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Introduction: Underwater acoustic (UWA) communication systems confront
significant challenges due to the unique, dynamic, and unpredictable nature of
acoustic channels, which are impacted by low signal-to-noise ratio (SNR), severe
multipath propagation, latency, Doppler spread, and a shortage of real-world
data. Orthogonal frequency division multiplexing (OFDM) is essential for
establishing resilient and reliable data transmission in these challenging
environments, but accurate channel estimation remains a critical barrier to
unlocking its full potential—especially given the limitations of conventional
estimation methods in adapting to UWA channel dynamics.

Methods: This work introduces a Convolution-Recurrent Neural Network (CRNet)
estimator integrated with dynamic signal decomposition (DSD) techniques (e.g.,
Local Mean Decomposition, LMD; Empirical Mode Decomposition, EMD) to
estimate UWA-OFDM channel characteristics and mitigate noise-induced
distortions in received signals. The CRNet architecture combines convolutional
layers (to capture spatial features) and recurrent layers (to model temporal
dependencies), enabling it to learn complex UWA channel dynamics. The model
is trained using paired data: received pilot symbols, transmitted pilots, and
accurate channel impulse responses (CIR). Post-training, CRNet operates using
only the received signal as input, eliminating the need for supplementary channel
characteristics like SNR. To ensure real-world relevance, training and testing
datasets are generated via the Bellhop ray-tracing model, which simulates
diverse UWA environments (shallow coastal and continental shelf).

Results: Numerical findings demonstrate that the proposed CRNet model
consistently outperforms benchmark methods—including least squares (LS),
minimal mean square error (MMSE), and backpropagation neural network
(BPNN)—across key metrics: bit error rate (BER), amplitude error, and phase
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error. CRNet exhibits superior performance with QPSK modulation compared to
QAM, and maintains robustness even with a small number of pilot symbols.
Performance evaluations on both training and unseen datasets confirm its
resilience and flexibility in demanding UWA environments, validating its ability
to generalize to dynamic channel conditions beyond training scenarios.

Discussion: The CRNet estimator addresses critical limitations of conventional
UWA-OFDM channel estimation methods: its dual focus on spatial and temporal
features (via convolutional-recurrent layers) overcomes the static linear
constraints of LS/MMSE, while DSD-driven noise mitigation enhances input
signal quality for more accurate estimation. By eliminating reliance on post-
training supplementary channel data (e.g., SNR), CRNet simplifies real-world
deployment. Its superior BER performance and adaptability to diverse UWA
environments (shallow coastal, continental shelf) position it as a robust solution

for improving the reliability and efficiency of UWA communication systems.

KEYWORDS

channel estimation, neural network, dynamic signal decomposition, orthogonal
frequency division multiplexing, underwater acoustic communication

1 Introduction

UWA communication channels are widely recognized as some
of the most complex and challenging environments for data
transmission. Unlike typical terrestrial wireless channels, UWA
communication is significantly affected by a range of
environmental conditions such as variations in temperature,
salinity, and pressure, as well as limited available bandwidth,
multipath propagation, Doppler shifts, signal attenuation, and
ambient ocean noise Stojanovic and Preisig (2009). These adverse
conditions impose stringent demands on the design of reliable and
efficient communication systems. The growing need for underwater
wireless communication systems driven by applications like
environmental monitoring, search-and-rescue operations, and
deep-sea exploration has highlighted these challenges Preisig
(2007). Acoustic wave propagation in water is inherently slow
and suffers from high transmission losses. The foundational
experimental and theoretical research conducted by Deng et al.
Deng et al. (2023) on underwater sound emission from elastic
Mindlin plates provided insight into the impact of boundary
reflections and material interactions on acoustic propagation.
These findings provide a crucial physical basis for understanding
the distortions caused by multipath and reflection in UWA-OFDM
systems. Furthermore, the presence of reflections from the ocean
surface and seabed leads to multiple delayed signal paths,
contributing to inter-symbol interference. This delay sensitivity,
combined with Doppler-induced frequency shifts, makes the UWA
channel highly dynamic and doubly selective in both time and
frequency domains Stojanovic (2003). Achieving reliable
communication underwater is substantially more difficult than in
radio-frequency-based terrestrial systems. Under extremely SNR
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conditions, signals in UWA communication systems become
significantly attenuated, posing serious reliability issues. To
address this challenge, multicarrier transmission methods
particularly OFDM, have gained attention for enhancing
transmission robustness in such adverse environments Zhang
et al. (2022b). A common variant, OFDM with cyclic prefix (CP),
is especially advantageous in underwater environment Khan et al.
(2020) due to its ability to handle severe multipath propagation. CP-
OFDM not only mitigates inter-symbol interference (ISI) but also
enables efficient spectrum utilization and supports cost-effective
transceiver designs. OFDM has become increasingly adopted in
UWA systems for its capacity to counteract the effects of multipath
fading and delay spread. By dividing the overall channel bandwidth
into numerous orthogonal narrowband subcarriers, OFDM allows
each subcarrier to be modulated using conventional schemes at
lower data rates. This approach maintains the overall data
throughput comparable to a single-carrier system while offering
improved resistance to channel impairments Zhang et al. (2019).
OFDM provides both high-speed transmission and enhanced
spectral efficiency, making it a compelling solution for reliable
communication in complex UWA channels.

Accurate channel estimation Khan et al. (2020) is fundamental for
ensuring reliable communication in UWA systems. Since the receiver
must possess precise channel state information (CSI) to decode
transmitted signals effectively, pilot-assisted estimation techniques
are commonly employed. In this method, a set of known pilot
symbols is transmitted alongside data-bearing subcarriers, enabling
the receiver to infer the channel’s characteristics and improve signal
detection reliability Murad et al. (2021).

In UWA-OFDM systems, the transmitted signal undergoes
significant distortion due to multipath propagation, making it
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essential to estimate the CIR accurately. Pilot symbols, known in
advance to the receiver, provide the necessary reference for
estimating the CIR using algorithms such as LS and MMSE Khan
et al. (2020). While the LS estimator is straightforward and widely
used, it often suffers from limited accuracy. Conversely, the MMSE
estimator offers improved performance by minimizing the mean
squared error, but it requires prior knowledge of the channel
statistics Jiang et al. (2019) and involves higher computational
complexity, which can hinder its practical deployment.

In recent years, deep neural networks (DNNs) have
demonstrated considerable potential across various domains
Zhang et al. (2022a), including wireless communication. Applied
to channel estimation, DNN based approaches aim to learn the
nonlinear mapping between received signals and channel
parameters. However, their application in UWA environments
remains limited due to challenges such as overfitting and poor
generalization capabilities. Similar deep learning based inverse
modeling has been effectively utilized for subsurface imaging
tasks; for instance, Lei et al. Lei et al. (2024) combined reverse
time migration with neural architectures to enhance localization
precision in complex underwater environments, offering significant
advantages for UWA channel reconstruction. These limitations
primarily stem from the scarcity of real-world underwater Zhang
et al. (2022b) channel data required to train complex deep learning
models effectively. Without sufficient training data that accurately
reflects real UWA conditions, models are prone to underperform
when exposed to new or dynamic scenarios. Therefore, developing
methods to generate or simulate diverse channel conditions is
essential to improve the training process and enhance model
robustness for underwater applications.

The main Contributions of paper are listed as follows:

This research presents a CRNet model for channel estimation in
UWA-OFDM systems. The suggested method is designed to
address intricate and fluctuating underwater channel conditions,
including nonlinear distortions and environmental interferences.
Before estimation, DSD methods are applied on the incoming
signals to significantly reduce noise and improve the quality of
the input for the neural network. The suggested CRNet model is
trained on representative data to comprehend the fundamental
attributes of UWA multipath channels. Comprehensive simulations
are conducted to evaluate the efficacy of the proposed model across
various modulation methods. The performance of BER in relation
to SNR is specifically examined among standard estimators LS,
MMSE, and BPNN, alongside the novel CRNet method using QAM
and QPSK modulation techniques in two different underwater
environments i.e. Shallow coastal and Shelf continental channels.
The main contributions of this paper are summarized as follows:

1. We have introduced a CRNet estimator for channel
estimation in UWA OFDM systems. By combining
convolutional and recurrent layers, the model effectively
captures both spatial characteristics and temporal
relationships inherent in the received signal. This dual
capacity facilitates a more thorough comprehension of
the intricate and dynamic characteristics of UWA
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channels. The suggested methodology has robust
estimating capabilities, even under difficult circumstances,
and provides a substantial enhancement compared to
conventional techniques. Additionally, we provide a
theoretical explanation and establish a mathematical
framework to characterize the performance and
effectiveness of the CRNet model for UWA
channel estimation.

. We employ dynamic signal decomposition techniques
including Local Mean Decomposition (LMD) and
Empirical Mode Decomposition (EMD) on the received
signals to suppress noise and isolate meaningful signal
components. These techniques enhance the overall
quality of the input fed into the neural network, thereby
improving the robustness and accuracy of the channel
estimation process. Theoretical foundations and
mathematical modeling are also provided to support the
proposed methodology and demonstrate its effectiveness in
challenging underwater environments.

. In order to generate the training and testing datasets, we
replicate the UWA communication environments using the
Bellhop ray tracing model that enables us to include a broad
spectrum of channel conditions exhibiting the multipaths
propagation and complexities characteristic of underwater
environments. We conduct thorough experiments to
evaluate the performances of QPSK and QAM
modulation schemes inside the CRNet-based estimation
framework. Additionally, we evaluate our proposed
estimator against traditional channel estimate techniques,
namely LS, MMSE, and BPNN, across the two specified
bellhop channels—Shallow Coastal and Continental Shelf
across range of SNRs for robustness and versatility in our
analysis. The findings clearly demonstrate the improved
performance of our technique in several metrics, including
estimate accuracy, enhancement of BER with fewer pilots,
and adaptation to diverse modulation schemes and channel
conditions in difficult UWA environments.

The rest of this article is structured as follows. In Section 1.1, we
provide a thorough examination of the related works. Section 2
provides a detailed description of the proposed approach. The
simulation setups are presented in Section 3. Section 4 presents
results and discussions. Ultimately, Section 5 concludes this article.

1.1 Related works

This section presents a detailed review of existing literature
focused on supervised learning-based channel estimation and pilot-
assisted techniques, along with dynamic signal decomposition
techniques providing the necessary context and alignment with
the methodological direction of our proposed approach. To ensure
reliability and fidelity inside underwater devices accurate UW
channel estimation is very important the author in Zhang et al.
(2022¢) proposed a channel estimation techniques in
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communication systems which are generally categorized into three
main approaches. The first is pilot-assisted estimation, where
known pilot symbols are transmitted alongside data subcarriers to
facilitate channel state information (CSI) recovery Jiang et al.
(2019). The second approach, blind estimation, eliminates the
need for pilots and instead relies on the statistical properties of
the received signals to estimate the channel. The third, known as
semiblind estimation, combines elements of both methods by using
partial knowledge of the transmitted data along with statistical
characteristics to infer the channel. For instance, the author in
Murad et al. (2021) proposed pilot-assisted schemes, in which pilot
symbol placement typically follows two configurations: comb-type
and block-type. In the comb-type configuration, pilot symbols are
regularly spaced throughout the frequency domain, allowing
continuous tracking of channel variations and facilitating
synchronization. In contrast, block-type pilots in Jiang et al.
(2019) are placed on specific subcarriers within dedicated OFDM
symbols, making them especially effective in handling frequency-
selective fading. Each configuration offers unique advantages
depending on the channel conditions and system requirements.
Enhancing the performance of underwater communication systems
relies heavily on advanced signal processing techniques. In addition,
the author in Jiang et al. (2019) investigated a range of methods,
including effective channel estimation algorithms and modulation
schemes specifically tailored for UWA environments. Furthermore,
the work in Kari et al. (2017) introduced a new set of adaptive
robust channel estimators specifically designed for underwater
acoustic multipath channels. The objective is to address the
unique issues posed by this environment, such as non-stationarity
and impulsive noise. In order to tackle these problems, the authors
used adaptive filtering approaches that revolve upon a logarithmic
cost function. This approach aims to improve the speed of
convergence and stability, particularly in scenarios where
impulsive noise is present. Unlike DL-based approaches, the
study in Farzamnia et al. (2017) focused on the simulation of
block-type channel estimation algorithms in multipath fading
environments. It also proposed a sparse channel estimation
technique based on the LS method, demonstrating improved
estimation performance. The authors recommended extending
this work by evaluating OFDM systems with multiple users under
the LS-based sparse estimation framework. Similarly, in Chen et al.
(2010), LS was employed for channel estimation, where the channel
frequency response of pilot symbols was used to adjust subsequent
data symbols through a weighted averaging mechanism.

In Liu et al. (2021a) the issue of severe multipath fading in
UWA OFDM systems was addressed by the authors, which is
primarily caused by significant propagation delays and reflections
from the seabed. These conditions can result in outdated CSI and
reduced estimation accuracy. To mitigate this, the authors proposed
the CsiPreNet model a hybrid framework combining CNN and
LSTM architectures to improve CSI prediction and enhance the
reliability of channel estimation in such environments. In the
context of MIMO-OFDM channel estimation. Moreover, the
authors in Jiang et al. (2019) highlighted the critical role of
accurate CSI acquisition. By utilizing received pilot symbols and
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CIR, deep learning models were trained for this task. The proposed
methods demonstrated improved performance over LS and
backpropagation-based neural networks in terms of BER and
normalized mean square error, showing results comparable to the
MMSE approach. However, when constrained by shallow network
depth, the DNN models exhibited lower estimation accuracy but
offered advantages in memory efficiency and computation speed. To
overcome the limitations in conventional OFDM channel
estimation techniques, recently DL has brought transformative
improvements to communication systems, particularly in OFDM,
where conventional models struggle to handle channel
complexities. The author in Bithas et al. (2019) highlighted the
application of DL techniques to enhance system performance under
challenging conditions. Notably, architectures such as CNNs and
LSTM networks have emerged as prominent tools for tackling the
unique difficulties posed by UWA channels. In a related
communication domain, Yao et al. Yao et al. (2023) enhanced
OFDM based automobile radar systems functioning in spectrally
crowded vehicle situations. Their optimization methodology
reduced interference and enhanced spectral efficiency issues that
are logically comparable to underwater OFDM channels, where
multipath effects and bandwidth limitations equally limit reliable
data transmission.

In Ye et al. (2017) the authors introduced a deep learning-based
approach for channel estimation and symbol detection in an OFDM
system. To tackle the problems in conventional methods for
channel estimation and symbol detection that are not robust
enough to handle wireless channels in severe distortion and
interference. The proposed solution is to train a deep learning
model offline using simulated data that views OFDM and wireless
channels as black boxes. The methodology involves analyzing the
impact of variations in channel model statistics during training and
deployment stages and comparing the performance of the DL-based
approach with traditional methods. The results show that the deep
learning-based approach is more robust and can detect transmitted
symbols with performance comparable to the minimum
MSE estimator.

In addition to, the authors in Ling et al. (2009) examined the
fundamental elements of MIMO systems in the context of UWA
communications, with a specific emphasis on channel estimates and
signal identification. The research proposed a novel method for
improving channel estimation by proposing a cyclic strategy for
generating training sequences. Additionally, the paper presents the
Iterative Adaptive Strategy (IAA) algorithm, which, when
combined with the Bayesian Information Criterion (BIC), may
produce sparse channel estimates. Furthermore, the integration of
the RELAX algorithm serves to boost the performance. The results
showcased the propposed system ability to achieve low bit error
rates at different payload data speeds in underwater conditions that
are characterized by delay spread.

In MIMO-OFDM communication, where standard estimate
techniques are computationally difficult and scale poorly, accurate
CSI collection is crucial for multi-antenna system performance.
Researchers are increasingly using DL to overcome these
constraints. For instance, Balevi and Gitlin in Balevi et al. (2020)
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developed a scalable deep learning architecture for estimating massive
MIMO channels, achieving higher performance in high-dimensional
antenna systems with manageable complexity. Additionally, in Qiao
et al. (2019) the authors did a thorough performance and complexity
study of MIMO-OFDM channel estimation methods, including
classical and learning-based approaches, revealing trade-offs.
Furthermore, in Lu et al. (2020) authors developed an end-to-end
framework for channel categorization, estimation, and signal
detection, improving system efficiency and flexibility in dynamic
contexts. However, in Tabata et al. (2020) the authors have created an
offline-trained DNN-based model for underwater environment
classification, enhancing channel estimation accuracy by adapting
to UWA channel propagation characteristics. These contributions
demonstrate that deep learning may increase estimation accuracy and
allow integrated and scalable solutions for complicated
communication settings.

An adaptive denoising method was also proposed in Cho and
Ko (2020), using dual pilot sets, one for CIR estimation and the
other for optimal window selection, showing superior accuracy in
time-varying UWA channels, particularly at low SNRs. Other
efforts in Li et al. (2020) explored blind and semiblind estimation
strategies to reduce complexity and improve spectral efficiency. To
tackle high PAPR and computational cost in UWA OFDM, an M-
ary spread spectrum model using LSTM was introduced in Qiao
et al. (2022) and validated through both simulations and
experimental setups. Additionally, the authors in Raza et al.
(2021) addressed nonlinear distortion in UWA OFDM by
employing DNNs to suppress such effects while reducing PAPR.
A DL-based receiver was proposed in Zhang et al. (2019) that
bypasses explicit channel estimation and equalization, simplifying
the overall processing in UWA OFDM systems.

Various denoising techniques have been proposed in recent
literature to enhance the quality of UWA signals, which are often
degraded by non-stationary and nonlinear noise sources such as
wind, marine life, and ship machinery. EMD combined with
frequency-domain thresholding has been shown effective in
isolating intrinsic mode functions (IMFs) and reducing ambient
noise in Veeraiyan et al. (2013). Advanced approaches integrate
signal decomposition with machine learning models for instance,
Correlation-based Variational Mode Decomposition (CVMD)
coupled with Least Squares Support Vector Machine (LSSVM)
and Gaussian Process Regression (GPR) improves prediction and
denoising by adaptively selecting decomposition parameters as
proposed in Yang et al. (2020a). Additionally, in Yang et al.
(2020b) a hybrid framework like MIVMD-mvMDE-LWTD-SG
leverages mutual information-based VMD multiscale entropy,
and wavelet-based filtering was proposed to handle complex,
chaotic, and ship-radiated noise components more effectively.

1.2 Research motivation
In the above discussion, we noticed that UWA communication

faces significant challenges such as low SNR, high computational
complexity, and the reliance on accurate CSI. LS estimation remains
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computationally simple but is highly sensitive to noise, particularly in
low-SNR environments. MMSE estimation improves performance
but demands precise knowledge of channel and noise statistics Jiang
etal. (2019); Khan et al. (2020); Zhang et al. (2022a), which is difficult
to obtain in underwater settings. Alternatively, BPNN offers
robustness by learning nonlinear channel characteristics and has
demonstrated improved accuracy over classical approaches.
However, their effectiveness is limited by training complexity, risk
of overfitting, and sensitivity to changing environments. This study
compares LS, MMSE, and BPNN with a proposed model, aiming to
enhance channel estimation along with dynamic signal
decomposition to reduce BER in dynamic UWA conditions.

2 Proposed methodology

The methodology of the suggested system model is explained in
the following subsections.

A schematic of the UWA-OFDM system Chen et al. (2017);
Wang et al. (2017); Jiang et al. (2019) is shown in Figure 1. The
system starts with the generation of a binary data stream, to which
pilot tones are added for CIR estimation. The data is encoded with
quadrature amplitude modulation (QAM). An Inverse Fast Fourier
Transform (IFFT) is then employed to convert the modulated data
from the frequency domain to the time domain across N orthogonal
subcarriers as in Equation 1. The resultant time-domain signal x(r)
is derived from the frequency-domain components X(k), as
specified in Jiang et al. (2019):

;2mnk

x(n) = IFFT{X(k)} = %NE_IX(k)e’ ¥on=0,.,N-1 (1)
k=0

Following the IFFT operation, the resulting N parallel
subcarriers are serialized, and a cyclic prefix is appended as in
Equation 2 to each OFDM symbol to mitigate ISI. The resulting
time-domain transmit signal with the cyclic prefix can be expressed
as Jiang et al. (2019):

{x(N +n), n=-Ng,-Ny +1,...,—1
xy(n) = @)

x(n), n=01,...,N-1

Here, N, denotes the length of the cyclic denotes the length of
the cyclic prefix. This implies that the last N, samples of the OFDM
symbol x,(n) are duplicated and prepended to form the extended
signal resulting in a total symbol length of N + N, After
transmission through the UWA channel, the received signal y,(n)

as in Equation 3 can be expressed as Jiang et al. (2019):
Ye(n) = x,(n) @ h(n) + w(n), -N,<n<N-1 (3)

Here, the operator @ denotes circular convolution and w(n)
represents additive white Gaussian noise (AWGN) with zero mean.
The term h(n) refers to the channel impulse response as in Equation
4, which is defined as Jiang et al. (2019):

hn) = Shid(n - 7) @)
i=0
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FIGURE 1
Proposed system model architecture.

In this context, o(n) denotes the unit impulse function, r is the
total number of multipath components, and h and 7; represent the
complex gain and time delay associated with the ith path,
respectively. At the receiver side, the cyclic prefix is removed as
in Figure 1 and the resulting time-domain signal y(n) is transformed
into the frequency domain using the Fast Fourier Transform (FFT)
as in as in Equation 5, as expressed by the following equation Jiang
et al. (2019):

2mnk

1 N-1
Y(k) = FFT{y(n)} = N > y(m)e v,
n=0

Hence, if the ISI is reduced fully, the received signal as in
Equation 6 may be expressed as Jiang et al. (2019):

Y(k) = X(k)H(k) + W(k), k=0, 1,..,N—-1 (6)

The frequency-domain representations of the CIR h(n) and
noise w(n) are given by H(k) and W(k), respectively. In an UWA
communication system, the relationship between the transmitted
and received signals is effectively captured using these frequency-
domain components.

2.1 Proposed model for underwater
acoustic channel estimation

In this subsection, we present our CRNet approach for accurate
estimation of UWA channels. The proposed model architecture
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consists of an input layer, followed by a sequence of convolutional
layers to capture local spatial features and recurrent layers to model
temporal dependencies inherent in the channel and fully connected
dense layer to capture complex channel gain, culminating in a fully
connected output layer for channel response prediction.

2.1.1 Network architecture

The architecture of the proposed CRNet model is tailored to
estimate complex channel gains for each subcarrier in an OFDM-
based UW communication system. The model integrates the
following key components:

Initially, The model is trained with received symbols Y (K)
along with transmitted pilot symbols X, (k) in a pair, and the label
would be the corresponding CIR. The suggested model structure for
OFDM channel estimation has multiple layers intended for
mapping the input data with their corresponding output. The
model starts with an input layer that receive a pair of data. After
that, there are two ConvlD layers, each consisting of 64 filters, a
kernel size of 3, and ReLU activation functions. The purpose of
these convolutional layers is to capture spatial dependencies within
the input data. Subsequently, two LSTM layers are utilized; the
initial LSTM layer comprises 64 units and generates sequences,
enabling it to effectively handle the temporal characteristics of the
data across all samples. The second LSTM layer is also composed of
64 units, it essentially condenses and summarizes the temporal
information that was learned from the prior layer. After the LSTM
layers, a Dense layer is included to further process the data. This

frontiersin.org


https://doi.org/10.3389/fmars.2025.1671853
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jan et al.

Dense layer consists of 128 units. The Proposed model architecture
consists of a combination of convolutional and recurrent layers,
which allows it to successfully learn and represent the intricate
relationships found in UWA-OFDM channel estimation.

The first 1D convolution layer having W' € RK*C be the
kernel for the i-th filter. The convolution operation at time t is given
by as in Equation 7:

00 =3 S WKy il + B @
770 k=0

Where: W & RK¥C s the convolutional kernel of size K for
the i-th filter, x,,; «[k] is the k-th channel (real or imaginary) at
position t+j—k b ER is the bias term, z"[i] is the pre-

activation output at time ¢ for filter i.
Furthermore, ReLU activation layer as in Equation 8 applied to
introduce non-linearity using element wise operation to the output of
previous convolutional layer, having output shape as in Equation 9.

alV[i] = max (0,2 [1]) 8

A(l) = RTxFl (9)

Where F, as in Equation 12 is the number of filters (i.e., feature
maps) learned in this layer. These features help extract local
multipath patterns in the UWA channel.

Following the first 1D Conv layer, second and 1D convolution
layer as in Equation 10 takes A" as input and applies filters WEZ) e
RE*F: for each i-th filter as follows:

20 =S S WG - al) [k + b (10)

Jj=0 k=0
Here, W? € RKXFI are learned weights for the second
convolutional layer, a' g D (k] is the output of the first layer at
offset t +j—k, bgz) is the bias for the i-th filter.
Moreover, output of the previous convolutional layer exhibit an
element wise ReLU activation function layer as Equation 11:

aEZ)[] = max(0, z(z)[ i]) (11)

A® e R (12)

Where F, as in Equation 12 is the number of filters in this layer.
This step refines the receptive field, enhancing temporal resolution
for channel fluctuations.

Following convolutional layers, 1st LSTM layer processes the
sequence al?) € R™ at each time step £, computing the hidden state
h, € R" using the standard LSTM Equation 13:

fi = o(Ws[h tl)at ]+bf
i, = 6(W;[h,_;,a”] +b)
[ht—bagz)] + bc)

¢, = tanh(W,

¢=f0c 1 +i0O¢
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[ G(W [ht l)a(tZ)} +bu)

h, = o, ® tanh(c;) (13)

Here: afz) € RP is the current input vector from Conv2, h,_; €
R is the previous hidden state, ¢, is the memory cell, 0 is element-
wise multiplication, of-) is the sigmoid activation, W,, b, are
learned weights and biases. The LSTM captures long-term
dependencies due to delayed multipath propagation common in
underwater environments.

After that the second LSTM layer condenses the sequence into a
fixed-size vector as in Equation 14:

hﬁnal = hT € RH (14)

It outputs only the last hidden state, which summarizes the
entire received OFDM frame. Following second LSTM layer, a fully
connected dense layer maps the final LSTM output to predicted
time-domain channel coefficients as in Equation 15:

N-C
Zdense = wdense : hﬁnal + bdense’ Zdense ER (15)

Where: Wienee € RMO*H s the dense layer weight, and N is
the number of subcarriers, C = 2 for real and imaginary
output parts.

The final layer of the network is called the output layer, which
give us channel estimates of CRNet model. In the OFDM
framework, each output neuron is associated with an individual
subcarrier, enabling the network to estimate the corresponding
complex channel coefficient. This layer generates the output as in
Equation 16 by computing:

hi= z(wff} WOV HE 60 4 o0, i =1, N
d=1

(16)
Where:

. fzi is the estimated complex channel coefficient for the i-
th subcarrier.

+ Kl s the d-th element of the LSTM’s final hidden state.

. W,(;), W are the weights of the dense layer for the real and
imaginary parts, respectively.

. bg’), bgi) are the bias terms for the real and imaginary parts.

* D denotes the dimensionality of the LSTM hidden output.

* N is the total number of subcarriers in the OFDM system.

The network output delivers the estimated channel impulse
response for specified subcarriers.

2.1.2 Model training process

The CRNet model is trained using a supervised learning
approach, where each training instance consists of an input-
output pair. The input includes both the received OFDM signals
and their corresponding pilot symbols, while the output represents
the true channel characteristics. During training, the model
iteratively updates its internal parameters such as weights and
biases to accurately map the input data to the desired channel
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responses. The overall functionality and processing pipeline of the
CRNet framework are illustrated in Figure 1 and formally described
in Algorithm 1 for clarity and reproducibility.

1: Initialize the CRNet model: input layer, hidden
layers, and output layer.

2: Feed OFDM symbols Y (k) and pilot symbols X, (k)
as input.

3: Add first 1D convolutional layer: apply F; filters
of size 3 x 3.

4. foreachfilterie[1,F;] and time stepte [1,T] do
5: Compute pre-activation output z"[i] using
Equation 7.

6: Apply RelU activation to obtain al"[i] using
Equation 8.

7: end for

8: Add second 1D convolutional layer: apply F, filters
of size 3 x 3.

9: foreach filterie[1,F,] and time stepte [1,T] do
10: Compute pre-activation output z?[i] using
Equation 10.

11 Apply RelU activation to obtain a{[i] using
Equation 11.

12: end for

13: Add first LSTM layer: return full sequence of
hidden states h, € RY.

14: for each time step t € [1,T] do

15: Compute LSTM operations fy,1¢,Cy,Cy, 0 hy USiNg
Equation 13.

16: end for

17: Add second LSTM layer to obtain final hidden
state heipar -

18: Compute dense layer output zg,. €R'C using
Equation 15.

19: for each subcarrier ke [1,N] do

20: Construct complex channel estimate Hi using
Equation 16.

21: end for

Algorithm 1. CRNet-based channel estimation for UNA-OFDM.

2.1.3 Data generation and training parameters

The dataset used for training and testing the CRNet model was
generated using the Bellhop ray-tracing model, which mimics
sound propagation in dynamic underwater environments. To
accurately depict the spatial variability of the marine
environment, several critical parameters were modified across
various simulation combinations as illustrated in Table 1,
including sound speed (1500-1550 m s~ '), bottom absorption (1-
10 dB per wavelength), bottom density (1000-3000 kg m ), seabed
roughness (0.01-0.1), transmitter depths (0-20 m) and receiver
depths (0-15 m), acoustic frequencies (10-9500 Hz), angles (-80-
80°), and receiver range (1-1000 m). These variations illustrate a
range of underwater topographies from shallow coastal areas to
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TABLE 1 Underwater acoustic channel parameter ranges.

Feature Range

Bottom absorption 1-10 dB/wavelength
Bottom density 1000-3000 kg/m”®
Bottom roughness 0.01-0.1

Sound speed 1500-1550 m/s

Frequency of waves/acoustic signal 10-9500 Hz
Minimum-Maximum angle -80" to 80°
Water depth 1-5000 m
Number of beams (n-Beams) 1-950
Receiver depth 0-15m
Receiver range 1-1000 m

Transmitter depth: 0-20 m

continental shelf environments, capturing temporal dynamics of
UWA channels such as Doppler shifts, delays, and multipath
propagation. Both shallow-coastal and continental shelf channel
data sets, generated through the Bellhop ray-tracing simulation,
comprises 6,000 samples collected during the simulation phase. The
input shape for each training sample of the received signal is (Nt,
Nfft, num) = (1152, 1024, 10). Nt represents the quantity of samples,
Nfft denotes the received signal as input features, and num indicates
the number of iterations.

To accurately represent the spatial variability present in real
marine environments, the Bellhop model is further adjusted to
simulate both horizontal and vertical gradients in environmental
characteristics: vertical sound speed profiles (SSPs) integrate depth
dependent temperature gradients (5-25 "C) and salinity levels (30~
35 ppt), with shallow coastal areas displaying a surface duct (an
increase in sound speed with depth up to 10m) and Continental
shelf conditions characterized by a sound channel (minimum sound
speed at depths of 50-100 m); the seabed is depicted as a spatially
heterogeneous medium, with transitions between sand (near shore)
and silt (continental shelves) occurring at random horizontal
intervals (50-200 m); horizontal ambient noise gradients also
fluctuate, with near shore regions incorporating ship noise
contributions (10-20 dB higher at 1-5 kHz) continental shelf
areas mainly influenced by both marine life noise and ships
(peaking at 10-100 Hz). These modifications ensure the model
capacity to generalize across diverse underwater scenarios,
reflecting the dynamic attributes of the aquatic environment.

The CRNet model was optimized utilizing the Adam optimizer
with a learning rate of 1 x 1073, a batch size of 64 over 100 epochs,
an 80%/20% training/validation split, dropout regularization set at
0.2, ReLU activation in hidden layers, performance evaluation every
30 steps, and early stopping with a patience of 5 epochs to guarantee
convergence. Table 2 provide combination of these options for
CRNet Model ensuring comprehensive set of training data
representing real world UW channel complexities such as
temperature gradients, salinity fluctuations, and seabed structure
enhances the CRNet model robustness across varied environmental
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TABLE 2 Model training options for proposed CRNet model.

Training parameter Value

Optimizer Adam
Learning Rate 0.001
Batch Size 64
Number of Epochs 100
Training/Validation Split 80%/20%
Activation Function ReLU

Regularization Dropout (0.2)
Validation Frequency 30
Validation Patience 5

conditions, allowing it to effectively learn and predict UWA channel
responses, reduce pilot workload, and maintain reliable
communication even in adverse underwater propagation scenarios.

2.2 Channel equalization via convolution-
recurrent network estimates

The channel equalization technique is essential for mitigating
the distortion caused by the underwater acoustic channel. The
CRNet model presents a notable advancement by integrating
convolutional and recurrent layers to effectively capture spatial
and temporal relationships in channel response. This dual
strategy allows the model to learn and adapt to the highly
dynamic characteristics of UWA channels, offering enhanced
resilience relative to conventional techniques. CRNet ability of
performing precise channel estimate with a reduced number of
pilot symbols and to manage time-varying channel circumstances
illustrates its significant superiority over LS, MMSE, and BPNN.The
mathematical expression as in Equation 17 for the equalization
procedure of the kth subcarrier is as follows: CRNet directly
supplies the frequency response estimate H cpye(k) for each sub-
carrier k; one-tap LS equalization is then simply.

Yeq(k) = Y(k)/H cruer (k) - (17)

* Y (k) - received frequency-domain signal on sub-carrier k;

* H cpuec(k)- complex channel response estimated by CRNet
on sub-carrier k;

¢ Yeq(k) - equalized symbol after one-tap compensation on
sub-carrier k.

Although LS, MMSE, and BPNN are popular benchmark
algorithms for channel equalization, their foundational principles
limit their effectiveness in practical UWA environments. LS and
MMSE depend on static linear estimates and are incapable of
adapting dynamically to the non-stationary and nonlinear
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characteristics of multipath UWA channels, whereas BPNN is
deficient in the temporal memory necessary to grasp sequential
relationships in acoustic signals. The proposed CRNet presents an
integrated framework that merges dynamic signal decomposition
architecture including convolutional and recurrent layers. This
design allows CRNet to learn spatial correlations and temporal
evolutions of channel coefficients, facilitating adaptive equalization
under diverse propagation situations. Thus, CRNet signifies a
significant progression beyond traditional equalizers by offering
a physically informed, data driven methodology capable at
effectively simulating the time varying dynamics of
UWA channels.

3 Simulation results with critical
analysis

This section outlines the experimental setup, beginning with an
overview of the simulation environment that employs the Bellhop
channel model, as described in Section 3.1. Section 3.2 elaborates on
the implementation of various benchmark techniques. The
performance evaluation criteria are presented in Section 3.3.
Section 4 provides a comprehensive discussion of the
experimental outcomes and their analysis. Finally, Section 5
concludes the study.

The proposed model have been executed in Python, and the
simulation includes a series of essential parameters detailed in
Table 3. This concise table offers a thorough summary of essential
characteristics, including the modulation technique, subcarrier count,
pilot configuration, FFT dimensions, and the use of a CP as a guard
interval. Comb-type pilot insertion is used for its spectral efficiency
and simple channel estimation procedure. It ensures uniform pilot
spacing over the frequency range, hence simplifying the interpolation
of the channel response and effectively compensating for Doppler
shifts, common in UWA communications. The latest release of
Python 3.14.0 was used to create the Bellhop-based UWA channel
simulation pipelines, dynamic signal decomposition modules, and
the CRNet model. Every experiment was carried out on a Windows
11 Pro Education system that had a 64-bit x64 configuration, an
AMD Ryzen 7 5800H processor (3.20 GHz), 16.0 GB of RAM, and no
pen or touch input prerequisites.

3.1 Simulation environment based on
bellhop

The dataset used for training and testing the CRNet model was
generated using the Bellhop, a well-validated tool for modeling
underwater sound propagation in dynamic marine environments.
Bellhop solves the wave equation for discrete eigenrays to produce
essential outputs that define UWA channel complexity, including
multipath components (their amplitudes, delays, and angles of
arrival), transmission loss (dB), and eigenray trajectories all
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TABLE 3 Simulation parameters for UWA-OFDM system.

Parameter Value

Modulation Scheme OFDM
Number of Subcarriers 1024
Number of Pilots 256
Pilot Insertion Scheme Comb-type
FFT Size 1024

Guard Interval Type Cyclic Prefix (CP)

Cyclic Prefix Length 128
Noise Model AWGN
SNR Range 0:5:25 dB

crucial for simulating real acoustic propagation phenomena such as
surface and bottom reflections, sound speed fluctuations, and
depth-dependent attenuation. In order to ensure that the CRNet
model is assessed against spatially and temporally varied UWA
channels, Bellhop is set up with specific input parameters for the
training and testing datasets. For testing 20% of the entire dataset,
two scenario specific channel configurations are created to simulate
genuine underwater environments, with precise Bellhop inputs and
associated channel characteristics outlined in Table 4. Each test
scenario is carefully designed to prevent overlap with training
conditions (e.g., incorporating intermittent ship noise in shallow
water tests. Two typical environments were examined Shallow
Coastal (0-50 m) and Continental Shelf (50-200 m). In the
shallow coastal environment as shown in Figure 2, the sound
speed ranged from 1509 to 1531 m/s owing to a surface duct,
with a sandy bottom exhibiting a density of 2000 kg/m* and an
absorption rate of 3 dB per wavelength. The transmitter and
receiver were positioned at depths of 5 m and 3 m, respectively,
over a distance of 500 m. Environmental noise was characterized as
ship-induced, varying from 10 to 20 dB within the 1-5 kHz
frequency range. Bellhop simulations produced a delay spread of
132.9 ms, 28 multipath components, a Doppler shift of +0.6 Hz, and
a transmission loss of 60 dB. While for continental shelf
environment as depicted in Figure 3, the sound velocity ranged
from 1526 to 1534 m/s under near-isothermal circumstances,
characterized by a silt bottom (density 2400 kg/m®, absorption 5
dB per wavelength). The transmitter and receiver were positioned at
depths of 20 m and 15 m, respectively, over a range of 1000 m. The
noise profile included both maritime and marine sources. Analysis
of the bellhop for this environment revealed a delay spread of 100
ms, 63 multipath components, a Doppler shift of +0.45 Hz, and a
transmission loss of 80 dB. These meticulously designed simulation
scenarios provide genuine UWA channels, including essential
propagation properties, multipath diversity, and Doppler effects,
which are vital for assessing the efficacy of channel estimate
methods in real-world situations. These configurations ensures
that test channels accurately represent the real world dynamics of
UWA conditions, which is essential for evaluating CRNet
adaptability to time-varying situations.

Frontiers in Marine Science

10.3389/fmars.2025.1671853

TABLE 4 Bellhop input parameters & test channel characteristics.

Scenario & parameter Value

1. Shallow coastal (0-50 m)
Inputs
- Sound speed 1509-1531 m/s (surface duct)

- Seabed (type/density/absorption) Sand/2000 kg/m*3 dB/wavelength

- Tx/Rx depth 5m/3 m
- Range 500 m
- Noise Ship (10-20 dB @1-5 kHz)
Outputs
- Delay spread 132.9 ms
- Multipath 28
- Doppler shift +0.6 Hz
- Trans. loss 60 dB
2. Continental shelf (50—200 m)
Inputs

- Sound speed 1526-1534 m/s (isothermal)

- Seabed (type/density/absorption) Silt/2400 kg/m*'5 dB/wavelength

- Tx/Rx depth 20 m/15 m

- Range 1000 m

- Noise Mixed ship/marine
Outputs

- Delay spread 100 ms

- Multipath 63

- Doppler shift +0.45 Hz

- Trans. Loss 80 dB

3.2 Benchmark system and models

Benchmarks such as LS, MMSE, and BP-NN estimators
represent established techniques for UWA channel estimation,
each presenting unique advantages and constraints. These models
serve as traditional references and are discussed in the subsequent
subsections for comparative evaluation.

3.2.1 Least squares estimator

The LS algorithm is a commonly used conventional method for
channel estimation as in Equation 18. The aim is to reduce the squared
error between the received and sent pilot symbols. This is accomplished
by optimizing the subsequent cost function Cho et al. (2010).

Hyglkl = YK|/X[k], k=0,.,N-1, (18)

where X[k] and Y[k] are the known pilot and received symbol
on sub-carrier k, respectively. Its MSE is 6%/ 6%; hence it serves only
as a lower-bound reference for the proposed CRNet.

frontiersin.org


https://doi.org/10.3389/fmars.2025.1671853
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jan et al.

10.3389/fmars.2025.1671853

FIGURE 2
Demonstration of Bellhop ray model in shallow water.
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3.2.2 Minimum mean square error estimator
MMSE estimator improves upon the LS approach by addressing

its sensitivity to noise through the integration of statistical
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minimize the MSE between the actual channel H and its estimate
H. This approach requires the computation of the channel
autocorrelation and noise variance, which can be particularly
challenging and computationally intensive in underwater acoustic

= —
- Water Column
= Seabed (Silt)

" — surface

Range (m)
FIGURE 3
Demonstration of Bellhop ray model in continental shelf water.
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environments, thus limiting its feasibility for real time
implementation. The estimator is formulated by determining an
optimal linear weighting matrix W that minimize the expected error
between H and H. Consider the LS solution in Equation 18 we can
compute Equation 19 for MMSE as in Liu et al. (2025):

2 -1
. o .
Hyvse = Run (RHH +?§I) His. (19)

X

Because Ry and oy are rarely known a priori in UWA
channels, MMSE need prior channel statistics which is
challenging in UWA environment.

3.2.3 Back-propagation neural network

We include a fully-connected BP-NN Jiang et al. (2019) solely to
quantify the gain offered by the proposed CRNet. BP-NN learns a
non-linear pilot-to-CIR mapping but suffers from vanishing
gradients and over-fitting in highly non-stationary UWA
channels. CRNet overcomes these limitations through complex-
valued convolutions and residual LSTM paths.

3.3 Performance evaluation metrics

In UWA communication, various evaluation metrics are used to
assess system and model performance. Among these, MSE is a
widely adopted standard as in Equation 20, particularly valuable for
evaluating DL models. MSE measures the average of the squared
differences between predicted and actual values, thereby indicating
the extent of prediction errors. It is often used in regression tasks
and is proficient in assessing the precision of signal reconstruction
or channel estimation in UWA systems. Additionally, it is standard
practice to present BER versus SNR and BER versus the number of
pilot symbols, both of which offer critical insights into
communication quality and overall system performance. One
limitation of MSE, however, is its sensitivity to outliers since the
error values are squared, larger deviations have a disproportionately
greater impact on the final score. The MSE is calculated as Liu et al.
(2021b).

1 X .2
MSE = 5> (i =74)

i=1

(20)

Furthermore, SNR and BER are critical performance metrics in
signal processing for UWA communication. SNR represents the
ratio of the signal power to the background noise power and serves
as a key indicator of signal clarity and robustness against
interference. A higher SNR implies a cleaner, more reliable signal,
whereas a lower SNR reflects greater vulnerability to noise Zhang
et al. (2022b), which is a common challenge in underwater
environments. On the other hand, BER measures the proportion
of bits received incorrectly compared to the total number of
transmitted bits, offering a direct assessment of transmission
accuracy. Monitoring BER is essential for evaluating the reliability
and effectiveness of data communication systems operating in
complex and noisy underwater conditions.
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4 Results and discussions

Simulation results are explained in the following subsections:

4.1 Proposed model performance in
channel estimation

The proposed model incorporates a convolutional recurrent
architecture that enables each layer to capture both spatial and
temporal dependencies by combining convolutional layers with
recurrent units. This design promotes efficient feature reuse and
enhances gradient flow during backpropagation, addressing issues
like vanishing or exploding gradients. The recurrent connections
provide shorter and more stable paths for information and gradient
propagation, resulting in more effective and stable training. The
proposed CRNet model learns feature maps that capture the
frequency, temporal, and noise characteristics of underwater
acoustic signals. By training on paired data of transmitted OFDM
pilot symbols X,(k) and received symbols Y (k), the network
effectively learns the mapping between the received signal and the
channel impulse response CIR. Visualizing these feature maps
reveals how the model distinguishes between different signal
components, guided by actual channel responses across varying
underwater environments.

The QPSK modulation method exhibits a notable improvement
in BER performance as SNR grows, especially when using the
CRNet model for channel estimation. In the shallow coastal
environment, marked by significant multipath reflections, surface
scattering, and considerable temporal variability owing to the
shallow sea depth (0-50 m), the BER for QPSK modulation stays
notably elevated throughout the SNR spectrum, particularly at
lower SNR values as depicted in Figure 4. At —10 dB SNR, all
models (LS, MMSE, BPNN, and CRNet) show elevated BER values,
with LS and MMSE reporting values of 0.42 and 0.55, respectively,
indicating substantial noise and multipath interference. With an
increase in SNR, CRNet performance markedly improves, attaining
a BER of 0.18 at 0 dB, in contrast to 0.32 for LS, 0.50 for MMSE, and
0.07 for BPNN. At 10 dB, CRNet achieves a BER of 0.03, illustrating
its proficiency in managing nonlinearities and surpassing other
models. At 20 dB, CRNet attains 0.00025, demonstrating its
exceptional noise resistance and strong performance in a channel
characterized by intricate multipath effects, while BPNN obtains
0.0011, and both MMSE and LS exhibit comparatively higher error
rates, about 0.017 and 0.03, respectively.

Conversely, the continental shelf environment in Figure 3,
characterized by increased depth (50-200 m) and more robust
acoustic propagation pathways. At —10 dB SNR, LS and MMSE
exhibit values of 0.50 and 0.60, respectively, however BPNN and
CRNet demonstrate superior performance with values of 0.14 and
0.20. As the SNR rises to 0 dB, CRNet attains a performance metric
of 0.11, followed by BPNN at 0.085, MMSE at 0.55, and LS at 0.40.
This demonstrates that data-driven models consistently surpass
linear estimators, but with a reduced performance disparity relative
to the shallow coastal scenario. At 10 dB, CRNet achieves 0.035,
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FIGURE 4

Impact of QPSK modulation using (a) shallow coastal and (b) continental shelf channels.

whilst BPNN attains 0.04, and MMSE and LS provide 0.28 and 0.25,
respectively. At 20 dB, CRNet attains a value of 0.00035, followed by
BPNN at 0.0016, MMSE at 0.022, and LS at 0.045, demonstrating
CRNet dominance over other models, although the margin is
narrower in the continental shelf environment owing to the
decreased complexity of the channel. The findings indicate that
CRNet has superior performance in both scenarios, with a more
noticeable advantage in the shallow coastal channel, where
multipath-induced distortions are more prominent.

4.2 Impact of high order modulation
schemes

This study primarily focused on assessing BER under varying
SNR conditions across different modulation schemes, such 16,32
and 64 QAM for both shallow coastal and continental
shelf channels.
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FIGURE 5

The BER vs SNR curve for 16-QAM, as shown in Figure 5,
highlights the effectiveness of the proposed CRNet model relative to
traditional LS, MMSE, and BPNN estimators in both channels. In
the shallow coastal environment, the 16-QAM BER stays
comparatively high throughout the SNR spectrum, particularly at
low SNR values. At —10 dB, all models have increased BERs, with LS
and MMSE presenting BER values of 0.55 and 0.45, respectively,
whilst BPNN and CRNet perform more favorably with values of
0.35 and 0.25. With an increase in SNR, CRNet demonstrates
substantial enhancement, reducing to 0.18 at 0 dB, further
declining to 0.03 at 10 dB, and eventually achieving 0.0010 at 20
dB, reflecting a 90% improvement over LS (0.015) and a 75%
enhancement over BPNN (0.0045). Conversely, the continental
shelf environment, characterized by more steady propagation and
less multipath interference (50-200 m depth), demonstrates a
significant increase in BER across all models, with CRNet
consistently surpassing the others. At —10 dB, LS and MMSE
exhibit BERs of 0.58 and 0.48, however BPNN and CRNet
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Comparison of 16-QAM BER vs SNR for (a) shallow coastal and (b) continental shelf channels.
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demonstrate superior performance with 0.38 and 0.28, respectively.
As the SNR rises to 0 dB, CRNet attains a value of 0.18, and at 20 dB,
it hits 0.0015, demonstrating a 90% enhancement over LS (0.015)
and an 80% enhancement over MMSE (0.0100). The findings
confirm that CRNet regularly achieves the lowest BER,
demonstrating a more significant advantage in shallow coastal
channels where multipath-induced distortions are more prominent.

Furthermore, In Figure 6 The BER for 32-QAM grows
substantially throughout the SNR spectrum in comparison to 16-
QAM, indicating the heightened complexity associated with higher
order modulation. At —10 dB, all models exhibit increased BERs,
with LS and MMSE presenting BERs of 0.60 and 0.50, respectively,
whilst BPNN and CRNet show superior performance at 0.30 and
0.32. With an increase in SNR, CRNet demonstrates significant
enhancement, achieving 0.18 at 0 dB, 0.03 at 10 dB, and 0.0025 at 20
dB. In the continental shelf environment, 32-QAM has elevated
BERs compared to 16-QAM, but the performance disparity
diminishes. At —10 dB, LS and MMSE exhibit values of 0.65 and

10.3389/fmars.2025.1671853

0.55, respectively, whilst BPNN and CRNet have worse
performance with values of 0.42 and 0.38. As the SNR ascends to
0 dB, CRNet attains a value of 0.34, and at 20 dB, it obtains 0.0040.
These findings indicate that while 32-QAM modulation yields a
larger BER than 16-QAM owing to more signal complexity.

As shown in Figure 7 the 64-QAM BER values are notably
elevated throughout the SNR spectrum, indicating the raised signal
complexity of 64-QAM coupled with the adverse channel
conditions of multipath reflections, surface scattering, and
significant temporal variability typical of shallow waters. At —10
dB, LS and MMSE show increased BERs of 0.68 and 0.58,
respectively, however BPNN and CRNet display superior
performance with BERs of 0.40 and 0.30, respectively. With an
increase in SNR, CRNet markedly surpasses other models,
achieving scores of 0.18 at 0 dB, 0.095 at 10 dB, and 0.0080 at 20
dB. Conversely, the continental shelf environment, distinguished by
more consistent propagation and less multipath interference (50-
200 m depth), exhibits superior overall BER performance across all
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Comparison of 32-QAM BER vs SNR for (a) shallow coastal and (b) continental shelf channels.
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Comparison of 64-QAM BER vs SNR for (a) shallow coastal and (b) continental shelf channels
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models. At =10 dB, LS and MMSE exhibit values of 0.70 and 0.60,
respectively, whilst BPNN and CRNet have worse performance with
values of 0.40 and 0.32, respectively. With an increase in SNR,
CRNet attains a BER of 0.11 at 0 dB and 0.0075 at 20 dB. The results
demonstrate that CRNet consistently surpasses the other models in
both environments, where multipath induced distortions are
more severe.

We have specifically assessed the BER performance of these
approaches for two distinct modulation schemes i.e. QPSK and
QAM. Our results demonstrate that for all SNR levels, the BER of
QPSK modulation surpasses that of QAM modulation. This

10.3389/fmars.2025.1671853

indicates that QPSK has enhanced performance relative to QAM
in our experimental setup.

Figures 8, 9 illustrates amplitude and phase error, demonstrating
the enhanced performance of CRNet in estimation of different
channels relative to conventional estimators such as LS, MMSE,
and BPNN. The amplitude error for CRNet is markedly reduced
across different SNR levels, illustrating its proficiency in reliable
estimating channel amplitudes even in difficult UWA conditions,
characterized by multipath interference and Doppler shifts.
Conversely, LS and MMSE show more amplitude errors,
particularly at low SNRs, highlighting their inadequacies in
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managing the dynamic and noisy characteristics of underwater
channels. Likewise, the phase error for CRNet is persistently
minimal, even at low SNRs, ensuring precise phase estimate
essential for coherent signal detection. Conversely, LS and MMSE
exhibit more phase errors, underscoring their vulnerability to noise
and inadequacy in accurately representing intricate channel features.
The CRNet model capacity to reduce both amplitude and phase
errors highlights its durability and accuracy, establishing it as the
optimal selection for reliable UWA communication.

4.3 Mean square error analysis of proposed
scheme

The MSE performance of the proposed CRNet model and
benchmark estimators, including LS, MMSE, and BPNN, was
assessed in two UWA channel environments: shallow coastal and
continental shelf. Results depict the fluctuation of MSE with training
epochs for the real and imaginary components of the channel
coefficients. The findings illustrate the convergence characteristics
and overall estimation precision of each model across various channel
circumstances. A similar reduction in MSE is found in both
configurations as the number of epochs grows, indicating that all
models successfully learn to represent the fundamental channel
dynamics over time. Nonetheless, the extent of enhancement and
the ultimate steady-state MSE differ significantly between
conventional and learning based methodologies. Overall, neural
estimators, especially CRNet, demonstrate faster convergence and
attain much lower MSE values compared to traditional linear
estimators like LS and MMSE. In the shallow coastal environment,
marked by significant multipath propagation, elevated reflection
losses, and fluctuating interference within a limited sea depth,
precise channel estimation proves to be extremely difficult. As
demonstrated in Figure 10 LS and MMSE estimators initially

10.3389/fmars.2025.1671853

exhibit high MSE values (about 107') and demonstrate gradual
convergence rates. After 300 epochs, the LS estimator stabilizes at
107°, whilst the MMSE attains a marginally lower final error of
around 2 x 10™*, The constraint of both approaches lies in their linear
modeling characteristics, which inadequately account for nonlinear
distortions resulting from surface scattering and phase variations.
The BPNN model significantly outperforms LS and MMSE by
acquiring nonlinear input-output relationships from the data. The
MSE constantly decreases throughout training, reaching roughly 1.5
x 107* after 300 epochs. Nonetheless, the convergence is somewhat
slower and less stable owing to gradient vanishing and network
saturation in intricate multipath scenarios. Despite these
advancements, BPNN continues to demonstrate constraints in
adjusting to extremely dynamic channel situations.

Conversely, the CRNet model attains the lowest overall MSE and
the quickest convergence rate among all evaluated estimators. Both
the real and imaginary components attain steady-state MSE
approaching 8 x 107> after about 200 epochs. This exceptional
performance is due to two main architectural benefits: first, the
complex-valued representation enables CRNet to simultaneously
model amplitude and phase relationships present in underwater
channels; and second, residual connections improve gradient flow,
facilitating efficient and stable training. As a result, CRNet has
exceptional proficiency in alleviating multipath interference and
simulating nonlinear acoustic propagation effects. The MSE loss in
continental shelf environment as shown in Figure 11 has a
considerably deeper area characterized by steady acoustic pathways
and multipath variability. In these circumstances, all estimators
demonstrate enhanced convergence and more gradual error
reduction relative to the shallow coastal scenario. The LS and
MMSE estimators exhibit superior performance, achieving final
MSE values of around 1 x 107 and 1.5 x 107% respectively. The
stability of this environment minimizes random dispersion, therefore
enhancing the precision of linear estimating methods. The BPNN
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FIGURE 10

MSE loss of CRNet along with traditional models in shallow coastal channel.
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MSE loss of CRNet along with traditional models in continental shelf channel.

model excels in this context, with accelerated convergence and a final
MSE of around 1 x 107, This enhancement signifies that neural
models have more reliability when the channel displays less abrupt
temporal or spatial fluctuations. Nevertheless, the performance of
BPNN continues to be poor compared to CRNet for both
convergence speed and ultimate accuracy. CRNet consistently
surpasses all baseline models, achieving quick convergence and
sustaining the lowest steady-state MSE of less than 1 x 107 for
both the real and imaginary components. Despite the reduction in
performance disparity between CRNet and MMSE/BPNN in a
shallow setting, CRNet continually proves to be the most precise
and reliable estimator.

1:
number of iterations N

Input: UWA received signal x(t), window size w,

2: Initialize residual signal: rg(t) « x(t)
3: fork=1toNdo
4: Compute local mean my(t) using moving average:
1 tiw/2 .
m(t) =— 5 k()
Wl:t—w/z
5: Compute detail signal: dy(t)« ry_(t) —me(t)
6: Store di(t) in detail signal list
7: Update residual signal: ry(t)«m(t)
8: end for
9: Compute final trend signal:
T(0) = x(t) - 3y de(®)
10: Output: Trendsignal T(t) and detail signalsdy (t)

Algorithm 2. Local mean decomposition (LMD) for UWA signal.
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4.4 Impact of dynamic signal
decomposition techniques

UWA communication is significantly impacted by ambient
noise from sources like wind-driven surface activity, marine
vessels, and aquatic life. This noise is non-stationary and varies
with factors such as location, sea depth, wind speed, and acoustic
propagation conditions. Enhancing signal quality through effective
denoising can improve the performance of UWA systems. This
study utilizes the denoised signal derived from the suggested DSD
techniques as input for the CRNet architecture, therefore
integrating the denoising and learning phases into an efficient
pipeline for channel estimation as depicted in Figure 1.

4.4.1 Local mean decomposition

LMD is used as a denoising at the receiver to boost the accuracy
of UWA channel estimates by extracting relevant information from
noisy signals Jan et al. (2023). LMD decomposes the received signal
into a series of intrinsic mode functions (IMFs) as depicted in
Algorithm 2, each representing a separate frequency component as
depicted in Figure 12. By assessing and choosing relevant IMFs,
LMD successfully isolates the channel-induced distortions from the
actual signal. This selective separation of components assists in
separating the underlying channel characteristics, decreasing noise
interference, and eventually enhancing the accuracy of channel
estimates, which is vital for robust UW communicatsystems. ems.
The received UWA signal be denoted as in Equation 21:

y(t) = s(t) + w(t) (21)

where:

*  y(1) is the observed received signal,

s(t) is the useful signal component transmitted through the
UWA channel,
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Dynamic signal decomposition technigues (a) Local mean decomposition (b) Empirical model decomposition.

*  w(t) is the additive noise (typically modeled as AWGN or
colored noise).

The goal of LMD is to decompose y(t) into a set of product
functions (PFs) that represent amplitude and frequency modulated
components of the signal. Unlike previous denoising methods. Our
proposed LMD strategy is explicitly tailored to address the dynamic
and intricate characteristics of UWA communication. In Jan et al.
(2023) the authors concentrated on chirp-based UWA estimation
using limited datasets, neglecting pilot and OFDM subcarrier
effects, while Lu et al. (2021) tackled the denoising of marine
mammal data, specifically targeting bioacoustic signals from
species such as dolphins and whales, without accounting for
actual communication complexities. In contrast, our approach
specifically addresses channel distortions resulting from multipath
propagation and Doppler shifts. Hence, the suggested LMD
proficiently separates essential signal components from noisy
received signal, hence ensuring enhanced accuracy and robustness
in UWA channel estimation.

The received UWA signal as in Equation 22 is denoted by y(?).
The LMD decomposes y(t) into K product functions (PFs), and a
residual rx(f) in Lu et al. (2021) is defined as

K
y(t) = S PE(t) + rie(£)
k=1

(22)

Each product function PFi(f) captures a mono-component
AM-FM signal structure as in Equation 23 and is defined as:

PF(t) = ai(t) cos (/t a)k(r)d‘r) (23)
0

where:
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e a(t) is the instantaneous amplitude of the k-th PF,
e (1) is the instantaneous angular frequency, derived from
phase variations,

t
* The integral / @ (7)dT represents the instantaneous
0

phase of the signal component.

After PF, the local mean and envelope estimation process as in
Equation 25 for each decomposition step k applied to the UWA
received signal:

1. Identify all local extrema (peaks and troughs) of the signal
Yi(®).

2. Estimate the local mean as in Equation 24 m(t) by averaging
adjacent extrema as in Lu et al. (2021):

my(t) = 24
(1) 3 (29)
where x;(t) and x;, ;() are successive extrema.
3. Estimate the local envelope e(t) using
xi(t) — x4 (¢t
ek(t) _ t( ) 5 1+1( ) (25)

4. Extract the frequency-modulated signal component as in
Equation 26:

_ nlt) = my (1)
ex(t)

This isolates the oscillatory behavior normalized by the

h(t) (26)

local envelope.
5. Calculate the instantaneous phase as in Equation 27:

(1) = cos™" (i (1)) (27)
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Comparison of the received and denoised signal using the LMD technique. The denoised signal shows improved smoothness and reduced high-

frequency noise.

6. Reconstruct the product function as in Equation 28:

PF(t) = a(t) cos (¢(£)), where ai(t) = e ()  (28)

This PF captures both amplitude and frequency modulation
effects of the k-th component.

7. Update the signal as in Equation 29 for the next iteration as in
Lu et al. (2021):

Yier1 (£) = yi(£) = PE(1) (29)

Repeat this process until the residual rx(t) = yx, 1(f) becomes a
monotonic trend.

At the end, the final reconstruction as depicted in Figure 13 and
Equation 30 the denoised UWA signal using LMD are expressed as

K t
Y1) = Say (1) cos ( A wk(r)dr) +1(t) (30)
k=1

where:

TABLE 5 Comparison of MSE between LMD and EMD denoising
techniques at different thresholds.

Threshold

(% of max amplitude) p2 S iAo
20% 0.005199 0.011088
40% 0.010370 0013136
50% 0011272 0013318
60% 0011721 0013348
70% 0.011966 0013348
80% 0012325 0.013348
90% 0012681 0.013348
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o ai(t) and ay(t) reflect the adaptive amplitude and frequency
of underwater signal components,

e rg(t) captures the residual, usually interpreted as trend or
background noise after decomposition.

Table 5 shows the MSE values for LMD and EMD denoising
methods across different amplitude thresholds. LMD consistently
attains a lower MSE than EMD across all threshold values, ranging
from 20% to 90% of the maximum amplitude. This signifies that
LMD is superior in maintaining the original signal while
attenuating noise. Significantly, at the 20% threshold, LMD
decreases the MSE by almost 50% relative to EMD (0.005199 vs.
0.011088) and continues to exhibit superior performance at
elevated thresholds, demonstrating its durability in UWA signal
denoising. Moreover, Figure 13 demonstrates the efficiency of
LMD denoising techniques on both real and imaginary received
and trend signals.

4.5 Analysis on impact of pilot number

Pilots play a very crucial role in the correlation between BER
performance and the number of pilot symbols. For an accurate
channel estimation, it is necessary for the system to use a minimum
number of pilots for the enhancement of spectral efficiency and
overall system performance. As shown in Figure 14. As the number
of pilots increases from 16 to 32 and then to 256, the BER
performance of all pilot-assisted algorithms, except BPNN and
CRNet, deteriorates significantly. Despite the decreased pilot tone,
the CRNet estimator can maintain its BER at about 10™°, whereas
the LS and MMSE estimators exhibit a failure with a BER of
roughly 1072,
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4.6 Evaluation of proposed model on
training and unseen data

Figure 15 illustrates the CRNet BER performance in relation to
SNR (0-20 dB) for the shallow-coastal and continental-shelf
channels. Across the shallow-coastal link, CRNet reduces the
training BER from 0.25 at 0 dB to 0.001 at 20 dB, while the
unseen-data BER slightly trails at 0.0011, resulting in a 10%
relative gap at the lowest SNR and an almost negligible gap at
higher levels, demonstrating effective generalization despite
significant, rapid multipath variations. In the continental-shelf
link, the training BER decreases from 0.28 to 0.002, while the test
BER attains 0.0025 at 20 dB, indicating a 12.5% enhancement; the
improved train-test concordance signifies the more gradual and
stable fading of the deeper-water channel. In both cases, CRNet
achieves a BER of less than 10> at 15 dB SNR with a generalization
cost of around 15%, surpassing linear and traditional non-
linear estimators.
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5 Conclusion

In this work, we thoroughly addressed the intricate channel
estimation issue in UWA-OFDM communication systems. We have
examined the impact of various modulation methods and pilot
quantities on channel estimation approaches. Our distinctive
CRNet-based estimator is designed to manage the complex
structure of UWA channels. We explained the design and training
of the CRNet model and illustrate the capabilities of CRNet
estimator via extensive experiments using the BELLHOP data
set, collected from shallow coastal and continental shelf
environments. Experiments demonstrate that DenseNet surpasses
traditional methodologies. The CRNet model exhibits a significant
improvement in BER performance, achieving up to a 90%
reduction in error rates at elevated SNRs compared to
conventional linear and non-linear estimators such as LS, MMSE,
and BPNN, demonstrating its exceptional generalization capability
and resilience in both shallow coastal and continental shelf UWA
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CRNet BER performance for (a) Shallow Coastal and (b) Continental Shelf Channels on training and testing data channel.

Frontiers in Marine Science

20

frontiersin.org


https://doi.org/10.3389/fmars.2025.1671853
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Jan et al.

channels. Our findings demonstrate that QPSK outperforms QAM
in modulation schemes at low SNR levels. This underscores the
importance of selecting the appropriate modulation approach for
UWA-OFDM systems. We also integrated dynamic signal
decomposition techniques, namely LMD and EMD, to denoise the
received signals before estimation. The results show that LMD
outperformed EMD, providing more effective noise suppression
and signal clarity. The CRNet-based estimator surpasses traditional
methods because of its adaptability. Our research investigates the
impact of pilot signals on the performance of the CRNet estimator
and maintains acceptable BER levels with reduced pilot resources,
which is crucial for UW communication applications. The CRNet-
based estimator demonstrates flexibility, resilience, and superior
performance compared to previous channel estimation techniques,
representing a significant advancement in underwater
communication systems. The CRNet concept has the potential to
enhance the reliability and efficiency of UW communication
networks by addressing the specific challenges posed by dynamic
and unpredictable environments. In the future, we want to conduct
experiments using real-world sea data for thorough testing, aimed at
improving the model generalization skills over a broader spectrum
of underwater acoustic environments.
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