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Enhancing sensor accuracy
in mobile multi-sensor systems
for atmospheric monitoring
using disturbance observer
and sensor estimators
Shinhyung Kim, Abera Tullu and Sunghun Jung*

Department of Smart Vehicle System Engineering, Chosun University, Gwangju, Republic of Korea
Recent progress in marine environmental monitoring has underscored the

importance of equally rigorous atmospheric observations, and it has

consequently focused on developing mobile sensors that improve data

collection accuracy and operational flexibility. unmanned aerial vehicles (UAVs)

are attractive carriers owing to their low cost and operational agility; however,

the stringent size–and–weight constraints imposed on onboard sensors often

translate into poor accuracy, especially under rapidly fluctuating ambient

temperatures. This paper introduces a compact, lightweight composite sensor

payload – readily integrable with UAVs – that preserves measurement precision

down to −40°C by embedding a disturbance observer (DOB)–based

compensation algorithm directly in the sensor micro–controller, using

externally sensed air temperature (via an insulated probe) as baseline data for

onboard correction. The DOB continuously estimates and cancels temperature–

induced bias and electromagnetic interference in real time, without hardware

redundancy or external calibration during operation. High–altitude test–

chamber experiments show that the proposed system lowers the temperature

RMSE from 28.67°C to 15.74°C and raises the coefficient of determination (R2)

from 0.02 to 0.76. These results confirm that DOB–assisted correction

substantially enhances the robustness and reliability of lightweight UAV–

compatible sensors, paving the way for high–resolution coastal–and–open–

ocean ground–to–stratosphere profiling that supports coupled air–sea flux

assessments for marine exploration.
KEYWORDS

unmanned aerial vehicle, mobile multi-sensor payload, upper-air profiling, temperature

compensation, air-sea flux, marine environmental monitoring, stratospheric
observation, disturbance observer
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1 Introduction

Recent advancements in atmospheric environmental

monitoring have focused on the development of small mobile

sensors to improve data-collection accuracy and operational

flexibility. Equally important, a growing body of marine-

climatology literature shows that atmospheric processes directly

regulate upper-ocean heat content. Notably, Günther et al. (2024)

demonstrate that stratospheric aerosol forcing can cool the western

Pacific warm pool on sub-seasonal timescales, underscoring the

need for in-situ observations that capture atmospheric and oceanic

states concurrently.

Fixed-point observatories—land stations, moored buoys, and

shipborne packages—struggle to sample these tightly coupled air-

sea processes with adequate spatial and vertical resolution. Because

conventional sensors are configured for fixed sites, synoptic three-

dimensional observations remain essential for constraining

pollution sources and energy-flux pathways across both land

and sea.

Mobile platforms therefore constitute a practical means of

extending the reach of environmental sensors. Small unmanned

aerial vehicles UAVs have emerged as flexible observational

platforms. Fekih et al. (2021) developed and evaluated a mobile

participatory system for monitoring air-quality and urban-heat-

island conditions with cost-effective miniature sensors, emphasizing

data validation and energy efficiency through comparisons with

reference instruments. Chen et al. (2021) compiled a high-

resolution, vision-based air quality dataset using UAVs to capture

wide-swath imagery paired with ground sensors, thereby improving

the spatial interpolation of air-quality fields.

Concas et al. (2021) catalog state-of-the-art machine-learning

calibration methods for inexpensive air-quality sensors; however,

they note that these approaches depend on large labeled datasets

and remain largely unvalidated in the steep temperature and

pressure gradients encountered during rapid UAV profiling

sorties. Recent assessments further document bias and drift of

low-cost sensors under changing T/p/RH, reinforcing the need for

calibration schemes that remain valid off the training envelope

(Siddiqui et al., 2025; Hayward et al., 2024).

Zappa et al. (2020) demonstrated ship-launched VTOL UAVs

equipped with multispectral imagers and microbuoys, capable of

resolving centimeter-scale sea-surface variability while

simultaneously profiling the marine atmospheric boundary layer.

Yet sensor miniaturization amplifies measurement errors from

thermal drift, aging, and dynamic pressure, especially during rapid

ascent and descent across sharp tropospheric and lower-

stratospheric gradients. Although prior work has improved low-

cost sensors via statistical calibration, machine-learning correction,

or hardware compensation, these approaches typically require large
Abbreviations: DOB, disturbance observer; UAV, unmanned aerial vehicle; GPS,

global positioning system; IoT, internet of things; LTE, long-term evolution;

SATCOM, satellite communication; UWB, ultra-wideband; RMSE, root mean

square error; AVG, average; MAX, maximum error; MEAN, mean error; MIN,

minimum error; PM, particulate matter.
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labeled datasets, quasi-stationary conditions, or redundant

reference hardware, and they degrade when temperature/pressure/

humidity depart from the training envelope (Zou et al., 2021; Liang,

2021; Wei et al., 2018). Complementary physics-informed

techniques mitigate bias (e.g., feed-forward thermal compensation

and enclosure design), yet enclosure radiation and airflow still

distort ambient readings, indicating that disturbance terms should

be estimated rather than merely filtered (Liu et al., 2023; Lundstrom

and Mattsson, 2020).

Disturbance observers (DOBs) provide a model-based route to

real-time error mitigation when system dynamics are reasonably

known (Iwata et al., 2020; Santina et al., 2020). They are used in

battery state estimation and industrial temperature control (Messier

et al., 2020; Tang and Xu, 2023), but have rarely been embedded in

compact multi-sensor payloads exposed to steep and fast

environmental transients. This gap motivates our approach: we

embed a lightweight DOB in the sensor microcontroller to estimate

and cancel disturbance-induced bias on board without auxiliary

calibration hardware, and we evaluate the resulting payload under

rapidly varying temperature and pressure using a thermal-vacuum

chamber (methods in Section 4, results in Section 5).
1.1 Literature review on sensor accuracy

Sensor accuracy is pivotal for reliable environmental

assessment, yet maintaining data fidelity is particularly

challenging for cost-effective miniature sensors deployed on

mobile platforms. Zou et al. (2021) showed that particulate-

matter sensors suffer from pronounced temperature- and

humidity-induced bias, underscoring the need for climate-

adaptive calibration. Liang (2021) compared statistical and

machine-learning calibration frameworks and found that

multivariate models incorporating relative humidity, temperature,

and pressure markedly outperformed simple regressions. These

data-driven approaches, however, depend on extensive labeled

datasets and frequent retraining, which limits their utility for

sensors that traverse steep vertical gradients aboard UAVs.

Allka et al. (2023) enhanced the accuracy of internet of things

(IoT) temperature nodes through temporal-pattern denoising, but

their validation was restricted to quasi-stationary conditions and

did not address the rapid ambient changes typical of UAVmissions.

Complementary physics-informed techniques have also been

pursued: Liu et al. (2023) applied feed-forward thermal

compensation to micro-accelerometers, stabilizing bias across

wide temperature excursions, and Lundstrom and Mattsson

(2020) demonstrated that enclosure radiation and airflow can

distort ambient readings, indicating that disturbance terms should

be estimated rather than merely filtered. Gu et al. (2020) extended

these ideas to aerial IoT networks, using neural networks to correct

multi-sensor drift during maneuvering flight.

The accuracy of sensor data becomes particularly critical when

sensors are deployed on moving platforms, where rapid variations

in temperature, pressure, and airflow can degrade measurement

fidelity compared with stationary observatories. This distinction is
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also essential in the context of the present work, which specifically

targets the development of ultra-miniaturized, lightweight, and low-

cost instrumentation for airborne vehicles. In such scenarios,

accuracy can be quantitatively expressed by the coefficient of

determination (R2) relative to reference sensors, as reported in

(Ali et al., 2021; Zafra-Perez et al., 2023; Yeom, 2021; Saha et al.,

2021; Pohorsky et al., 2024; Nadzir et al., 2025). The consolidated

results are summarized in Table 1, providing a basis for comparing

the estimated performance levels of the proposed system.

DOBs offer a model-based route to real-time error mitigation

when the system dynamics are reasonably known (Iwata et al., 2020;

Santina et al., 2020; Daoud et al., 2020). They have been applied to

battery state estimation (Messier et al., 2020) and industrial
Frontiers in Marine Science 03
temperature control (Tang and Xu, 2023), yet their use with

multi-sensor payloads undergoing rapid thermal excursions

remains limited. To address this gap, the present study embeds a

DOB-based error-mitigation scheme in a compact sensor suite and

evaluates its efficacy during a rocket-assisted UAVmission in which

the payload encounters abrupt tropospheric and lower-

stratospheric temperature transients (Figure 1).

Embedding a disturbance observer in the sensor MCU allows

the payload to infer the thermal and electrical states of both peer

sensors and the sensor itself without additional reference hardware.

This enables anomaly-aware fusion by withholding inconsistent

sensors and supports on-board bias correction of calibration-

relevant states, while keeping the system minimal.
TABLE 1 Summary of R2 values from related studies on mobile sensor systems.

Reference Platform Measured parameter(s) R2

Ali et al. (2021) Various types
Gases (CO, NO2), particulate matter
(PM)

0.78

Zafra-Perez et al. (2023) Car PM 0.83

Yeom (2021) Car Gases, PM, temperature, humidity 0.79

Nadzir et al. (2025) UAV PM 0.73

Saha et al. (2021) Car + station PM 0.77a

Pohorsky et al. (2024) UAV PM, pressure, temperature, humidity 0.99b
aPrediction model based on data collected with a moving car and a fixed station.
bReference sensor colocated within the same vehicle.
FIGURE 1

Overview of a UAV-attached multi-sensor mission.
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1.2 Contributions

The main contributions of this study are as follows.
Fron
• We propose a disturbance-aware compensation

architecture by embedding a DOB on the sensor MCU. It

infers calibration-relevant internal states from existing

measurements and compensates them on board, avoiding

additional hardware installation for sensor calibration.

• We validate the approach in a thermal-vacuum chamber

that reproduces a rapid ground-to-stratosphere ascent and

show that corrected measurements remain stable during

steep temperature and pressure transients.

• We lay the groundwork for redundancy-aware cross-

estimation among co-located identical sensors to identify

and exclude inconsistent readings during rapid ambient

transients without additional hardware.

• These advances improve the measurement reliability of

lightweight, miniaturized sensors on mobile platforms and

enable reliable upper-air profiling beyond the reach of

fixed stations.
1.3 Organization

The remainder of this paper is organized as follows. Section 2

presents the mathematical models, control architecture,
tiers in Marine Science 04
implementation of the DOB, and the sensor-compensation

strategy. Section 3 describes the system-identification procedure

and parameter estimation, validating the theoretical model with the

proposed multi-sensor design. Section 4 outlines the simulation and

chamber-test setup, including scenarios and protocols used to

evaluate the system under controlled conditions. Section 5 reports

the experimental observations, with a linear-regression analysis

comparing the estimated temperature against reference

measurements. Finally, Section 6 summarizes the conclusions and

outlines future research directions.
2 Mathematical modeling

The multi-sensor system was designed to measure

environmental and positional information transmitted to the

server. This includes devices such as electrochemical gas sensors,

batteries, and processors operating within certain temperature

ranges. However, the external environment of a multi-sensor

system may exceed these operating ranges. Therefore, the

temperature control is fundamentally performed by the system.

Figure 2 shows an overview of the controller and plant system for

the temperature control of a multi-sensor system.

In this configuration, the plant section represents an unknown

model of the system. It was assumed that the controller outputs

heat. The role of the DOB is to detect unobserved external

temperature variations as well as the heat generation and voltage

fluctuations that occur during the operation of processors and
FIGURE 2

Block diagram of the multi-sensor system.
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communication devices. This observer provides crucial information

necessary to compensate for the sensor data.
2.1 Plant

A multi-sensor setup was designed to maintain the operational

temperature range of the sensors by adjusting the heater power. It

operates as part of a feedback loop, where the controller modifies its

output based on the sensor data and system requirements. The

following equations describe the general state-space representation

of the plant:

_x = Ax + Bu + Bdd(t) 

y(t) = Cx(t)
(1)

where A is the state matrix, B is the input matrix, Bd is the

disturbance input matrix, C is the output matrix, d(t) is the

disturbance, u(t) is the plant input, x(t) is the state vector of the

system, and y(t) is the output.
2.2 Disturbance observer

The DOB detects and compensates for disturbances that are not

directly observed by sensors, such as temperature variations and

voltage fluctuations caused by the operation of processors and

communication devices. By providing real-time disturbance

compensation, the DOB ensures that the sensor data remain

accurate despite external environmental variations. The

disturbance d̂ (t) obtained from the DOB was used to adjust the

sensor data. This yields the estimated output ŷ (t) of the system after

disturbance compensation. The plant model with the estimated

disturbance is represented as:

b_x = Ax̂ + Bu + Bdd̂ (t)

ŷ (t) = Cx̂ (t)
(2)

Assuming that x(t) = x̂ (t), the disturbance d̂ (t) is calculated

directly from Equations 1 and 2, as shown in Equation 3:

d̂ (t) = B−1
d ½b_x − Ax̂ − Bu(t)� (3)

However, this approach assumes that the model effectively

matches a real system. Model errors can generate inaccuracies in

observed disturbances. The differential equation of the disturbance

relative to the estimated disturbance d̂ (t) where defined in the

Equation 18 in (Chen et al., 2016) as:

d̂ = Gq(s)~d(s)

~d = d − d̂
(4)

where Gq(s) is the Q-filter that substitutes for the products of Bd

and C accounting for model uncertainty. Thus, if estimation fast

enough ~x ≈ 0, by estimating the state disturbance using Equations

1, 2 and 4, we obtain as shown in Equation 5:
Frontiers in Marine Science 05
b_d = G(s)(y − ŷ ) (5)

where ŷ (t) is the observed output from (2) and y(t) is the system

output measured directly by the sensors, and G(s) is the high-pass

filter as a matrix-valued transfer function designed to ensure that
~d(t) converges to zero.
2.3 Sensor estimator

To accurately predict the sensor output ys(t), it is important to

measure the state of the sensor. Therefore, estimating the state xs(t)

of the sensor and calculating an accurate measurement can be

expressed as:

_xs(t) = Asxs(t) + Bsw(t)

ŷ s(t) = Csx̂ s(t) + Dsŵ (t)
(6)

where As represents the state-transition matrix of the sensors, Bs

is the input matrix of the sensors affected by the sensor input w(t),

Cs is the output matrix of the sensors, and Ds is the feed-through of

the sensors. The estimated sensor input ŵ (t) is defined as shown in

Equation 7:

ŵ (t) = F3d̂ (t) + F4y(t) (7)

where F3 and F4 are the matrices designed for the sensor

estimation from and d̂ (t), y(t) respectively. The sensors measured

y(t) with a measurement noise n(t).
2.4 Controller

The system controller plays a crucial role in maintaining the

operational stability of the sensors by controlling their temperature.

The heating elements in the system were dynamically adjusted to

maintain the desired temperature range. This is essential for

accurate data collection under dynamic environmental conditions.

Proactive temperature management helps mitigate the effects of

rapid temperature variations owing to external factors such as

UAV operations.

To optimize the control and minimize the energy consumption,

the controller uses the reference input r(t) ∈ ½T0(t),…,Ti(t)�. This
is the set of target temperatures. Here, each Ti(t) corresponds to a

specific ith component within the system. The general proportional-

integral-derivative controller can be expressed as shown in

Equation 8:

_c(t) = Kd€e(t) + Kp _e(t) + Kie(t) (8)

where c(t) ∈ ½ _Q0(t),…, _Qi(t)�, _Qi(t), represents the designed

controllable heat generation in each ith element, e(t) represents the

control error, and controllers gain matrix Kp, Ki, and Kd are

designed to e(∞) = 0. In Equation 9, e(t) and v(t) are defined as:

e(t) = r(t) − v(t)

v(t) = F1w(t)
(9)
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where F1 is the matrix designed for controller from w(t).

Finally, the controller output u(t) is defined in Equation 10:

u(t) = c(t) − F2d̂ (t) (10)

where F2 is a matrix designed to compensate for d̂ (t) in u(t).

The integration of this control mechanism with sensors ensured

that each component operated within its threshold. This enhances

the overall robustness and reliability of the system. The following

sections discuss the advanced functionalities and integration of the

DOB and sensors within this refined control framework.
3 System identification and parameter
estimation

To validate the proposed method under real-world conditions,

it was applied to a multi-sensor system mounted on a UAV for

atmospheric observations. This system was used for identification

and parameter estimation. The specifications are listed in Table 2.

The multi-sensor system transmitted and received positional

information and data from external sources through satellite

communication (SATCOM), long-term evolution (LTE), ultra-

wideband (UWB), and global positioning system (GPS) modules. In

addition, it controls the heat generated by the integrated heater. Various

types of gases, particulate matter, temperature, and humidity sensors

have been used to acquire environmental data. The goal of the validation

was to predict the atmospheric temperature using the proposed DOB-

based sensor estimation method and compare it with a reference

atmospheric temperature sensor. This approach is important because

it can be used to predict the external and internal sensor temperatures,

which are crucial because most chemical sensors are vulnerable to

temperature variations.
3.1 Model

A mathematical model was required to apply the DOB, based

on which we developed a mobile multi sensor system and

temperature model. Figure 3 illustrates the multi-sensor system

and its components. This figure shows the temperature states of the

ith component, denoted as Ti(t). For the identification, we define the

output matrix C, state x(t), and sensor output ys(t) as follows:
Frontiers in Marine Science 06
C =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2666664

3777775
x(t) = ½T0(t) T1(t) T2(t) T3(t)�
ys(t) = T4(t)

(11)

where i ∈ ½0, 1, 2, 3, 4� represents the heater, microcontroller

unit with the mainboard, enclosed air within the multi-sensor,

surface temperature outside the multi-layered insulation (MLI), and

atmosphere, respectively. Although the atmosphere is not a

component of a multi-sensor system, it is expressed as the fourth

component to derive the equations. Each of T0(t) − T3(t) were

measured using dedicated temperature sensors. However, no

sensor was installed to measure the atmospheric temperature T4

in the multi-sensor system. In this system, u(t) and d(t) are defined

as the heat transfer between each component 208 and the

atmosphere. These are expressed as follows:

u(t) = _Qc(t) − _Q04(t) = _Q0(t)

d(t) = ½ _Q04(t)  _Q14(t)  _Q24(t)  _Q34(t)�T
(12)

where _Qc(t) represents the electric heater power.

The total heat transfer rate.
_Qi(t)   for each component can be expressed in terms of the heat

capacity and 211 heat transfer between i and j as follows:

_Qi(t) = _Ti(t)ci,

_Qi(t) =o
4

j=0

_Qij(t)
(13)

where ci is the heat capacity of the ith component. _Qij(t) is the

heat-transfer rate between components i and j, as follows:

_Qij(t) = gij(Ti(t) − Tj(t)) (14)

where gij [W/K] represents the thermal conductance.

From Equations 13 and 14, the differential equation of the plant

model is expressed as.

_Ti(t) = c−1i o
3

j=0
gij
�
Ti(t) − Tj(t)

�
+ _Qi4(t)

! 
(15)

The relationships between Qij(t) and Qji(t),   gij(t) and gji(t),

and the self-heat transfer terms _Qii and giiare expressed as follows:

_Qij(t) = − _Qji(t),   _Qii(t) = 0,

gij = −gji,   gii = 0
(16)

From Equations 11, 12, 15 and 16, we obtain the following

temperature ODEs:
TABLE 2 Specifications of the multi-sensor.

Specification Value Unit

Battery capacity 37,800 mWh

Length × width × height 200 × 100 × 30 mm

Weight 416 g
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_T0(t) = c−10
�
_Q04(t) + g0T0(t) − g01T1(t) − g02T2(t) − g03T3(t)

�
_T1(t) = c−11

�
_Q14(t) + g1T1(t) + g01T0(t) − g12T2(t) − g13T3(t)

�
_T2(t) = c−12

�
_Q24(t) + g2T2(t) + g02T0(t) + g12T2(t) − g23T3(t)

�
_T3(t) = c−13

�
_Q34(t) + g3T3(t) + g03T0(t) + g13T1(t) + g23T2(t)

�
where g0 = g01 + g02 + g03, g1 = −g01 + g12 + g13,

                                 g2 = −g02 − g12 + g23, g3 = −g03 − g13 − g23
(17)

These equations can be compactly expressed in state-space form

as.

A =

c−10 g0 −c−10 g01 −c−10 g02 −c−10 g03

c−11 g01 c−11 g1 c−11 g12 −c−11 g13

c−12 g02 c−12 g12 c−12 g2 −c−12 g23

c−13 g03 c−13 g13 c−13 g23 c−13 g3

2666664

3777775,

Bd =

c−10 0 0 0

0 c−11 0 0

0 0 c−12 0

0 0 0 c−13

2666664

3777775,     B =

c−10

0

0

0

2666664

3777775

(18)

where matrices A, B, and Bd are defined in Equation 18 as the

compact state-space representation of Equation 17.
3.2 Disturbance observer

As the gain G of the DOB increased, the rate of decrease in the

disturbance error decreased. However, if G is excessively high, the

sensor noise may be amplified and the quality of the estimation
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results may be degraded. We selected a G value that was ten times

higher than the sensor data collection frequency (0.25Hz) to

balance error reduction and noise amplification in this system.

In addition, the optimal G can be obtained by defining the

estimation error at the most rapidly changing point of the linearized

model as the cost function and solving it through simulation and

experiments using a sequential quadratic programming (SQP)

algorithm. In this study, we employed the optimization results

derived from both the external temperature simulation and the

experimental data described in Section 4. The optimized G for this

model is constant, consistent with the state estimation framework,

and all experiments were conducted under identical conditions.
3.3 Sensor estimator

The DOB-based sensor estimator predicts the states of sensors

that cannot be measured directly. In this study, a virtual

atmospheric temperature sensor was designed to verify the

performance of the sensor estimator. Assuming a multi-sensor

without an external conductive medium, all thermal disturbances

originate externally. From Equations 13, 14 and 16, we obtain as

shown in Equation 19:

o
4

i=1
Qi(t) =o

4

i=1
Qi4(t) (19)

Thus, the estimated sensor output ŷ s(t) from Equation 6 where

designed:

ŷ s(t) = Dsw(t)

Ds = ½a a a a bg04 bg14 bg24 bg34�

a = 0:25, b = (o
3

i=0
gi4)

−1

(20)
FIGURE 3

Multi-sensor model overview.
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where the sensor model input vector w(t) in Equation 20 is

defined as:

w(t) =
d̂ (t)

y(t)

" #
(21)

Therefore, from Equation 21 and the block diagram in Figure 2,

the designed matrices F3 and F4 are defined in Equation 22.

F3 =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

2666664

3777775F4 =
0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2666664

3777775 (22)
Frontiers in Marine Science 08
3.4 Parameter estimation

Parameter estimation was performed to determine the thermal

conductance and heat capacity of the system. Although some

thermal conductance gij and heat capacity ci values can vary with

atmospheric pressure, in this study, we assumed a constant linear

system, considering that the DOB was designed to operate even

with model uncertainties. The trust-region-reflective least-squares

algorithm is commonly used for nonlinear optimization. This was

employed for the estimation. The parameters obtained through the

optimization process are listed in Table 3.

The simulation process was based on a point-mass model

capable of simulating nonlinear variations in the drag and mass.

Using the mission settings specified in Table 4, we simulated the

UAV trajectories as shown in Figure 4.
4 Simulation and experiment

4.1 Simulation

To evaluate the proposed system, we established a series of real

mission scenarios for the multi-sensor system, simulating

temperature and pressure conditions. The UAV-attached sensor

rapidly increases to its maximum altitude via rocket propulsion.

After attaining the maximum altitude, the UAV deploys its wings

and transitions to gliding after it attains the winged flight altitude.

This continues until the ballistic flight time ends and then decreases

during the total flight time. Each scenario varied in terms of the

maximum altitude attained and descent speed. The results are listed

in Table 4.

Using the mission settings specified in Table 4, we simulated the

UAV trajectories as shown in Figure 4. The trajectories were

generated with a point-mass profile generator capable of

simulating nonlinear variations in drag and mass, implemented

within a MATLAB/Simulink based simulation model reused from

our prior works. The dynamic model comprises a 6-DOF ECEF

rigid-body with gravity, ground, mass, wind/atmosphere (ISA), and

NED model based controller blocks; propulsion and airframe

submodels for rocket booster ascent and turbojet/UAV flight with

aerodynamics; and actuator subsystems for servo and gimbal. We

did not modify the governing equations for this study and only

adjusted the scenario parameters to match Table 4. Full details of

the simulation and settings are provided in Kim et al (2024, 2025).

Using the international standard atmosphere model, we

converted the altitude variations over time into corresponding
FIGURE 4

AV trajectories. Legend labels (a) and (b) denote Scenario I and II,
respectively.
TABLE 4 Scenario configurations for UAV missions.

Configuration Scenario I Scenario II Unit

Maximum altitude 30.0 10.0 km

Winged flight altitude 8.5 8.5 km

Ballistic flight time 120.0 80.0 s

Total flight time 1200.0 1500.0 s
TABLE 3 List of estimated parameters.

Parameter Value Unit Parameter Value Unit

c0 1.28e+0 Ws/K g04 -2.63e-4 W/K

c1 6.36e+1 Ws/K g12 -3.37e-2 W/K

c2 1.85e+2 Ws/K g13 -7.38e-1 W/K

c3 3.81e+2 Ws/K g14 -7.28e-3 W/K

g01 -3.72e-2 W/K g23 -2.09e-1 W/K

g02 -3.18e-3 W/K g24 -2.00e-2 W/K

g03 -9.48e-3 W/K g34 -8.63e-2 W/K
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temperature and pressure variations, as illustrated in Figure 5. The

temperature and pressure data for each scenario derived from these

simulations served as the basis for setting the conditions for the

subsequent experiments, enabling rigorous and realistic

performance testing of the sensor system.
4.2 Experiment

We conducted experiments according to these steps to

accurately implement the temperature and pressure variations set

by the simulation and compared them with those of the reference

sensor. We used the given (a) scenario I and (b) scenario II to set up
Frontiers in Marine Science 09
the experimental environment by utilizing the high-altitude test

chamber configured in Figure 6. Temperature and pressure were

controlled in a vacuum chamber.

However, owing to the limitations of the experimental

apparatus, the accurate replication of the experimental

environment is challenging. Therefore, the scenarios were

restructured as follows: Test I, Test II, and Test III to adjust the

time required to attain the target temperature. Each test followed

the step-by-step target temperature and pressure of the underlying

scenario, although marginally different times were required to attain

the targets.

The experiments were performed three times to detect the

disturbances caused by internal heat generation and compare the

performance of the sensor estimator. Specifically, in Test III,

arbitrary disturbances were introduced to include temperature

variations from the internal heater, external temperature

variations, and pressure variations derived from a modification of

Test I. The resulting variations in temperature, pressure, and heater

operation _Qo(t)  in Test III are detailed in the Results and

Evaluation section.

The experimental setup included a shelf for mounting the multi-

sensor and a reference sensor that measured atmospheric

temperature. According to the simulation, the temperature and

pressure varied from over 20°C to −40°C and from 100kPa to 20kPa

within 1min. The chamber was cooled to the target temperature and

experiments were conducted after installing the multi-sensor. This

is illustrated in Figure 7. These adjustments caused differences in

the target temperature, pressure, and timing compared with the

original scenario. However, these variations can be detected by a

DOB, which is designed to detect abrupt variations in the

environment. This highlights the accuracy of sensor estimation

and demonstrates the robustness of the system.
FIGURE 6

Experimental configuration.
FIGURE 5

Simulation results. Legend labels (a) and (b) denote Scenario I and II,
respectively.
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5 Results and discussion

We evaluate the approach in a thermal-vacuum chamber that

replicates rapid ground-to-stratosphere transients (Section 4).

The experimental setup involved monitoring the internal

temperature variations within the multi-sensor using T3(t) (a

temperature sensor mounted on the internal surface) and the

atmospheric temperature using T4(t) (an external reference

sensor). The test results, including the pressure variations, are

shown graphically in Figures 8a, c, e. Using the collected data, the

estimated sensor output ŷ s(t) and the measured temperatures T3(t)

and T4(t) were compared, as shown in Figures 8b, d, f. To evaluate

the accuracy of the estimated temperatures, T3(t) was selected to

represent the atmospheric temperature and it was compared with

the reference value T4(t) and the estimated sensor output ŷ s(t). This

is illustrated in Figure 9.

The experimental results and linear-regression analyses

demonstrate that the DOB approach can greatly improve the

accuracy of atmospheric-temperature estimation when using a
Frontiers in Marine Science 10
surface-mounted sensor. When only the surface-mounted sensor

T3(t) was used, the estimation produced an R2 of 0.02, showing a

weak correlation with the reference T4(t). This finding highlights

the inadequacy of relying on T3(t) alone for accurate temperature

measurement. After the DOB was incorporated, the R2 improved to

0.76, indicating increased correlation between the estimated and

actual atmospheric temperatures, as high R2 values have been

shown to reflect good sensor performance (Yeom, 2021). The

regression coefficient likewise increased from -0.04 to 1.17,

confirming that the estimation shifted from a statistically non-

significant to a significant level.

To illustrate the performance improvements, Table 5 presents a

detailed comparison of the measurement and estimation errors for

Test I-III together with their average (AVG) values. It presents the

maximum error (MAX), mean error (MEAN), minimum error

(MIN), and root mean square error (RMSE) calculated for errors ~T3

and ŷ s(t), which are the differences between T3(t), ŷ s(t) and the

reference T4(t), respectively. Errors ~T3,z  and ~Ts,z  occur at each time

step z and are defined in Equation 23:

~T3,z = T4,z − T3,z

~ys,z = T4,z − ŷ s,z

(23)

The errors are calculated in Equation 24 as follows:

MAX = max(ez) MEAN = 1
l o

l

z=1
ez 

MIN = min(ez) RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l o

l

z=1
e2z 

s (24)

where ez ∈ ½~T3,z ,~ys,z� represents the error and l is the total

number of data points.

RMSE is a critical indicator of the estimation accuracy. It

improved significantly from 28.67 for ~T3 to 15.76 for ~ys(t). This

significant reduction in RMSE emphasizes the efficacy of the DOB

with the sensor estimator in providing more precise temperature

readings. Further analysis of the error metrics revealed that MAX,

MEAN, and MIN improved significantly. For example, the average

mean error for ~T3 was -13.24, whereas it reduced significantly to

1.76 for ~ys. However, the maximum error average increased from

16.80°C to 43.26°C, and the minimum error average improved from

−66.72°C to −66.02°C. The improvements in MAX and MIN were

smaller than those in the other two metrics. This phenomenon can

be attributed to the setting of the initial state variables of the

observer to zero. As shown in Figure 8f, where the initial

temperature T4(0) is near zero, the MAX and MIN values are

closer to zero than those in Figures 8b, d, where the T4(0) values are

below −40°C.

For reference, all nomenclature and estimated values used in

this paper are listed in Table 6.
6 Conclusion

In this study, we presented a novel approach for enhancing the

sensor accuracy in mobile multi-sensor systems for atmospheric
FIGURE 7

Experimental process flowchart.
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monitoring. By integrating the DOB with sensor estimators, we

demonstrated accurate atmospheric temperature prediction using

only temperature sensors. This validation was achieved through

rigorous experiments utilizing a DOB to compensate for internal

and external disturbances. The experimental results revealed that

the R2 value significantly improved from 0.02 to 0.76 with the DOB

and sensor estimators, indicating a substantial enhancement in

prediction accuracy. These values are comparable to those reported

for prior methods summarized in Table 1, indicating a correlation

sufficient for practical use of the estimated temperature. Excluding

cases where the reference sensor is co-located within the same

vehicle, this performance is broadly comparable to typical

estimation results reported in the literature. Considering the rapid

external temperature transients and the ultralight, low-cost sensor

suite used here, the result is particularly encouraging for mobile

platform deployments.

Beyond temperature, the same disturbance-aware architecture

can be extended to humidity, particulate-matter, and trace-gas

sensors, providing a pathway toward fully compensated multi-

parameter payloads for high-resolution air-sea flux studies.

Because the method operates on-board and requires no external

calibration hardware, it is well suited to the strict mass-and-power

budgets of small UAVs and other mobile platforms.
FIGURE 8

Experimental results: (a) Test I, (c) Test II, (e) Test III; atmospheric-temperature estimates versus sensor readings: (b) Test I, (d) Test II, (f) Test III.
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FIGURE 9

Comparative analysis of the reference and estimation result.
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TABLE 5 Measurement and estimation errors (all values in °C).

Error
metric

Test I Test II Test III AVG

~T3 ~ys ~T3 ~ys ~T3 ~ys ~T3 ~ys

MAX 23.26 28.50 11.64 59.02 15.51 42.25 16.80 43.26

MEAN -20.71 5.27 -4.52 -4.13 -14.51 4.15 -13.24 1.76

MIN -67.89 -57.85 -86.70 -116.08 -45.57 -24.12 -66.72 -66.02

RMSE 36.45 12.41 24.40 24.51 25.15 10.36 28.67 15.76
F
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TABLE 6 List of nomenclatures.

Nomenclatures Definition Unit Value

A State matrix of the plant model – –

As State matrix of the sensor model – –

B Input matrix of the plant model – –

Bd Disturbance input matrix of the plant model – –

Bs Input matrix of the sensor model – –

C Output matrix of the plant model – –

Cs Output matrix of the sensor model – –

Ds The feedthrough matrix of the sensor model – –

w Input vector in the sensor model – –

v Estimated state for control target – –

d Disturbance input vector in the plant model – –

u Control input to the plant model – –

F1 Designed matrix for w(t) in v(t) – –

F2 Designed matrix for d̂ (t)  in u(t) – –

F3 Designed matrix for d̂ (t)   in w(t) – –

F4 Designed matrix for y(t) in w(t) – –

e Error vector in the controller – –

Kd Controller gain matrix for €e – –

Kp Controller gain matrix for _e – –

Ki Controller gain matrix for e – –

G Matrix value of transfer function of the DOB – –

Qc Electric heater power output in controller – –

Qi Total heat transfer rate of ith component – –

R2 Coefficient of determination – –

Th The threshold temperature for starting the test – –

Ti Temperature of ith component – –

T0 Temperature of the heater – –

T1 Temperature of the mainboard – –

T2 Temperature of the enclosed air – –

(Continued)
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An additional consideration is sensor corruption or failure.

While the present study intentionally focused on redundancy-free

operation to establish a baseline, when multiple co-located sensors

are available, cross-estimation among them can be used to flag

abnormal readings and maintain robustness. With n sensors, there

are 2n − 2 valid subsets of the remaining sensors (excluding the

empty set and the full set). For each subset, the sensor-estimation

method presented in this study can be applied to generate an

independent cross-estimate of the target sensor, and statistical

comparison with the actual measurement enables the detection of

persistent anomalies. Within the chamber setting reported here,

random noise and sporadic dropouts are already mitigated by the

DOB itself, while persistent bias would require such redundancy-

based cross-estimation. Practical implementations could further

combine covariance-based residual checks with a simple decision

layer to exclude a suspected sensor and preserve reliable operation.
Frontiers in Marine Science 13
This positions the present work as a foundation for future

extensions toward redundancy-aware sensing frameworks.

Future work will focus on flight campaigns over coastal and

open-ocean regions. These missions will validate the payload under

real atmospheric dynamics, assess long-term stability, and explore the

integration of additional sensing channels. Ultimately, we expect that

disturbance-aware profiling systems will expand the spatial reach and

data quality of coupled atmosphere-ocean observations, supporting

both scientific research and operational environmental monitoring.
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TABLE 6 Continued

Nomenclatures Definition Unit Value

T3 Temperature of the surface – –

T4 Temperature of the atmosphere – –

ci Heat capacity of ith component – –

I Total number of data points – –

n Measurement noise vector in the sensor model – –

r Reference vector in the controller – –

x State vector in the plant model – –

xs State vector in the sensor model – –

y Output vector in the plant model – –

ys Output vector in the sensor model – –

z Time step in the data points – –

ez Error value at each time step z – –

g01 Heater to mainboard conductance -3.72e-2 W/K

g02 Heater to enclosed air conductance -3.18e-3 ”

g03 Heater to the surface conductance -9.48e-3 ”

g04 Heater to the atmosphere conductance -2.63e-4 ”

g12 Mainboard to the enclosed air conductance -3.37e-2 ”

g13 Mainboard to the surface conductance -7.38e-1 ”

g14 Mainboard to the atmosphere conductance -7.28e-3 ”

g23 Enclosed air to the surface conductance -2.09e-1 ”

g24 Enclosed air to the atmosphere conductance -2.00e-2 ”

g34 Surface to the atmosphere conductance -8.63e-2 ”

c0 Heat capacity of the heater 1.28e+0 Ws/K

c1 Heat capacity of the mainboard 6.36e+1 ”

c2 Heat capacity of the enclosed air 1.85e+2 ”

c3 Heat capacity of the surface 3.81e+2 ”
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