract the time series data from the satellite record, along with the main surface currents flowing toward these areas.
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3.3.2 Impact of a post-tropical storm
Hurricane activity has increased in the Western Atlantic over

the past 50 years (Lopez et al., 2024). For example, on 7 September

2019, Hurricane Dorian approached the southern coast of Nova

Scotia and continued through the GSL as a post-tropical storm on

September 8. Severe winds, and important precipitations ensued;

13 m waves, winds of 120 km h−1 and a remarkable drop in surface

water temperature of 8 °C was recorded at the Eastern Southern

Gulf buoy (location shown in Figures 2, 5, Galbraith et al., 2020;

Galbraith, 2022). The severe winds induced mixing, bringing saltier

water up to the surface, while precipitation added fresh water.

Figure 7 presents the resulting effect of that hurricane on the surface

salinity of the GSL.

Both products successfully reveal that the storm created a saline

wake (an increase in surface salinity) in the western GSL and a fresh

wake (a decrease in surface salinity) in the eastern GSL. While

differences in magnitude are observed, the spatial patterns are

consistent across the products. The TB-SSS product, as expected,

shows a more subdued temporal contrast.

The largest increase are seen over the Magdalen Plateau, where

shallow waters were mixed, leading to higher salinity levels. The

aforementioned buoy recorded mixing down to 45 m depth and an

increase of surface salinity of 3 g kg−1 and equal average salinity

between 0 and 45 m before and after the storm, suggesting that
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vertical mixing was responsible for the change. When considering

only the OC-SSS product, it could be inferred that the strong decrease

in salinity in the southeast of Magdalen Plateau is linked to increased

turbidity in these shallow waters, potentially confounding the GMB

algorithm. However, in the TB-SSS product, which operates in a

different spectral domain and uses a different underlying principle to

retrieve salinity, reduced salinity values are also observed.

Figure 7 clearly demonstrates that post-tropical storm Dorian

had a direct impact on the density structure of the upper water

column throughout the GSL. We can speculate that mixing drew

phytoplankton to greater depths while replenishing the illuminated

portion of the water column with nutrients, thereby impacting

primary production (Davis and Yan, 2004; Fuentes-Yaco et al.,

2005; Son et al., 2006). Figure 7 also illustrates the indirect impact of

lagged freshwater runoff following inland flooding and land

drainage, as evidenced by the OC-SSS product showing low-

salinity water masses in the St. Lawrence Estuary and

Northumberland Sound, which will gradually dissipate while

flowing towards Cape Breton. Beyond comparison purposes, this

type of analysis could help assess the impacts of tropical cyclones on

coastal marine ecosystems. Combined with sudden decreases in sea

surface temperature detected from satellite remote sensing,

increases in surface salinity over the same area could be used to

infer mixing depth associated with the passing of a storm.
FIGURE 7

Satellite-derived salinity during Dorian’s passage over the Gulf of St. Lawrence. The upper panels display salinity maps obtained by averaging the OC-
SSS and TB-SSS products over the week before and the week after the event, with the hurricane track overlaid in red (Landsea and Franklin, 2013).
The lower panels show the difference in salinity between these two periods.
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4 Conclusion and perspectives

Reliable estimates from satellite observations can help assess

how well ocean models represent a region and its mesoscale

processes (Meadows, 2009; Le Fouest et al., 2006), or strengthen

existing ocean observation networks by complementing in situ

measurements with additional data on the oceanic state (Dumas

and Gilbert, 2023; Vinogradova et al., 2019). Considering this, we

have evaluated two sea surface salinity (SSS) products retrieved

from two distinct spectral domains over the St. Lawrence Estuary

and Gulf (GSLE). We have chosen the SMAP-JPL product to

represent the microwave-derived salinity (TB-SSS), which

estimates salinity from the algorithm of Fore et al. (2016). Future

research could also explore deriving TB-SSS directly from satellite-

measured brightness temperature values and in situ data, or

incorporating blended microwave datasets such as CCI-SSS

(Boutin et al., 2021). A cross-comparison against other satellite

SSS products could provide additional perspective on large-scale

bias and regional consistency. Our study illustrates that nearshore

and small hydrological features are impossible to detect with the

current generation of salinity satellites and supports the need for

higher spatial resolution satellite sensors (Rodrıǵuez-Fernández

et al., 2024). However, TB-SSS provides an informative view of

the more offshore large-scale circulation with notable temporal

accuracy, as microwaves provide information on the surface even in

cloudy conditions. Conversely, when harnessing ocean color to

obtain sea surface salinity (OC-SSS), key nearshore features can be

resolved, for instance, the density front separating fresher and

saltier surface waters at the boundary of the Gaspé Current (Cyr

and Larouche, 2015; Leclercq et al., 2024). In addition, the two

practical use cases we presented showed that short-lived events are

best represented with this product, and the evaluation metrics

indicated that OC-SSS demonstrates superior performance over

TB-SSS in the GSLE. It follows that the OC-SSS product emerges as

particularly promising for coastal studies. Nevertheless, some

salinity values from OC-SSS were found to be suspicious in the

presence of sea ice, showing incomplete flagging. We also suspect

that a sudden increase in turbidity could lead the algorithm astray.

Although retrieved OC-SSS values after tropical storm Dorian in

2019 were corroborated by the TB-SSS product, which operates on

drastically different principles, it is not a demonstration of

immunity against such stray values. Importantly, the OC-SSS

product accurately reflects the conditions for which it was

trained, but Rrs–SSS relationships are subject to change with

space (e.g., Appendix D) and time (e.g., under climate change).

Across the overlapping spatial region, our findings support the idea

that these two products should be combined, whenever possible, to

mitigate their limitations.

There is a clear need for satellite products that provide

investigators with high-resolution, high-quality data extending

continuously to the shoreline, enabling detailed analysis of coastal

dynamics, notably without gaps in space and time. Now that we

have demonstrated how two contrasting spectral domains each offer

different strengths and limitations yet can retrieve the same key
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variable, SSS, a new question arise: could multivariate

reconstructions (i.e., gap-filling) of the OC-SSS field outperform

univariate approaches? A univariate reconstruction rests on the idea

that nearby locations and adjacent days are similar to the current

time and place, which depends heavily on the relation between the

resolution of the product and the heterogeneity of the studied

variable. Alvera-Azcárate et al. (2007) approached this problem and

argued that complementary variables with some degree of

correlation with the variable of interest should be used to help fill

the gaps. They utilized wind data from the SeaWinds scatterometer

and chlorophyll-a data from Aqua to reconstruct sea surface

temperature (SST) from AVHRR. In our case, we could argue

that the flux of incident shortwaves impacts ocean’s stratification

and that such operational products could be leveraged to improve

the reconstruction of SSS fields. Satellite estimates of incident

shortwaves are obtained in the presence of clouds and thus

increase the amount of information available on the surface in

the absence of OC-SSS estimates. SST could also help in

reconstructing SSS as it can be derived during nighttime, and

because it can be acquired from satellites having different

equatorial crossing times, which again increases the likelihood of

having valid information on the environment close to the desired

time/space. The key challenge here lies in capturing the hard-to-

quantify, dynamically changing relationship between those ancillary

variables and SSS (indirect predictors). Covariance with ancillary

variables may be adequate at basin or seasonal scales, but might not

work as effectively at finer resolution and in coastal areas where

complex submesoscale processes make SSS highly heterogeneous.

We believe that in future efforts, gap-free salinity estimates from

ocean color remote sensing should be guided by the same variable

(direct predictor) estimated from independently derived salinity

fields obtained through microwave remote sensing with different

inherent constraints, having in principle a correlation level that

should be approaching unity. Despite having a coarser spatial

resolution (requiring a degree of downscaling), the contribution

of the microwave spectral domain ensures the missing data never

persists in time, preserving a lower degree of uncertainties over that

dimension. The applicability of that direct predictor would be

limited to coastal areas with large estuary influence such as those

presented in Figure 1; yet, these marine systems are arguably among

the most ecologically and economically important worldwide. This

innovative approach would likely outperform single products, or

conventional interpolation techniques reliant on a single spectral

domain, thereby enhancing the quantity and reliability of the

resulting salinity assessment.
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Boivin-Rioux, A., Starr, M., Chassé, J., Scarratt, M., Perrie, W., and Long, Z. (2021).
Predicting the effects of climate change on the occurrence of the toxic dinoflagellate
Alexandrium catenella along Canada’s east coast. Front. Mar. Sci 7, 608021.
doi: 10.3389/fmars.2020.608021
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Martinez, J. (2021). Using remotely sensed sea surface salinity and colored detrital
matter to characterize freshened surface layers in the Kara and Laptev seas during the
ice-free season. Remote Sens. 13, 3828. doi: 10.3390/rs13193828

Urquhart, E. A., Zaitchik, B. F., Hoffman, M. J., Guikema, S. D., and Geiger, E. F.
(2012). Remotely sensed estimates of surface salinity in the Chesapeake Bay: A
statistical approach. Remote Sens. Environ. 123, 522–531. doi: 10.1016/j.rse.2012.04.008

Vinogradova, N., Lee, T., Boutin, J., Drushka, K., Fournier, S., Sabia, R., et al. (2019).
Satellite salinity observing system: Recent discoveries and the way forward. Front. Mar.
Sci 6, 243. doi: 10.3389/fmars.2019.00243

Vinogradova, N. T., and Ponte, R. M. (2017). In search of fingerprints of the recent
intensification of the ocean water cycle. J. Climate 30, 5513–5528. doi: 10.1175/JCLI-D-
16-0626.1

Werdell, P. J., Bailey, S. W., Franz, B. A., Harding, L. W. Jr., Feldman, G. C., and
McClain, C. R. (2009). Regional and seasonal variability of chlorophyll-a in Chesapeake
Bay as observed by SeaWiFS andMODIS-Aqua. Remote Sens. Environ. 113, 1319–1330.
doi: 10.1016/j.rse.2009.02.012
frontiersin.org

https://doi.org/10.1002/2015RS005776
https://doi.org/10.1016/j.rsma.2023.103325
https://doi.org/10.1016/j.jmarsys.2005.11.008
https://doi.org/10.1126/sciadv.adq7856
https://doi.org/10.1016/j.scitotenv.2017.07.076
https://doi.org/10.3389/frsen.2022.938006
https://doi.org/10.3389/frsen.2022.938006
https://doi.org/10.3390/rs13245120
https://doi.org/10.3390/rs10071121
https://doi.org/10.3390/rs12030447
https://doi.org/10.1080/07055900.1990.9649376
https://doi.org/10.1080/07055900.1990.9649376
https://doi.org/10.1016/j.rse.2019.111366
https://doi.org/10.1016/j.csr.2009.11.015
https://doi.org/10.1038/274782a0
https://doi.org/10.1038/274782a0
https://doi.org/10.1007/s10712-023-09778-9
https://github.com/r-dbi/rsqlite
https://doi.org/10.5067/SMP50-2TOCS
https://doi.org/10.1016/S0278-4343(96)00034-9
https://doi.org/10.1016/j.csr.2013.03.005
https://doi.org/10.1002/lol2.10242
https://doi.org/10.5194/essd-2020-232
https://doi.org/10.5194/essd-2020-232
https://doi.org/10.1038/s41598-022-10265-1
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1038/423398b
https://doi.org/10.1093/icesjms/fst023
https://doi.org/10.1016/j.rse.2013.04.016
https://doi.org/10.3390/s19194285
https://doi.org/10.3390/s19194285
https://doi.org/10.1357/0022240973224445
https://doi.org/10.1029/2022JC019084
https://doi.org/10.1175/1520-0485(2001)031%3C3146:DOABDC%3E2.0.CO;2
https://doi.org/10.1080/01431161.2023.2255355
https://doi.org/10.1029/2005GL025065
https://doi.org/10.1038/s41467-018-02983-w
https://doi.org/10.3390/rs11070775
https://doi.org/10.1016/j.rse.2020.112027
https://doi.org/10.3390/rs14061418
https://doi.org/10.3390/rs13193828
https://doi.org/10.1016/j.rse.2012.04.008
https://doi.org/10.3389/fmars.2019.00243
https://doi.org/10.1175/JCLI-D-16-0626.1
https://doi.org/10.1175/JCLI-D-16-0626.1
https://doi.org/10.1016/j.rse.2009.02.012
https://doi.org/10.3389/fmars.2025.1672298
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
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