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Plasticity under pressure: the
influence of shear stress on
larval echinoid morphogenesis

Maggie Dakin', Joshua Patterson™, Alex Petrosino?,
Jessica Smith* and Aaron Pilnick*

Fisheries and Aquatic Sciences, School of Forest, Fisheries, & Geomatics Sciences, University of
Florida|IFAS, Gainesville, FL, United States, 2Center for Conservation, The Florida Aquarium, Apollo
Beach, FL, United States

Introduction: Individuals of some marine species can modify their phenotype in
response to environmental factors, allowing them to adapt to new conditions
throughout their ontogeny. Echinoids represent an ecologically significant taxon
that exhibit such plasticity throughout a biphasic life history in response to known
biotic and abiotic factors. Preliminary lab-based observations have suggested that
morphological traits, specifically pluteal arm length, may be influenced by physical
processes such as hydrodynamic flow during planktotrophic larval development. This
dynamic remains understudied despite potentially critical demographic implications.
Methods: Here, we tested the effect of continuous exposure to different shear
stress treatments on larval morphology and life history timing shifts in three co-
occurring species: Lytechinus variegatus, Tripneustes ventricosus, and
Diadema antillarum.

Results: Both T. ventricosus and D. antillarum displayed significantly longer
postoral arms and increased percent metamorphic competence in response to
greater shear. Treatment effects were not observed for L. variegatus.
Discussion: These findings represent the first observation of morphogenic
plasticity in response to a hydrodynamic factor for larval echinoderms.
Species-specific effects revealed a plasticity continuum which may be
mediated by phylogeny, ecological niche, and/or functional morphology. This
dynamic response offers insights into larval dispersal and recruitment potential,
adult distribution, and the boom-and-bust cycles characteristic of ecologically
relevant echinoid populations.
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1 Introduction

Sea urchins are often referred to as ecosystem engineers due to their ability to alter
benthic algal communities through herbivory (Precht and Precht, 2015). For this reason,
they are well represented in foundational ecological studies (Leighton et al., 1966; Lang and
Mann, 1976; Duggins, 1980). Urchin populations are subject to rapid ‘boom’ and ‘bust’
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phases which can have cascading ecosystem effects. For example,
overpopulation and intense grazing by Strongylocentrotus
purpuratus contributed to large-scale kelp deforestation in the
Pacific Ocean (Harris and Eddy, 2015). Similarly, over-grazing by
Diadema africanum reduced benthic biodiversity within urchin
barrens along temperate coastlines in the eastern Atlantic Canary
Islands (Hernandez et al, 2008). Conversely, mass mortality of
Diadema antillarum in 1983-84 and resulting lack of herbivory
resulted in algal proliferation and concomitant decline of hard coral
on Caribbean reefs (Carpenter, 1990; Harborne et al., 2009; Lessios,
1988a). The ecological importance of sea urchin grazing justifies
expanded understanding of factors, especially during early life
history, influencing population dynamics.

Sea urchin demographics are tightly linked to their planktonic
larval stage (Roughgarden et al., 1988; Pineda et al., 2010). Since
benthic adults have limited mobility and narrow home ranges,
species distribution is dependent on larval dispersal and post-larval
recruitment patterns (Prado et al, 2012). Reproductive success,
which can be highly variable, is therefore mediated by factors such
as spawning behavior, gamete encounter rates and fertilization
success, larval developmental mode and duration, and settlement
behavior, all occurring and interacting within dynamic physical
environments (Harris and Eddy, 2015). Water currents
surrounding spawning aggregations, for example, likely influence
gamete encounter rates, fertilization success, and dispersal direction
and range (Feehan et al., 2016). This stochasticity has been likened
to a ‘recruitment sweepstake’, where chance environmental
conditions enact some degree of passive influence on the diversity
and magnitude of parental contribution to future populations
(Cowen et al., 2000; Flowers et al., 2002).

Hydrodynamic factors also directly influence larval biology. For
example, the chaotic swirling motion of water, i.e., turbulence, can
alter the swimming behavior and distribution of planktonic urchin
larvae within the water column (Sameoto et al., 2010; Wheeler et al.,
2016). The process of larval settlement is also sensitive to
hydrodynamic exposure; in one field study, settlement rates for
two Strongylocentrotus species correlated positively with turbulence
and negatively with stratified water columns and low wind stress
environments (Miller and Emlet, 1997). Later studies investigated
this dynamic in the laboratory and broadly revealed an accelerated
timeline to metamorphic competence and increased settlement
success for some species in response to higher shear flow
(Gaylord et al., 2013; Hodin et al., 2020). In these instances,
turbulence was hypothesized to facilitate maturation and
settlement in favorable nearshore habitat characterized by high
wave energy. Species-specific responses further highlighted
potential evolutionary differences. Despite evident impacts on the
rate and timing of settlement, direct hydrodynamic effects on
morphological traits during larval development are understudied.

Urchin larvae with a planktotrophic (i.e., feeding) mode can
express different morphologies in response to certain abiotic
environmental conditions (Byrne et al., 2008; Soars et al., 2009;
McAlister and Miner, 2018). For example, some larvae adapt to
food-limited conditions by elongating ciliated arms to increase food
capture efficiency (Strathmann et al., 1992; Sewell et al., 2004; Byrne
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et al, 2008). Soars et al. (2009) further revealed that this plastic
growth response is also species-specific and may depend on larval
form. Typical echinopluteus larvae possess four pairs of arms
(hereafter referred to as ‘typical’), whereas echinopluteus
transversus larvae, such as those of Diadema antillarum, have a
single dominant pair of elongated post-oral arms (hereafter referred
to as ‘transversus’). Since hydrodynamic factors influence larval
biology, and some larvae exhibit plastic growth responses to known
environmental conditions, it is plausible that larvae may also adapt
their morphology in response to hydrodynamic forces. Preliminary
lab-based observations have indicated that morphological traits,
specifically pluteal arm length, may be influenced by flow regime
during planktonic larval development in an aquaculture setting.
Further understanding of these adaptations relates to physical
factors, such as hydrodynamic condition, is essential for
predicting sea urchin demographics and ecosystem level impacts.

This study examined larval ontogeny under varying turbulent
shear conditions to gain insights into how hydrodynamics influence
larval functional morphology and potential phenotypic plasticity in
two typical form species — Lytechinus variegatus and Tripneustes
ventricosus — and one transversus form species — Diadema
antillarum. All three Caribbean species occupy overlapping yet
ecologically distinct niches (Randall et al., 1964; Cameron, 1986;
Lessios, 1988b; Macia and Lirman, 1999). This work provides a
framework for understanding species-specific developmental
strategies and their implications for recruitment success under
climate change and other stressors on marine ecosystems.

2 Materials and methods
2.1 Broodstock and spawning

Lytechinus variegatus and T. ventricosus broodstock were
collected by licensed marine life collectors in the Florida Keys,
USA. Diadema antillarum broodstock were collected from the same
region by the Florida Fish and Wildlife Conservation Commission
under National Oceanic and Atmospheric Administration permit
number FKNMS-0218-023. All bloodstock were maintained in
separate greenhouse recirculating aquaculture systems (RAS)
operated by The Florida Aquarium in Apollo Beach, Florida, at
latitude N27° 46" 43.81", as described in Pilnick et al. (2021).

Lytechinus variegatus and T. ventricosus broodstock primarily
fed on naturally derived benthic algal growth and sporadically
received a commercially available herbivore diet ([34% crude
protein, 8% crude fat, 8% crude fiber], Algaemax Wafers, New
Life Spectrum, Homestead, FL, USA). Gametes from a
serendipitous, un-induced broadcast spawning event were
collected via pipette from one male and one female of each
species on November 7, 2022. Salinity and temperature at the
time of spawning were 37.1 ppt and 26.6°C, respectively. Egg and
diluted sperm concentrations were then combined, and percent
fertilization was recorded by quantifying the proportion of embryos
displaying a fertilization envelope or initial cell division
approximately two hours post-spawn in 1-ml Sedgewick rafter
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TABLE 1 Feeding regime for Lytechinus variegatus, Tripneustes
ventricosus, and Diadema antillarum larvae based on developmental
stage or cohort age.

Time period Developmental stage

(D. antillarum)

(L. variegatus and
T. ventricosus)

Feeding rate

3-6 dpf 2-arm pluteus 1000 cells mL™!
6-12 dpf 4-arm pluteus 5000 cells mL™
12-22 dpf 6-arm pluteus 10,000 cells mL™*

22 dpf-settlement 8-arm pluteus 20,000 cells mL™

Dpf, days post-fertilization.

cell subsamples. Embryos were lightly agitated and continuously
suspended for a three-day incubation period before
experimentation began. Diadema antillarum broodstock were fed
the same commercial diet and induced to spawn using thermal
stress, as described in Pilnick et al. (2021). In the current study, a
mixture of gametes from two females and four males was collected
on December 14, 2023. Fertilization was confirmed using the same
methods described above and embryos from this single cohort were
similarly incubated for four days. Average diameter was calculated
from 25 eggs for each species.

2.2 Larviculture

Experimental larviculture for all three species occurred within
replicate 1-litre borosilicate glass bottles (100 mm diameter x 230
mm height) placed on rotating orbital shaker tables located in a
temperature-controlled (24°C) lab. A natural photoperiod was
provided. This method, as described in Wijers et al. (2023),
allowed for easy manipulation of rotational speed, accommodated
multiple replicates per table (Heathrow Scientific 120,460), and has
been used to successfully suspend and rear difficult-to-culture
species like D. antillarum. Following the incubation period,
concentrated batches of 3-4 days post-fertilization (DPF) larvae
were placed in a 10-mL Ward zooplankton counting wheel,
enumerated, and transferred to individual bottles containing 600-
mL of 35 ppt natural seawater at a target initial stocking density of 1
larva mL™'. Twice weekly, larvae from each bottle were carefully
poured into a submerged sieve and replaced into new, disinfected
bottles. For D. antillarum only, an additional 50% water change
supplemented the twice-weekly 100% water change and bottle
cleanings to account for heightened aquaculture difficulty
(Bielmyer et al., 2005). Alkalinity, pH, and total ammonia
nitrogen levels were monitored weekly to ensure water quality
parameters matched acceptable values as reported in Pilnick
et al. (2021).

All larvae were fed a 3:1 ratio of Rhodomonas salina and
Chaetoceros muelleri, with incremental increases in live microalgal
cell density based on development status for L. variegatus and T.
ventricosus and cohort age for D. antillarum, as detailed here
Table 1 and Pilnick et al. (2022), respectively. The feeding regime
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was adjusted upon observing > 50% of larval population transition
to a subsequent developmental stage.

2.3 Experiment 1

An initial experiment concurrently examined the effects of shear
flow on larval growth, survival, percent metamorphic competence,
and percent settlement for two species: L. variegatus and T.
ventricosus. Four orbital shaker tables, each containing four
replicate bottles, were used to establish a 2x2 factorial design.
Two tables were set to a high rotational speed (high-shear
treatment) and two to a low rotational speed (low-shear
treatment); no direct measurements of shear in natural habitats
were used. Within each shear treatment, four bottles per species
were distributed across two tables, resulting in four replicates per
species per shear level (L. variegatus: n = 4 high-shear, n = 4 low-
shear; T. ventricosus: n = 4 high-shear, n = 4 low-shear). The shaker
tables’ capacity limited the experiment to two treatments per
species. The centrifugal force generated within the bottles, which
sustained larvae in suspension, is herein referred to as the turbulent
shear force. Fifty rotations per minute (rpm) (0.6 Pa) was visually
identified as the minimum rotation speed at which larvae remained
suspended and therefore was deemed the minimum viable speed. A
higher speed of 125 rpm (2.5 Pa) was based on established methods
(Wijers et al., 2023). To mitigate potential error introduced by
individual tables and table positioning, bottles and corresponding
rotation speeds were interchanged between and among tables daily.

The following formula was used to estimate turbulent shear
within bottles for each treatment, as outlined in Dardik et al. (2005):

Tinax = a\/ T[p(27ff)3

where a is the orbital radius of rotation of the shaker (1.90 cm),
p is the density of the medium (1.02 g ml™"), 1 is the viscosity of the
medium (0.09 poise), and f is the rotation frequency (rotations sh.
The model assumes a Newtonian fluid with uniform viscosity and
density and approximates the orbital-influenced fluid motion as
isotropic shear. While the formula provides a useful estimate of
turbulent shear, real flow dynamic within bottles may differ due to
boundary effects, fluid stratification, and non-laminar conditions.

Larval sampling was conducted once weekly for all three
species; however, experiment length varied according to species-
specific larval durations (15 days, 22 days, and 45 days for L.
variegatus, T. ventricosus, and D. antillarum, respectively). During
sampling, all sieved larva were counted to determine survival.
Fifteen intact, i.e., possessing all standard features, larva per bottle
were also haphazardly selected, transferred to a 1 mL Sedgewick
rafter cell, and photographed at 40x magnification using a Moticam
10-megapixel digital camera. Standard morphometric features
including midline body length (MBL), body width (BW), post-
oral arm length (PO), and stomach length (SL) were measured
using Image] version 1.530 (Figure 1). The PO to MBL ratio was
used to assess morphological plasticity, since MBL typically
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FIGURE 1

Ventral view of (A) Lytechinus variegatus larva (8-arm stage, 11 days post-fertilization [dpf]); (B) Tripneustes ventricosus larva (8-arm stage, 18 dpf);
(C) Diadema antillarum larva (22 dpf). Numbers indicate the following morphometric features: post-oral arm (1), stomach length (2), midline body

length (3), and body width (4).

develops at consistent rates and can serve as a standardized metric
for comparing relative growth rates of other features (Strathmann
et al., 1992); this method is consistent with other studies (Hart and
Strathmann, 1994; McAlister, 2008; Soars et al., 2009; Guete-Salazar
et al., 2021). Metamorphic competence was determined for
individual larvae by the presence of an imaginal rudiment and
pedicellariae, following criteria described in Guete-Salazar
et al. (2021).

Settlement assays were performed only for Experiment 1 with L.
variegatus and T. ventricosus. Larvae were induced to settle after the
population within each replicate bottle exceeded an estimated value
of 75% competence. This approach aimed to understand the effect
of shear treatment on both time-to-competence and settlement
success of competent larvae and therefore did not reflect the
maximum percent competence attained for each species and
treatment level. Competent larvae from each replicate were
distributed into six sterile petri dishes (100 mm x 15 mm) each
containing 40 mL of filtered natural seawater and a single ceramic
tile (7.5 mm X 7.5 mm x 5 mm) which was conditioned in a separate
established greenhouse RAS for several months. Each dish
contained a maximum of 15 larvae. Competent T. ventricosus and
L. variegatus were exposed to tiles coated with crustose coralline
algae (CCA) and naturally derived biofilm, respectively. These
species-specific settlement cues were selected based on best-
practice knowledge from prior studies (Nesbit and Hamdoun,
2020; Guete-Salazar et al., 2021). The number of settled urchins
in each dish was counted multiple times daily until no new
settlement was observed within a 24-hour period.

2.4 Experiment 2

A second experiment utilized similar methods, with
modifications to accommodate interspecific differences in larval
development, to examine the effects of shear flow on larval growth,
survival, and percent metamorphic competence for D. antillarum. Six
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orbital shaker tables, each containing three replicate bottles and one
blank bottle, were used to establish a three-level shear treatment
design. Two tables were set to each rotational speed: high-shear,
intermediate-shear, and low-shear, allowing all treatments to run
concurrently. Within each shear level, six replicate bottles were
distributed across two tables (n = 6 per treatment). During an
initial pilot attempt, the same minimum rotation speed used for T.
ventricosus and L. variegatus was insufficient to keep D. antillarum
suspended and resulted in 0% survival by 14 dpf. Consequently, a
new low-shear 93 rpm (1.6 Pa) treatment was established between 50
rpm (Exp. 1 low-shear;0.6 Pa) and 125 rpm (Exp. 1 high-shear;2.5
Pa). The intermediate-shear treatment for this experiment was
established at 125 rpm (2.5 Pa). The same increment increase was
then applied to 125rpm to establish a new high-shear 158 rpm (3.5
Pa) treatment, in effort to increase a detectable effect size.

The time to first settlement was 46 dpf. Competence for D.
antillarum was defined by the presence of internal or external tube
feet and rudiment tissue that constituted 50% or more of the larva’s body
size, as outlined in Pilnick et al. (2023). Settlement was systematically
attempted for all shear treatments once larvae reached competence.
Ceramic tiles naturally conditioned with crustose coralline algae (CCA)
and biofilm were used as the settlement substrate. Petri dish assays were
deemed insufficient for standardized comparison because settlement
rates were variable, and the high-shear (3.5 Pa) treatment exhibited
such low larval survival that meaningful comparisons across treatments
were not possible. Despite D. antillarum being a challenging species to
rear, the shaker table method has been documented to produce settled
urchins (Wijers et al,, 2023), and multiple juveniles were successfully
produced from this cohort.

2.5 Statistical analyses
Statistical analyses were conducted using R statistical software,

version 4.4.1 (R Core Team, 2024). Linear mixed-effects models
(‘lmer’ function, R package lme4’) were used to evaluate the effect
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of shear treatment on individual larval morphometric traits and on
the PO: MBL ratio for each species. For time series data, fixed effects
included treatment, timepoint, and their interaction. These terms
were included not to evaluate biological effects of time per se, but to
enable post hoc comparisons between treatments at each individual
timepoint. For end-point analyses conduced at the final pre-
settlement timepoint, only treatment was included as a fixed
effect. In all models, replicate bottle was included as a random
intercept to account for non-independence of larvae nested within
bottles. Trait values were log-transformed where necessary to meet
model assumptions, which were verified through residual plots, Q-
Q plots, and Shapiro-Wilk tests. Model significance was assessed
using Type II analysis of deviance tables with chi-square tests. Post
hoc pairwise comparisons were conducted (‘emmeans’ function, R
package ‘emmeans’), with Tukey-adjusted p-values for multiple
comparisons. The significance threshold was set at o = 0.05.

Larval survival was calculated as the proportion of live larvae
remaining at each time point relative to the initial stocking.
Competence was assessed only at the final pre-settlement
timepoint (13 dpf for L. variegatus, 21 dpf for T. ventricosus, 45
dpf for D. antillarum) and defined as the proportion of competent
individuals. Both metrics were modeled using generalized linear
mixed-effects models (‘glmer’ function, R package Ime4’) with
binomial distributions, treatment and time (for survival) or
treatment alone (for competence) as fixed effects and bottle as a
random effect. Model fit and post hoc comparisons were conducted
as described above.

12

Larval desnity (ind./mL)
N o o
N [=)) =]

[=)
(S]

10.3389/fmars.2025.1671120

Due to heterogeneous variances and the zero-inflated nature of
the data, proportional settlement in Experiment 1 was analyzed
using a two-way permutational analysis of variance (‘adonis’
function, R package ‘vegan’) with treatment and species as factors
(Mos et al., 2011).

3 Results
3.1 Experiment 1

The average egg diameter for T. ventricosus and L. variegatus
was 86 + 3.5 pm and 88 * 3.5 um, respectively. The overall effect of
shear flow treatment on proportional survival was non-significant
for both T. ventricosus (XX2 1.008, df = 1, p = 0.315) and L.
variegatus (X2 =2.332,df = 1, p = 0.127), and no post hoc contrasts
were conducted (Figure 2). Treatment effects on several

morphometric traits were observed but depended on species
(Supplementary Table 1). For T. ventricosus, both arm length and
body length significantly increased in response to high shear (PO:
X*=0.785,df = 1, p = 0.020; MBL: X*> = 0.817, df = 1, p < 0.001) at
22 dpf, but the increase in arm length was proportionally greater. A
significant effect on the PO: MBL ratio was observed (X* = 16.10, df
=1, p < 0.001), which indicated a plastic growth response to shear
(Figure 3). Similar survival indicated that these differences were
likely not influenced by a confounding variable, i.e., density-
dependent growth. In contrast, treatment did not significantly

8

15 22

Days Post Fertilization

- @0--L.variegatus
2.5Pa

—&— L.variegatus
0.6 Pa

FIGURE 2

= <0« Tventricosus =& T.ventricosus

2.5Pa 0.6 Pa

The density of surviving Lytechinus variegatus and Tripneustes ventricosus larvae exposed to high-shear (2.5 Pa) and low-shear (0.6 Pa) treatments
over time. There was no significant difference in survival between treatments within species. Bars represent mean values + standard error.
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FIGURE 3

Average larval post-oral arm length (PO) to midline body length (MBL) ratios visualized in response to low shear flow (1.6 Pa) and high shear flow
(2.5 Pa) treatments for Tripneustes ventricosus at 22 dpf (0.91-1.08; X? = 16.10, df = 1, P < 0.001), Lytechinus variegatus at 15 dpf (0.98-1.02; X* =
0.57, df = 1, P = 0.94), and Diadema antillarum at 45 dpf (3.49-3.86; X*> = 202.85, df = 1, P < 0.001). The highest shear treatment (3.5 Pa) is not
included due to high mortality. Bars represent mean + standard error.

affect morphometric traits or the PO: MBL ratio for L. variegatus at For L. variegatus, there was no significant effect of shear on the
15 dpf (Figure 3). For this species, both arm length and body length  proportion of metamorphically competent larvae at 14 dpf (X* = 2.845,
remained consistent between treatments (Supplementary Table 1)  df =1, p = 0.092). In contrast, for T. ventricosus, a significant difference
which indicated lack of a plastic growth response to shear. was observed at 22 dpf (X* = 13.292, df = 1, p = 0.0003), with the 2.5 Pa
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FIGURE 4

Percent competence for each urchin species on the final day before first settlement (dpf = 13 for L. variegatus, dpf = 21 for T. ventricosus, dpf = 45
for D. antillarum) across respective turbulent shear treatments. Due to different rates of attaining competence for each species, data here do not
represent maximum competence for any of the urchin species. Bars represent mean values + standard error.

treatment resulting in more competent larvae (Figure 4). The time to
first settlement was 15 and 22 dpf for L. variegatus and T. ventricosus,
respectively. Settlement was compared between species as the
maximum, or peak percent settlement observed in competent larvae
only. Thus, the methods are not appropriate for comparing time to
settlement. No significant difference in settlement was detected between
treatments or species (PERMANOVA: F = 0.676, df = 1, p = 0.38).
However, both species exhibited a trend where the 2.5 Pa treatment
resulted in numerically higher percent settlement: 81.9% vs. 73.6% for
L. variegatus and 48.1% vs. 35.2% for T. ventricosus.

3.2 Experiment 2

The average egg diameter for D. antillarum was 80 £ 3.2 um. A
significant overall main effect of shear treatment on survival was
observed (X2 =178.04, df = 2, p < 0.001); post-hoc analysis revealed
significantly reduced survival in the high shear (3.5 Pa) treatment
relative to both the intermediate (2.5 Pa) and low (1.6 Pa) shear
treatments (Figure 5). Regarding individual morphometrics,
multiple differences were found between the high shear treatment
and the two lower-shear treatments (Supplementary Table 2).
Larvae in the 3.5 Pa treatment exhibited shorter arms (X* =
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153.53, df = 2, p < 0.001), longer body lengths (X* = 56.325, df =
2,p <0.001), larger body widths (X*=214.16,df =2, p <0.001), and
longer stomach lengths (X?=34.172,df =2, p <0.001) compared to
those in the 2.5 Pa and 1.5 Pa treatments. The intermediate shear
(2.5 Pa) treatment resulted in significantly longer arms compared to
the other treatments (X2 = 153.53, df = 2, p < 0.001). No other
significant differences in morphometrics features were observed
between the 2.5 and 1.6 Pa treatments (Supplementary Table 2).
Diadema antillarum larvae in the high shear (3.5 Pa) treatment
were excluded from consideration when analyzing the PO: MBL
ratio due to considerable mechanical damage including missing or
truncated arms and low survival rates, which confounded detection
of a natural plastic response. When considering the low and
intermediate shear treatments, a significant treatment effect on
this growth ratio was observed at 45 dpf (X2 =202.85, df = 12, p
< 0.001), which indicated a plastic growth response (Figure 3).

On day 45, significant differences in proportional competence
were observed among treatments (X2 = 60.61, df = 2, p < 0.0001)
(Figure 4). The intermediate shear (2.5 Pa) treatment resulted in
significantly higher proportional competence than observed in the low
shear (1.6 Pa) treatment (p < 0.0001). The high shear (3.5 Pa)
treatment resulted in dramatically lower survival rates and was
consequently excluded from this analysis.

frontiersin.org


https://doi.org/10.3389/fmars.2025.1671120
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Dakin et al. 10.3389/fmars.2025.1671120

1.2

1
=)

0.8
E
-]
|
N’
&

206
17
D
=
E

=04
|

0.2

1 4 b 4
i t ? 1 —¢b
0
4 8 15 22 29 36 45
Days Post Fertilization
-e- 3.5Pa -~ 25Pa 1.6 Pa
FIGURE 5

The density of surviving Diadema antillarum larvae exposed to low-shear (1.6 Pa), intermediate-shear (2.5 Pa), and high-shear (3.5 Pa) treatments
over time. Letters indicate a significant difference between treatments. Bars represent mean values + standard error.

4 Discussion

Our data provide the first evidence of a plastic growth response
to hydrodynamic flow in larval echinoderms, with multiple species
displaying increased arm length when developing in higher shear
environments. Given that our larvae were fed to satiation, in
consensus with other larviculture studies (see Soars et al., 2009;
Byrne et al,, 2008), and the apparent lack of density-dependent
growth effects from relevant shear treatments, we believe that
standardized changes in T. ventricosus and D. antillarum postoral
arm length were driven by flow. Food encounter rates in all
treatments were assumed sufficient based on comparable
survivorship across treatments. Although food clearance rates
were not directly quantified, algal particles were visualized in the
larval stomachs for each species and treatment across the entire
study. Notably, the timing of developmental staging for L.
variegatus and T. ventricosus, and body length values for D.
antillarum, were similar between relevant high surviving
treatments. Altogether, these results strongly suggests that
echinoid arm-length plasticity was driven by hydrodynamics
rather than food limitation. The significant differences in arm
length to body length ratio were detected at species-specific time
points that correspond to the final stages of larval development
prior to metamorphic competence. A plastic growth response was
most likely to be detected at these endpoints, after prolonged
exposure to shear conditions. This strategy enabled standardized
inter-specific comparisons while capturing the effects of differential
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shear on functional morphology. We observed a continuum of
responsiveness across three species, with D. antillarum exhibiting
the greatest plasticity, T. ventricosus exhibiting moderate plasticity,
and L. variegatus exhibiting no plasticity, i.e., resistance to shear
stress. These findings suggest species-specific adaptations to flow
and possibly other physical oceanographic factors.

Echinoid larvae use cilia, arranged in bands along their arms, as
a primary means of feeding and locomotion (Hart, 1991; Yaguchi
et al, 2022). The skeletal structure of the post-oral arms also
facilitates a larvae’s ability to maintain an upright (arms-up)
orientation in the water (Pennington and Strathmann, 1990;
Wheeler et al., 2016). This reliance on post-oral arms for stability
and orientation may be more pronounced in the two urchin species
showing a plastic arm growth response: T. ventricosus and D.
antillarum. In larvae with a transversus morphology, such as D.
antillarum, this dependence on post-oral arms is likely amplified, as
they rely primarily on a single dominant pair of arms for both
feeding and locomotion (Hernandez et al, 2020). In contrast,
typical morphologies distribute these tasks across multiple
appendages (Randall et al, 1964; Soars et al., 2009; Rendleman
and Pace, 2018). This specialization of the transversus form limits
the potential for morphological adaptation to the single pair of post-
oral arms and possibly contributes to D. antillarum’s pronounced
arm length extension response compared to T. ventricosus and L.
variegatus (Soars et al., 2009). It must be noted that the larvae of T.
ventricosus and L. variegatus in this study were derived from single
full siblingships. As such, our findings should be interpreted with
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the understanding that they may be influenced by genetic factors
specific to these siblingships. Additionally, as the D. antillarum
experiment was conducted one year apart from the L. variegatus
and T. ventricosus experiment, temporal variation should be
considered in interpreting patterns in inter-specific differences.

Larval post-oral arm length also has significant effects on
metamorphic development. Arm extension in conjunction with
skeletal growth enhances nutritional resources available for
metamorphosis (Gustafson and Wolpert, 1963; Burke, 1981,
1983). During metamorphosis, epidermal cells of the arms and
other ephemeral larval structures are phagocytosed, which supports
the transition from larva to juvenile (Burke, 1983). Longer arms
observed in T. ventricosus and D. antillarum thus could have
provided a more favorable energy budget for the demanding
transition from larvae to juvenile. Variations in arm length
among echinoid larvae reflect evolutionary strategies that balance
resource acquisition with development time (Strathmann et al,
1992; Hart and Strathmann, 1994). The transversus form
morphology (longer arms, extended planktonic larval duration)
likely carries a trade-off between dispersal potential and
developmental rate (Griinbaum and Strathmann, 2003). This
morphology theoretically increases horizontal swimming speed
and dispersal capacity, but may also reduce growth dynamics
(Griinbaum and Strathmann, 2003)— D. antillarum developed
over 46 days, while T. ventricosus and L. variegatus developed
over 22 and 15 days, respectively. In contrast, typical echinoplutei
like L. variegatus and T. ventricosus are associated with faster
progression to juvenile stages, likely due to higher assimilation
efficiencies (energy absorbed relative to energy ingested)
(Rendleman and Pace, 2018), but these larvae have shorter
planktonic stages, potentially limiting their dispersal ranges (Hart
and Strathmann, 1994).

Larvae of some echinoid species extend their post-oral arms
under food-limited conditions, a process that may increase food
capture by up to 20% (Hart and Strathmann, 1994). The theory
behind food-driven arm length plasticity suggests that temporal
variation in food availability drives morphological adaptations to
enhance survival and dispersal (Baythavong, 2011). Soars et al.
(2009) examined this plastic response in contrasting larval forms,
documenting the expected response (longer post-oral arms) in
Heliocidaris turberculata (typical), but no plastic response in
Centrostephanus rodgersii (transversus) when exposed to varying
food concentrations. The authors proposed that transversus-form
larvae, having only two primary arms for feeding and swimming,
are adapted for long-distance dispersal and maintaining arm length
regardless of food conditions (Soars et al., 2009). Biologically, these
plastic responses are often mediated by stress pathways, such as
stress-induced modulation of skeletal growth and calcite deposition,
as observed in the stunted growth of Arbacia lixula larvae exposed
to suboptimal temperature and pH conditions (Visconti et al.,
2017). Our findings reveal a strong plastic response to
hydrodynamic variability in transversus-type larvae, while this
response was absent in one of the two typical form species. This
suggests that arm length plasticity is not universal across form types
and is influenced by a combination of phylogeny, ecological niche,
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and larval body form. Further, responses to food availability and
flow conditions may not be the only types of phenotypic plasticity
exhibited by these species.

The variability in larval forms may also reflect broader trends in
population connectivity among echinoids. Diadema antillarum,
with its long larval duration and substantial dispersive potential,
exhibits high population connectivity, facilitating gene flow across
large distances (Chandler et al., 2017). In contrast, L. variegatus has
a more localized dispersal range and lower genetic connectivity
(Nunez, 2017), aligning with its observed resistance to arm length
plasticity. Little is known about T. ventricosus population genetics
(Godinho et al, 2016), but other species in the genus (e.g. T.
gratilla) are documented to have high genetic connectivity
between populations (Casilagan et al., 2013). The role of larval
form in population connectivity warrants further research to
understand how genetics, dispersal potential, and environmental
conditions interact in these species. The comparison of plasticity
among these species highlights how evolutionary pressures in
oligotrophic environments (e.g., reef systems inhabited by D.
antillarum and T. ventricosus) may necessitate dispersal
mechanisms to locate more favorable habitats. Variations in
plasticity and connectivity likely stem from a combination of
species-specific factors, including habitat stability, larval duration,
and ecological niche.

The plastic arm length response in echinoid larvae, particularly
those with extended planktonic phases like D. antillarum, may offer
several advantages. In the context of this study, arm length and
number of arms could represent a trade-off between optimizing
swimming efficiency and maintaining stability in turbulent
environments. Longer post-oral arms, supported by rigid calcite
skeletons, may improve larval orientation and vertical stability,
thereby reducing the energy required to maintain position in
turbulent waters (Emlet, 1982, 1983; Pennington and Strathmann,
1990). Grinbaum and Strathmann (2003) developed a
hydromechanical model that suggested larvae with fewer, lower-
angled arms may swim faster and have greater ballast weight
carrying capacity, while those with more numerous, higher-
angled arms exhibit greater stability in turbulent conditions. This
model suggests that larvae in turbulent environments, like those of
D. antillarum, might prioritize stability over speed by developing
longer arms and increasing skeletal ballast weight, aiding in vertical
orientation in turbulent shear (Griinbaum and Strathmann, 2003).
Additionally, as larvae grow, body size increases alongside post-oral
arm length, which enhances positional stability. However, the
swimming ability of the three species in this study has not been
directly measured. Based on theoretical models, it is plausible that
the benefits of increased ballast and stability might outweigh the
energetic costs associated with reduced swimming capacity,
particularly in environments where turbulence disrupts larval
orientation and feeding, such as in the high shear treatment with
D. antillarum (Maldonado, 2009; Sameoto et al.,, 2010). In such
conditions, larvae may allocate more energy towards growth and
metamorphic development rather than maintaining vertical
position and orientation. A comparative empirical study
examining the relationships between echinoid arm morphology,
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swimming performance, and ballast weight across various
hydrodynamic conditions would provide valuable insights into
these trade-offs.

The notable differences in tolerance and morphology exhibited
by these three species reflect their divergent developmental traits
and ecological niches. Diadema antillarum demonstrated a narrow
tolerance for hydrodynamic conditions, with 100% mortality
observed in the piloted slow 0.6 Pa treatment and less than 10%
survival in the fast 3.5 Pa treatment. Additionally, D. antillarum
displayed a more pronounced response to turbulent shear than T.
ventricosus. This heightened sensitivity, along with differences in
larval forms (with D. antillarum exhibiting transversus morphology
and T. ventricosus and L. variegatus displaying typical forms), may
reflect broad evolutionary differences between the species. It should
be noted, however that the low- and high-shear treatments for D.
antillarum (1.6 Pa and 3.5 Pa, respectively) were not equivalent to
the shear levels applied to L. variegatus and T. ventricosus (0.6 Pa
and 2.0 Pa, respectively), as lower shear caused complete mortality
in D. antillarum. Consequently, interspecific comparisons are
limited to the subset of shear levels that were survivable for all
species, and this asymmetry should be considered when
interpreting differences in larval responses across species.

In this study, measured egg diameters were 80 pum for D.
antillarum, 86 um for T. ventricosus, and 88 pm for L. variegatus,
indicating relative similarity (e.g., T. ventricosus eggs were ~7.5%
larger than those of D. antillarum). However, prior work by Lessios
(1988c) reported more substantial differences in egg volume and
lipid content, with L. variegatus showing significantly greater
maternal provisioning than both T. ventricosus and D. antillarum.
These discrepancies could reflect inter-population variability,
methodological differences in how egg volume was measured
(diameter vs. volume vs. lipid content), or seasonal and
environmental effects on maternal investment. These patterns are
consistent with broader developmental strategies among echinoids,
where larval energy allocation, arm growth, and timing of rudiment
development are all flexible responses to maternal investment and
environmental conditions (Strathmann et al., 1992; Bertram and
Strathmann, 1998; McEdward and Miner, 2001; Miner, 2003).

Our study found that higher shear conditions accelerated the
onset of competence in T. ventricosus and D. antillarum. Despite
intraspecific variations in competence across treatments, the
ontogenetic timing (i.e., the development of paired arm
appendages) remained consistent. This finding aligns with
Gaylord et al. (2013), who used a Taylor-Couette cell to expose
competent and precompetent S. purpuratus (typical morphology)
larvae to high rotational speeds (450 rpm) at short durations (3
minutes). They discovered that while turbulent shear did not
directly induce settlement in competent larvae, elevated
turbulence accelerated the transition to competence. This suggests
turbulence may play a functional role in habitat selection, a
hypothesis supported by comparisons to hydrodynamic sensing
used by zooplankton for predator avoidance (Gaylord et al., 2013).
Hodin et al. (2020) corroborated these results by showing that
species typically settling in high-energy environments exhibited
increased settlement responses to turbulent shear. The shear
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conditions applied in this study were performed in a controlled
laboratory setting to explore the potential influence of turbulent
shear on larval development. However, the hydrodynamic
conditions in experimental setups such as glass bottles, Taylor-
Couette cells, and other laboratory chambers differ significantly
from those in natural oceanic environments. The magnitude,
distribution, and consequences of natural shear in the ocean are
likely to be more complex and variable than the controlled
conditions we simulated in the laboratory, and this distinction
should be considered when extrapolating the results to natural
settings. While the experimental shear levels used in this study were
not based on field measurements of hydrodynamic conditions, they
represent a sufficient range to maintain larval suspension and may
provide insight into potential larval responses to shear in natural
habitats, although exact flow rates likely differ.

This study provides the first documentation of arm-length
plasticity in echinoid larvae in response to hydrodynamics,
revealing distinct responses across species. Interspecific differences
were evident: D. antillarum and T. ventricosus larvae exposed to
higher shear developed longer arms and exhibited accelerated
metamorphic development, traits that may aid dispersal and
settlement in energetic environments. Conversely, L. variegatus
demonstrated lower responsiveness to turbulent flow and broader
hydrodynamic tolerance. The ability to adjust arm length to
maintain orientation is potentially advantageous for environments
with varying turbulence levels. The narrow hydrodynamic tolerance
observed in D. antillarum suggests that shifts in flow regimes, such
as those associated with climate-driven storms or reef degradation,
could disproportionately impact larval survival and recruitment,
with potential consequences for reef restoration and population
resilience. While we suggest a connection between plastic arm
growth and accelerated competence, further research is needed to
confirm this link. These findings highlight the significant role of
hydrodynamics in the entirety of larval development and emphasize
the broader ecological implications of flow dynamics in
marine systems.
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