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Introduction: Underwater acoustic (UWA) communication systems confront

significant challenges due to the unique, dynamic, and unpredictable nature of

acoustic channels, which are impacted by low signal-to-noise ratio (SNR), severe

multipath propagation, latency, Doppler spread, and a shortage of real-world

data. Orthogonal frequency division multiplexing (OFDM) is essential for

establishing resilient and reliable data transmission in these challenging

environments, but accurate channel estimation remains a critical barrier to

unlocking its full potential—especially given the limitations of conventional

estimation methods in adapting to UWA channel dynamics.

Methods: This work introduces a Convolution-Recurrent Neural Network (CRNet)

estimator integrated with dynamic signal decomposition (DSD) techniques (e.g.,

Local Mean Decomposition, LMD; Empirical Mode Decomposition, EMD) to

estimate UWA-OFDM channel characteristics and mitigate noise-induced

distortions in received signals. The CRNet architecture combines convolutional

layers (to capture spatial features) and recurrent layers (to model temporal

dependencies), enabling it to learn complex UWA channel dynamics. The model

is trained using paired data: received pilot symbols, transmitted pilots, and

accurate channel impulse responses (CIR). Post-training, CRNet operates using

only the received signal as input, eliminating the need for supplementary channel

characteristics like SNR. To ensure real-world relevance, training and testing

datasets are generated via the Bellhop ray-tracing model, which simulates

diverse UWA environments (shallow coastal and continental shelf).

Results: Numerical findings demonstrate that the proposed CRNet model

consistently outperforms benchmark methods—including least squares (LS),

minimal mean square error (MMSE), and backpropagation neural network

(BPNN)—across key metrics: bit error rate (BER), amplitude error, and phase
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error. CRNet exhibits superior performance with QPSK modulation compared to

QAM, and maintains robustness even with a small number of pilot symbols.

Performance evaluations on both training and unseen datasets confirm its

resilience and flexibility in demanding UWA environments, validating its ability

to generalize to dynamic channel conditions beyond training scenarios.

Discussion: The CRNet estimator addresses critical limitations of conventional

UWA-OFDM channel estimation methods: its dual focus on spatial and temporal

features (via convolutional-recurrent layers) overcomes the static linear

constraints of LS/MMSE, while DSD-driven noise mitigation enhances input

signal quality for more accurate estimation. By eliminating reliance on post-

training supplementary channel data (e.g., SNR), CRNet simplifies real-world

deployment. Its superior BER performance and adaptability to diverse UWA

environments (shallow coastal, continental shelf) position it as a robust solution

for improving the reliability and efficiency of UWA communication systems.
KEYWORDS

channel estimation, neural network, dynamic signal decomposition, orthogonal
frequency division multiplexing, underwater acoustic communication
1 Introduction

UWA communication channels are widely recognized as some

of the most complex and challenging environments for data

transmission. Unlike typical terrestrial wireless channels, UWA

communication is significantly affected by a range of

environmental conditions such as variations in temperature,

salinity, and pressure, as well as limited available bandwidth,

multipath propagation, Doppler shifts, signal attenuation, and

ambient ocean noise Stojanovic and Preisig (2009). These adverse

conditions impose stringent demands on the design of reliable and

efficient communication systems. The growing need for underwater

wireless communication systems driven by applications like

environmental monitoring, search-and-rescue operations, and

deep-sea exploration has highlighted these challenges Preisig

(2007). Acoustic wave propagation in water is inherently slow

and suffers from high transmission losses. The foundational

experimental and theoretical research conducted by Deng et al.

Deng et al. (2023) on underwater sound emission from elastic

Mindlin plates provided insight into the impact of boundary

reflections and material interactions on acoustic propagation.

These findings provide a crucial physical basis for understanding

the distortions caused by multipath and reflection in UWA-OFDM

systems. Furthermore, the presence of reflections from the ocean

surface and seabed leads to multiple delayed signal paths,

contributing to inter-symbol interference. This delay sensitivity,

combined with Doppler-induced frequency shifts, makes the UWA

channel highly dynamic and doubly selective in both time and

frequency domains Stojanovic (2003). Achieving reliable

communication underwater is substantially more difficult than in

radio-frequency-based terrestrial systems. Under extremely SNR
02
conditions, signals in UWA communication systems become

significantly attenuated, posing serious reliability issues. To

address this challenge, multicarrier transmission methods

particularly OFDM, have gained attention for enhancing

transmission robustness in such adverse environments Zhang

et al. (2022b). A common variant, OFDM with cyclic prefix (CP),

is especially advantageous in underwater environment Khan et al.

(2020) due to its ability to handle severe multipath propagation. CP-

OFDM not only mitigates inter-symbol interference (ISI) but also

enables efficient spectrum utilization and supports cost-effective

transceiver designs. OFDM has become increasingly adopted in

UWA systems for its capacity to counteract the effects of multipath

fading and delay spread. By dividing the overall channel bandwidth

into numerous orthogonal narrowband subcarriers, OFDM allows

each subcarrier to be modulated using conventional schemes at

lower data rates. This approach maintains the overall data

throughput comparable to a single-carrier system while offering

improved resistance to channel impairments Zhang et al. (2019).

OFDM provides both high-speed transmission and enhanced

spectral efficiency, making it a compelling solution for reliable

communication in complex UWA channels.

Accurate channel estimation Khan et al. (2020) is fundamental for

ensuring reliable communication in UWA systems. Since the receiver

must possess precise channel state information (CSI) to decode

transmitted signals effectively, pilot-assisted estimation techniques

are commonly employed. In this method, a set of known pilot

symbols is transmitted alongside data-bearing subcarriers, enabling

the receiver to infer the channel’s characteristics and improve signal

detection reliability Murad et al. (2021).

In UWA-OFDM systems, the transmitted signal undergoes

significant distortion due to multipath propagation, making it
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essential to estimate the CIR accurately. Pilot symbols, known in

advance to the receiver, provide the necessary reference for

estimating the CIR using algorithms such as LS and MMSE Khan

et al. (2020). While the LS estimator is straightforward and widely

used, it often suffers from limited accuracy. Conversely, the MMSE

estimator offers improved performance by minimizing the mean

squared error, but it requires prior knowledge of the channel

statistics Jiang et al. (2019) and involves higher computational

complexity, which can hinder its practical deployment.

In recent years, deep neural networks (DNNs) have

demonstrated considerable potential across various domains

Zhang et al. (2022a), including wireless communication. Applied

to channel estimation, DNN based approaches aim to learn the

nonlinear mapping between received signals and channel

parameters. However, their application in UWA environments

remains limited due to challenges such as overfitting and poor

generalization capabilities. Similar deep learning based inverse

modeling has been effectively utilized for subsurface imaging

tasks; for instance, Lei et al. Lei et al. (2024) combined reverse

time migration with neural architectures to enhance localization

precision in complex underwater environments, offering significant

advantages for UWA channel reconstruction. These limitations

primarily stem from the scarcity of real-world underwater Zhang

et al. (2022b) channel data required to train complex deep learning

models effectively. Without sufficient training data that accurately

reflects real UWA conditions, models are prone to underperform

when exposed to new or dynamic scenarios. Therefore, developing

methods to generate or simulate diverse channel conditions is

essential to improve the training process and enhance model

robustness for underwater applications.

The main Contributions of paper are listed as follows:

This research presents a CRNet model for channel estimation in

UWA-OFDM systems. The suggested method is designed to

address intricate and fluctuating underwater channel conditions,

including nonlinear distortions and environmental interferences.

Before estimation, DSD methods are applied on the incoming

signals to significantly reduce noise and improve the quality of

the input for the neural network. The suggested CRNet model is

trained on representative data to comprehend the fundamental

attributes of UWAmultipath channels. Comprehensive simulations

are conducted to evaluate the efficacy of the proposed model across

various modulation methods. The performance of BER in relation

to SNR is specifically examined among standard estimators LS,

MMSE, and BPNN, alongside the novel CRNet method using QAM

and QPSK modulation techniques in two different underwater

environments i.e. Shallow coastal and Shelf continental channels.

The main contributions of this paper are summarized as follows:
Fron
1. We have introduced a CRNet estimator for channel

estimation in UWA OFDM systems. By combining

convolutional and recurrent layers, the model effectively

captures both spatial characteristics and temporal

relationships inherent in the received signal. This dual

capacity facilitates a more thorough comprehension of

the intricate and dynamic characteristics of UWA
tiers in Marine Science 03
channels. The suggested methodology has robust

estimating capabilities, even under difficult circumstances,

and provides a substantial enhancement compared to

conventional techniques. Additionally, we provide a

theoretical explanation and establish a mathematical

framework to characterize the performance and

e ff e c t i v ene s s o f the CRNet mode l f o r UWA

channel estimation.

2. We employ dynamic signal decomposition techniques

including Local Mean Decomposition (LMD) and

Empirical Mode Decomposition (EMD) on the received

signals to suppress noise and isolate meaningful signal

components. These techniques enhance the overall

quality of the input fed into the neural network, thereby

improving the robustness and accuracy of the channel

estimation process. Theoretical foundations and

mathematical modeling are also provided to support the

proposed methodology and demonstrate its effectiveness in

challenging underwater environments.

3. In order to generate the training and testing datasets, we

replicate the UWA communication environments using the

Bellhop ray tracing model that enables us to include a broad

spectrum of channel conditions exhibiting the multipaths

propagation and complexities characteristic of underwater

environments. We conduct thorough experiments to

evaluate the performances of QPSK and QAM

modulation schemes inside the CRNet-based estimation

framework. Additionally, we evaluate our proposed

estimator against traditional channel estimate techniques,

namely LS, MMSE, and BPNN, across the two specified

bellhop channels—Shallow Coastal and Continental Shelf

across range of SNRs for robustness and versatility in our

analysis. The findings clearly demonstrate the improved

performance of our technique in several metrics, including

estimate accuracy, enhancement of BER with fewer pilots,

and adaptation to diverse modulation schemes and channel

conditions in difficult UWA environments.
The rest of this article is structured as follows. In Section 1.1, we

provide a thorough examination of the related works. Section 2

provides a detailed description of the proposed approach. The

simulation setups are presented in Section 3. Section 4 presents

results and discussions. Ultimately, Section 5 concludes this article.
1.1 Related works

This section presents a detailed review of existing literature

focused on supervised learning-based channel estimation and pilot-

assisted techniques, along with dynamic signal decomposition

techniques providing the necessary context and alignment with

the methodological direction of our proposed approach. To ensure

reliability and fidelity inside underwater devices accurate UW

channel estimation is very important the author in Zhang et al.

(2022c) proposed a channel estimation techniques in
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communication systems which are generally categorized into three

main approaches. The first is pilot-assisted estimation, where

known pilot symbols are transmitted alongside data subcarriers to

facilitate channel state information (CSI) recovery Jiang et al.

(2019). The second approach, blind estimation, eliminates the

need for pilots and instead relies on the statistical properties of

the received signals to estimate the channel. The third, known as

semiblind estimation, combines elements of both methods by using

partial knowledge of the transmitted data along with statistical

characteristics to infer the channel. For instance, the author in

Murad et al. (2021) proposed pilot-assisted schemes, in which pilot

symbol placement typically follows two configurations: comb-type

and block-type. In the comb-type configuration, pilot symbols are

regularly spaced throughout the frequency domain, allowing

continuous tracking of channel variations and facilitating

synchronization. In contrast, block-type pilots in Jiang et al.

(2019) are placed on specific subcarriers within dedicated OFDM

symbols, making them especially effective in handling frequency-

selective fading. Each configuration offers unique advantages

depending on the channel conditions and system requirements.

Enhancing the performance of underwater communication systems

relies heavily on advanced signal processing techniques. In addition,

the author in Jiang et al. (2019) investigated a range of methods,

including effective channel estimation algorithms and modulation

schemes specifically tailored for UWA environments. Furthermore,

the work in Kari et al. (2017) introduced a new set of adaptive

robust channel estimators specifically designed for underwater

acoustic multipath channels. The objective is to address the

unique issues posed by this environment, such as non-stationarity

and impulsive noise. In order to tackle these problems, the authors

used adaptive filtering approaches that revolve upon a logarithmic

cost function. This approach aims to improve the speed of

convergence and stability, particularly in scenarios where

impulsive noise is present. Unlike DL-based approaches, the

study in Farzamnia et al. (2017) focused on the simulation of

block-type channel estimation algorithms in multipath fading

environments. It also proposed a sparse channel estimation

technique based on the LS method, demonstrating improved

estimation performance. The authors recommended extending

this work by evaluating OFDM systems with multiple users under

the LS-based sparse estimation framework. Similarly, in Chen et al.

(2010), LS was employed for channel estimation, where the channel

frequency response of pilot symbols was used to adjust subsequent

data symbols through a weighted averaging mechanism.

In Liu et al. (2021a) the issue of severe multipath fading in

UWA OFDM systems was addressed by the authors, which is

primarily caused by significant propagation delays and reflections

from the seabed. These conditions can result in outdated CSI and

reduced estimation accuracy. To mitigate this, the authors proposed

the CsiPreNet model a hybrid framework combining CNN and

LSTM architectures to improve CSI prediction and enhance the

reliability of channel estimation in such environments. In the

context of MIMO-OFDM channel estimation. Moreover, the

authors in Jiang et al. (2019) highlighted the critical role of

accurate CSI acquisition. By utilizing received pilot symbols and
Frontiers in Marine Science 04
CIR, deep learning models were trained for this task. The proposed

methods demonstrated improved performance over LS and

backpropagation-based neural networks in terms of BER and

normalized mean square error, showing results comparable to the

MMSE approach. However, when constrained by shallow network

depth, the DNN models exhibited lower estimation accuracy but

offered advantages in memory efficiency and computation speed. To

overcome the limitations in conventional OFDM channel

estimation techniques, recently DL has brought transformative

improvements to communication systems, particularly in OFDM,

where conventional models struggle to handle channel

complexities. The author in Bithas et al. (2019) highlighted the

application of DL techniques to enhance system performance under

challenging conditions. Notably, architectures such as CNNs and

LSTM networks have emerged as prominent tools for tackling the

unique difficulties posed by UWA channels. In a related

communication domain, Yao et al. Yao et al. (2023) enhanced

OFDM based automobile radar systems functioning in spectrally

crowded vehicle situations. Their optimization methodology

reduced interference and enhanced spectral efficiency issues that

are logically comparable to underwater OFDM channels, where

multipath effects and bandwidth limitations equally limit reliable

data transmission.

In Ye et al. (2017) the authors introduced a deep learning-based

approach for channel estimation and symbol detection in an OFDM

system. To tackle the problems in conventional methods for

channel estimation and symbol detection that are not robust

enough to handle wireless channels in severe distortion and

interference. The proposed solution is to train a deep learning

model offline using simulated data that views OFDM and wireless

channels as black boxes. The methodology involves analyzing the

impact of variations in channel model statistics during training and

deployment stages and comparing the performance of the DL-based

approach with traditional methods. The results show that the deep

learning-based approach is more robust and can detect transmitted

symbols with performance comparable to the minimum

MSE estimator.

In addition to, the authors in Ling et al. (2009) examined the

fundamental elements of MIMO systems in the context of UWA

communications, with a specific emphasis on channel estimates and

signal identification. The research proposed a novel method for

improving channel estimation by proposing a cyclic strategy for

generating training sequences. Additionally, the paper presents the

Iterative Adaptive Strategy (IAA) algorithm, which, when

combined with the Bayesian Information Criterion (BIC), may

produce sparse channel estimates. Furthermore, the integration of

the RELAX algorithm serves to boost the performance. The results

showcased the propposed system ability to achieve low bit error

rates at different payload data speeds in underwater conditions that

are characterized by delay spread.

In MIMO-OFDM communication, where standard estimate

techniques are computationally difficult and scale poorly, accurate

CSI collection is crucial for multi-antenna system performance.

Researchers are increasingly using DL to overcome these

constraints. For instance, Balevi and Gitlin in Balevi et al. (2020)
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https://doi.org/10.3389/fmars.2025.1671853
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jan et al. 10.3389/fmars.2025.1671853
developed a scalable deep learning architecture for estimatingmassive

MIMO channels, achieving higher performance in high-dimensional

antenna systems with manageable complexity. Additionally, in Qiao

et al. (2019) the authors did a thorough performance and complexity

study of MIMO-OFDM channel estimation methods, including

classical and learning-based approaches, revealing trade-offs.

Furthermore, in Lu et al. (2020) authors developed an end-to-end

framework for channel categorization, estimation, and signal

detection, improving system efficiency and flexibility in dynamic

contexts. However, in Tabata et al. (2020) the authors have created an

offline-trained DNN-based model for underwater environment

classification, enhancing channel estimation accuracy by adapting

to UWA channel propagation characteristics. These contributions

demonstrate that deep learningmay increase estimation accuracy and

allow integrated and scalable solutions for complicated

communication settings.

An adaptive denoising method was also proposed in Cho and

Ko (2020), using dual pilot sets, one for CIR estimation and the

other for optimal window selection, showing superior accuracy in

time-varying UWA channels, particularly at low SNRs. Other

efforts in Li et al. (2020) explored blind and semiblind estimation

strategies to reduce complexity and improve spectral efficiency. To

tackle high PAPR and computational cost in UWA OFDM, an M-

ary spread spectrum model using LSTM was introduced in Qiao

et al. (2022) and validated through both simulations and

experimental setups. Additionally, the authors in Raza et al.

(2021) addressed nonlinear distortion in UWA OFDM by

employing DNNs to suppress such effects while reducing PAPR.

A DL-based receiver was proposed in Zhang et al. (2019) that

bypasses explicit channel estimation and equalization, simplifying

the overall processing in UWA OFDM systems.

Various denoising techniques have been proposed in recent

literature to enhance the quality of UWA signals, which are often

degraded by non-stationary and nonlinear noise sources such as

wind, marine life, and ship machinery. EMD combined with

frequency-domain thresholding has been shown effective in

isolating intrinsic mode functions (IMFs) and reducing ambient

noise in Veeraiyan et al. (2013). Advanced approaches integrate

signal decomposition with machine learning models for instance,

Correlation-based Variational Mode Decomposition (CVMD)

coupled with Least Squares Support Vector Machine (LSSVM)

and Gaussian Process Regression (GPR) improves prediction and

denoising by adaptively selecting decomposition parameters as

proposed in Yang et al. (2020a). Additionally, in Yang et al.

(2020b) a hybrid framework like MIVMD-mvMDE-LWTD-SG

leverages mutual information-based VMD multiscale entropy,

and wavelet-based filtering was proposed to handle complex,

chaotic, and ship-radiated noise components more effectively.
1.2 Research motivation

In the above discussion, we noticed that UWA communication

faces significant challenges such as low SNR, high computational

complexity, and the reliance on accurate CSI. LS estimation remains
Frontiers in Marine Science 05
computationally simple but is highly sensitive to noise, particularly in

low-SNR environments. MMSE estimation improves performance

but demands precise knowledge of channel and noise statistics Jiang

et al. (2019); Khan et al. (2020); Zhang et al. (2022a), which is difficult

to obtain in underwater settings. Alternatively, BPNN offers

robustness by learning nonlinear channel characteristics and has

demonstrated improved accuracy over classical approaches.

However, their effectiveness is limited by training complexity, risk

of overfitting, and sensitivity to changing environments. This study

compares LS, MMSE, and BPNN with a proposed model, aiming to

enhance channel estimation along with dynamic signal

decomposition to reduce BER in dynamic UWA conditions.
2 Proposed methodology

The methodology of the suggested system model is explained in

the following subsections.

A schematic of the UWA-OFDM system Chen et al. (2017);

Wang et al. (2017); Jiang et al. (2019) is shown in Figure 1. The

system starts with the generation of a binary data stream, to which

pilot tones are added for CIR estimation. The data is encoded with

quadrature amplitude modulation (QAM). An Inverse Fast Fourier

Transform (IFFT) is then employed to convert the modulated data

from the frequency domain to the time domain across N orthogonal

subcarriers as in Equation 1. The resultant time-domain signal x(n)

is derived from the frequency-domain components X(k), as

specified in Jiang et al. (2019):

x(n) = IFFT X(k)f g =
1
N o

N−1

k=0

X(k)ej
2pnk
N , n = 0,…,N − 1 (1)

Following the IFFT operation, the resulting N parallel

subcarriers are serialized, and a cyclic prefix is appended as in

Equation 2 to each OFDM symbol to mitigate ISI. The resulting

time-domain transmit signal with the cyclic prefix can be expressed

as Jiang et al. (2019):

xg(n) =
x(N + n), n = −Ng ,−Ng + 1,…,−1

x(n), n = 0, 1,…,N − 1

(
(2)

Here, Ng denotes the length of the cyclic denotes the length of

the cyclic prefix. This implies that the last Ng samples of the OFDM

symbol xg(n) are duplicated and prepended to form the extended

signal resulting in a total symbol length of N + Ng. After

transmission through the UWA channel, the received signal yg(n)

as in Equation 3 can be expressed as Jiang et al. (2019):

yg(n) = xg(n)⊗ h(n) + w(n),  − Ng ≤ n ≤ N − 1 (3)

Here, the operator ⊛ denotes circular convolution and w(n)

represents additive white Gaussian noise (AWGN) with zero mean.

The term h(n) refers to the channel impulse response as in Equation

4, which is defined as Jiang et al. (2019):

h(n) =o
r−1

i=0
hid (n − ti) (4)
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In this context, s(n) denotes the unit impulse function, r is the

total number of multipath components, and h and ti represent the
complex gain and time delay associated with the ith path,

respectively. At the receiver side, the cyclic prefix is removed as

in Figure 1 and the resulting time-domain signal y(n) is transformed

into the frequency domain using the Fast Fourier Transform (FFT)

as in as in Equation 5, as expressed by the following equation Jiang

et al. (2019):

Y(k) = FFT y(n)f g =
1
N o

N−1

n=0
y(n)e−j

2pnk
N , k = 0,   1,…, N − 1 (5)

Hence, if the ISI is reduced fully, the received signal as in

Equation 6 may be expressed as Jiang et al. (2019):

Y(k) = X(k)H(k) +W(k), k = 0,   1,…,N − 1 (6)

The frequency-domain representations of the CIR h(n) and

noise w(n) are given by H(k) and W(k), respectively. In an UWA

communication system, the relationship between the transmitted

and received signals is effectively captured using these frequency-

domain components.
2.1 Proposed model for underwater
acoustic channel estimation

In this subsection, we present our CRNet approach for accurate

estimation of UWA channels. The proposed model architecture
Frontiers in Marine Science 06
consists of an input layer, followed by a sequence of convolutional

layers to capture local spatial features and recurrent layers to model

temporal dependencies inherent in the channel and fully connected

dense layer to capture complex channel gain, culminating in a fully

connected output layer for channel response prediction.
2.1.1 Network architecture
The architecture of the proposed CRNet model is tailored to

estimate complex channel gains for each subcarrier in an OFDM-

based UW communication system. The model integrates the

following key components:

Initially, The model is trained with received symbols Y (K)

along with transmitted pilot symbols Xp(k) in a pair, and the label

would be the corresponding CIR. The suggested model structure for

OFDM channel estimation has multiple layers intended for

mapping the input data with their corresponding output. The

model starts with an input layer that receive a pair of data. After

that, there are two Conv1D layers, each consisting of 64 filters, a

kernel size of 3, and ReLU activation functions. The purpose of

these convolutional layers is to capture spatial dependencies within

the input data. Subsequently, two LSTM layers are utilized; the

initial LSTM layer comprises 64 units and generates sequences,

enabling it to effectively handle the temporal characteristics of the

data across all samples. The second LSTM layer is also composed of

64 units, it essentially condenses and summarizes the temporal

information that was learned from the prior layer. After the LSTM

layers, a Dense layer is included to further process the data. This
FIGURE 1

Proposed system model architecture.
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Dense layer consists of 128 units. The Proposed model architecture

consists of a combination of convolutional and recurrent layers,

which allows it to successfully learn and represent the intricate

relationships found in UWA-OFDM channel estimation.

The first 1D convolution layer having W(1)
i ∈ RK�C be the

kernel for the i-th filter. The convolution operation at time t is given

by as in Equation 7:

z(1)t ½i� = o
K−1

j=0
o
C−1

k=0

W(1)
i ½j, k� · xt+j−k½k� + b(1)i (7)

Where: W(1)
i ∈ RK�C is the convolutional kernel of size K for

the i-th filter, xt+j−k[k] is the k-th channel (real or imaginary) at

position t + j − k, b(1)i ∈ R is the bias term, z(1)t ½i� is the pre-

activation output at time t for filter i.

Furthermore, ReLU activation layer as in Equation 8 applied to

introduce non-linearity using element wise operation to the output of

previous convolutional layer, having output shape as in Equation 9.

a(1)t ½i� = max (0, z(1)t ½i�) (8)

A(1) ∈ RT�F1 (9)

Where F1 as in Equation 12 is the number of filters (i.e., feature

maps) learned in this layer. These features help extract local

multipath patterns in the UWA channel.

Following the first 1D Conv layer, second and 1D convolution

layer as in Equation 10 takes A(1) as input and applies filtersW(2)
i ∈

RK�F1 for each i-th filter as follows:

z(2)t ½i� = o
K−1

j=0
o
F1−1

k=0

W(2)
i ½j, k� · a(1)t+j−k½k� + b(2)i (10)

Here, W(2)
i ∈ RK�F1 are learned weights for the second

convolutional layer, a(1)t+j−k½k� is the output of the first layer at

offset t + j − k, b(2)i is the bias for the i-th filter.

Moreover, output of the previous convolutional layer exhibit an

element wise ReLU activation function layer as Equation 11:

a(2)t ½i� = max(0, z(2)t ½i�) (11)

A(2) ∈ RT�F2 (12)

Where F2 as in Equation 12 is the number of filters in this layer.

This step refines the receptive field, enhancing temporal resolution

for channel fluctuations.

Following convolutional layers, 1st LSTM layer processes the

sequence a(2)t ∈ RF2 at each time step t, computing the hidden state

ht ∈ RH using the standard LSTM Equation 13:

ft = s (Wf ½ht−1, a(2)t � + bf )

it = s (Wi½ht−1, a(2)t � + bi)

~ct = tanh(Wc½ht−1, a(2)t � + bc)

ct = ft ⊙ ct−1 + it ⊙~ct
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ot = s (Wo½ht−1, a(2)t � + bo)

ht = ot ⊙ tanh(ct) (13)

Here: a(2)t ∈ RF2 is the current input vector from Conv2, ht−1 ∈
RH   is the previous hidden state, ct is the memory cell, ȯ is element-

wise multiplication, s(·) is the sigmoid activation, W∗, b∗ are

learned weights and biases. The LSTM captures long-term

dependencies due to delayed multipath propagation common in

underwater environments.

After that the second LSTM layer condenses the sequence into a

fixed-size vector as in Equation 14:

hfinal = hT ∈ RH (14)

It outputs only the last hidden state, which summarizes the

entire received OFDM frame. Following second LSTM layer, a fully

connected dense layer maps the final LSTM output to predicted

time-domain channel coefficients as in Equation 15:

zdense = Wdense · hfinal + bdense, zdense ∈ RN·C (15)

Where: Wdense ∈ R(N·C)�H is the dense layer weight, and N is

the number of subcarriers, C = 2 for real and imaginary

output parts.

The final layer of the network is called the output layer, which

give us channel estimates of CRNet model. In the OFDM

framework, each output neuron is associated with an individual

subcarrier, enabling the network to estimate the corresponding

complex channel coefficient. This layer generates the output as in

Equation 16 by computing:

ĥ i = o
D

d=1

W(r)
i,d + jW(i)

i,d

� �
hfinald + b(r)i + jb(i)i ,  i = 1,…,N (16)

Where:
• ĥ i is the estimated complex channel coefficient for the i-

th subcarrier.

• hfinald is the d-th element of the LSTM’s final hidden state.

• W(r)
i,d ,W

(i)
i,d are the weights of the dense layer for the real and

imaginary parts, respectively.

• b(r)i , b(i)i are the bias terms for the real and imaginary parts.

• D denotes the dimensionality of the LSTM hidden output.

• N is the total number of subcarriers in the OFDM system.
The network output delivers the estimated channel impulse

response for specified subcarriers.
2.1.2 Model training process
The CRNet model is trained using a supervised learning

approach, where each training instance consists of an input-

output pair. The input includes both the received OFDM signals

and their corresponding pilot symbols, while the output represents

the true channel characteristics. During training, the model

iteratively updates its internal parameters such as weights and

biases to accurately map the input data to the desired channel
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responses. The overall functionality and processing pipeline of the

CRNet framework are illustrated in Figure 1 and formally described

in Algorithm 1 for clarity and reproducibility.
Fron
1: Initialize the CRNet model: input layer, hidden

layers, and output layer.

2: Feed OFDM symbols Y (k) and pilot symbols Xp(k)

as input.

3: Add first 1D convolutional layer: apply F1 filters

of size 3 × 3.

4: for each filter i ∈ [1,F1] and time step t ∈ [1,T] do

5: Compute pre-activation output z(1)
t ½i� using

Equation 7.

6: Apply ReLU activation to obtain a(1)
t ½i� using

Equation 8.

7: end for

8: Add second 1D convolutional layer: apply F2 filters

of size 3 × 3.

9: for each filter i ∈ [1,F2] and time step t ∈ [1,T] do

10: Compute pre-activation output z(2)
t ½i� using

Equation 10.

11: Apply ReLU activation to obtain a(2)
t ½i� using

Equation 11.

12: end for

13: Add first LSTM layer: return full sequence of

hidden states ht ∈ Rd.

14: for each time step t ∈ [1,T] do

15: Compute LSTM operations ft ,it , ~ct ,ct ,ot , ht using

Equation 13.

16: end for

17: Add second LSTM layer to obtain final hidden

state hfinal.

18: Compute dense layer output zdense ∈ RN·C using

Equation 15.

19: for each subcarrier k ∈ [1,N] do

20: Construct complex channel estimate ĥ i using

Equation 16.

21: end for
Algorithm 1. CRNet-based channel estimation for UWA-OFDM.
2.1.3 Data generation and training parameters
The dataset used for training and testing the CRNet model was

generated using the Bellhop ray-tracing model, which mimics

sound propagation in dynamic underwater environments. To

accurately depict the spatial variability of the marine

environment, several critical parameters were modified across

various simulation combinations as illustrated in Table 1,

including sound speed (1500–1550 m s−1), bottom absorption (1–

10 dB per wavelength), bottom density (1000–3000 kg m−3), seabed

roughness (0.01–0.1), transmitter depths (0–20 m) and receiver

depths (0–15 m), acoustic frequencies (10–9500 Hz), angles (−80–

80°), and receiver range (1–1000 m). These variations illustrate a

range of underwater topographies from shallow coastal areas to
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continental shelf environments, capturing temporal dynamics of

UWA channels such as Doppler shifts, delays, and multipath

propagation. Both shallow-coastal and continental shelf channel

data sets, generated through the Bellhop ray-tracing simulation,

comprises 6,000 samples collected during the simulation phase. The

input shape for each training sample of the received signal is (Nt,

Nfft, num) = (1152, 1024, 10). Nt represents the quantity of samples,

Nfft denotes the received signal as input features, and num indicates

the number of iterations.

To accurately represent the spatial variability present in real

marine environments, the Bellhop model is further adjusted to

simulate both horizontal and vertical gradients in environmental

characteristics: vertical sound speed profiles (SSPs) integrate depth

dependent temperature gradients (5–25 °C) and salinity levels (30–

35 ppt), with shallow coastal areas displaying a surface duct (an

increase in sound speed with depth up to 10m) and Continental

shelf conditions characterized by a sound channel (minimum sound

speed at depths of 50–100 m); the seabed is depicted as a spatially

heterogeneous medium, with transitions between sand (near shore)

and silt (continental shelves) occurring at random horizontal

intervals (50–200 m); horizontal ambient noise gradients also

fluctuate, with near shore regions incorporating ship noise

contributions (10–20 dB higher at 1–5 kHz) continental shelf

areas mainly influenced by both marine life noise and ships

(peaking at 10–100 Hz). These modifications ensure the model

capacity to generalize across diverse underwater scenarios,

reflecting the dynamic attributes of the aquatic environment.

The CRNet model was optimized utilizing the Adam optimizer

with a learning rate of 1 × 10−3, a batch size of 64 over 100 epochs,

an 80%/20% training/validation split, dropout regularization set at

0.2, ReLU activation in hidden layers, performance evaluation every

30 steps, and early stopping with a patience of 5 epochs to guarantee

convergence. Table 2 provide combination of these options for

CRNet Model ensuring comprehensive set of training data

representing real world UW channel complexities such as

temperature gradients, salinity fluctuations, and seabed structure

enhances the CRNet model robustness across varied environmental
TABLE 1 Underwater acoustic channel parameter ranges.

Feature Range

Bottom absorption 1–10 dB/wavelength

Bottom density 1000–3000 kg/m3

Bottom roughness 0.01–0.1

Sound speed 1500–1550 m/s

Frequency of waves/acoustic signal 10–9500 Hz

Minimum–Maximum angle −80° to 80°

Water depth 1–5000 m

Number of beams (n-Beams) 1–950

Receiver depth 0–15 m

Receiver range
Transmitter depth: 0–20 m

1–1000 m
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conditions, allowing it to effectively learn and predict UWA channel

responses, reduce pilot workload, and maintain reliable

communication even in adverse underwater propagation scenarios.
2.2 Channel equalization via convolution-
recurrent network estimates

The channel equalization technique is essential for mitigating

the distortion caused by the underwater acoustic channel. The

CRNet model presents a notable advancement by integrating

convolutional and recurrent layers to effectively capture spatial

and temporal relationships in channel response. This dual

strategy allows the model to learn and adapt to the highly

dynamic characteristics of UWA channels, offering enhanced

resilience relative to conventional techniques. CRNet ability of

performing precise channel estimate with a reduced number of

pilot symbols and to manage time-varying channel circumstances

illustrates its significant superiority over LS, MMSE, and BPNN.The

mathematical expression as in Equation 17 for the equalization

procedure of the kth subcarrier is as follows: CRNet directly

supplies the frequency response estimate Ĥ CRNet(k) for each sub-

carrier k; one-tap LS equalization is then simply.

Yeq(k) = Y(k)=Ĥ CRNet(k) : (17)
Fron
• Y (k) – received frequency-domain signal on sub-carrier k;

• Ĥ CRNet(k)– complex channel response estimated by CRNet

on sub-carrier k;

• Yeq(k) – equalized symbol after one-tap compensation on

sub-carrier k.
Although LS, MMSE, and BPNN are popular benchmark

algorithms for channel equalization, their foundational principles

limit their effectiveness in practical UWA environments. LS and

MMSE depend on static linear estimates and are incapable of

adapting dynamically to the non-stationary and nonlinear
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characteristics of multipath UWA channels, whereas BPNN is

deficient in the temporal memory necessary to grasp sequential

relationships in acoustic signals. The proposed CRNet presents an

integrated framework that merges dynamic signal decomposition

architecture including convolutional and recurrent layers. This

design allows CRNet to learn spatial correlations and temporal

evolutions of channel coefficients, facilitating adaptive equalization

under diverse propagation situations. Thus, CRNet signifies a

significant progression beyond traditional equalizers by offering

a physically informed, data driven methodology capable at

effect ive ly s imulat ing the t ime varying dynamics of

UWA channels.
3 Simulation results with critical
analysis

This section outlines the experimental setup, beginning with an

overview of the simulation environment that employs the Bellhop

channel model, as described in Section 3.1. Section 3.2 elaborates on

the implementation of various benchmark techniques. The

performance evaluation criteria are presented in Section 3.3.

Section 4 provides a comprehensive discussion of the

experimental outcomes and their analysis. Finally, Section 5

concludes the study.

The proposed model have been executed in Python, and the

simulation includes a series of essential parameters detailed in

Table 3. This concise table offers a thorough summary of essential

characteristics, including the modulation technique, subcarrier count,

pilot configuration, FFT dimensions, and the use of a CP as a guard

interval. Comb-type pilot insertion is used for its spectral efficiency

and simple channel estimation procedure. It ensures uniform pilot

spacing over the frequency range, hence simplifying the interpolation

of the channel response and effectively compensating for Doppler

shifts, common in UWA communications. The latest release of

Python 3.14.0 was used to create the Bellhop-based UWA channel

simulation pipelines, dynamic signal decomposition modules, and

the CRNet model. Every experiment was carried out on a Windows

11 Pro Education system that had a 64-bit x64 configuration, an

AMDRyzen 7 5800H processor (3.20 GHz), 16.0 GB of RAM, and no

pen or touch input prerequisites.
3.1 Simulation environment based on
bellhop

The dataset used for training and testing the CRNet model was

generated using the Bellhop, a well-validated tool for modeling

underwater sound propagation in dynamic marine environments.

Bellhop solves the wave equation for discrete eigenrays to produce

essential outputs that define UWA channel complexity, including

multipath components (their amplitudes, delays, and angles of

arrival), transmission loss (dB), and eigenray trajectories all
TABLE 2 Model training options for proposed CRNet model.

Training parameter Value

Optimizer Adam

Learning Rate 0.001

Batch Size 64

Number of Epochs 100

Training/Validation Split 80%/20%

Activation Function ReLU

Regularization Dropout (0.2)

Validation Frequency 30

Validation Patience 5
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crucial for simulating real acoustic propagation phenomena such as

surface and bottom reflections, sound speed fluctuations, and

depth-dependent attenuation. In order to ensure that the CRNet

model is assessed against spatially and temporally varied UWA

channels, Bellhop is set up with specific input parameters for the

training and testing datasets. For testing 20% of the entire dataset,

two scenario specific channel configurations are created to simulate

genuine underwater environments, with precise Bellhop inputs and

associated channel characteristics outlined in Table 4. Each test

scenario is carefully designed to prevent overlap with training

conditions (e.g., incorporating intermittent ship noise in shallow

water tests. Two typical environments were examined Shallow

Coastal (0–50 m) and Continental Shelf (50–200 m). In the

shallow coastal environment as shown in Figure 2, the sound

speed ranged from 1509 to 1531 m/s owing to a surface duct,

with a sandy bottom exhibiting a density of 2000 kg/m³ and an

absorption rate of 3 dB per wavelength. The transmitter and

receiver were positioned at depths of 5 m and 3 m, respectively,

over a distance of 500 m. Environmental noise was characterized as

ship-induced, varying from 10 to 20 dB within the 1–5 kHz

frequency range. Bellhop simulations produced a delay spread of

132.9 ms, 28 multipath components, a Doppler shift of ±0.6 Hz, and

a transmission loss of 60 dB. While for continental shelf

environment as depicted in Figure 3, the sound velocity ranged

from 1526 to 1534 m/s under near-isothermal circumstances,

characterized by a silt bottom (density 2400 kg/m³, absorption 5

dB per wavelength). The transmitter and receiver were positioned at

depths of 20 m and 15 m, respectively, over a range of 1000 m. The

noise profile included both maritime and marine sources. Analysis

of the bellhop for this environment revealed a delay spread of 100

ms, 63 multipath components, a Doppler shift of ±0.45 Hz, and a

transmission loss of 80 dB. These meticulously designed simulation

scenarios provide genuine UWA channels, including essential

propagation properties, multipath diversity, and Doppler effects,

which are vital for assessing the efficacy of channel estimate

methods in real-world situations. These configurations ensures

that test channels accurately represent the real world dynamics of

UWA conditions, which is essential for evaluating CRNet

adaptability to time-varying situations.
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3.2 Benchmark system and models

Benchmarks such as LS, MMSE, and BP-NN estimators

represent established techniques for UWA channel estimation,

each presenting unique advantages and constraints. These models

serve as traditional references and are discussed in the subsequent

subsections for comparative evaluation.

3.2.1 Least squares estimator
The LS algorithm is a commonly used conventional method for

channel estimation as in Equation 18. The aim is to reduce the squared

error between the received and sent pilot symbols. This is accomplished

by optimizing the subsequent cost function Cho et al. (2010).

Ĥ LS½k� = Y ½k�=X½k�,  k = 0,…,N − 1, (18)

where X½k� and Y ½k� are the known pilot and received symbol

on sub-carrier k, respectively. Its MSE is s2
Z=s 2

X ; hence it serves only

as a lower-bound reference for the proposed CRNet.
TABLE 4 Bellhop input parameters & test channel characteristics.

Scenario & parameter Value

1. Shallow coastal (0–50 m)

Inputs

- Sound speed 1509–1531 m/s (surface duct)

- Seabed (type/density/absorption) Sand/2000 kg/m3/3 dB/wavelength

- Tx/Rx depth 5 m/3 m

- Range 500 m

- Noise Ship (10–20 dB @1–5 kHz)

Outputs

- Delay spread 132.9 ms

- Multipath 28

- Doppler shift ± 0.6 Hz

- Trans. loss 60 dB

2. Continental shelf (50–200 m)

Inputs

- Sound speed 1526–1534 m/s (isothermal)

- Seabed (type/density/absorption) Silt/2400 kg/m3/5 dB/wavelength

- Tx/Rx depth 20 m/15 m

- Range 1000 m

- Noise Mixed ship/marine

Outputs

- Delay spread 100 ms

- Multipath 63

- Doppler shift ± 0.45 Hz

- Trans. Loss 80 dB
TABLE 3 Simulation parameters for UWA-OFDM system.

Parameter Value

Modulation Scheme OFDM

Number of Subcarriers 1024

Number of Pilots 256

Pilot Insertion Scheme Comb-type

FFT Size 1024

Guard Interval Type Cyclic Prefix (CP)

Cyclic Prefix Length 128

Noise Model AWGN

SNR Range 0:5:25 dB
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3.2.2 Minimum mean square error estimator
MMSE estimator improves upon the LS approach by addressing

its sensitivity to noise through the integration of statistical

information about both the channel and the noise. It aims to
Frontiers in Marine Science 11
minimize the MSE between the actual channel H and its estimate

Ĥ . This approach requires the computation of the channel

autocorrelation and noise variance, which can be particularly

challenging and computationally intensive in underwater acoustic
FIGURE 3

Demonstration of Bellhop ray model in continental shelf water.
FIGURE 2

Demonstration of Bellhop ray model in shallow water.
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environments, thus limiting its feasibility for real time

implementation. The estimator is formulated by determining an

optimal linear weighting matrixW that minimize the expected error

between H and �H. Consider the LS solution in Equation 18 we can

compute Equation 19 for MMSE as in Liu et al. (2025):

ĤMMSE = RHH RHH +
s 2
Z

s 2
X
I

� �−1

Ĥ LS : (19)

Because RHH and s 2
Z are rarely known a priori in UWA

channels, MMSE need prior channel statistics which is

challenging in UWA environment.
3.2.3 Back-propagation neural network
We include a fully-connected BP-NN Jiang et al. (2019) solely to

quantify the gain offered by the proposed CRNet. BP-NN learns a

non-linear pilot-to-CIR mapping but suffers from vanishing

gradients and over-fitting in highly non-stationary UWA

channels. CRNet overcomes these limitations through complex-

valued convolutions and residual LSTM paths.
3.3 Performance evaluation metrics

In UWA communication, various evaluation metrics are used to

assess system and model performance. Among these, MSE is a

widely adopted standard as in Equation 20, particularly valuable for

evaluating DL models. MSE measures the average of the squared

differences between predicted and actual values, thereby indicating

the extent of prediction errors. It is often used in regression tasks

and is proficient in assessing the precision of signal reconstruction

or channel estimation in UWA systems. Additionally, it is standard

practice to present BER versus SNR and BER versus the number of

pilot symbols, both of which offer critical insights into

communication quality and overall system performance. One

limitation of MSE, however, is its sensitivity to outliers since the

error values are squared, larger deviations have a disproportionately

greater impact on the final score. The MSE is calculated as Liu et al.

(2021b).

MSE =
1
No

N

i=1
(yi − ŷ i)

2 (20)

Furthermore, SNR and BER are critical performance metrics in

signal processing for UWA communication. SNR represents the

ratio of the signal power to the background noise power and serves

as a key indicator of signal clarity and robustness against

interference. A higher SNR implies a cleaner, more reliable signal,

whereas a lower SNR reflects greater vulnerability to noise Zhang

et al. (2022b), which is a common challenge in underwater

environments. On the other hand, BER measures the proportion

of bits received incorrectly compared to the total number of

transmitted bits, offering a direct assessment of transmission

accuracy. Monitoring BER is essential for evaluating the reliability

and effectiveness of data communication systems operating in

complex and noisy underwater conditions.
Frontiers in Marine Science 12
4 Results and discussions

Simulation results are explained in the following subsections:
4.1 Proposed model performance in
channel estimation

The proposed model incorporates a convolutional recurrent

architecture that enables each layer to capture both spatial and

temporal dependencies by combining convolutional layers with

recurrent units. This design promotes efficient feature reuse and

enhances gradient flow during backpropagation, addressing issues

like vanishing or exploding gradients. The recurrent connections

provide shorter and more stable paths for information and gradient

propagation, resulting in more effective and stable training. The

proposed CRNet model learns feature maps that capture the

frequency, temporal, and noise characteristics of underwater

acoustic signals. By training on paired data of transmitted OFDM

pilot symbols Xp(k) and received symbols Y (k), the network

effectively learns the mapping between the received signal and the

channel impulse response CIR. Visualizing these feature maps

reveals how the model distinguishes between different signal

components, guided by actual channel responses across varying

underwater environments.

The QPSK modulation method exhibits a notable improvement

in BER performance as SNR grows, especially when using the

CRNet model for channel estimation. In the shallow coastal

environment, marked by significant multipath reflections, surface

scattering, and considerable temporal variability owing to the

shallow sea depth (0–50 m), the BER for QPSK modulation stays

notably elevated throughout the SNR spectrum, particularly at

lower SNR values as depicted in Figure 4. At −10 dB SNR, all

models (LS, MMSE, BPNN, and CRNet) show elevated BER values,

with LS and MMSE reporting values of 0.42 and 0.55, respectively,

indicating substantial noise and multipath interference. With an

increase in SNR, CRNet performance markedly improves, attaining

a BER of 0.18 at 0 dB, in contrast to 0.32 for LS, 0.50 for MMSE, and

0.07 for BPNN. At 10 dB, CRNet achieves a BER of 0.03, illustrating

its proficiency in managing nonlinearities and surpassing other

models. At 20 dB, CRNet attains 0.00025, demonstrating its

exceptional noise resistance and strong performance in a channel

characterized by intricate multipath effects, while BPNN obtains

0.0011, and both MMSE and LS exhibit comparatively higher error

rates, about 0.017 and 0.03, respectively.

Conversely, the continental shelf environment in Figure 3,

characterized by increased depth (50–200 m) and more robust

acoustic propagation pathways. At −10 dB SNR, LS and MMSE

exhibit values of 0.50 and 0.60, respectively, however BPNN and

CRNet demonstrate superior performance with values of 0.14 and

0.20. As the SNR rises to 0 dB, CRNet attains a performance metric

of 0.11, followed by BPNN at 0.085, MMSE at 0.55, and LS at 0.40.

This demonstrates that data-driven models consistently surpass

linear estimators, but with a reduced performance disparity relative

to the shallow coastal scenario. At 10 dB, CRNet achieves 0.035,
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whilst BPNN attains 0.04, and MMSE and LS provide 0.28 and 0.25,

respectively. At 20 dB, CRNet attains a value of 0.00035, followed by

BPNN at 0.0016, MMSE at 0.022, and LS at 0.045, demonstrating

CRNet dominance over other models, although the margin is

narrower in the continental shelf environment owing to the

decreased complexity of the channel. The findings indicate that

CRNet has superior performance in both scenarios, with a more

noticeable advantage in the shallow coastal channel, where

multipath-induced distortions are more prominent.
4.2 Impact of high order modulation
schemes

This study primarily focused on assessing BER under varying

SNR conditions across different modulation schemes, such 16,32

and 64 QAM for both shallow coastal and continental

shelf channels.
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The BER vs SNR curve for 16-QAM, as shown in Figure 5,

highlights the effectiveness of the proposed CRNet model relative to

traditional LS, MMSE, and BPNN estimators in both channels. In

the shallow coastal environment, the 16-QAM BER stays

comparatively high throughout the SNR spectrum, particularly at

low SNR values. At −10 dB, all models have increased BERs, with LS

and MMSE presenting BER values of 0.55 and 0.45, respectively,

whilst BPNN and CRNet perform more favorably with values of

0.35 and 0.25. With an increase in SNR, CRNet demonstrates

substantial enhancement, reducing to 0.18 at 0 dB, further

declining to 0.03 at 10 dB, and eventually achieving 0.0010 at 20

dB, reflecting a 90% improvement over LS (0.015) and a 75%

enhancement over BPNN (0.0045). Conversely, the continental

shelf environment, characterized by more steady propagation and

less multipath interference (50–200 m depth), demonstrates a

significant increase in BER across all models, with CRNet

consistently surpassing the others. At −10 dB, LS and MMSE

exhibit BERs of 0.58 and 0.48, however BPNN and CRNet
FIGURE 5

Comparison of 16-QAM BER vs SNR for (a) shallow coastal and (b) continental shelf channels.
FIGURE 4

Impact of QPSK modulation using (a) shallow coastal and (b) continental shelf channels.
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demonstrate superior performance with 0.38 and 0.28, respectively.

As the SNR rises to 0 dB, CRNet attains a value of 0.18, and at 20 dB,

it hits 0.0015, demonstrating a 90% enhancement over LS (0.015)

and an 80% enhancement over MMSE (0.0100). The findings

confirm that CRNet regularly achieves the lowest BER,

demonstrating a more significant advantage in shallow coastal

channels where multipath-induced distortions are more prominent.

Furthermore, In Figure 6 The BER for 32-QAM grows

substantially throughout the SNR spectrum in comparison to 16-

QAM, indicating the heightened complexity associated with higher

order modulation. At −10 dB, all models exhibit increased BERs,

with LS and MMSE presenting BERs of 0.60 and 0.50, respectively,

whilst BPNN and CRNet show superior performance at 0.30 and

0.32. With an increase in SNR, CRNet demonstrates significant

enhancement, achieving 0.18 at 0 dB, 0.03 at 10 dB, and 0.0025 at 20

dB. In the continental shelf environment, 32-QAM has elevated

BERs compared to 16-QAM, but the performance disparity

diminishes. At −10 dB, LS and MMSE exhibit values of 0.65 and
Frontiers in Marine Science 14
0.55, respectively, whilst BPNN and CRNet have worse

performance with values of 0.42 and 0.38. As the SNR ascends to

0 dB, CRNet attains a value of 0.34, and at 20 dB, it obtains 0.0040.

These findings indicate that while 32-QAM modulation yields a

larger BER than 16-QAM owing to more signal complexity.

As shown in Figure 7 the 64-QAM BER values are notably

elevated throughout the SNR spectrum, indicating the raised signal

complexity of 64-QAM coupled with the adverse channel

conditions of multipath reflections, surface scattering, and

significant temporal variability typical of shallow waters. At −10

dB, LS and MMSE show increased BERs of 0.68 and 0.58,

respectively, however BPNN and CRNet display superior

performance with BERs of 0.40 and 0.30, respectively. With an

increase in SNR, CRNet markedly surpasses other models,

achieving scores of 0.18 at 0 dB, 0.095 at 10 dB, and 0.0080 at 20

dB. Conversely, the continental shelf environment, distinguished by

more consistent propagation and less multipath interference (50–

200 m depth), exhibits superior overall BER performance across all
FIGURE 7

Comparison of 64-QAM BER vs SNR for (a) shallow coastal and (b) continental shelf channels
FIGURE 6

Comparison of 32-QAM BER vs SNR for (a) shallow coastal and (b) continental shelf channels.
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models. At −10 dB, LS and MMSE exhibit values of 0.70 and 0.60,

respectively, whilst BPNN and CRNet have worse performance with

values of 0.40 and 0.32, respectively. With an increase in SNR,

CRNet attains a BER of 0.11 at 0 dB and 0.0075 at 20 dB. The results

demonstrate that CRNet consistently surpasses the other models in

both environments, where multipath induced distortions are

more severe.

We have specifically assessed the BER performance of these

approaches for two distinct modulation schemes i.e. QPSK and

QAM. Our results demonstrate that for all SNR levels, the BER of

QPSK modulation surpasses that of QAM modulation. This
Frontiers in Marine Science 15
indicates that QPSK has enhanced performance relative to QAM

in our experimental setup.

Figures 8, 9 illustrates amplitude and phase error, demonstrating

the enhanced performance of CRNet in estimation of different

channels relative to conventional estimators such as LS, MMSE,

and BPNN. The amplitude error for CRNet is markedly reduced

across different SNR levels, illustrating its proficiency in reliable

estimating channel amplitudes even in difficult UWA conditions,

characterized by multipath interference and Doppler shifts.

Conversely, LS and MMSE show more amplitude errors,

particularly at low SNRs, highlighting their inadequacies in
FIGURE 8

Amplitude error and phase error in estimation of Shallow coastal. (a) Amplitude error. (b) Phase error.
FIGURE 9

Amplitude error and phase error in estimation of continental shelf. (a) Amplitude error. (b) Phase error.
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managing the dynamic and noisy characteristics of underwater

channels. Likewise, the phase error for CRNet is persistently

minimal, even at low SNRs, ensuring precise phase estimate

essential for coherent signal detection. Conversely, LS and MMSE

exhibit more phase errors, underscoring their vulnerability to noise

and inadequacy in accurately representing intricate channel features.

The CRNet model capacity to reduce both amplitude and phase

errors highlights its durability and accuracy, establishing it as the

optimal selection for reliable UWA communication.
4.3 Mean square error analysis of proposed
scheme

The MSE performance of the proposed CRNet model and

benchmark estimators, including LS, MMSE, and BPNN, was

assessed in two UWA channel environments: shallow coastal and

continental shelf. Results depict the fluctuation of MSE with training

epochs for the real and imaginary components of the channel

coefficients. The findings illustrate the convergence characteristics

and overall estimation precision of each model across various channel

circumstances. A similar reduction in MSE is found in both

configurations as the number of epochs grows, indicating that all

models successfully learn to represent the fundamental channel

dynamics over time. Nonetheless, the extent of enhancement and

the ultimate steady-state MSE differ significantly between

conventional and learning based methodologies. Overall, neural

estimators, especially CRNet, demonstrate faster convergence and

attain much lower MSE values compared to traditional linear

estimators like LS and MMSE. In the shallow coastal environment,

marked by significant multipath propagation, elevated reflection

losses, and fluctuating interference within a limited sea depth,

precise channel estimation proves to be extremely difficult. As

demonstrated in Figure 10 LS and MMSE estimators initially
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exhibit high MSE values (about 10−1) and demonstrate gradual

convergence rates. After 300 epochs, the LS estimator stabilizes at

10−3, whilst the MMSE attains a marginally lower final error of

around 2 × 10−4. The constraint of both approaches lies in their linear

modeling characteristics, which inadequately account for nonlinear

distortions resulting from surface scattering and phase variations.

The BPNN model significantly outperforms LS and MMSE by

acquiring nonlinear input–output relationships from the data. The

MSE constantly decreases throughout training, reaching roughly 1.5

× 10−4 after 300 epochs. Nonetheless, the convergence is somewhat

slower and less stable owing to gradient vanishing and network

saturation in intricate multipath scenarios. Despite these

advancements, BPNN continues to demonstrate constraints in

adjusting to extremely dynamic channel situations.

Conversely, the CRNet model attains the lowest overall MSE and

the quickest convergence rate among all evaluated estimators. Both

the real and imaginary components attain steady-state MSE

approaching 8 × 10−5 after about 200 epochs. This exceptional

performance is due to two main architectural benefits: first, the

complex-valued representation enables CRNet to simultaneously

model amplitude and phase relationships present in underwater

channels; and second, residual connections improve gradient flow,

facilitating efficient and stable training. As a result, CRNet has

exceptional proficiency in alleviating multipath interference and

simulating nonlinear acoustic propagation effects. The MSE loss in

continental shelf environment as shown in Figure 11 has a

considerably deeper area characterized by steady acoustic pathways

and multipath variability. In these circumstances, all estimators

demonstrate enhanced convergence and more gradual error

reduction relative to the shallow coastal scenario. The LS and

MMSE estimators exhibit superior performance, achieving final

MSE values of around 1 × 10−3 and 1.5 × 10−4, respectively. The

stability of this environment minimizes random dispersion, therefore

enhancing the precision of linear estimating methods. The BPNN
FIGURE 10

MSE loss of CRNet along with traditional models in shallow coastal channel.
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model excels in this context, with accelerated convergence and a final

MSE of around 1 × 10−4. This enhancement signifies that neural

models have more reliability when the channel displays less abrupt

temporal or spatial fluctuations. Nevertheless, the performance of

BPNN continues to be poor compared to CRNet for both

convergence speed and ultimate accuracy. CRNet consistently

surpasses all baseline models, achieving quick convergence and

sustaining the lowest steady-state MSE of less than 1 × 10−4 for

both the real and imaginary components. Despite the reduction in

performance disparity between CRNet and MMSE/BPNN in a

shallow setting, CRNet continually proves to be the most precise

and reliable estimator.
Fron
1: Input: UWA received signal x(t), window size w,

number of iterations N

2: Initialize residual signal: r0(t) ← x(t)

3: for k = 1 to N do

4: Compute local mean mk(t) using moving average:

mk(t) =
1
w o

t+w=2

i=t−w=2

rk−1(i)

5: Compute detail signal: dk(t)←rk−1(t) − mk(t)

6: Store dk(t) in detail signal list

7: Update residual signal: rk(t)←mk(t)

8: end for

9: Compute final trend signal:

T(t) = x(t) − oN

k=1
dk(t)

10: Output: Trend signal T(t) and detail signals dk (t)
Algorithm 2. Local mean decomposition (LMD) for UWA signal.
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4.4 Impact of dynamic signal
decomposition techniques

UWA communication is significantly impacted by ambient

noise from sources like wind-driven surface activity, marine

vessels, and aquatic life. This noise is non-stationary and varies

with factors such as location, sea depth, wind speed, and acoustic

propagation conditions. Enhancing signal quality through effective

denoising can improve the performance of UWA systems. This

study utilizes the denoised signal derived from the suggested DSD

techniques as input for the CRNet architecture, therefore

integrating the denoising and learning phases into an efficient

pipeline for channel estimation as depicted in Figure 1.

4.4.1 Local mean decomposition
LMD is used as a denoising at the receiver to boost the accuracy

of UWA channel estimates by extracting relevant information from

noisy signals Jan et al. (2023). LMD decomposes the received signal

into a series of intrinsic mode functions (IMFs) as depicted in

Algorithm 2, each representing a separate frequency component as

depicted in Figure 12. By assessing and choosing relevant IMFs,

LMD successfully isolates the channel-induced distortions from the

actual signal. This selective separation of components assists in

separating the underlying channel characteristics, decreasing noise

interference, and eventually enhancing the accuracy of channel

estimates, which is vital for robust UW communicatsystems. ems.

The received UWA signal be denoted as in Equation 21:

y(t) = s(t) + w(t) (21)

where:
• y(t) is the observed received signal,

• s(t) is the useful signal component transmitted through the

UWA channel,
FIGURE 11

MSE loss of CRNet along with traditional models in continental shelf channel.
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Fron
• w(t) is the additive noise (typically modeled as AWGN or

colored noise).
The goal of LMD is to decompose y(t) into a set of product

functions (PFs) that represent amplitude and frequency modulated

components of the signal. Unlike previous denoising methods. Our

proposed LMD strategy is explicitly tailored to address the dynamic

and intricate characteristics of UWA communication. In Jan et al.

(2023) the authors concentrated on chirp-based UWA estimation

using limited datasets, neglecting pilot and OFDM subcarrier

effects, while Lu et al. (2021) tackled the denoising of marine

mammal data, specifically targeting bioacoustic signals from

species such as dolphins and whales, without accounting for

actual communication complexities. In contrast, our approach

specifically addresses channel distortions resulting from multipath

propagation and Doppler shifts. Hence, the suggested LMD

proficiently separates essential signal components from noisy

received signal, hence ensuring enhanced accuracy and robustness

in UWA channel estimation.

The received UWA signal as in Equation 22 is denoted by y(t).

The LMD decomposes y(t) into K product functions (PFs), and a

residual rK(t) in Lu et al. (2021) is defined as

y(t) = o
K

k=1

PFk(t) + rK(t) (22)

Each product function PFk(t) captures a mono-component

AM-FM signal structure as in Equation 23 and is defined as:

PFk(t) = ak(t) cos 
Z t

0
wk(t)dt

� �
(23)

where:
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• ak(t) is the instantaneous amplitude of the k-th PF,

• wk(t) is the instantaneous angular frequency, derived from

phase variations,

• The integral
Z t

0
wk(t)dt represents the instantaneous

phase of the signal component.
After PF, the local mean and envelope estimation process as in

Equation 25 for each decomposition step k applied to the UWA

received signal:

1. Identify all local extrema (peaks and troughs) of the signal

yk(t).

2. Estimate the local mean as in Equation 24 mk(t) by averaging

adjacent extrema as in Lu et al. (2021):

mk(t) =
xi(t) + xi+1(t)

2
(24)

where xi(t) and xi+ 1(t) are successive extrema.

3. Estimate the local envelope ek(t) using

ek(t) =
xi(t) − xi+1(t)

2

����
���� (25)

4. Extract the frequency-modulated signal component as in

Equation 26:

hk(t) =
yk(t) −mk(t)

ek(t)
(26)

This isolates the oscillatory behavior normalized by the

local envelope.

5. Calculate the instantaneous phase as in Equation 27:

fk(t) = cos−1   (hk(t)) (27)
FIGURE 12

Dynamic signal decomposition techniques (a) Local mean decomposition (b) Empirical model decomposition.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1671853
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jan et al. 10.3389/fmars.2025.1671853
6. Reconstruct the product function as in Equation 28:

PFk(t) = ak(t)   cos (fk(t)), where ak(t) = ek(t) (28)

This PF captures both amplitude and frequency modulation

effects of the k-th component.

7. Update the signal as in Equation 29 for the next iteration as in

Lu et al. (2021):

yk+1(t) = yk(t) − PFk(t) (29)

Repeat this process until the residual rK(t) = yK+ 1(t) becomes a

monotonic trend.

At the end, the final reconstruction as depicted in Figure 13 and

Equation 30 the denoised UWA signal using LMD are expressed as

y(t) = o
K

k=1

ak(t) cos 
Z t

0
wk(t)dt

� �
+ rK (t) (30)

where:
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• ak(t) and wk(t) reflect the adaptive amplitude and frequency

of underwater signal components,

• rK(t) captures the residual, usually interpreted as trend or

background noise after decomposition.
Table 5 shows the MSE values for LMD and EMD denoising

methods across different amplitude thresholds. LMD consistently

attains a lower MSE than EMD across all threshold values, ranging

from 20% to 90% of the maximum amplitude. This signifies that

LMD is superior in maintaining the original signal while

attenuating noise. Significantly, at the 20% threshold, LMD

decreases the MSE by almost 50% relative to EMD (0.005199 vs.

0.011088) and continues to exhibit superior performance at

elevated thresholds, demonstrating its durability in UWA signal

denoising. Moreover, Figure 13 demonstrates the efficiency of

LMD denoising techniques on both real and imaginary received

and trend signals.
4.5 Analysis on impact of pilot number

Pilots play a very crucial role in the correlation between BER

performance and the number of pilot symbols. For an accurate

channel estimation, it is necessary for the system to use a minimum

number of pilots for the enhancement of spectral efficiency and

overall system performance. As shown in Figure 14. As the number

of pilots increases from 16 to 32 and then to 256, the BER

performance of all pilot-assisted algorithms, except BPNN and

CRNet, deteriorates significantly. Despite the decreased pilot tone,

the CRNet estimator can maintain its BER at about 10−3, whereas

the LS and MMSE estimators exhibit a failure with a BER of

roughly 10−2.
TABLE 5 Comparison of MSE between LMD and EMD denoising
techniques at different thresholds.

Threshold
(% of max amplitude)

MSE (LMD) MSE (EMD)

20% 0.005199 0.011088

40% 0.010370 0.013136

50% 0.011272 0.013318

60% 0.011721 0.013348

70% 0.011966 0.013348

80% 0.012325 0.013348

90% 0.012681 0.013348
FIGURE 13

Comparison of the received and denoised signal using the LMD technique. The denoised signal shows improved smoothness and reduced high-
frequency noise.
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4.6 Evaluation of proposed model on
training and unseen data

Figure 15 illustrates the CRNet BER performance in relation to

SNR (0–20 dB) for the shallow-coastal and continental-shelf

channels. Across the shallow-coastal link, CRNet reduces the

training BER from 0.25 at 0 dB to 0.001 at 20 dB, while the

unseen-data BER slightly trails at 0.0011, resulting in a 10%

relative gap at the lowest SNR and an almost negligible gap at

higher levels, demonstrating effective generalization despite

significant, rapid multipath variations. In the continental-shelf

link, the training BER decreases from 0.28 to 0.002, while the test

BER attains 0.0025 at 20 dB, indicating a 12.5% enhancement; the

improved train-test concordance signifies the more gradual and

stable fading of the deeper-water channel. In both cases, CRNet

achieves a BER of less than 10–3 at 15 dB SNR with a generalization

cost of around 15%, surpassing linear and traditional non-

linear estimators.
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5 Conclusion

In this work, we thoroughly addressed the intricate channel

estimation issue in UWA-OFDM communication systems. We have

examined the impact of various modulation methods and pilot

quantities on channel estimation approaches. Our distinctive

CRNet-based estimator is designed to manage the complex

structure of UWA channels. We explained the design and training

of the CRNet model and illustrate the capabilities of CRNet

estimator via extensive experiments using the BELLHOP data

set, collected from shallow coastal and continental shelf

environments. Experiments demonstrate that DenseNet surpasses

traditional methodologies. The CRNet model exhibits a significant

improvement in BER performance, achieving up to a 90%

reduction in error rates at elevated SNRs compared to

conventional linear and non-linear estimators such as LS, MMSE,

and BPNN, demonstrating its exceptional generalization capability

and resilience in both shallow coastal and continental shelf UWA
FIGURE 15

CRNet BER performance for (a) Shallow Coastal and (b) Continental Shelf Channels on training and testing data channel.
FIGURE 14

Impact on pilot number.
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channels. Our findings demonstrate that QPSK outperforms QAM

in modulation schemes at low SNR levels. This underscores the

importance of selecting the appropriate modulation approach for

UWA-OFDM systems. We also integrated dynamic signal

decomposition techniques, namely LMD and EMD, to denoise the

received signals before estimation. The results show that LMD

outperformed EMD, providing more effective noise suppression

and signal clarity. The CRNet-based estimator surpasses traditional

methods because of its adaptability. Our research investigates the

impact of pilot signals on the performance of the CRNet estimator

and maintains acceptable BER levels with reduced pilot resources,

which is crucial for UW communication applications. The CRNet-

based estimator demonstrates flexibility, resilience, and superior

performance compared to previous channel estimation techniques,

representing a significant advancement in underwater

communication systems. The CRNet concept has the potential to

enhance the reliability and efficiency of UW communication

networks by addressing the specific challenges posed by dynamic

and unpredictable environments. In the future, we want to conduct

experiments using real-world sea data for thorough testing, aimed at

improving the model generalization skills over a broader spectrum

of underwater acoustic environments.
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