

OPEN ACCESS

EDITED BY Nathan Jack Robinson, Fundación Oceanográfica, Spain

REVIEWED BY
Mridula Srinivasan,
NMFS, United States
Jacopo Gobbato,
University of Milano-Bicocca, Italy

*CORRESPONDENCE

Jesús Erick Higuera-Rivas

jerickhr@gmail.com

RECEIVED 17 July 2025
ACCEPTED 27 August 2025
PUBLISHED 03 November 2025

CITATION

Higuera-Rivas JE, Pancaldi F, Jorgensen SJ and Hoyos-Padilla EM (2025) Novel evidence of interaction between killer whales (*Orcinus orca*) and juvenile white sharks (*Carcharodon carcharias*) in the Gulf of California, Mexico. *Front. Mar. Sci.* 12:1667683. doi: 10.3389/fmars.2025.1667683

COPYRIGHT

© 2025 Higuera-Rivas, Pancaldi, Jorgensen and Hoyos-Padilla. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Novel evidence of interaction between killer whales (*Orcinus orca*) and juvenile white sharks (*Carcharodon carcharias*) in the Gulf of California, Mexico

Jesús Erick Higuera-Rivas^{1,2*}, Francesca Pancaldi³, Salvador J. Jorgensen⁴ and Edgar Mauricio Hoyos-Padilla^{5,6}

¹Conexiones Terramar, Asociación Civil (A.C.), La Paz, Baja California Sur, Mexico, ²Protección y Conservación Pelágica Asociación Civil (A.C.), Ciudad de México, Mexico, ³Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico, ⁴California State University, Monterey Bay, CA, United States, ⁵Pelagios Kakunjá Asociación Civil (A.C.), La Paz, Baja California Sur, Mexico, ⁶Fins Attached, Colorado Springs, CO, United States

White sharks (Carcharodon carcharias), have only one known natural predator in the ocean, the orca or killer whale (Orcinus orca). While interactions between these coexisting apex predators are known to occur, killer whales are adept at subduing adult white sharks and consuming their energy-rich livers. White sharks in turn are highly responsive to the appearance of killer whales and will vacate habitual feeding aggregations en masse to avoid predation. To date, interactions between killer whales and juvenile white sharks (~2.5 m TL) have been reported in South Africa, while the literature reports that these interactions occur primarily with larger white sharks, which naturally have a larger liver, and potentially compete with killer whales for pinniped prey. Here we document novel repeated predations by killer whales on juvenile white sharks in the Gulf of California. Aerial videos indicate consistency in killer whales' repeated assaults and strikes on the sharks, indicating efficient ability by the mammals in attempting to induce tonic immobility in the prey and allow uninterrupted access to the liver for consumption. Once extirpated from the prey body, the target organ is shared between the members of the pods including calves. Images analysis of the killer whales involved in the attacks confirms previous observations of an existent pod possibly specialized in hunting elasmobranchs in this region.

KEYWORDS

prey-predator interactions, dietary specialization, elasmobranch, hunting technique, eastern Pacific Ocean, orca, predation

Higuera-Rivas et al. 10.3389/fmars.2025.1667683

1 Introduction

Despite an extensive overlap in distributional range and trophic niche, a few observations of interactions between killer whales (Orcinus orca) and white sharks (Carcharodon carcharias) are known to occur and have been recorded in South Africa. Australia, and California (Pyle et al., 1999; Best et al., 2010; Jorgensen et al., 2019; Towner et al., 2022; Towner et al., 2023; Bowlby et al., 2023). Documented predation on white sharks, have to date, occurred in sites where juveniles, subadults and adult white sharks aggregate (Kock and Johnson, 2006; White et al., 2019; Tanaka et al., 2021; Towner et al., 2022; Towner et al., 2023; Reeves et al., 2025). However, to date there is little evidence of killer whales targeting juvenile white sharks, with the notable exception of a white shark ~2.5 m total length (TL) (subadult white sharks range from 2.5 m to 3.5 m TL) captured by a killer whale in a white shark aggregation area in Mossel Bay, South Africa (Towner et al., 2024). Toward the warmer edge of their distribution in the eastern Pacific, the white shark has been recorded at Cedros, San Benito, Guadalupe, and the Revillagigedo Islands in the Mexican Pacific, and is occasionally observed along the western coast of the Baja California Peninsula (McCosker and Lea, 1996; Compagno et al., 1997; Santana-Morales et al., 2012; Hoyos-Padilla et al., 2016; Becerril-García et al., 2020; Madigan et al., 2021). White sharks also inhabit the Gulf of California (GC), Mexico where Galván-Magaña et al. (2010) compiled 38 records of white shark captures and reliable sightings from 1964 to 2010, including the presence of juveniles and adults. Most of the records have been obtained from incidental captures during artisanal and industrial fishing activities (Santana-Morales et al., 2012). However, in the last 10 years a potential redistribution of a white shark cohort has been observed in the Northeast Pacific (White et al., 2019; Tanaka et al., 2021), attributed to oceanographic anomalies such as El Niño and the Blob (warm water mass that formed in the Gulf of Alaska and traveled the California current). This redistribution includes an increase in the record of juvenile white sharks in Isla Guadalupe (Santana-Morales et al., 2021) and an increase in the sighting of juvenile and adult white sharks in the GC (pers. comm. Omar Santana-Morales). In the latter area, sightings of killer whales are reported to be frequent year-round (Guerrero-Ruiz et al., 1998, 2007; Niño-Torres et al., 2015) and although there are no historical records of white shark predation by killer whales in the GC, researchers have recently reported predation on different species of rays: Munk's pigmy devil ray (Mobula munkiana), cownose ray (Rhinoptera steindachneri) and pelagic stingray (Pteroplatytrygon violacea; Higuera-Rivas et al., 2023) and three species of sharks: bull shark (Carcharhinus leucas; Ayres et al., 2024), whale shark (Rhincodon typus; Pancaldi et al., 2024), prickly shark (Echinorhinus cookie; Lara-Lizardi et al., 2025), and unidentified shark (O'Sullivan and Mitchell, 2000; Guerrero-Ruiz et al., 2007). Here we document the first records of interactions between killer whales and juvenile white sharks in Mexican waters.

2 Material and results

For each record, we recorded date, time, location, group composition (calves, juveniles, sub adults and adults), traveling mode and any record of feeding behavior. The predation events were documented with a Canon EOS-1D X Mark II DSLR camera and a Canon 100–400 mm lens from a 9 m long fiberglass boat with a 200 Hp 4-stroke outboard motor. Underwater photos and videos were obtained with a second Canon EOS-1D X Mark II camera and a Canon 11–24 mm lens inside a Nauticam underwater housing, and aerial video was recorded using DJI drones, a Phantom 4 Pro and an Inspire 2 X7. High-quality video frame shots of dorsal fins were extracted for photoidentification of individual killer whales using distinctive features, including scars and nicks (Bigg, 1987).

2.1 First record

(See Supplementary Video 8) On 15th of August 2020, at about 15:00 hours, a group of five female killer whales was sighted in the southwestern area of the GC (24°19'07.1"N 110°28'33.2"W). Comparing the size of the individuals with the size of the 9 m long fiberglass boat, it was determined to consist of four subadult females (~4 m long) and one adult female (~6 m long). The size of the shark was estimated by comparing its TL (~2 m) with that of the killer whale and the identification of the species was confirmed by the moderately stout, torpedo-shaped body, grey to bluish-grey color on the upper surface and white below, large pectoral and first dorsal fins (Klimley and Ainley, 1998). At 00:07 seconds, one of the subadult females pushes the white shark to the surface and the elasmobranch turns and avoids being hit by the orca. At 00:25 seconds, one of the five killer whales pushes the white shark from its ventral side towards the surface, at this moment the juvenile shark is already bleeding from its ventral side. The killer whale releases it and while she is breathing, another killer whale takes hold of the shark. At 00:49 seconds, a subadult female attempts to grip the shark and then performs an evasion technique known as "Tail Slapping" (Klimley and Hoyos-Padilla, 2023). The crescent shaped tail and the distinctive caudal keel of the species are visible (Figures 1a, b). At 03:14 minutes two of the subadult killer whales (referred to as KWM1 and KWM2 for the purposes of this research; see Supplementary Figures 1-6) take turns to manipulate the shark by keeping it upside down. At 03:27 minutes both killer whales descend deeper with the shark and at 03:39 minutes the other three killer whales follow the rest of the pod underwater. By 05:25 minutes of the video, the adult female killer whale (referred to as KWM3; see Supplementary Figure 7) and three of the subadults appear at the surface; the KWM1 has the two-lobed liver of the shark in her mouth (Figure 1c). The organ is then released to let KWM2 grab it. The organ is once again released by KWM2 and passed to KWM3. After that and until 7:13 minutes, four of the five identified killer whales pass the liver between each other, holding it Higuera-Rivas et al. 10.3389/fmars.2025.1667683



FIGURE 1
Sequence of the killer whales attacking the first juvenile white sharks (*Carcharodon carcharias*) on 15th of August 2020. Identifying features of the species are visible (denoted by white arrows): (a) The crescent-shaped tail. (b) The distinctive caudal peduncle and keels, large triangular first and small second dorsal fins are visible. (c) The two-lobed liver is being hold by the orca. (d) The moderately stout, torpedo-shaped body is visible, and the partially exposed liver is seen on the right side of the second shark attacked. Photos credit: Jesús Erick Higuera Rivas.

with their snouts, and then submerge into the water. Since the beginning of the video timeline, a California sea lion (*Zalophus californianus*) seems interested in getting part of the liver, but the orcas discourage its attempts by repeatedly exhaling bubbles. At 07:14 minutes, the killer whales appear again at the surface attacking another juvenile white shark of ~2 m TL. The alive shark is attacked several times by the killer whales until 10:51 minutes when the shark's liver is observed partially exposed from the elasmobranch's body (Figure 1d) hanging on the right side. At 11:04 minutes the motionless shark begins to sink, allowing the researchers to distinguish the distinctive characteristics of the species such as the keel, and the crescent-shaped tail. Later, pieces of pink color tissue are observed floating at the surface.

2.2 Second record

(See Supplementary Video 9) On 3rd of August 2022, at 14:56 hours approximately five killer whales, (one adult male, one adult female, two subadults and one calf) are sighted assaulting a juvenile white shark (~2 m TL) in the location where the previous predation event was recorded. The video starts with an adult female reaching the surface, then diving down followed by the other four killer whales. After the 00:30 seconds of the video, the ventral part of the white shark's body is observed. At 1:22 minutes the adult female surfaces to breathe with the shark visible in her mouth while it is held below the surface with its mouth open and its pectoral fins

visible (Figures 2a-c). Between 1:35 and 2:46 minutes, the adult female, a subadult killer whale, and the calf surface to breathe and then dive down and approach the rest of the group holding the shark. At 02:48 minutes, one of the subadult killer whales holds the shark near the left pectoral fin. From Figure 2b it is possible to observe the characteristic black tips on the underside of the white shark's pectorals, another key identifying feature of C. carcharias. The shark is visibly bleeding from the gills, and its liver is exposed (Figure 2d). At 03:43 minutes the females and calf surface to breathe, pieces of the shark's liver tissues are visible in the mouths of the females. The male orca and calf are then seen feeding on liver tissue at the surface between 04:31 and 4:50 minutes. At 5:08 several birds, such as boobies (Sula nebouxii), gulls (Larus heermanni), pelicans (Pelecanus occidentalis) and frigates (Fregata magnificens) are also observed feeding on pieces of the shark's tissues. The group of mammals then heads north leading to the end of the predation event.

3 Discussion

The ecotype of killer whales observed in the GC is not clear; some killer whales have been observed hunting both cetaceans (Guerrero-Ruiz et al., 2007) and chelonians (Esquivel et al., 1993; Sarti et al., 1994), which is consistent with the transient ecotype found off the northwest coast of North America. Other killer whales have been observed hunting elasmobranchs (Guerrero-Ruiz et al.,

Higuera-Rivas et al. 10.3389/fmars.2025.1667683

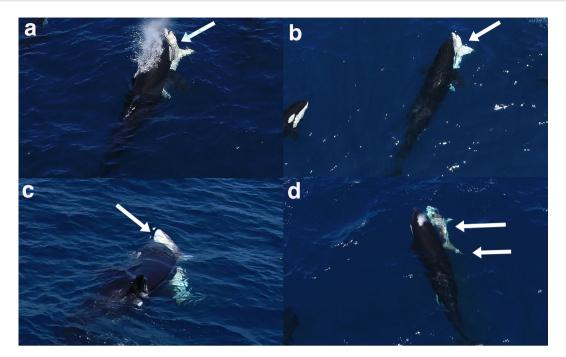


FIGURE 2
Sequence of the killer whales attacking a juvenile white shark (*Carcharodon carcharias*) on 3rd of August 2022. Identifying features of the species are visible (denoted by white arrows): (a) Large gill slits. (b) Large pectoral fins, black tip on the underside of the white shark's pectoral, moderately stout, dark grey to bluish-grey color on the upper surface and white below. (c) Shape of curvature of the upper and lower jaws. (d) A partially exposed liver is seen on the left ventral side of the shark, as well as the upper lobe of the caudal fin. Photos credit: Marco Villegas Martínez.

2007; Higuera-Rivas et al., 2023; Ayres et al., 2024; Pancaldi et al., 2024; Lara-Lizardi et al., 2025), coinciding with a range of known ecotypes such as the offshore ecotype (Heimlich-Boran, 1988; Baird and Dill, 1995; Ford et al., 1998; Dahlheim et al., 2008) and the New Zealand coastal ecotype (Visser, 1999, 2000; Visser and Cooper, 2020), as well as a number of undescribed ecotypes, including those from the Galápagos Islands (Sonnino Sorisio et al., 2006) and from Papua New Guinea (Visser and Bonoccorso, 2003). Although as a species O. orca displays a generalist foraging behavior, local groups or ecotypes of killer whales typically specialize on a small range of available prey (Ford et al., 1998). In the Northeastern Pacific three sympatric ecotypes of O. orca have been described (Residents, Transients and Offshore) which have morphological, social, ecological, feeding, acoustic, geographic distribution and genetic differences (Bigg, 1982; Ford et al., 2000; Morin et al., 2023). An additional overlapping ecotype has also been recognized in the Eastern Tropical Pacific. This ecotype refers to generalist feeders also known to prey on elasmobranchs (Vargas-Bravo et al., 2020).

Predatory behavior of killer whales on sharks has been recorded in detail in the GC, both in bull sharks (Ayres et al., 2024) and whale sharks (Pancaldi et al., 2024). In South Africa, killer whales have been observed using a special hunting technique that involves causing a large tear in the pectoral girdle of sevengill sharks (Notorynchus cepedianus) to access the liver and feed exclusively on this organ (Engelbrecht et al., 2019). They have also been observed hunting and targeting the liver of juvenile great white

sharks (Towner et al., 2023, 2024). Our evidence undoubtedly shows consistency in the repeated assaults and strikes, indicating efficient maneuvering ability by the killer whales in attempting to turn the shark upside down (Figures 1a, b), likely to induce tonic immobility and allow uninterrupted access to the organs for consumption (Pancaldi et al., 2024). According to Engelbrecht et al. (2019), the lack of bite marks or injuries anywhere other than the pectoral fins shows a novel and specialized technique of accessing the liver of the shark with minimal handling of each individual. To efficiently hunt potential prey in multiple regions around the world, killer whales use specialized techniques adapted to the target. In the GC, Higuera-Rivas et al. (2023) found that killer whales hunt Munk's pigmy devil rays by targeting those closest to the edge of the school and grasping them by the wingtip and then repositioning the rays to hold them by the head. When preying on pelagic stingrays, killer whales tail-slap them forcefully several times to stun them and thus avoid being stung by the defensive spine. In two of the three predation events recorded during the present study, killer whales inverted the white sharks, possibly inducing tonic immobility, potentially to avoid bites. The posterior bite force from a 2.5 m white shark can be 3131 N (Wroe et al., 2008) and can severely injure the predator, thwarting the attack. Animal hypnosis or tonic immobility is an induced method to achieve a temporary cataleptic-like condition that can occur from less than one minute to several hours (Gallup, 1974; Páez et al., 2023). During tonic immobility the elasmobranch is in an 'unnatural' orientation, which

Hiquera-Rivas et al. 10.3389/fmars.2025.1667683

has the effect of altering the usual course of its sensorimotor and emotional interchanges with its environment (Chertok, 1968), making it easier to be manipulated. Prey handling and inducing tonic immobility may be more easily achieved in smaller white sharks compared with larger individuals, thereby also reducing risk of bite injury (Towner et al., 2022). In this case, we observed direct consumption of the liver, as it was observed to be shared among three of the killer whales (Figures 1c, d). Our reports display an indicative of highly selective feeding by these killer whales, as they held the white sharks upside down for several minutes until they grabbed their pectoral fins and then removed and consumed the sharks' livers, discarding the rest of the carcasses. Furthermore, we demonstrate that the female killer whales photo-identified and referred to as KWM1, KWM2 (see Supplementary Figure 6) were observed in 2018 hunting Munk's pygmy devil rays and pelagic rays (Higuera-Rivas et al., 2023), while KWM3 (see Supplementary Figure 7) was observed hunting bull sharks between 2022 and 2023 (Ayres et al., 2024). This clearly indicates that these killer whales are related to each other or belong to the same group, renamed by these authors as the "Moctezuma pod" (after the adult male), and is consistent with the analysis by Pancaldi et al., 2024, which demonstrates that this group of killer whales of the GC exhibits adapted hunting techniques depending on the type of elasmobranch they intend to consume. Distinctive nurseries for juvenile white sharks in the eastern Pacific have been identified, which are generally segregated from adult aggregating sites (Klimley, 1985; Oñate-González et al., 2017; Tamburin et al., 2019). However, recent ocean warming has been attributed to range shifts and novel occurrences of juvenile white sharks (Santana-Morales et al., 2021; Tanaka et al., 2021). For instance, a poleward shift in juvenile white shark distribution from southern to central California has been documented in relation to the increased frequency of El Niño events and marine heat waves (Tanaka et al., 2021). The central California region is a key area where white sharks and killer whales interact (Jorgensen et al., 2019). Similarly, the redistribution of the white shark population attributed to such oceanographic anomalies could potentially also lead to increase juvenile white shark occurrences in the GC potentially making them available as a prey source for the killer whales that occur there year-round.

This is the second record of killer whales targeting juvenile white sharks in the world (Towner et al., 2024) and the first in Mexican waters that we are aware of. Adult white sharks exhibit a memory and previous knowledge about killer whales, which enables them to activate an avoidance mechanism through behavioral risk effects; a 'fear'- induced mass exodus from aggregations sites (Jorgensen et al., 2019; Towner et al., 2022). This response may preclude repeated successful predation on adult white sharks by killer whales. Considering the naturally small regional population sizes of white sharks (Kanive et al., 2021), this predator evasion mechanism likely prevents significant population depletion through predation. Furthermore, given their natal philopatry (Jorgensen

et al., 2010), and a reproductive cycle greater than 12 months (Mollet et al., 2000), female white sharks would likely continue to pup in the same locations, unaware of any recent killer whale predation activity. As a result, juvenile white sharks could be more susceptible to consistent exploitation in juvenile aggregation sites.

In this study we observed repeated predation on juvenile white sharks at the same location and nearly the same calendars date, two years apart. Taken together, this suggests that juvenile white sharks may be becoming, or already are, a regular seasonal prey target for these mammals. Since no photographic identification images were taken of the killer whales in the second report, it is unknown whether they are related or associated with the pod from the first report. While C. carcharias already faces several threats, such as bycatch and climate change, its natural predation by killer whales might represent a significant additional pressure on the white shark populations, as seen in South Africa, where entire coastal displacements and subsequent ecological changes have heated scientific debates (Bowlby et al., 2023; Gennari et al., 2024; Bowlby et al., 2024). Future studies should 1) continue to monitor the shifting ranges and aggregation sites of juvenile white sharks driven by ocean warming, 2) test whether behavioral risk effects occur in juvenile white sharks, and 3) determine whether attacks on white sharks by killer whales represent an emerging pattern and, if not, establish the frequency of these events, as additional observations could make population-level inferences.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Author contributions

JH-R: Writing – review & editing, Investigation, Writing – original draft, Visualization, Conceptualization, Methodology. FP: Writing – review & editing, Writing – original draft, Methodology. SJ: Writing – review & editing, Writing – original draft. EH-P: Writing – review & editing, Writing – original draft.

Funding

The author(s) declare that no financial support was received for the research, and/or publication of this article.

Acknowledgments

We thank Marco Villegas Martínez, whose vessels provided the platforms for these observations, in addition to his assistance and collaboration.

Hiquera-Rivas et al. 10.3389/fmars.2025.1667683

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2025. 1667683/full#supplementary-material

References

Ayres, K. A., Gallagher, A. J., and Higuera Rivas, J. E. (2024). Orca (*Orcinus orca*) and shark predator-prey interactions within Cabo Pulmo National Park in the Gulf of California, Mexico. *Front. Mar. Sci.* 11. doi: 10.3389/fmars.2024.1407379

Baird, R. W., and Dill, L. M. (1995). Occurrence and behaviour of transient killer whales: seasonal and pod-specific variability, foraging behaviour, and prey handling. *Can. I. Zool.* 73 (7), 1300–1311.

Becerril-García, E. E., Hoyos-Padilla, E. M., Henning, B., and Salinas-De León, P. (2020). Sharks, rays, and chimaeras of the Revillagigedo National Park: An update of new and confirmed records. *J. Fish Biol.* 97, 1228–1232. doi: 10.1111/jfb.14457

Best, P. B., Meÿer, M. A., and Lockyer, C. (2010). Killer whales in South African waters - a review of their biology. *Afr. J. Mar. Sci.* 32, 171–186. doi: 10.2989/1814232X.2010.501544

Bigg, M. A. (1982). An assessment of killer whale (Orcinus orca) stocks off Vancouver Island, British Columbia. Rep. Int. Whaling Commission 32.65, 655–666.

Bigg, M. A. (1987). Killer whales: a study of their identification, genealogy and natural history in British Columbia and Washington State.

Bowlby, H. D., Dicken, M. L., Towner, A. V., Waries, S., Rogers, T., and Kock, A. (2023). Decline or Shifting Distribution? A First Regional Trend Assessment for White Sharks (Carcharodon carcharias) in South Africa. *Ecol. Indic.* 154, 110720. doi: 10.1016/j.ecolind.2023.110720

Bowlby, H. D., Dicken, M. L., Towner, A. V., Rogers, T., Waries, S., and Kock, A. (2024). Ecological conclusions remain unchanged for white sharks in South Africa: a reply to Gennari et al. 2024. *Ecological Indicators*, 165, 112160. doi: 10.1016/j.ecolind.2024.112160

Chertok, L. (1968). "Animal hypnosis," in *Abnormal Behaviour in Animals*. Eds. M. W. Fox. and W.B. Saunders Co.,(Philadelphia), 129–158.

Compagno, L. J., Marks, M. A., and Fergusson, I. K. (1997). Threatened fishes of the world: Carcharodon carcharias (Linnaeus, 1758) (Lamnidae). *Environ. Biol. Fish.* 50, 61–62. doi: 10.1023/A:1007308406137

Dahlheim, M. E., Schulman-Janiger, A., Black, N., Ternullo, R., Ellifrit, D., and Balcomb III, K. C. (2008). Eastern temperate North Pacific offshore killer whales (Orcinus orca): Occurrence, movements, and insights into feeding ecology. *Mar. Mammal Sci.* 24, 719–729. doi: 10.1111/j.1748-7692.2008.00206.x

Engelbrecht, T. M., Kock, A. A., and O'Riain, M. J. (2019). Running scared: when predators become prey. *Ecosphere* 10, e02531. doi: 10.1002/ecs2.2531

Esquivel, C., Sarti, L., and Fuentes, I. (1993). Primera observación directa documentada sobre la depredación de la tortuga marina Lepidochelys olivacea por Orcinus orca. *Cuadernos Mexicanos de Zoología* 1 (2), 96–98.

Ford, J. K. B., Ellis, G. M., Barrett-Lennard, L. G., Morton, A. B., Palm, R. S., and Balcomb, III K. C. (1998). Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. *Can. J. Zool.* 76, 1456–1471. doi: 10.1139/z98-089

Ford, J. K. B., Ellis, G. M., and Balcomb, K. C. (2000). Killer whales: the natural history and genealogy of Orcinus orca in British Columbia and Washington State. 2nd Ed (Vancouver, BC: UBC Press).

Gallup, J. G.G. (1974). Animal hypnosis: factual status of a fictional concept. *psychol. Bull.* 81, 836–853. doi: 10.1037/h0037227

Galván-Magaña, F., Hoyos-Padilla, E. M., Navarro-Serment, C. J., and Márquez-Farías, F. (2010). Records of white shark, *Carcharodon carcharias*, in the Gulf of California, Mexico. *Mar. Biodiversity Records* 3, e111. doi: 10.1017/S1755267210000977

Gennari, E., Hammerschlag, N., Andreotti, S., Fallows, C., Fallows, M., Braccini, M., et al. (2024). Uncertainty remains for white sharks in South Africa, as population stability and redistribution cannot be concluded by Bowlby et al.(2023): "Decline or shifting distribution? a first regional trend assessment for white sharks (Carcharodon carcharias) in South Africa. *Ecol. Indic.* 160, 111810. doi: 10.1016/j.ecolind. 2024.111810

Guerrero-Ruiz, M. E., Gendron, D., and Urbán, J. (1998). "Distribution, movements and communities of killer whales (Orcinus orca) in the Gulf of California, México," in Report of the International Whaling Commission, 48, 537–543.

Guerrero-Ruiz, M. E., Urbán, J., Gendron, D., and Rodríguez, M. E. (2007). *Prey items of killer whales in the Mexican Pacific* (Anchorage, AK: Paper SC/59/SM14 presented to the IWC Scientific Committee).

Heimlich-Boran, J. R. (1988). Behavioral ecology of killer whales (Orcinus orca) in the Pacific Northwest. $Can.\ J.\ Zool.\ 66$ (3), 565-578. doi: 10.1139/z88-084

Higuera-Rivas, J. E., Hoyos-Padilla, E. M., Elorriaga-Verplancken, F. R., Rosales-Nanduca, H., Rosenthal, R., and Urbán, J. (2023). Orcas (*Orcinus orca*) use different strategies to prey on rays in the Gulf of California. *Aquat. Mamm.* 49, 7–18. doi: 10.1578/AM.49.1.2023.7

Hoyos-Padilla, E. M., Klimley, A. P., Galván-Magaña, F., and Antoniou, A. (2016). Contrasts in the movements and habitat use of juvenile and adult white sharks (*Carcharodon carcharias*) at Guadalupe Island, Mexico. *Anim. Biotelemetry* 4, 14. doi: 10.1186/s40317-016-0106-7

Jorgensen, S. J., Anderson, S., Ferretti, F., Tietz, J. R., Chapple, T., Kanive, P., et al. (2019). Killer whales redistribute white shark foraging pressure on seals. *Sci. Rep.* 9, 6153. doi: 10.1038/s41598-019-39356-2

Jorgensen, S. J., Reeb, C. A., Chapple, T. K., Anderson, S., Perle, C., Van Sommeran, S. R., et al. (2010). Philopatry and migration of Pacific white sharks. *Proc. R. Soc. B: Biol. Sci.* 277, 679–688. doi: 10.1098/rspb.2009.1155

Kanive, P. E., Rotella, J. J., Chapple, T. K., Anderson, S. D., White, T. D., Block, B. A., et al. (2021). Estimates of regional annual abundance and population growth rates of white sharks off central California. *Biol. Conserv.* 257, 109104. doi: 10.1016/j.biocon.2021.109104

Klimley, A. P. (1985). The areal distribution and autoecology of the white shark, *Carcharodon carcharias*, off the west coast of North America. *Mem. S. Calif. Acad. Sci.* 9, 15–40.

Klimley, A. P., and Ainley, D. G. (1998). Great white sharks: the biology of Carcharodon carcharias (Academic Press).

Klimley, A. P., and Hoyos-Padilla, M. (2023). Could convulsive body shuddering of a white shark near a shark cage be an element of a threat display? *Behaviour* 160, 1245–1257. doi: 10.1163/1568539X-bja10201

Kock, A., and Johnson, R. (2006). "White shark abundance: not a causative factor in numbers of shark bite incidents," in *Finding a balance: White shark conservation and recreational safety in the inshore waters of Cape Town, South Africa*, 1–19.

Lara-Lizardi, F., Gómez, M. F., and Quintero-Pérez, A. (2025). First record of orcas (Orcinus orca) preying on a prickly shark (*Echinorhinus cookei*) in the Gulf of California: insights into shark ecology. *Front. Fish Sci.* 3. doi: 10.3389/frish.2025.1437507

Madigan, D. J., Arnoldi, N. S., Hussey, N. E., and Carlisle, A. B. (2021). An illicit artisanal fishery for North Pacific white sharks indicates frequent occurrence and high mortality in the Gulf of California. *Conserv. Lett.* 14 (4), e12796. doi: 10.1111/conl.12796

McCosker, J. E., and Lea, R. L. (1996). "White shark attacks in the eastern Pacific Ocean, an update and analysis," in *Great white sharks: the biology of Carcharodon carcharias.* Eds A. P. Kimley and D. G. Ainley(AP, San Diego), 419–434.

Mollet, H. F., Cliff, G., Pratt, H. L. Jr., and Stevens, J. D. (2000). Reproductive biology of the female shortfin mako, *Isurus oxyrinchus* Rafinesqu with comments on the embryonic development of lamnoids. *Fishery Bull.* 98, 299–318. doi: 10.1111/conl.12796

Morin, P. A., Archer, F. I., Foote., A. D., Vilstrup, J., Allen, E. E., Wade, P., et al. (2023). Complete mitochondrial genome phylogeographic analysis of killer whales (*Orcinus orca*) indicates multiple species. *Genome Res.* 20, 908–916. doi: 10.1101/gr.102954.109

Niño-Torres, C. A., García-Rivas, M. D. C., Castelblanco-Martínez, D. N., Padilla-Saldívar, J. A., Blanco-Parra, M. D. P., and de la Parra-Venegas, R. (2015). Mamíferos acuáticos del Caribe mexicano, una revisión. *Hidrobiológica*, 25 (1), 127–138.

O'Sullivan, J. B., and Mitchell, T. (2000). "A fatal attack on a whale shark Rhincodon typus, by killer whales Orcinus orca off Bahía de Los Angeles, Baja California," in American Society of Ichthyologists and Herpetologists 80th Annual Meeting/American Elasmobranch Society (ASIH/AES) (Abstracts), 16th Annual Meeting, La Paz, Mexico.

Oñate-González, E. C., Sosa-Nishizaki, O., Herzka, S. Z., Lowe, C. G., Lyons, K., Santana-Morales, O., et al. (2017). Importance of Bahia Sebastian Vizcaino as a nursery area for white sharks (*Carcharodon carcharias*) in the Northeastern Pacific: a fishery dependent analysis. *Fish. Res.* 188, 125–137. doi: 10.1016/j.fishres.2016.12.014

Páez, A. M., Hoyos-Padilla, E. M., and Klimley, A. P. (2023). A review of tonic immobility as an adaptive behavior in sharks. *Environ. Biol. Fish.* 106, 1455–1462. doi: 10.1007/s10641-023-01413-1

Pancaldi, F., Ayres, K. A., Gallagher, A. J., Moskito, J., Williamson, K. C., and Higuera Rivas, J. E. (2024). Killer whales (*Orcinus orca*) hunt, kill and consume the largest fish on Earth, the whale shark (Rhincodon typus). *Front. Mar. Sci.* 11. doi: 10.3389/fmars.2024.1448254

Pyle, P., Schramm, M. J., Keiper, C., and Anderson, S. D. (1999). Predation on a white shark (*Carcharodon carcharias*) by a killer whale (*Orcinus orca*) and a possible case of competitive displacement. *Mar. Mamm. Sci.* 15, 563–568. doi: 10.1111/j.1748-7692.1999.tb00822.x

Reeves, I. M., Weeks, A. R., Towner, A. V., Impey, R., Fish, J. J., Clark, Z. S., et al (2025). Genetic evidence of killer whale predation on white sharks in Australia. *Ecol. Evol.* 15 (1), e70786. doi: 10.1002/ece3.70786

Santana-Morales, O., Sosa-Nishizaki, O., Escobedo-Olvera, M. A., Oñate-González, E. C., O'Sullivan, J. B., and Cartamil, D. (2012). "Incidental catch and ecological observations of juvenile white sharks, *Carcharodon carcharias*, in western Baja California, Mexico: conservation implications," in *Global perspectives on the biology*

and life history of the great white shark. Ed. M. L. Domeier (CRC Press, Florida), 187-

Santana-Morales, O., Zertuche-Chanes, R., Hoyos-Padilla, E. M., Sepúlveda, C., Becerril-García, E. E., Gallo-Reynoso, J. P., et al. (2021). An exploration of the population characteristics and behaviours of the white shark in Guadalupe Island, Mexico, (2014–2019): Observational data from cage diving vessels. *Aquat. Conservation: Mar. Freshw. Ecosyst.* 31, 3480–3491. doi: 10.1002/aqc.3734

Sarti, M. L., Flores, L. O., and Aguayo, A. L. (1994). Evidence of predation of killer whale (Orcinus orca) on a leatherback sea turtle (Dermochelys coriacea) in Michoacan, Mexico. Revista de Investigacion Científica de la Universidad Autonoma de Baja California Sur 2, 23–26.

Sonnino Sorisio, L., De Maddalena, A., and Visser, I. N. (2006). Interaction between killer whales (Orcinus orca) and hammerhead sharks (Sphyrna sp.) in Galapagos waters. *Lat. Am. J. Aquat. Mamm.* 5 (1), 69–71. doi: 10.5597/lajam00095

Tamburin, E., Kim, S. L., Elorriaga-Verplancken, F. R., Madigan, D. J., Hoyos-Padilla, E. M., Sánchez-González, A., et al. (2019). Isotopic niche and resource sharing among young sharks (*Carcharodon carcharias* and *Isurus oxyrinchus*) in Baja California, Mexico. *Mar. Ecol. Prog. Ser.* 613, 107–124. doi: 10.3354/meps12884

Tanaka, K. R., Van Houtan, K. S., Mailander, E., Dias, B. S., Galginaitis, C., O'Sullivan, J., et al. (2021). North Pacific warming shifts the juvenile range of a marine apex predator. *Sci. Rep.* 11, 3373. doi: 10.1038/s41598-021-82424-9

Towner, A., Micarelli, P., Hurwitz, D., Smale, M. J., Booth, A. J., Stopforth, C., et al. (2024). Further insights into killer whales Orcinus orca preying on white sharks Carcharodon carcharias in South Africa. Afr. J. Mar. Sci. 0, 1–5. doi: 10.2989/1814232X.2024.2311272

Towner, A. V., Watson, R. G. A., Kock, A. A., Papastamatiou, Y., Sturup, M., Gennari, E., et al. (2022). Fear at the top: killer whale predation drives white shark absence at South Africa's largest aggregation site. *Afr. J. Mar. Sci.* 44, 139–152. doi: 10.2989/1814232X.2022.2066723

Towner, A. V., Kock, A. A., Stopforth, C., Hurwitz, D., and Elwen, S. H. (2023). Direct observation of killer whales preying on white sharks and evidence of a flight response. *Ecology* 104. doi: 10.1002/ecy.3875

Vargas-Bravo, M. H., Elorriaga-Verplancken, F. R., Olivos-Ortiz, A., Morales-Guerrero, B., Liñán-Cabello., M. A., and Ortega-Ortiz, C. D. (2020). Ecological aspects of killer whales from the Mexican Central Pacific coast: Revealing a new ecotype in the Eastern Tropical Pacific. *Mar. Mamm. Sci.*, 1–16. doi: 10.1111/mms.12748

Visser, I. N. (1999). Benthic foraging on stingrays by killer whales (Orcinus orca) in New Zealand waters. *Mar. Mammal Sci.* 15 (1), 220–227.

Visser, I. N. (2000a). Killer whale (Orcinus orca) interac-tions with longline fisheries in New Zealand waters. $Aquatic\ Mammals, 26\ (3), 241–252.$

Visser, I. N., and Bonoccorso, F. J. (2003). New observations and a review of killer whale (Orcinus orca) sightings in Papua New Guinea waters. *Aquatic Mammals*, 29 (1), 150–172. doi: 10.1578/016754203101024004

Visser, I. N., and Cooper, T. E. (2020). It's not black and white: Orca ecotypes in New Zealand. 5th World Conference on Marine Biodiversity, Auckland, New Zealand.

White, C. F., Lyons, K., Jorgensen, S. J., O'Sullivan, J., Winkler, C., Weng, K., et al. (2019). Quantifying habitat selection and variability in habitat suitability for juvenile white sharks. *PloS One* 14, e0214642. doi: 10.1371/journal.pone.0214642

Wroe, S., Huber, D. R., Lowry, M., McHenry, C., Moreno, K., Clausen, P., et al. (2008). Three-dimensional computer analysis of white shark jaw mechanics: how hard can a great white bite? *J. Zool.* 276, 336–342. doi: 10.1111/j.1469-7998.2008.00494.x