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Plasticity under pressure: the
influence of shear stress on
larval echinoid morphogenesis
Maggie Dakin1, Joshua Patterson1*, Alex Petrosino2,
Jessica Smith1 and Aaron Pilnick1

1Fisheries and Aquatic Sciences, School of Forest, Fisheries, & Geomatics Sciences, University of
Florida|IFAS, Gainesville, FL, United States, 2Center for Conservation, The Florida Aquarium, Apollo
Beach, FL, United States
Introduction: Individuals of some marine species can modify their phenotype in

response to environmental factors, allowing them to adapt to new conditions

throughout their ontogeny. Echinoids represent an ecologically significant taxon

that exhibit such plasticity throughout a biphasic life history in response to known

biotic and abiotic factors. Preliminary lab-based observations have suggested that

morphological traits, specifically pluteal arm length, may be influenced by physical

processes such as hydrodynamic flow during planktotrophic larval development. This

dynamic remains understudied despite potentially critical demographic implications.

Methods: Here, we tested the effect of continuous exposure to different shear

stress treatments on larval morphology and life history timing shifts in three co-

occurring species: Lytechinus variegatus, Tripneustes ventricosus, and

Diadema antillarum.

Results: Both T. ventricosus and D. antillarum displayed significantly longer

postoral arms and increased percent metamorphic competence in response to

greater shear. Treatment effects were not observed for L. variegatus.

Discussion: These findings represent the first observation of morphogenic

plasticity in response to a hydrodynamic factor for larval echinoderms.

Species-specific effects revealed a plasticity continuum which may be

mediated by phylogeny, ecological niche, and/or functional morphology. This

dynamic response offers insights into larval dispersal and recruitment potential,

adult distribution, and the boom-and-bust cycles characteristic of ecologically

relevant echinoid populations.
KEYWORDS
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1 Introduction

Sea urchins are often referred to as ecosystem engineers due to their ability to alter

benthic algal communities through herbivory (Precht and Precht, 2015). For this reason,

they are well represented in foundational ecological studies (Leighton et al., 1966; Lang and

Mann, 1976; Duggins, 1980). Urchin populations are subject to rapid ‘boom’ and ‘bust’
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phases which can have cascading ecosystem effects. For example,

overpopulation and intense grazing by Strongylocentrotus

purpuratus contributed to large-scale kelp deforestation in the

Pacific Ocean (Harris and Eddy, 2015). Similarly, over-grazing by

Diadema africanum reduced benthic biodiversity within urchin

barrens along temperate coastlines in the eastern Atlantic Canary

Islands (Hernández et al., 2008). Conversely, mass mortality of

Diadema antillarum in 1983–84 and resulting lack of herbivory

resulted in algal proliferation and concomitant decline of hard coral

on Caribbean reefs (Carpenter, 1990; Harborne et al., 2009; Lessios,

1988a). The ecological importance of sea urchin grazing justifies

expanded understanding of factors, especially during early life

history, influencing population dynamics.

Sea urchin demographics are tightly linked to their planktonic

larval stage (Roughgarden et al., 1988; Pineda et al., 2010). Since

benthic adults have limited mobility and narrow home ranges,

species distribution is dependent on larval dispersal and post-larval

recruitment patterns (Prado et al., 2012). Reproductive success,

which can be highly variable, is therefore mediated by factors such

as spawning behavior, gamete encounter rates and fertilization

success, larval developmental mode and duration, and settlement

behavior, all occurring and interacting within dynamic physical

environments (Harris and Eddy, 2015). Water currents

surrounding spawning aggregations, for example, likely influence

gamete encounter rates, fertilization success, and dispersal direction

and range (Feehan et al., 2016). This stochasticity has been likened

to a ‘recruitment sweepstake’, where chance environmental

conditions enact some degree of passive influence on the diversity

and magnitude of parental contribution to future populations

(Cowen et al., 2000; Flowers et al., 2002).

Hydrodynamic factors also directly influence larval biology. For

example, the chaotic swirling motion of water, i.e., turbulence, can

alter the swimming behavior and distribution of planktonic urchin

larvae within the water column (Sameoto et al., 2010; Wheeler et al.,

2016). The process of larval settlement is also sensitive to

hydrodynamic exposure; in one field study, settlement rates for

two Strongylocentrotus species correlated positively with turbulence

and negatively with stratified water columns and low wind stress

environments (Miller and Emlet, 1997). Later studies investigated

this dynamic in the laboratory and broadly revealed an accelerated

timeline to metamorphic competence and increased settlement

success for some species in response to higher shear flow

(Gaylord et al., 2013; Hodin et al., 2020). In these instances,

turbulence was hypothesized to facilitate maturation and

settlement in favorable nearshore habitat characterized by high

wave energy. Species-specific responses further highlighted

potential evolutionary differences. Despite evident impacts on the

rate and timing of settlement, direct hydrodynamic effects on

morphological traits during larval development are understudied.

Urchin larvae with a planktotrophic (i.e., feeding) mode can

express different morphologies in response to certain abiotic

environmental conditions (Byrne et al., 2008; Soars et al., 2009;

McAlister and Miner, 2018). For example, some larvae adapt to

food-limited conditions by elongating ciliated arms to increase food

capture efficiency (Strathmann et al., 1992; Sewell et al., 2004; Byrne
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et al., 2008). Soars et al. (2009) further revealed that this plastic

growth response is also species-specific and may depend on larval

form. Typical echinopluteus larvae possess four pairs of arms

(hereafter referred to as ‘typical’), whereas echinopluteus

transversus larvae, such as those of Diadema antillarum, have a

single dominant pair of elongated post-oral arms (hereafter referred

to as ‘transversus’). Since hydrodynamic factors influence larval

biology, and some larvae exhibit plastic growth responses to known

environmental conditions, it is plausible that larvae may also adapt

their morphology in response to hydrodynamic forces. Preliminary

lab-based observations have indicated that morphological traits,

specifically pluteal arm length, may be influenced by flow regime

during planktonic larval development in an aquaculture setting.

Further understanding of these adaptations relates to physical

factors, such as hydrodynamic condition, is essential for

predicting sea urchin demographics and ecosystem level impacts.

This study examined larval ontogeny under varying turbulent

shear conditions to gain insights into how hydrodynamics influence

larval functional morphology and potential phenotypic plasticity in

two typical form species – Lytechinus variegatus and Tripneustes

ventricosus – and one transversus form species – Diadema

antillarum. All three Caribbean species occupy overlapping yet

ecologically distinct niches (Randall et al., 1964; Cameron, 1986;

Lessios, 1988b; Maciá and Lirman, 1999). This work provides a

framework for understanding species-specific developmental

strategies and their implications for recruitment success under

climate change and other stressors on marine ecosystems.
2 Materials and methods

2.1 Broodstock and spawning

Lytechinus variegatus and T. ventricosus broodstock were

collected by licensed marine life collectors in the Florida Keys,

USA. Diadema antillarum broodstock were collected from the same

region by the Florida Fish and Wildlife Conservation Commission

under National Oceanic and Atmospheric Administration permit

number FKNMS-0218-023. All bloodstock were maintained in

separate greenhouse recirculating aquaculture systems (RAS)

operated by The Florida Aquarium in Apollo Beach, Florida, at

latitude N27° 46′ 43.81″, as described in Pilnick et al. (2021).

Lytechinus variegatus and T. ventricosus broodstock primarily

fed on naturally derived benthic algal growth and sporadically

received a commercially available herbivore diet ([34% crude

protein, 8% crude fat, 8% crude fiber], Algaemax Wafers, New

Life Spectrum, Homestead, FL, USA). Gametes from a

serendipitous, un-induced broadcast spawning event were

collected via pipette from one male and one female of each

species on November 7, 2022. Salinity and temperature at the

time of spawning were 37.1 ppt and 26.6°C, respectively. Egg and

diluted sperm concentrations were then combined, and percent

fertilization was recorded by quantifying the proportion of embryos

displaying a fertilization envelope or initial cell division

approximately two hours post-spawn in 1-ml Sedgewick rafter
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cell subsamples. Embryos were lightly agitated and continuously

suspended for a three-day incubat ion period before

experimentation began. Diadema antillarum broodstock were fed

the same commercial diet and induced to spawn using thermal

stress, as described in Pilnick et al. (2021). In the current study, a

mixture of gametes from two females and four males was collected

on December 14, 2023. Fertilization was confirmed using the same

methods described above and embryos from this single cohort were

similarly incubated for four days. Average diameter was calculated

from 25 eggs for each species.
2.2 Larviculture

Experimental larviculture for all three species occurred within

replicate 1-litre borosilicate glass bottles (100 mm diameter x 230

mm height) placed on rotating orbital shaker tables located in a

temperature-controlled (24°C) lab. A natural photoperiod was

provided. This method, as described in Wijers et al. (2023),

allowed for easy manipulation of rotational speed, accommodated

multiple replicates per table (Heathrow Scientific 120,460), and has

been used to successfully suspend and rear difficult-to-culture

species like D. antillarum. Following the incubation period,

concentrated batches of 3–4 days post-fertilization (DPF) larvae

were placed in a 10-mL Ward zooplankton counting wheel,

enumerated, and transferred to individual bottles containing 600-

mL of 35 ppt natural seawater at a target initial stocking density of 1

larva mL-1. Twice weekly, larvae from each bottle were carefully

poured into a submerged sieve and replaced into new, disinfected

bottles. For D. antillarum only, an additional 50% water change

supplemented the twice-weekly 100% water change and bottle

cleanings to account for heightened aquaculture difficulty

(Bielmyer et al., 2005). Alkalinity, pH, and total ammonia

nitrogen levels were monitored weekly to ensure water quality

parameters matched acceptable values as reported in Pilnick

et al. (2021).

All larvae were fed a 3:1 ratio of Rhodomonas salina and

Chaetoceros muelleri, with incremental increases in live microalgal

cell density based on development status for L. variegatus and T.

ventricosus and cohort age for D. antillarum, as detailed here

Table 1 and Pilnick et al. (2022), respectively. The feeding regime
Frontiers in Marine Science 03
was adjusted upon observing ≥ 50% of larval population transition

to a subsequent developmental stage.
2.3 Experiment 1

An initial experiment concurrently examined the effects of shear

flow on larval growth, survival, percent metamorphic competence,

and percent settlement for two species: L. variegatus and T.

ventricosus. Four orbital shaker tables, each containing four

replicate bottles, were used to establish a 2x2 factorial design.

Two tables were set to a high rotational speed (high-shear

treatment) and two to a low rotational speed (low-shear

treatment); no direct measurements of shear in natural habitats

were used. Within each shear treatment, four bottles per species

were distributed across two tables, resulting in four replicates per

species per shear level (L. variegatus: n = 4 high-shear, n = 4 low-

shear; T. ventricosus: n = 4 high-shear, n = 4 low-shear). The shaker

tables’ capacity limited the experiment to two treatments per

species. The centrifugal force generated within the bottles, which

sustained larvae in suspension, is herein referred to as the turbulent

shear force. Fifty rotations per minute (rpm) (0.6 Pa) was visually

identified as the minimum rotation speed at which larvae remained

suspended and therefore was deemed the minimum viable speed. A

higher speed of 125 rpm (2.5 Pa) was based on established methods

(Wijers et al., 2023). To mitigate potential error introduced by

individual tables and table positioning, bottles and corresponding

rotation speeds were interchanged between and among tables daily.

The following formula was used to estimate turbulent shear

within bottles for each treatment, as outlined in Dardik et al. (2005):

tmax =   a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr(2p f )3

q

where a is the orbital radius of rotation of the shaker (1.90 cm),

r is the density of the medium (1.02 g ml-1), h is the viscosity of the

medium (0.09 poise), and f is the rotation frequency (rotations s-1).

The model assumes a Newtonian fluid with uniform viscosity and

density and approximates the orbital-influenced fluid motion as

isotropic shear. While the formula provides a useful estimate of

turbulent shear, real flow dynamic within bottles may differ due to

boundary effects, fluid stratification, and non-laminar conditions.

Larval sampling was conducted once weekly for all three

species; however, experiment length varied according to species-

specific larval durations (15 days, 22 days, and 45 days for L.

variegatus, T. ventricosus, and D. antillarum, respectively). During

sampling, all sieved larva were counted to determine survival.

Fifteen intact, i.e., possessing all standard features, larva per bottle

were also haphazardly selected, transferred to a 1 mL Sedgewick

rafter cell, and photographed at 40x magnification using a Moticam

10-megapixel digital camera. Standard morphometric features

including midline body length (MBL), body width (BW), post-

oral arm length (PO), and stomach length (SL) were measured

using ImageJ version 1.53o (Figure 1). The PO to MBL ratio was

used to assess morphological plasticity, since MBL typically
TABLE 1 Feeding regime for Lytechinus variegatus, Tripneustes
ventricosus, and Diadema antillarum larvae based on developmental
stage or cohort age.

Time period
(D. antillarum)

Developmental stage
(L. variegatus and
T. ventricosus)

Feeding rate

3–6 dpf 2-arm pluteus 1000 cells mL-1

6–12 dpf 4-arm pluteus 5000 cells mL-1

12–22 dpf 6-arm pluteus 10,000 cells mL-1

22 dpf–settlement 8-arm pluteus 20,000 cells mL-1
Dpf, days post-fertilization.
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develops at consistent rates and can serve as a standardized metric

for comparing relative growth rates of other features (Strathmann

et al., 1992); this method is consistent with other studies (Hart and

Strathmann, 1994; McAlister, 2008; Soars et al., 2009; Guete-Salazar

et al., 2021). Metamorphic competence was determined for

individual larvae by the presence of an imaginal rudiment and

pedicellariae, following criteria described in Guete-Salazar

et al. (2021).

Settlement assays were performed only for Experiment 1 with L.

variegatus and T. ventricosus. Larvae were induced to settle after the

population within each replicate bottle exceeded an estimated value

of 75% competence. This approach aimed to understand the effect

of shear treatment on both time-to-competence and settlement

success of competent larvae and therefore did not reflect the

maximum percent competence attained for each species and

treatment level. Competent larvae from each replicate were

distributed into six sterile petri dishes (100 mm x 15 mm) each

containing 40 mL of filtered natural seawater and a single ceramic

tile (7.5 mm × 7.5 mm × 5mm) which was conditioned in a separate

established greenhouse RAS for several months. Each dish

contained a maximum of 15 larvae. Competent T. ventricosus and

L. variegatus were exposed to tiles coated with crustose coralline

algae (CCA) and naturally derived biofilm, respectively. These

species-specific settlement cues were selected based on best-

practice knowledge from prior studies (Nesbit and Hamdoun,

2020; Guete-Salazar et al., 2021). The number of settled urchins

in each dish was counted multiple times daily until no new

settlement was observed within a 24-hour period.
2.4 Experiment 2

A second experiment utilized similar methods, with

modifications to accommodate interspecific differences in larval

development, to examine the effects of shear flow on larval growth,

survival, and percent metamorphic competence forD. antillarum. Six
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orbital shaker tables, each containing three replicate bottles and one

blank bottle, were used to establish a three-level shear treatment

design. Two tables were set to each rotational speed: high-shear,

intermediate-shear, and low-shear, allowing all treatments to run

concurrently. Within each shear level, six replicate bottles were

distributed across two tables (n = 6 per treatment). During an

initial pilot attempt, the same minimum rotation speed used for T.

ventricosus and L. variegatus was insufficient to keep D. antillarum

suspended and resulted in 0% survival by 14 dpf. Consequently, a

new low-shear 93 rpm (1.6 Pa) treatment was established between 50

rpm (Exp. 1 low-shear;0.6 Pa) and 125 rpm (Exp. 1 high-shear;2.5

Pa). The intermediate-shear treatment for this experiment was

established at 125 rpm (2.5 Pa). The same increment increase was

then applied to 125rpm to establish a new high-shear 158 rpm (3.5

Pa) treatment, in effort to increase a detectable effect size.

The time to first settlement was 46 dpf. Competence for D.

antillarum was defined by the presence of internal or external tube

feet and rudiment tissue that constituted 50% ormore of the larva’s body

size, as outlined in Pilnick et al. (2023). Settlement was systematically

attempted for all shear treatments once larvae reached competence.

Ceramic tiles naturally conditioned with crustose coralline algae (CCA)

and biofilm were used as the settlement substrate. Petri dish assays were

deemed insufficient for standardized comparison because settlement

rates were variable, and the high-shear (3.5 Pa) treatment exhibited

such low larval survival that meaningful comparisons across treatments

were not possible. Despite D. antillarum being a challenging species to

rear, the shaker table method has been documented to produce settled

urchins (Wijers et al., 2023), and multiple juveniles were successfully

produced from this cohort.
2.5 Statistical analyses

Statistical analyses were conducted using R statistical software,

version 4.4.1 (R Core Team, 2024). Linear mixed-effects models

(‘lmer’ function, R package ‘lme4’) were used to evaluate the effect
FIGURE 1

Ventral view of (A) Lytechinus variegatus larva (8-arm stage, 11 days post-fertilization [dpf]); (B) Tripneustes ventricosus larva (8-arm stage, 18 dpf);
(C) Diadema antillarum larva (22 dpf). Numbers indicate the following morphometric features: post-oral arm (1), stomach length (2), midline body
length (3), and body width (4).
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of shear treatment on individual larval morphometric traits and on

the PO: MBL ratio for each species. For time series data, fixed effects

included treatment, timepoint, and their interaction. These terms

were included not to evaluate biological effects of time per se, but to

enable post hoc comparisons between treatments at each individual

timepoint. For end-point analyses conduced at the final pre-

settlement timepoint, only treatment was included as a fixed

effect. In all models, replicate bottle was included as a random

intercept to account for non-independence of larvae nested within

bottles. Trait values were log-transformed where necessary to meet

model assumptions, which were verified through residual plots, Q-

Q plots, and Shapiro-Wilk tests. Model significance was assessed

using Type II analysis of deviance tables with chi-square tests. Post

hoc pairwise comparisons were conducted (‘emmeans’ function, R

package ‘emmeans’), with Tukey-adjusted p-values for multiple

comparisons. The significance threshold was set at a = 0.05.

Larval survival was calculated as the proportion of live larvae

remaining at each time point relative to the initial stocking.

Competence was assessed only at the final pre-settlement

timepoint (13 dpf for L. variegatus, 21 dpf for T. ventricosus, 45

dpf for D. antillarum) and defined as the proportion of competent

individuals. Both metrics were modeled using generalized linear

mixed-effects models (‘glmer’ function, R package ‘lme4’) with

binomial distributions, treatment and time (for survival) or

treatment alone (for competence) as fixed effects and bottle as a

random effect. Model fit and post hoc comparisons were conducted

as described above.
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Due to heterogeneous variances and the zero-inflated nature of

the data, proportional settlement in Experiment 1 was analyzed

using a two-way permutational analysis of variance (‘adonis’

function, R package ‘vegan’) with treatment and species as factors

(Mos et al., 2011).
3 Results

3.1 Experiment 1

The average egg diameter for T. ventricosus and L. variegatus

was 86 ± 3.5 μm and 88 ± 3.5 μm, respectively. The overall effect of

shear flow treatment on proportional survival was non-significant

for both T. ventricosus (XX2 = 1.008, df = 1, p = 0.315) and L.

variegatus (X2 = 2.332, df = 1, p = 0.127), and no post hoc contrasts

were conducted (Figure 2). Treatment effects on several

morphometric traits were observed but depended on species

(Supplementary Table 1). For T. ventricosus, both arm length and

body length significantly increased in response to high shear (PO:

X² = 0.785, df = 1, p = 0.020; MBL: X² = 0.817, df = 1, p < 0.001) at

22 dpf, but the increase in arm length was proportionally greater. A

significant effect on the PO: MBL ratio was observed (X² = 16.10, df

= 1, p < 0.001), which indicated a plastic growth response to shear

(Figure 3). Similar survival indicated that these differences were

likely not influenced by a confounding variable, i.e., density-

dependent growth. In contrast, treatment did not significantly
FIGURE 2

The density of surviving Lytechinus variegatus and Tripneustes ventricosus larvae exposed to high-shear (2.5 Pa) and low-shear (0.6 Pa) treatments
over time. There was no significant difference in survival between treatments within species. Bars represent mean values ± standard error.
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affect morphometric traits or the PO: MBL ratio for L. variegatus at

15 dpf (Figure 3). For this species, both arm length and body length

remained consistent between treatments (Supplementary Table 1)

which indicated lack of a plastic growth response to shear.
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For L. variegatus, there was no significant effect of shear on the

proportion of metamorphically competent larvae at 14 dpf (X2 = 2.845,

df = 1, p = 0.092). In contrast, for T. ventricosus, a significant difference

was observed at 22 dpf (X2 = 13.292, df = 1, p = 0.0003), with the 2.5 Pa
FIGURE 3

Average larval post-oral arm length (PO) to midline body length (MBL) ratios visualized in response to low shear flow (1.6 Pa) and high shear flow
(2.5 Pa) treatments for Tripneustes ventricosus at 22 dpf (0.91–1.08; X² = 16.10, df = 1, P < 0.001), Lytechinus variegatus at 15 dpf (0.98–1.02; X² =
0.57, df = 1, P = 0.94), and Diadema antillarum at 45 dpf (3.49–3.86; X² = 202.85, df = 1, P < 0.001). The highest shear treatment (3.5 Pa) is not
included due to high mortality. Bars represent mean ± standard error.
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treatment resulting in more competent larvae (Figure 4). The time to

first settlement was 15 and 22 dpf for L. variegatus and T. ventricosus,

respectively. Settlement was compared between species as the

maximum, or peak percent settlement observed in competent larvae

only. Thus, the methods are not appropriate for comparing time to

settlement. No significant difference in settlement was detected between

treatments or species (PERMANOVA: F = 0.676, df = 1, p = 0.38).

However, both species exhibited a trend where the 2.5 Pa treatment

resulted in numerically higher percent settlement: 81.9% vs. 73.6% for

L. variegatus and 48.1% vs. 35.2% for T. ventricosus.
3.2 Experiment 2

The average egg diameter for D. antillarum was 80 ± 3.2 μm. A

significant overall main effect of shear treatment on survival was

observed (X2 = 178.04, df = 2, p < 0.001); post-hoc analysis revealed

significantly reduced survival in the high shear (3.5 Pa) treatment

relative to both the intermediate (2.5 Pa) and low (1.6 Pa) shear

treatments (Figure 5). Regarding individual morphometrics,

multiple differences were found between the high shear treatment

and the two lower-shear treatments (Supplementary Table 2).

Larvae in the 3.5 Pa treatment exhibited shorter arms (X2 =
Frontiers in Marine Science 07
153.53, df = 2, p < 0.001), longer body lengths (X2 = 56.325, df =

2, p < 0.001), larger body widths (X2 = 214.16, df = 2, p < 0.001), and

longer stomach lengths (X2 = 34.172, df = 2, p < 0.001) compared to

those in the 2.5 Pa and 1.5 Pa treatments. The intermediate shear

(2.5 Pa) treatment resulted in significantly longer arms compared to

the other treatments (X2 = 153.53, df = 2, p < 0.001). No other

significant differences in morphometrics features were observed

between the 2.5 and 1.6 Pa treatments (Supplementary Table 2).

Diadema antillarum larvae in the high shear (3.5 Pa) treatment

were excluded from consideration when analyzing the PO: MBL

ratio due to considerable mechanical damage including missing or

truncated arms and low survival rates, which confounded detection

of a natural plastic response. When considering the low and

intermediate shear treatments, a significant treatment effect on

this growth ratio was observed at 45 dpf (X2 = 202.85, df = 12, p

< 0.001), which indicated a plastic growth response (Figure 3).

On day 45, significant differences in proportional competence

were observed among treatments (X2 = 60.61, df = 2, p < 0.0001)

(Figure 4). The intermediate shear (2.5 Pa) treatment resulted in

significantly higher proportional competence than observed in the low

shear (1.6 Pa) treatment (p < 0.0001). The high shear (3.5 Pa)

treatment resulted in dramatically lower survival rates and was

consequently excluded from this analysis.
FIGURE 4

Percent competence for each urchin species on the final day before first settlement (dpf = 13 for L. variegatus, dpf = 21 for T. ventricosus, dpf = 45
for D. antillarum) across respective turbulent shear treatments. Due to different rates of attaining competence for each species, data here do not
represent maximum competence for any of the urchin species. Bars represent mean values ± standard error.
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4 Discussion

Our data provide the first evidence of a plastic growth response

to hydrodynamic flow in larval echinoderms, with multiple species

displaying increased arm length when developing in higher shear

environments. Given that our larvae were fed to satiation, in

consensus with other larviculture studies (see Soars et al., 2009;

Byrne et al., 2008), and the apparent lack of density-dependent

growth effects from relevant shear treatments, we believe that

standardized changes in T. ventricosus and D. antillarum postoral

arm length were driven by flow. Food encounter rates in all

treatments were assumed sufficient based on comparable

survivorship across treatments. Although food clearance rates

were not directly quantified, algal particles were visualized in the

larval stomachs for each species and treatment across the entire

study. Notably, the timing of developmental staging for L.

variegatus and T. ventricosus, and body length values for D.

antillarum, were similar between relevant high surviving

treatments. Altogether, these results strongly suggests that

echinoid arm-length plasticity was driven by hydrodynamics

rather than food limitation. The significant differences in arm

length to body length ratio were detected at species-specific time

points that correspond to the final stages of larval development

prior to metamorphic competence. A plastic growth response was

most likely to be detected at these endpoints, after prolonged

exposure to shear conditions. This strategy enabled standardized

inter-specific comparisons while capturing the effects of differential
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shear on functional morphology. We observed a continuum of

responsiveness across three species, with D. antillarum exhibiting

the greatest plasticity, T. ventricosus exhibiting moderate plasticity,

and L. variegatus exhibiting no plasticity, i.e., resistance to shear

stress. These findings suggest species-specific adaptations to flow

and possibly other physical oceanographic factors.

Echinoid larvae use cilia, arranged in bands along their arms, as

a primary means of feeding and locomotion (Hart, 1991; Yaguchi

et al., 2022). The skeletal structure of the post-oral arms also

facilitates a larvae’s ability to maintain an upright (arms-up)

orientation in the water (Pennington and Strathmann, 1990;

Wheeler et al., 2016). This reliance on post-oral arms for stability

and orientation may be more pronounced in the two urchin species

showing a plastic arm growth response: T. ventricosus and D.

antillarum. In larvae with a transversus morphology, such as D.

antillarum, this dependence on post-oral arms is likely amplified, as

they rely primarily on a single dominant pair of arms for both

feeding and locomotion (Hernández et al., 2020). In contrast,

typical morphologies distribute these tasks across multiple

appendages (Randall et al., 1964; Soars et al., 2009; Rendleman

and Pace, 2018). This specialization of the transversus form limits

the potential for morphological adaptation to the single pair of post-

oral arms and possibly contributes to D. antillarum’s pronounced

arm length extension response compared to T. ventricosus and L.

variegatus (Soars et al., 2009). It must be noted that the larvae of T.

ventricosus and L. variegatus in this study were derived from single

full siblingships. As such, our findings should be interpreted with
FIGURE 5

The density of surviving Diadema antillarum larvae exposed to low-shear (1.6 Pa), intermediate-shear (2.5 Pa), and high-shear (3.5 Pa) treatments
over time. Letters indicate a significant difference between treatments. Bars represent mean values ± standard error.
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the understanding that they may be influenced by genetic factors

specific to these siblingships. Additionally, as the D. antillarum

experiment was conducted one year apart from the L. variegatus

and T. ventricosus experiment, temporal variation should be

considered in interpreting patterns in inter-specific differences.

Larval post-oral arm length also has significant effects on

metamorphic development. Arm extension in conjunction with

skeletal growth enhances nutritional resources available for

metamorphosis (Gustafson and Wolpert, 1963; Burke, 1981,

1983). During metamorphosis, epidermal cells of the arms and

other ephemeral larval structures are phagocytosed, which supports

the transition from larva to juvenile (Burke, 1983). Longer arms

observed in T. ventricosus and D. antillarum thus could have

provided a more favorable energy budget for the demanding

transition from larvae to juvenile. Variations in arm length

among echinoid larvae reflect evolutionary strategies that balance

resource acquisition with development time (Strathmann et al.,

1992; Hart and Strathmann, 1994). The transversus form

morphology (longer arms, extended planktonic larval duration)

likely carries a trade-off between dispersal potential and

developmental rate (Grünbaum and Strathmann, 2003). This

morphology theoretically increases horizontal swimming speed

and dispersal capacity, but may also reduce growth dynamics

(Grünbaum and Strathmann, 2003)— D. antillarum developed

over 46 days, while T. ventricosus and L. variegatus developed

over 22 and 15 days, respectively. In contrast, typical echinoplutei

like L. variegatus and T. ventricosus are associated with faster

progression to juvenile stages, likely due to higher assimilation

efficiencies (energy absorbed relative to energy ingested)

(Rendleman and Pace, 2018), but these larvae have shorter

planktonic stages, potentially limiting their dispersal ranges (Hart

and Strathmann, 1994).

Larvae of some echinoid species extend their post-oral arms

under food-limited conditions, a process that may increase food

capture by up to 20% (Hart and Strathmann, 1994). The theory

behind food-driven arm length plasticity suggests that temporal

variation in food availability drives morphological adaptations to

enhance survival and dispersal (Baythavong, 2011). Soars et al.

(2009) examined this plastic response in contrasting larval forms,

documenting the expected response (longer post-oral arms) in

Heliocidaris turberculata (typical), but no plastic response in

Centrostephanus rodgersii (transversus) when exposed to varying

food concentrations. The authors proposed that transversus-form

larvae, having only two primary arms for feeding and swimming,

are adapted for long-distance dispersal and maintaining arm length

regardless of food conditions (Soars et al., 2009). Biologically, these

plastic responses are often mediated by stress pathways, such as

stress-induced modulation of skeletal growth and calcite deposition,

as observed in the stunted growth of Arbacia lixula larvae exposed

to suboptimal temperature and pH conditions (Visconti et al.,

2017). Our findings reveal a strong plastic response to

hydrodynamic variability in transversus-type larvae, while this

response was absent in one of the two typical form species. This

suggests that arm length plasticity is not universal across form types

and is influenced by a combination of phylogeny, ecological niche,
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and larval body form. Further, responses to food availability and

flow conditions may not be the only types of phenotypic plasticity

exhibited by these species.

The variability in larval forms may also reflect broader trends in

population connectivity among echinoids. Diadema antillarum,

with its long larval duration and substantial dispersive potential,

exhibits high population connectivity, facilitating gene flow across

large distances (Chandler et al., 2017). In contrast, L. variegatus has

a more localized dispersal range and lower genetic connectivity

(Nunez, 2017), aligning with its observed resistance to arm length

plasticity. Little is known about T. ventricosus population genetics

(Godinho et al., 2016), but other species in the genus (e.g. T.

gratilla) are documented to have high genetic connectivity

between populations (Casilagan et al., 2013). The role of larval

form in population connectivity warrants further research to

understand how genetics, dispersal potential, and environmental

conditions interact in these species. The comparison of plasticity

among these species highlights how evolutionary pressures in

oligotrophic environments (e.g., reef systems inhabited by D.

antillarum and T. ventricosus) may necessitate dispersal

mechanisms to locate more favorable habitats. Variations in

plasticity and connectivity likely stem from a combination of

species-specific factors, including habitat stability, larval duration,

and ecological niche.

The plastic arm length response in echinoid larvae, particularly

those with extended planktonic phases like D. antillarum, may offer

several advantages. In the context of this study, arm length and

number of arms could represent a trade-off between optimizing

swimming efficiency and maintaining stability in turbulent

environments. Longer post-oral arms, supported by rigid calcite

skeletons, may improve larval orientation and vertical stability,

thereby reducing the energy required to maintain position in

turbulent waters (Emlet, 1982, 1983; Pennington and Strathmann,

1990). Grünbaum and Strathmann (2003) developed a

hydromechanical model that suggested larvae with fewer, lower-

angled arms may swim faster and have greater ballast weight

carrying capacity, while those with more numerous, higher-

angled arms exhibit greater stability in turbulent conditions. This

model suggests that larvae in turbulent environments, like those of

D. antillarum, might prioritize stability over speed by developing

longer arms and increasing skeletal ballast weight, aiding in vertical

orientation in turbulent shear (Grünbaum and Strathmann, 2003).

Additionally, as larvae grow, body size increases alongside post-oral

arm length, which enhances positional stability. However, the

swimming ability of the three species in this study has not been

directly measured. Based on theoretical models, it is plausible that

the benefits of increased ballast and stability might outweigh the

energetic costs associated with reduced swimming capacity,

particularly in environments where turbulence disrupts larval

orientation and feeding, such as in the high shear treatment with

D. antillarum (Maldonado, 2009; Sameoto et al., 2010). In such

conditions, larvae may allocate more energy towards growth and

metamorphic development rather than maintaining vertical

position and orientation. A comparative empirical study

examining the relationships between echinoid arm morphology,
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swimming performance, and ballast weight across various

hydrodynamic conditions would provide valuable insights into

these trade-offs.

The notable differences in tolerance and morphology exhibited

by these three species reflect their divergent developmental traits

and ecological niches. Diadema antillarum demonstrated a narrow

tolerance for hydrodynamic conditions, with 100% mortality

observed in the piloted slow 0.6 Pa treatment and less than 10%

survival in the fast 3.5 Pa treatment. Additionally, D. antillarum

displayed a more pronounced response to turbulent shear than T.

ventricosus. This heightened sensitivity, along with differences in

larval forms (with D. antillarum exhibiting transversus morphology

and T. ventricosus and L. variegatus displaying typical forms), may

reflect broad evolutionary differences between the species. It should

be noted, however that the low- and high-shear treatments for D.

antillarum (1.6 Pa and 3.5 Pa, respectively) were not equivalent to

the shear levels applied to L. variegatus and T. ventricosus (0.6 Pa

and 2.0 Pa, respectively), as lower shear caused complete mortality

in D. antillarum. Consequently, interspecific comparisons are

limited to the subset of shear levels that were survivable for all

species, and this asymmetry should be considered when

interpreting differences in larval responses across species.

In this study, measured egg diameters were 80 μm for D.

antillarum, 86 μm for T. ventricosus, and 88 μm for L. variegatus,

indicating relative similarity (e.g., T. ventricosus eggs were ~7.5%

larger than those of D. antillarum). However, prior work by Lessios

(1988c) reported more substantial differences in egg volume and

lipid content, with L. variegatus showing significantly greater

maternal provisioning than both T. ventricosus and D. antillarum.

These discrepancies could reflect inter-population variability,

methodological differences in how egg volume was measured

(diameter vs. volume vs. lipid content), or seasonal and

environmental effects on maternal investment. These patterns are

consistent with broader developmental strategies among echinoids,

where larval energy allocation, arm growth, and timing of rudiment

development are all flexible responses to maternal investment and

environmental conditions (Strathmann et al., 1992; Bertram and

Strathmann, 1998; McEdward and Miner, 2001; Miner, 2003).

Our study found that higher shear conditions accelerated the

onset of competence in T. ventricosus and D. antillarum. Despite

intraspecific variations in competence across treatments, the

ontogenetic timing (i.e., the development of paired arm

appendages) remained consistent. This finding aligns with

Gaylord et al. (2013), who used a Taylor-Couette cell to expose

competent and precompetent S. purpuratus (typical morphology)

larvae to high rotational speeds (450 rpm) at short durations (3

minutes). They discovered that while turbulent shear did not

directly induce settlement in competent larvae, elevated

turbulence accelerated the transition to competence. This suggests

turbulence may play a functional role in habitat selection, a

hypothesis supported by comparisons to hydrodynamic sensing

used by zooplankton for predator avoidance (Gaylord et al., 2013).

Hodin et al. (2020) corroborated these results by showing that

species typically settling in high-energy environments exhibited

increased settlement responses to turbulent shear. The shear
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conditions applied in this study were performed in a controlled

laboratory setting to explore the potential influence of turbulent

shear on larval development. However, the hydrodynamic

conditions in experimental setups such as glass bottles, Taylor-

Couette cells, and other laboratory chambers differ significantly

from those in natural oceanic environments. The magnitude,

distribution, and consequences of natural shear in the ocean are

likely to be more complex and variable than the controlled

conditions we simulated in the laboratory, and this distinction

should be considered when extrapolating the results to natural

settings. While the experimental shear levels used in this study were

not based on field measurements of hydrodynamic conditions, they

represent a sufficient range to maintain larval suspension and may

provide insight into potential larval responses to shear in natural

habitats, although exact flow rates likely differ.

This study provides the first documentation of arm-length

plasticity in echinoid larvae in response to hydrodynamics,

revealing distinct responses across species. Interspecific differences

were evident: D. antillarum and T. ventricosus larvae exposed to

higher shear developed longer arms and exhibited accelerated

metamorphic development, traits that may aid dispersal and

settlement in energetic environments. Conversely, L. variegatus

demonstrated lower responsiveness to turbulent flow and broader

hydrodynamic tolerance. The ability to adjust arm length to

maintain orientation is potentially advantageous for environments

with varying turbulence levels. The narrow hydrodynamic tolerance

observed in D. antillarum suggests that shifts in flow regimes, such

as those associated with climate-driven storms or reef degradation,

could disproportionately impact larval survival and recruitment,

with potential consequences for reef restoration and population

resilience. While we suggest a connection between plastic arm

growth and accelerated competence, further research is needed to

confirm this link. These findings highlight the significant role of

hydrodynamics in the entirety of larval development and emphasize

the broader ecological implications of flow dynamics in

marine systems.
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