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Enhancing sensor accuracy

In mobile multi-sensor systems
for atmospheric monitoring
using disturbance observer
and sensor estimators

Shinhyung Kim, Abera Tullu and Sunghun Jung*

Department of Smart Vehicle System Engineering, Chosun University, Gwangju, Republic of Korea

Recent progress in marine environmental monitoring has underscored the
importance of equally rigorous atmospheric observations, and it has
consequently focused on developing mobile sensors that improve data
collection accuracy and operational flexibility. unmanned aerial vehicles (UAVs)
are attractive carriers owing to their low cost and operational agility; however,
the stringent size—and—weight constraints imposed on onboard sensors often
translate into poor accuracy, especially under rapidly fluctuating ambient
temperatures. This paper introduces a compact, lightweight composite sensor
payload - readily integrable with UAVs — that preserves measurement precision
down to —40°C by embedding a disturbance observer (DOB)-based
compensation algorithm directly in the sensor micro—controller, using
externally sensed air temperature (via an insulated probe) as baseline data for
onboard correction. The DOB continuously estimates and cancels temperature—
induced bias and electromagnetic interference in real time, without hardware
redundancy or external calibration during operation. High—-altitude test—
chamber experiments show that the proposed system lowers the temperature
RMSE from 28.67°C to 15.74°C and raises the coefficient of determination (R?)
from 0.02 to 0.76. These results confirm that DOB-assisted correction
substantially enhances the robustness and reliability of lightweight UAV-
compatible sensors, paving the way for high—resolution coastal-and—open-
ocean ground-to-stratosphere profiling that supports coupled air—sea flux
assessments for marine exploration.

unmanned aerial vehicle, mobile multi-sensor payload, upper-air profiling, temperature
compensation, air-sea flux, marine environmental monitoring, stratospheric
observation, disturbance observer
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1 Introduction

Recent advancements in atmospheric environmental
monitoring have focused on the development of small mobile
sensors to improve data-collection accuracy and operational
flexibility. Equally important, a growing body of marine-
climatology literature shows that atmospheric processes directly
regulate upper-ocean heat content. Notably, Giinther et al. (2024)
demonstrate that stratospheric aerosol forcing can cool the western
Pacific warm pool on sub-seasonal timescales, underscoring the
need for in-situ observations that capture atmospheric and oceanic
states concurrently.

Fixed-point observatories—land stations, moored buoys, and
shipborne packages—struggle to sample these tightly coupled air-
sea processes with adequate spatial and vertical resolution. Because
conventional sensors are configured for fixed sites, synoptic three-
dimensional observations remain essential for constraining
pollution sources and energy-flux pathways across both land
and sea.

Mobile platforms therefore constitute a practical means of
extending the reach of environmental sensors. Small unmanned
aerial vehicles UAVs have emerged as flexible observational
platforms. Fekih et al. (2021) developed and evaluated a mobile
participatory system for monitoring air-quality and urban-heat-
island conditions with cost-effective miniature sensors, emphasizing
data validation and energy efficiency through comparisons with
reference instruments. Chen et al. (2021) compiled a high-
resolution, vision-based air quality dataset using UAVs to capture
wide-swath imagery paired with ground sensors, thereby improving
the spatial interpolation of air-quality fields.

Concas et al. (2021) catalog state-of-the-art machine-learning
calibration methods for inexpensive air-quality sensors; however,
they note that these approaches depend on large labeled datasets
and remain largely unvalidated in the steep temperature and
pressure gradients encountered during rapid UAV profiling
sorties. Recent assessments further document bias and drift of
low-cost sensors under changing T/p/RH, reinforcing the need for
calibration schemes that remain valid off the training envelope
(Siddiqui et al., 2025; Hayward et al., 2024).

Zappa et al. (2020) demonstrated ship-launched VTOL UAVs
equipped with multispectral imagers and microbuoys, capable of
resolving centimeter-scale sea-surface variability while
simultaneously profiling the marine atmospheric boundary layer.

Yet sensor miniaturization amplifies measurement errors from
thermal drift, aging, and dynamic pressure, especially during rapid
ascent and descent across sharp tropospheric and lower-
stratospheric gradients. Although prior work has improved low-
cost sensors via statistical calibration, machine-learning correction,
or hardware compensation, these approaches typically require large

Abbreviations: DOB, disturbance observer; UAV, unmanned aerial vehicle; GPS,
global positioning system; IoT, internet of things; LTE, long-term evolution;
SATCOM, satellite communication; UWB, ultra-wideband; RMSE, root mean
square error; AVG, average; MAX, maximum error; MEAN, mean error; MIN,

minimum error; PM, particulate matter.
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labeled datasets, quasi-stationary conditions, or redundant
reference hardware, and they degrade when temperature/pressure/
humidity depart from the training envelope (Zou et al., 2021; Liang,
2021; Wei et al.,, 2018). Complementary physics-informed
techniques mitigate bias (e.g., feed-forward thermal compensation
and enclosure design), yet enclosure radiation and airflow still
distort ambient readings, indicating that disturbance terms should
be estimated rather than merely filtered (Liu et al., 2023; Lundstrom
and Mattsson, 2020).

Disturbance observers (DOBs) provide a model-based route to
real-time error mitigation when system dynamics are reasonably
known (Iwata et al.,, 2020; Santina et al., 2020). They are used in
battery state estimation and industrial temperature control (Messier
et al,, 2020; Tang and Xu, 2023), but have rarely been embedded in
compact multi-sensor payloads exposed to steep and fast
environmental transients. This gap motivates our approach: we
embed a lightweight DOB in the sensor microcontroller to estimate
and cancel disturbance-induced bias on board without auxiliary
calibration hardware, and we evaluate the resulting payload under
rapidly varying temperature and pressure using a thermal-vacuum
chamber (methods in Section 4, results in Section 5).

1.1 Literature review on sensor accuracy

Sensor accuracy is pivotal for reliable environmental
assessment, yet maintaining data fidelity is particularly
challenging for cost-effective miniature sensors deployed on
mobile platforms. Zou et al. (2021) showed that particulate-
matter sensors suffer from pronounced temperature- and
humidity-induced bias, underscoring the need for climate-
adaptive calibration. Liang (2021) compared statistical and
machine-learning calibration frameworks and found that
multivariate models incorporating relative humidity, temperature,
and pressure markedly outperformed simple regressions. These
data-driven approaches, however, depend on extensive labeled
datasets and frequent retraining, which limits their utility for
sensors that traverse steep vertical gradients aboard UAVs.

Allka et al. (2023) enhanced the accuracy of internet of things
(IoT) temperature nodes through temporal-pattern denoising, but
their validation was restricted to quasi-stationary conditions and
did not address the rapid ambient changes typical of UAV missions.
Complementary physics-informed techniques have also been
pursued: Liu et al. (2023) applied feed-forward thermal
compensation to micro-accelerometers, stabilizing bias across
wide temperature excursions, and Lundstrom and Mattsson
(2020) demonstrated that enclosure radiation and airflow can
distort ambient readings, indicating that disturbance terms should
be estimated rather than merely filtered. Gu et al. (2020) extended
these ideas to aerial IoT networks, using neural networks to correct
multi-sensor drift during maneuvering flight.

The accuracy of sensor data becomes particularly critical when
sensors are deployed on moving platforms, where rapid variations
in temperature, pressure, and airflow can degrade measurement
fidelity compared with stationary observatories. This distinction is
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TABLE 1 Summary of R? values from related studies on mobile sensor systems.

Reference Platform Measured parameter(s) R?
Ali et al. (2021) Various types ((;al\s/[e)s (GO, NO,), particulate matter 0.78
Zafra-Perez et al. (2023) Car PM 0.83
Yeom (2021) Car Gases, PM, temperature, humidity 0.79
Nadzir et al. (2025) UAV PM 0.73
Saha et al. (2021) Car + station PM 0.77*
UAV PM, pressure, temperature, humidity 0.99°

Pohorsky et al. (2024)

“Prediction model based on data collected with a moving car and a fixed station.
PReference sensor colocated within the same vehicle.

also essential in the context of the present work, which specifically
targets the development of ultra-miniaturized, lightweight, and low-
cost instrumentation for airborne vehicles. In such scenarios,
accuracy can be quantitatively expressed by the coefficient of
determination (R?) relative to reference sensors, as reported in
(Ali et al.,, 2021; Zafra-Perez et al., 2023; Yeom, 2021; Saha et al,,
2021; Pohorsky et al., 2024; Nadzir et al., 2025). The consolidated
results are summarized in Table 1, providing a basis for comparing
the estimated performance levels of the proposed system.

DOBs offer a model-based route to real-time error mitigation
when the system dynamics are reasonably known (Iwata et al., 2020;
Santina et al., 2020; Daoud et al., 2020). They have been applied to
battery state estimation (Messier et al., 2020) and industrial

temperature control (Tang and Xu, 2023), yet their use with
multi-sensor payloads undergoing rapid thermal excursions
remains limited. To address this gap, the present study embeds a
DOB-based error-mitigation scheme in a compact sensor suite and
evaluates its efficacy during a rocket-assisted UAV mission in which
the payload encounters abrupt tropospheric and lower-
stratospheric temperature transients (Figure 1).

Embedding a disturbance observer in the sensor MCU allows
the payload to infer the thermal and electrical states of both peer
sensors and the sensor itself without additional reference hardware.
This enables anomaly-aware fusion by withholding inconsistent
sensors and supports on-board bias correction of calibration-
relevant states, while keeping the system minimal.

30 km

4-1) Rocket return flight
20 km
_— 4

Multi-sensor

Atmosphere (74(7))

10 km

(--—-"“~-

)
. Iy

/5-2) UAV landin

Launch platform

FIGURE 1
Overview of a UAV-attached multi-sensor mission.
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1.2 Contributions

The main contributions of this study are as follows.

* We propose a disturbance-aware compensation
architecture by embedding a DOB on the sensor MCU. It
infers calibration-relevant internal states from existing
measurements and compensates them on board, avoiding
additional hardware installation for sensor calibration.

*  We validate the approach in a thermal-vacuum chamber
that reproduces a rapid ground-to-stratosphere ascent and
show that corrected measurements remain stable during
steep temperature and pressure transients.

¢ We lay the groundwork for redundancy-aware cross-
estimation among co-located identical sensors to identify
and exclude inconsistent readings during rapid ambient
transients without additional hardware.

* These advances improve the measurement reliability of
lightweight, miniaturized sensors on mobile platforms and
enable reliable upper-air profiling beyond the reach of
fixed stations.

1.3 Organization

The remainder of this paper is organized as follows. Section 2
presents the mathematical models, control architecture,

10.3389/fmars.2025.1671083

implementation of the DOB, and the sensor-compensation
strategy. Section 3 describes the system-identification procedure
and parameter estimation, validating the theoretical model with the
proposed multi-sensor design. Section 4 outlines the simulation and
chamber-test setup, including scenarios and protocols used to
evaluate the system under controlled conditions. Section 5 reports
the experimental observations, with a linear-regression analysis
comparing the estimated temperature against reference
measurements. Finally, Section 6 summarizes the conclusions and
outlines future research directions.

2 Mathematical modeling

The multi-sensor system was designed to measure
environmental and positional information transmitted to the
server. This includes devices such as electrochemical gas sensors,
batteries, and processors operating within certain temperature
ranges. However, the external environment of a multi-sensor
system may exceed these operating ranges. Therefore, the
temperature control is fundamentally performed by the system.
Figure 2 shows an overview of the controller and plant system for
the temperature control of a multi-sensor system.

In this configuration, the plant section represents an unknown
model of the system. It was assumed that the controller outputs
heat. The role of the DOB is to detect unobserved external
temperature variations as well as the heat generation and voltage
fluctuations that occur during the operation of processors and

n(t)

FIGURE 2
Block diagram of the multi-sensor system.
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communication devices. This observer provides crucial information
necessary to compensate for the sensor data.

2.1 Plant

A multi-sensor setup was designed to maintain the operational
temperature range of the sensors by adjusting the heater power. It
operates as part of a feedback loop, where the controller modifies its
output based on the sensor data and system requirements. The
following equations describe the general state-space representation
of the plant:

X = Ax + Bu + Byd(t)
y(t) = Cx(2)

1

where A is the state matrix, B is the input matrix, B, is the
disturbance input matrix, C is the output matrix, d(t) is the
disturbance, u(t) is the plant input, x(¢) is the state vector of the
system, and y(¢) is the output.

2.2 Disturbance observer

The DOB detects and compensates for disturbances that are not
directly observed by sensors, such as temperature variations and
voltage fluctuations caused by the operation of processors and
communication devices. By providing real-time disturbance
compensation, the DOB ensures that the sensor data remain
accurate despite external environmental variations. The
disturbance ﬁ(t) obtained from the DOB was used to adjust the
sensor data. This yields the estimated output y (¢) of the system after
disturbance compensation. The plant model with the estimated
disturbance is represented as:

% = A% + Bu + Byd(t)
y(t) = Cx(t)

Assuming that x(t) = x(t), the disturbance a(t) is calculated
directly from Equations 1 and 2, as shown in Equation 3:

2

d(t) = B3'[x — A% — Bu(t)] 3)

However, this approach assumes that the model effectively
matches a real system. Model errors can generate inaccuracies in
observed disturbances. The differential equation of the disturbance
relative to the estimated disturbance d (t) where defined in the
Equation 18 in (Chen et al., 2016) as:

d = G,(s)d(s)
- . (4)
d=d-d

where G,(s) is the Q-filter that substitutes for the products of By
and C accounting for model uncertainty. Thus, if estimation fast
enough X = 0, by estimating the state disturbance using Equations
1, 2 and 4, we obtain as shown in Equation 5:
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~

d=GE-7) (5)

where y (t) is the observed output from (2) and y(t) is the system
output measured directly by the sensors, and G(s) is the high-pass
filter as a matrix-valued transfer function designed to ensure that

d(t) converges to zero.

2.3 Sensor estimator

To accurately predict the sensor output y(t), it is important to
measure the state of the sensor. Therefore, estimating the state x(t)
of the sensor and calculating an accurate measurement can be
expressed as:

X,(t) = Ax,(t) + Bow(t)

. N R (6)
ys(t) = Csxs(t) + Dsw(t)

where A; represents the state-transition matrix of the sensors, By
is the input matrix of the sensors affected by the sensor input w(t),
C, is the output matrix of the sensors, and D; is the feed-through of
the sensors. The estimated sensor input w (¢) is defined as shown in
Equation 7:

W(t) = Fyd (£) + Fyy(t) )

where F; and F, are the matrices designed for the sensor
estimation from and d (), y(t) respectively. The sensors measured
y(t) with a measurement noise n(t).

2.4 Controller

The system controller plays a crucial role in maintaining the
operational stability of the sensors by controlling their temperature.
The heating elements in the system were dynamically adjusted to
maintain the desired temperature range. This is essential for
accurate data collection under dynamic environmental conditions.
Proactive temperature management helps mitigate the effects of
rapid temperature variations owing to external factors such as
UAYV operations.

To optimize the control and minimize the energy consumption,
the controller uses the reference input r(¢) € [T, (¢), ..., T;(t)]. This
is the set of target temperatures. Here, each T;(t) corresponds to a
specific i component within the system. The general proportional-
integral-derivative controller can be expressed as shown in
Equation 8:

e(t) = Kqé(t) + Kye(t) + Kie(t) (8)

where c(t) € [Qo(t),...,Q,-(t)], Qi(t), represents the designed
controllable heat generation in each i" element, e(t) represents the
control error, and controllers gain matrix K, K;, and K, are
designed to e(e0) = 0. In Equation 9, e(t) and v(t) are defined as:

e(t) = r(t) - v(1)

9
v(t) = Fyw(t)

frontiersin.org
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where F is the matrix designed for controller from w(t).
Finally, the controller output u(t) is defined in Equation 10:

u(t) = c(t) - Fd (1) (10)

where F, is a matrix designed to compensate for d(t) in u(t).
The integration of this control mechanism with sensors ensured
that each component operated within its threshold. This enhances
the overall robustness and reliability of the system. The following
sections discuss the advanced functionalities and integration of the
DOB and sensors within this refined control framework.

3 System identification and parameter
estimation

To validate the proposed method under real-world conditions,
it was applied to a multi-sensor system mounted on a UAV for
atmospheric observations. This system was used for identification
and parameter estimation. The specifications are listed in Table 2.

The multi-sensor system transmitted and received positional
information and data from external sources through satellite
communication (SATCOM), long-term evolution (LTE), ultra-
wideband (UWB), and global positioning system (GPS) modules. In
addition, it controls the heat generated by the integrated heater. Various
types of gases, particulate matter, temperature, and humidity sensors
have been used to acquire environmental data. The goal of the validation
was to predict the atmospheric temperature using the proposed DOB-
based sensor estimation method and compare it with a reference
atmospheric temperature sensor. This approach is important because
it can be used to predict the external and internal sensor temperatures,
which are crucial because most chemical sensors are vulnerable to
temperature variations.

3.1 Model

A mathematical model was required to apply the DOB, based
on which we developed a mobile multi sensor system and
temperature model. Figure 3 illustrates the multi-sensor system
and its components. This figure shows the temperature states of the
it component, denoted as T;(t). For the identification, we define the

output matrix C, state x(¢), and sensor output y,(¢) as follows:

TABLE 2 Specifications of the multi-sensor.

Battery capacity 37,800 = mWh
Length x width x height 200 x 100 x 30 | mm
Weight 416 | g
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1000

0100

0010

0001
x(t) = [To(t) Ty(t) Ty(t)
ys(t) = Ty(t)

where i € [0,1,2,3,4] represents the heater, microcontroller

T;5(1)]

unit with the mainboard, enclosed air within the multi-sensor,
surface temperature outside the multi-layered insulation (MLI), and
atmosphere, respectively. Although the atmosphere is not a
component of a multi-sensor system, it is expressed as the fourth
component to derive the equations. Each of Ty(t) — T5(t) were
measured using dedicated temperature sensors. However, no
sensor was installed to measure the atmospheric temperature T,
in the multi-sensor system. In this system, u(¢) and d(t) are defined
as the heat transfer between each component 208 and the
atmosphere. These are expressed as follows:

u(t) = Qu(t) = Qoa(t) = Qo)
d(t) = [Qo4(t) Qu®)  Qu(®) Q34(t)}T

where Q.(t) represents the electric heater power.

(12)

The total heat transfer rate.
Q;(t) for each component can be expressed in terms of the heat
capacity and 211 heat transfer between i and j as follows:

Q1) = Ti(t)e;,
. 4, (13)
Qi) = > Q;(1)

=0

where ¢; is the heat capacity of the i component. Qij(t) is the
heat-transfer rate between components i and j, as follows:

Q1) = g;(Ti(t) - Ty(1) (14)

where g; [W/K] represents the thermal conductance.
From Equations 13 and 14, the differential equation of the plant
model is expressed as.

. 3 .
HORES (2&, (r0-1,0) +Q,-4(t)> (s)
j=0

The relationships between Q;(f) and Q;(t), g;(t) and g;(?),
and the self-heat transfer terms Q;; and g;are expressed as follows:

Qij(t) = —jS(t)> Qi(t) =0,
8ij =8 &i =0

(16)

From Equations 11, 12, 15 and 16, we obtain the following
temperature ODEs:

frontiersin.org
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| Atmosphere ( T, (t); Object of estimation)

7 N

SATCOM

Battery

Gas Sensors

Particle Matter Sensor

FIGURE 3
Multi-sensor model overview.

To(t) = ' ((Qoa(®) + 0 To(0) =g Ti(8) = g To(0) ~ 805 T5() )
110 = ' (Qu) + 4 Ta(0) + g To(0) = g To(0) - g3 T5(1) )
B0 = 6" ((Qul) + T + 80 To(0) + 80T~ g Ts() )
T5(t) = ¢3! (Q34(t) +&T5() + g3 To(t) + €13 T4 (1) + &3 Tz(t))

where g, = go1 + 802 + £03>

& = —8o2 — 812 + &35

81 = 801 + 812 + &3>

83 = —803 — 813 — 823
(17)

These equations can be compactly expressed in state-space form
as.
-1 -1 -1 -1
Co &0 —Co o1 —Co o2 —Co Lo3

-1 -1 -1 -1
€1 8o €1 &1 €1 812 €1 &3

A= ,
Cilgoz Cilglz C£1g2 —Cilgzs
Gl Ggs Gles G'E (18)
l0 0 0 !
0 ¢'0 0 0
B;= , B=
0 0 '0 0
0 0 0 o' 0

where matrices A, B, and B, are defined in Equation 18 as the
compact state-space representation of Equation 17.

3.2 Disturbance observer
As the gain G of the DOB increased, the rate of decrease in the

disturbance error decreased. However, if G is excessively high, the
sensor noise may be amplified and the quality of the estimation

Frontiers in Marine Science

Pressure sensor

results may be degraded. We selected a G value that was ten times
higher than the sensor data collection frequency (0.25Hz) to
balance error reduction and noise amplification in this system.

In addition, the optimal G can be obtained by defining the
estimation error at the most rapidly changing point of the linearized
model as the cost function and solving it through simulation and
experiments using a sequential quadratic programming (SQP)
algorithm. In this study, we employed the optimization results
derived from both the external temperature simulation and the
experimental data described in Section 4. The optimized G for this
model is constant, consistent with the state estimation framework,
and all experiments were conducted under identical conditions.

3.3 Sensor estimator

The DOB-based sensor estimator predicts the states of sensors
that cannot be measured directly. In this study, a virtual
atmospheric temperature sensor was designed to verify the
performance of the sensor estimator. Assuming a multi-sensor
without an external conductive medium, all thermal disturbances
originate externally. From Equations 13, 14 and 16, we obtain as
shown in Equation 19:

4 4
> Qi) =>Qu(®) (19)
i=1 i=1

Thus, the estimated sensor output y () from Equation 6 where
designed:
V5(t) = Dyw(t)
Di=a a a a bgy bgu b bgl (20)
3
a=025 b=Cg)"
i=0

frontiersin.org
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TABLE 3 List of estimated parameters.

Parameter Value Unit Parameter Value Unit
o 1.28e+0 = Ws/K Qo4 -2.63e-4 | W/K
a 6.36e+1 | Ws/K g2 -337e2 | W/K
c 1.85e+2 = Ws/K 13 -7.38e-1 | W/K
c3 38le+2 = Ws/K Q14 -7.28e-3 = W/K
o1 3.72e2 | WIK B3 -2.0%-1  W/K
802 -3.18¢-3 = W/K D4 -2.00e-2  W/K
803 -9.48e-3 | W/K 34 -8.63e-2 | W/K

where the sensor model input vector w(t) in Equation 20 is
defined as:

w(t) = (21)
y(t)

Therefore, from Equation 21 and the block diagram in Figure 2,
the designed matrices F; and F, are defined in Equation 22.

10000000 00001000

01000000 00000100
F3: F4: (22)
00100000 00000010

00010000 00000001

— @ (>80[s])
— (@ (t<80[s)
———————— (b) (t> 120 [s])
-------- (b) (t< 120 [s])

40

Altitude [km]

Longitude [km] 50 -10

FIGURE 4
AV trajectories. Legend labels (a) and (b) denote Scenario | and I,
respectively.

Latitude [km]
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TABLE 4 Scenario configurations for UAV missions.

Configuration Scenario | Scenario Il Unit
Maximum altitude 30.0 ‘ 10.0 ‘ km

Winged flight altitude 8.5 ‘ 85 ‘ km
Ballistic flight time 120.0 ‘ 80.0 | s
Total flight time 1200.0 ‘ 1500.0 | s

3.4 Parameter estimation

Parameter estimation was performed to determine the thermal
conductance and heat capacity of the system. Although some
thermal conductance g;; and heat capacity ¢; values can vary with
atmospheric pressure, in this study, we assumed a constant linear
system, considering that the DOB was designed to operate even
with model uncertainties. The trust-region-reflective least-squares
algorithm is commonly used for nonlinear optimization. This was
employed for the estimation. The parameters obtained through the
optimization process are listed in Table 3.

The simulation process was based on a point-mass model
capable of simulating nonlinear variations in the drag and mass.
Using the mission settings specified in Table 4, we simulated the
UAV trajectories as shown in Figure 4.

4 Simulation and experiment
4.1 Simulation

To evaluate the proposed system, we established a series of real
mission scenarios for the multi-sensor system, simulating
temperature and pressure conditions. The UAV-attached sensor
rapidly increases to its maximum altitude via rocket propulsion.
After attaining the maximum altitude, the UAV deploys its wings
and transitions to gliding after it attains the winged flight altitude.
This continues until the ballistic flight time ends and then decreases
during the total flight time. Each scenario varied in terms of the
maximum altitude attained and descent speed. The results are listed
in Table 4.

Using the mission settings specified in Table 4, we simulated the
UAV trajectories as shown in Figure 4. The trajectories were
generated with a point-mass profile generator capable of
simulating nonlinear variations in drag and mass, implemented
within a MATLAB/Simulink based simulation model reused from
our prior works. The dynamic model comprises a 6-DOF ECEF
rigid-body with gravity, ground, mass, wind/atmosphere (ISA), and
NED model based controller blocks; propulsion and airframe
submodels for rocket booster ascent and turbojet/UAV flight with
aerodynamics; and actuator subsystems for servo and gimbal. We
did not modify the governing equations for this study and only
adjusted the scenario parameters to match Table 4. Full details of
the simulation and settings are provided in Kim et al (2024, 2025).

Using the international standard atmosphere model, we
converted the altitude variations over time into corresponding
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Simulation results. Legend labels (a) and (b) denote Scenario | and I,
respectively.

temperature and pressure variations, as illustrated in Figure 5. The
temperature and pressure data for each scenario derived from these
simulations served as the basis for setting the conditions for the
subsequent experiments, enabling rigorous and realistic
performance testing of the sensor system.

4.2 Experiment

We conducted experiments according to these steps to
accurately implement the temperature and pressure variations set
by the simulation and compared them with those of the reference
sensor. We used the given (a) scenario I and (b) scenario II to set up

10.3389/fmars.2025.1671083

the experimental environment by utilizing the high-altitude test
chamber configured in Figure 6. Temperature and pressure were
controlled in a vacuum chamber.

However, owing to the limitations of the experimental
apparatus, the accurate replication of the experimental
environment is challenging. Therefore, the scenarios were
restructured as follows: Test I, Test II, and Test III to adjust the
time required to attain the target temperature. Each test followed
the step-by-step target temperature and pressure of the underlying
scenario, although marginally different times were required to attain
the targets.

The experiments were performed three times to detect the
disturbances caused by internal heat generation and compare the
performance of the sensor estimator. Specifically, in Test III,
arbitrary disturbances were introduced to include temperature
variations from the internal heater, external temperature
variations, and pressure variations derived from a modification of
Test I. The resulting variations in temperature, pressure, and heater
operation Qo(t) in Test III are detailed in the Results and
Evaluation section.

The experimental setup included a shelf for mounting the multi-
sensor and a reference sensor that measured atmospheric
temperature. According to the simulation, the temperature and
pressure varied from over 20°C to —40°C and from 100kPa to 20kPa
within 1min. The chamber was cooled to the target temperature and
experiments were conducted after installing the multi-sensor. This
is illustrated in Figure 7. These adjustments caused differences in
the target temperature, pressure, and timing compared with the
original scenario. However, these variations can be detected by a
DOB, which is designed to detect abrupt variations in the
environment. This highlights the accuracy of sensor estimation
and demonstrates the robustness of the system.

Multi-sensor (Tp, 11, T, T3)

Vacuum chamber

FIGURE 6
Experimental configuration.
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5 Results and discussion

We evaluate the approach in a thermal-vacuum chamber that
replicates rapid ground-to-stratosphere transients (Section 4).

The experimental setup involved monitoring the internal
temperature variations within the multi-sensor using T5(f) (a
temperature sensor mounted on the internal surface) and the
atmospheric temperature using T4(f) (an external reference
sensor). The test results, including the pressure variations, are
shown graphically in Figures 8a, ¢, e. Using the collected data, the
estimated sensor output y () and the measured temperatures T5(t)
and T,(t) were compared, as shown in Figures 8b, d, f. To evaluate
the accuracy of the estimated temperatures, T5(f) was selected to
represent the atmospheric temperature and it was compared with
the reference value T4(t) and the estimated sensor output y((¢). This
is illustrated in Figure 9.

The experimental results and linear-regression analyses
demonstrate that the DOB approach can greatly improve the
accuracy of atmospheric-temperature estimation when using a
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surface-mounted sensor. When only the surface-mounted sensor
T5(t) was used, the estimation produced an R? of 0.02, showing a
weak correlation with the reference T,(¢). This finding highlights
the inadequacy of relying on Ts(f) alone for accurate temperature
measurement. After the DOB was incorporated, the R* improved to
0.76, indicating increased correlation between the estimated and
actual atmospheric temperatures, as high R® values have been
shown to reflect good sensor performance (Yeom, 2021). The
regression coefficient likewise increased from -0.04 to 1.17,
confirming that the estimation shifted from a statistically non-
significant to a significant level.

To illustrate the performance improvements, Table 5 presents a
detailed comparison of the measurement and estimation errors for
Test I-IIT together with their average (AVG) values. It presents the
maximum error (MAX), mean error (MEAN), minimum error
(MIN), and root mean square error (RMSE) calculated for errors T3
and y(t), which are the differences between T5(f), y(t) and the
reference T,(1), respectively. Errors le and Ts,z occur at each time
step z and are defined in Equation 23:

TS,Z = T4,z _AT3,Z (23)
Vor =Ty =Yz
The errors are calculated in Equation 24 as follows:
1
MAX = max(e,) MEAN =1 e,
z=1
(24)

MIN = min(e,) RMSE = %zleﬁ
z=1

where e, € [T, 7,,] represents the error and [ is the total
number of data points.

RMSE is a critical indicator of the estimation accuracy. It
improved significantly from 28.67 for Tj to 15.76 for j(t). This
significant reduction in RMSE emphasizes the efficacy of the DOB
with the sensor estimator in providing more precise temperature
readings. Further analysis of the error metrics revealed that MAX,
MEAN, and MIN improved significantly. For example, the average
mean error for T; was -13.24, whereas it reduced significantly to
1.76 for y,. However, the maximum error average increased from
16.80°C to 43.26°C, and the minimum error average improved from
—-66.72°C to —66.02°C. The improvements in MAX and MIN were
smaller than those in the other two metrics. This phenomenon can
be attributed to the setting of the initial state variables of the
observer to zero. As shown in Figure 8f, where the initial
temperature T4(0) is near zero, the MAX and MIN values are
closer to zero than those in Figures 8b, d, where the T4(0) values are
below —-40°C.

For reference, all nomenclature and estimated values used in
this paper are listed in Table 6.

6 Conclusion

In this study, we presented a novel approach for enhancing the
sensor accuracy in mobile multi-sensor systems for atmospheric
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monitoring. By integrating the DOB with sensor estimators, we
demonstrated accurate atmospheric temperature prediction using
only temperature sensors. This validation was achieved through
rigorous experiments utilizing a DOB to compensate for internal
and external disturbances. The experimental results revealed that
the R* value significantly improved from 0.02 to 0.76 with the DOB
and sensor estimators, indicating a substantial enhancement in
prediction accuracy. These values are comparable to those reported
for prior methods summarized in Table 1, indicating a correlation
sufficient for practical use of the estimated temperature. Excluding
cases where the reference sensor is co-located within the same
vehicle, this performance is broadly comparable to typical
estimation results reported in the literature. Considering the rapid
external temperature transients and the ultralight, low-cost sensor
suite used here, the result is particularly encouraging for mobile
platform deployments.

Beyond temperature, the same disturbance-aware architecture
can be extended to humidity, particulate-matter, and trace-gas
sensors, providing a pathway toward fully compensated multi-
parameter payloads for high-resolution air-sea flux studies.
Because the method operates on-board and requires no external
calibration hardware, it is well suited to the strict mass-and-power
budgets of small UAVs and other mobile platforms.
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TABLE 5 Measurement and estimation errors (all values in °C).

Error Test Il Test I
metric
MAX 2326 28.50 11.64 59.02 15.51 4225 16.80 43.26
MEAN 2071 5.27 452 -4.13 -14.51 4.15 1324 1.76
MIN -67.89 -57.85 -86.70 -116.08 -45.57 24.12 -66.72 -66.02
RMSE 36.45 12.41 24.40 2451 25.15 10.36 28.67 15.76

TABLE 6 List of nomenclatures.

nclatures Definition
A State matrix of the plant model - | -
A State matrix of the sensor model - | -
B Input matrix of the plant model - -
By Disturbance input matrix of the plant model - -
B, Input matrix of the sensor model - -
C Output matrix of the plant model - | -
[ Output matrix of the sensor model - -
D, The feedthrough matrix of the sensor model - | -
w Input vector in the sensor model - -
v Estimated state for control target - -
d Disturbance input vector in the plant model - -
u Control input to the plant model - -
F, Designed matrix for w(t) in v(f) - | -
F, Designed matrix for d(t) in u(t) - -
F; Designed matrix for d(t) in w(t) - -
F, Designed matrix for y(f) in w(t) N
e Error vector in the controller - -
K4 Controller gain matrix for é - -
K, Controller gain matrix for é - -
K; Controller gain matrix for e - -
G Matrix value of transfer function of the DOB - | -
Q. Electric heater power output in controller - -
Q; Total heat transfer rate of i component - -
R2 Coefficient of determination - -
Ty The threshold temperature for starting the test - |-
T; Temperature of i component - -
To Temperature of the heater - -
T, Temperature of the mainboard - | -
T, Temperature of the enclosed air - | -
(Continued)
Frontiers in Marine Science 12 frontiersin.org
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TABLE 6 Continued

10.3389/fmars.2025.1671083

Nomenclatures Definition Unit Value
Ts Temperature of the surface - -

Ty Temperature of the atmosphere - | -

[ Heat capacity of it component - | -

I Total number of data points - -

n Measurement noise vector in the sensor model - -

r Reference vector in the controller - -

x State vector in the plant model - -

X State vector in the sensor model - -

y Output vector in the plant model - | -

ys Output vector in the sensor model - | -

z Time step in the data points - -

ez Error value at each time step z - -

o1 Heater to mainboard conductance -3.72e-2 W/K
02 Heater to enclosed air conductance -3.18e-3 ”

03 Heater to the surface conductance -9.48e-3 7

Qoa Heater to the atmosphere conductance -2.63e-4 7

g2 Mainboard to the enclosed air conductance -3.37e-2 ?

i3 Mainboard to the surface conductance -7.38e-1 7

Qs Mainboard to the atmosphere conductance -7.28e-3

D3 Enclosed air to the surface conductance -2.09¢-1 ”

Da Enclosed air to the atmosphere conductance -2.00e-2 7

G Surface to the atmosphere conductance -8.63e-2 7

o Heat capacity of the heater 1.28e+0 Ws/K
o Heat capacity of the mainboard 6.36e+1 7

[ Heat capacity of the enclosed air 1.85e+2

c Heat capacity of the surface 3.81e+2

An additional consideration is sensor corruption or failure.
While the present study intentionally focused on redundancy-free
operation to establish a baseline, when multiple co-located sensors
are available, cross-estimation among them can be used to flag
abnormal readings and maintain robustness. With # sensors, there
are 2" — 2 valid subsets of the remaining sensors (excluding the
empty set and the full set). For each subset, the sensor-estimation
method presented in this study can be applied to generate an
independent cross-estimate of the target sensor, and statistical
comparison with the actual measurement enables the detection of
persistent anomalies. Within the chamber setting reported here,
random noise and sporadic dropouts are already mitigated by the
DOB itself, while persistent bias would require such redundancy-
based cross-estimation. Practical implementations could further
combine covariance-based residual checks with a simple decision
layer to exclude a suspected sensor and preserve reliable operation.
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This positions the present work as a foundation for future
extensions toward redundancy-aware sensing frameworks.

Future work will focus on flight campaigns over coastal and
open-ocean regions. These missions will validate the payload under
real atmospheric dynamics, assess long-term stability, and explore the
integration of additional sensing channels. Ultimately, we expect that
disturbance-aware profiling systems will expand the spatial reach and
data quality of coupled atmosphere-ocean observations, supporting
both scientific research and operational environmental monitoring.
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