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Beyond the plains: deep-sea
mining of polymetallic nodules
on and around seamounts
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Deep-sea mining management, scientific research, and public discourse have

largely focused on polymetallic nodule extraction from abyssal plains. However,

there is growing commercial interest in nodules on and around seamounts, with

exploration and testing underway in the Pacific Ocean. Increasing

documentation of nodules-seamount habitats and co-occurrence with cobalt-

rich ferromanganese crusts refutes themisconception that nodules occur only in

abyssal plains. This also challenges the conventional management framework

that separates these mineral resources into distinctly different habitats. Nodule

exploitation is poised to begin soon in both environments, but under the rubric

developed for abyssal plains alone. Existing and developing guidance based on

the simplified resource-habitat framework is likely inadequate in addressing

where nodule fields are associated with seamounts. Seamounts are

ecologically significant and vulnerable features, often linked to islands as part

of volcanic chains, and embedded in dynamic oceanographic systems that can

amplify mining impacts. Sustainable management will require an integrated and

adaptive approach, including critical reassessment of Regional Environmental

Management Plans in international waters and complementary frameworks in

national waters, as nodule mining moves beyond abyssal plains and

onto seamounts.
KEYWORDS
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1 Introduction

The deep sea is the least explored environment on Earth but is increasingly being

considered for mineral resource extraction. The International Seabed Authority (ISA) is an

autonomous body, established under the United Nations Convention on the Law of the Sea
1 https://www.un.org/depts/los/convention_agreements/texts/unclos/unclos_e.pdf.

2 https://treaties.un.org/doc/Treaties/1994/11/19941116%2006-01%20AM/Ch_XXI_06a_p.pdf.
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(UNCLOS)1 and the 1994 Agreement on Implementation2,

responsible for managing deep-sea mining (DSM) and protecting

the seafloor as the common heritage of humankind in Areas Beyond

National Jurisdiction (ABNJ). The ISA classifies DSM into three

types, each a mineral resource associated with one such distinct

habitat that it describes as substantially different from the others

(ISA, 2006, Figure 1a):
Fron
1. Polymetallic nodules on abyssal plains,

2. Cobalt-rich ferromanganese crusts on seamounts, and

3. Polymetallic sulphides at hydrothermal vent fields.
Expanding on this classification, nodules are commonly

described as potato-sized mineral concretions (rocks), associated

with vast, flat deep-sea areas. Crusts are thin deposits that paved
tiers in Marine Science 02
exposed rocks, primarily on steep volcanic submarine mountains,

and to a lesser extent, ridges and island flanks. Sulphides are

deposits at tectonically active sites, forming chimney- or mound-

like mineral structures along mid-ocean ridges and back-arc basins

(ISA, 2006; Hein et al., 2013).

A substantial body of research has identified several general

DSM impact pathways that are widely applicable across resource

types and regions. Anticipated impacts are long-lasting, potentially

irreversible, and include: removal of the substratum (that supports

benthic organisms and assemblages) along with sessile and

sedentary species—many of which are unique to the mineral

resource; release of sediment plumes from mining vehicles and

surface vessels, which may disperse widely and alter both adjacent

and distant habitats; physical and/or chemical transformation of the

seafloor, thereby inhibiting recolonization; release of toxins such as
FIGURE 1

Conceptual diagram of deep-sea mining mineral resources showing (a) the three habitats commonly depicted as separate and distinct (and barren)
categories, (b) along with their often-overlooked overlapping distributions (and biodiversity).
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heavy metals both at the seabed and in plumes; and acoustic and

light pollution from machines, pumps, and ships (Levin et al., 2020;

Amon et al., 2022; Weaver et al., 2022; Williams et al., 2022; Yao

et al., 2025). While plume effects are relevant to all mineral

resources, nodule mining on soft sediments is expected to

generate the most extensive dispersion. The island-like nature and

elevated productivity of seamounts and hydrothermal vents raise

additional concerns around disrupted ecological connectivity for

resident and migratory populations (e.g., cetaceans and

chondrichthyans) (e.g., Gollner et al., 2017; Thompson et al.,

2023; Judah et al., 2025). Cumulatively, DSM impacts may

interact with existing ocean stressors—including warming,

acidification, deoxygenation, and overfishing—further threatening

deep-sea biodiversity and ecosystem function. These anticipated

general impacts notwithstanding, a clear understanding of site- and

activity-specifics will be fundamental to sustainable DSM

environmental management moving forward.

The simplified three-option resource-habitat framework

(Figure 1a)—distinguishing seamounts, vents, and abyssal plains

—underpins DSM industry development, environmental

assessments, science to guide management decisions, and public

understanding. However, the deep sea is a dynamic, four-

dimensional environment of diverse, interconnected and

over lapping habi ta ts shaped by complex geologica l ,

oceanographic, and biological processes (Figure 1b). Here, we

examine how the ISA and States frame proposed exploitation, the

growing evidence of habitat overlap and misconceptions, and

consider implications for environmental management.
4 https://www.un.org/depts/los/convention_agreements/texts/

unclos/unclos_e.pdf.

5 https://deep-sea-conservation.org/solutions/no-deep-sea-mining/

momentum-for-a-moratorium/governments-and-parliamentarians/.

6 https://www.canada.ca/en/global-affairs/news/2023/07/canadas-

position-on-seabed-mining-in-areas-beyond-national-jurisdiction.html.

7 https://www.meti.go.jp/english/press/2024/0322_002.html.

8 https://www.reuters.com/markets/asia/japan-begin-test-mining-rare-

earth-mud-seabed-early-2026-2025-07-04/.

9 https://www.whitehouse.gov/presidential-actions/2025/04/unleashing-

americas-offshore-critical-minerals-and-resources/.

10 https://www.boem.gov/marine-minerals/american-samoa-activities.
2 The current state of DSM
environmental management

ISA-led efforts remain the most extensive in terms of DSM

governance and regulatory development. To date, it has issued DSM

exploration contracts covering more than 1.5 million km² of ABNJ

in the Pacific, Indian, and Atlantic Oceans (Smith et al., 2020).

Currently, there are three sets of exploration regulations to manage

activities, each specific to one mineral resource (ISA, 2010, 2012,

2013), and draft exploitation regulations (ISA, 2025a). According to

the draft regulations, amongst other things, DSM cannot proceed

until the relevant Regional Environmental Management Plan

(REMP) is adopted (ISA, 2025a). REMPs are a key component of

marine environmental sustainability, intended to equip the ISA,

contractors, and sponsoring States with area-based and other

management tools to support informed decisions that balance

resource development with environmental protection3.

The ISA Secretariat convenes workshops to prepare draft

elements for inclusion in the REMPs (ISA, 2019). These

workshops follow the resource-habitat framework, which assumes

that each mineral resource is confined to distinct deep-sea habitats

and environmental conditions (Figure 1a). When multiple mineral
3 https://www.isa.org.jm/protection-of-the-marine-environment/

regional-environmental-management-plans/.
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resources occur in a region, participants and objectives are

separated, compartmentalizing area-based management tool

discussions, cumulative impact assessments, etc. (e.g., ISA, 2020;

Zhou et al., 2024). To date, only one REMP is in effect, for nodule

mining in the Clarion-Clipperton Zone (CCZ) (ISA, 2011), while

three others are in development: the Northern Mid-Atlantic Ridge

(sulphides), the Indian Ocean (nodules and sulphides), and the

Northwest Pacific (nodules and crust)3. However, these REMPs

preceded the ISA Council’s adoption of a standardized procedure in

July 2025 for their development, establishment, and review (ISA,

2025b), and were considered unfinished in the absence of such

guidance (ISA, 2024).

Within their national jurisdiction, States can proceed without

regulatory approval from the ISA but are encouraged to apply at

least equivalent standards, in line with Article 208(3) of UNCLOS4.

However, DSM environmental management in Exclusive Economic

Zones (EEZs) varies widely among jurisdictions. While some

countries have imposed national moratoria or precautionary

bans5 (e.g., Canada6), others are actively moving towards DSM

and developing environmental management plans. For example,

Japan has national goals7 and is conducting surveys and equipment

testing8, the USA is developing a permitting process9 and is

collecting regional environmental information10, while the Cook

Islands has already issued exploration permits for nodules and is

nearing completion of a REMP11. Regardless of their stage of

progress, national and industry environmental management

planning uses the classification of three DSM types from the

outset (Figure 1a).

Of the three types, nodule exploitation from abyssal plains,

especially in the central Pacific, has long been at the center of DSM

(Lodge et al., 2014). The CCZ currently accounts for 90% of all ISA

nodule exploration contracts12 and the Cook Islands efforts in their

EEZ west of the CCZ are the most advanced national operation13.

As such, abyssal plain nodules have greatly influenced the

development of overall DSM standards (e.g., draft baseline data

guidelines; ISA, 2022) and narratives (e.g., proponents often depict

or emphasize the perceived homogeneity and barrenness of the

central Pacific abyssal plains to suggest low environmental impacts;

Smith et al., 2020; Tunnicliffe et al., 2025). However, DSM
11 https://www.sbma.gov.ck/ebmf-sea.

12 https://www.isa.org.jm/exploration-contracts/polymetallic-nodules/.

13 https://www.sbma.gov.ck/.
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prospecting is broadening. In addition to the central Pacific,

nodules–and mining interests–are being identified in other

regions across the global ocean, in national and international

waters, including habitats beyond abyssal plains.
3 Nodules on and around seamounts

3.1 Worldwide

An increasing number of studies are reporting nodule

occurrences on and around seamounts and seamount-like

features. Nodules have been found both on the surface and buried

in sediments, from surrounding plains to peaks. Several studies

indicate a positive correlation between nodule density and

seamount occurrences (e.g., Mukhopadhyay and Ghosh, 2010),

while others document nodules and crusts coinciding (even

alongside hydrothermal vent sulphides, e.g., González et al., 2014)

(Figure 1b). Examples include:
14

Prosp

Fron
• Indian Ocean (Sharma and Kodagali, 1993; Mukhopadhyay

and Ghosh, 2010),

• Western Atlantic (Galvez et al., 2021a, b),

• Eastern Atlantic (González et al., 2014; Yeo et al., 2019),

• North Pacific (Mel’nikov et al., 2016),

• Northwest Pacific (see below),

• Western Pacific (Machida et al., 2016; 2021a, b, Zhou

et al., 2022),

• Central Pacific (where nodules in the CCZ are most

abundant in areas adjacent to seamounts; Kim et al.,

2012; Kuhn et al., 2017; Kuhn and Rühlemann, 2021), and

• South Pacific, including the Cook Islands and American

Samoa (Hein et al., 2015; Browne et al., 2023).
Global distribution models of nodule and crust formation

further corroborate these records, showing substantial spatial

overlap (e.g., Miller et al., 2018; Dutkiewicz et al., 2020; Guo

et al., 2022; Yao et al., 2025). These records and models

demonstrate that mineral resources occur, and sometimes

categorically co-occur14, across diverse habitats. This challenges

the fundamental claim that nodule environments are distinct from

those of crusts (and sulphides) (ISA, 2006).

Beyond spatial overlap, the distinction between nodules and

crusts is further blurred by shared similarities in formation and

composition. Seamounts provide the hard substrates required for

crust formation. They also shed rock fragments, animal skeletons,

and other biogenic materials that serve as abundant nuclei for

nodule formation, particularly on archipelagic aprons, such as in

the Northwest Pacific (Li et al., 2021; Yao et al., 2024). Some nodules

are exclusively hydrogenetic, forming over long timescales similar

to crusts, and co-occur with crusts on seamounts sharing similar

metallic compositions and precipitation mechanisms (Hein et al.,
https://geonarrative.usgs.gov/globalmarinemineraldataviewer/

ective-Regions/World-Regions-of-Interest/index.html.
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2013; Guo et al., 2022). Further complicating categorical

distinctions, crusts can form in nodule-like shapes (e.g., Yang

et al., 2023), while nodules can become cemented together by a

crust pavement (e.g., Hein et al., 2012), or there is no clear

distinction and both are referred to as “nodules” (Guo et al., 2022).
3.2 A closer look at the Northwest Pacific
ISA area

The Northwest Pacific Ocean has a high density of significant

geological structures, including seamounts, islands, and the

Mariana Trench (Figure 2). The seamounts and surrounding

seafloor here are the oldest oceanic crust on Earth, dating back

over 172 million years (Ren et al., 2022). The seamount complex is

also among the deepest, tallest, largest, and densest (i.e., over 200

seamounts covering 6 vertical km, some over 200 km across) (e.g.,

Wessel et al., 2010; Du Preez et al., 2023). These geologically unique

features shape regional ecology by influencing ocean currents,

boosting biomass, and enhancing biodiversity, as well as vertical

and horizontal connectivity (Leitner et al., 2020; Du Preez et al.,

2023; more on this topic in the Discussion). As such, the Magellan,

Marcus-Wake, and Marshall seamounts in the ABNJ (Figure 2)

meet the criteria for designation as Ecologically or Biologically

Significant Areas (ISA, 2020; Du Preez et al., 2023).

Nodules are widespread throughout the complex of seamounts

(Figure 2: red symbols). They are abundant in soft sediments

surrounding and between the seamounts, at depths of up to 6130

m, across the archipelagic aprons that can span over 100 km (Li

et al., 2021; Yao et al., 2024). Nodules are also found on the

seamount slopes and summits at depths of 1500 m and shallower

(Hein et al., 2013; Mel’nikov et al., 2016; Hein et al., 2020; Joo et al.,

2020; Yang et al., 2020; Li et al., 2021; Deng et al., 2022; Ren et al.,

2022; Zhang et al., 2023; Deng et al., 2024; Nakamura et al., 2024;

Wang et al., 2024; Xu et al., 2024; Yao et al., 2024). The unique

environmental conditions within the seamount complex have also

led to the formation of the thickest and most extensive crusts

globally (part of the “Prime Crust Zone”; Hein et al., 2013). These

crusts are abundant between 400 and 4000 m (Ren et al., 2022). The

nodule and crust deposits combined make the region of high

mining interest, including the area of ISA contracts and the EEZs

of the USA (Guam, the Mariana Islands, Wake Island16) and Japan

(Minamitori/Minamitorishima Island17) (Figure 2).

The ISA has issued four exploration contracts for crusts and one

for nodules (to Japan, Russia, the Republic of Korea, and China),

and has designated corresponding Reserved Areas for both mineral

types (intended for future DSM by developing nations) within

approximately two million square kilometers of the Northwest

Pacific. Hereafter, contract and Reserved Areas are collectively

referred to as “blocks” (Figure 2: orange for crust blocks, red for
16 https://www.boem.gov/marine-minerals/critical-minerals/critical-

minerals-pacific-ocs.

17 https://www.reuters.com/markets/asia/japan-begin-test-mining-rare-

earth-mud-seabed-early-2026-2025-07-04/.

frontiersin.org

https://geonarrative.usgs.gov/globalmarinemineraldataviewer/Prospective-Regions/World-Regions-of-Interest/index.html
https://geonarrative.usgs.gov/globalmarinemineraldataviewer/Prospective-Regions/World-Regions-of-Interest/index.html
https://www.boem.gov/marine-minerals/critical-minerals/critical-minerals-pacific-ocs
https://www.boem.gov/marine-minerals/critical-minerals/critical-minerals-pacific-ocs
https://www.reuters.com/markets/asia/japan-begin-test-mining-rare-earth-mud-seabed-early-2026-2025-07-04/
https://www.reuters.com/markets/asia/japan-begin-test-mining-rare-earth-mud-seabed-early-2026-2025-07-04/
https://doi.org/10.3389/fmars.2025.1666150
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Du Preez et al. 10.3389/fmars.2025.1666150
FIGURE 2

Map of polymetallic nodules within the Northwest Pacific seamount complex, International Seabed Authority (ISA) area. Data shown are published
records of seamounts and Magellan, Marshall, and Marcus-Wake seamount groups (ISA, 2020; Du Preez et al., 2023; Wang et al., 2024), 100 km
buffer around seamounts (i.e., related to seamount-associated eddies and aprons as well as ISA buffers; see text for more details), ISA exploration
blocks for nodules (red polygons) and cobalt-rich ferromanganese crust (orange polygons; ISA, 2020), and nodule records (points; Dutkiewicz et al.,
2020; Yang et al., 2020; Li et al., 2021; Deng et al., 2022; Ren et al., 2022). Also shown: seamounts and islands with nodules and of interest (red
triangles). Photo inset shows example of crust and nodule field co-occurring on the plateau of Vogt Guyot (credit: Ocean Exploration Trust and the
National Oceanic and Atmospheric Administration). Basemap from Global Multi-Resolution Topography15.
15 https://www.gmrt.org/GMRTMapTool/.
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nodule blocks). The two types of blocks are intermixed

geographically, concentrated around seamounts, and, in most

cases, co-occur on the same features—spanning the summits,

flanks, and bases (e.g., Figure 2: inset of Vogt Guyot). Crust

blocks, which collectively cover ~15,000 km2, surround nearly all

the 30 shallowest seamount summits in the region (i.e., defined here

as shallower than 2,500 m depth; Hein et al., 2009; ISA, 2020). In

contrast, nodule blocks total 150,000 km2—as permitted under ISA

regulations (ISA, 2012, 2013). These nodule blocks are centered

within the Magellan and Marcus-Wake seamount groups, where

they overlap with or border seamount aprons, foothills, and lower

flanks in all directions (Figure 2: seamount ecosystem boundaries

based on conservative delineations by ISA, 2020; Du Preez et al.,

2023; Wang et al., 2024). The nodule block areas between

seamounts are well within the aprons and dynamic flow regimes

of the larger seamount complex. These include the 100 km

mesoscale eddies that concentrate and transport water and

material between seamounts (Jiang et al., 2021; Nagai et al., 2021;

Xie et al., 2022b). Notably, the Saipan, Pigafetta, and Northwest

Pacific basins cover the majority of the area (ISA, 2020; Figure 2),

but there are few records of nodules and no contract blocks here;

nodule prospectors have shown little interest in these abyssal plains,

especially in contrast to the seamounts (Figure 2).
19 https://www.reuters.com/markets/asia/japan-begin-test-mining-rare-

earth-mud-seabed-early-2026-2025-07-04/.
4 Discussion: seamount
environmental considerations and
potential oversight gaps

4.1 Seamount mining redefined

Under the narrow resource-habitat framework, mining on and

around seamounts has often been viewed as unlikely or distant due

to the significant technological and environmental challenges

associated with crust DSM (Xie et al., 2022a). Crust extraction

requires cutting, crushing, and removing rock on steep, rugged

terrain (Xie et al., 2022a). However, seamount geomorphology is

highly diverse, and many features—such as aprons, slopes, terraces,

cones, plateaus, especially on older guyots—can be gently sloped or

flat, sedimented, and covered in nodules (Yeo et al., 2019; Yang

et al., 2020; Wang et al., 2024; Yao et al., 2024; Figure 2: Vogt

Guyot). On these seamount features, nodules can be collected

directly from the sediment, avoiding many of the technical

barriers associated with crust extraction.

Nodule DSM on or near seamounts and islands now appears to

be advancing more rapidly than other forms of DSM. Several States

have recently announced imminent plans for test and/or commercial-

scale operations in ABNJ and their EEZs. For example: (i) the Beijing

Pioneer Hi-Tech Development Corporation Ltd. (China) planned to

begin test nodule extraction on the lower slope of Magoshichi-no-

Hoshi Seamount in ABNJ in 202518 (Northwest Pacific; Figure 2); (ii)
18 https://www.isa.org.jm/news/beijing-pioneer-hi-tech-development-

corporation-ltd-launches-stakeholder-consultation-on-environmental-

impact-statement-for-polymetallic-nodule-mining-component-test/.
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the Japan Agency for Marine-Earth Science and Technology is

commercially targeting nodules near Minamitori Island and its

surrounding seamounts in their EZZ in early 202619 (Northwest

Pacific; Figure 2); and (iii) the USA has initiated the sale of nodule

mining leases on and around seamounts and islands in their EEZ

around American Samoa (South Pacific; with Impossible Metals,

Inc.)20 and are also exploring other regions (e.g., Guam and the

Mariana Arc21; Northwest Pacific; Figure 2). Thus, nodule mining is

bypassing key technological hurdles long assumed to constrain

DSM in seamount regions, despite unresolved and serious

environmental concerns.
4.2 Overlooked environmental risks of
nodule mining on seamount ecosystems

The overlap or proximity of proposed nodule DSM sites to

seamounts highlights the urgent—but overlooked (e.g., Zhou et al.,

2024)—need to assess potential impacts of nodule extraction on the

small and spatially constrained seamount habitats. Even when

mining isn’t directly on fragile seamount habitats, nodule

extraction on their base, aprons, or surrounding plains still

threaten their highly interconnected ecosystems, including those

geographically distant. Environmental models and management

approaches based on seamount crust DSM need to be reassessed

for differences in mining location, intensity (i.e., a larger mined

area), plume material (e.g., nodule debris and fine sediment versus

crust debris; Spearman et al., 2020), and other factors. However, as

nodule DSM on and around seamounts advances under

frameworks developed for nodule mining—rather than crust

mining—there is a significant risk that environmental models,

assessments, and management approaches based on abyssal plain

settings will oversimplify, misrepresent, or entirely overlook the

complex, interconnected, and large-scale dynamics of seamounts

and similar features, risking biodiversity loss, habitat destruction,

and degradation of ecosystem services.

4.2.1 Risks linked to seamount hydrodynamics
and plume dispersal

A comprehensive understanding of physical oceanography is

essential for environmental assessments and monitoring of DSM.

Seamounts are well known to alter local and regional oceanographic

conditions significantly, with high spatial and temporal variability.

Their physical form generates dynamic and turbulent patterns–

including eddies, upwelling, downwelling, tidal rectification,

topographic steering, internal waves, Taylor columns, lee waves,

and so on–that modify flow across depth and space. For example,
20 https://www.doi.gov/pressreleases/interior-launches-process-

potential-offshore-mineral-lease-sale-near-american-samoa.

21 https://www.boem.gov/marine-minerals/critical-minerals/critical-

minerals-pacific-ocs.
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seamounts can drive large-scale deep-ocean upwelling (Mashayek

et al., 2024) and produce mesoscale eddies 100 km wide that affect

circulation from the surface to the seafloor and transport mass

volumes of water and materials between seamounts and across

thousands of kilometers (Jiang et al., 2021; Nagai et al., 2021; Xie

et al., 2022b; Ross et al., 2025) (i.e., high potential of transboundary

environmental impacts). Neighbouring seamounts and their

surrounding areas can also be connected via sub-seabed conduits,

through which fluid and materials can be quickly transported

between recharge-discharge seamounts (e.g., Fisher et al., 2003;

Gartner et al., 2025). These horizontal and vertical hydrodynamic

processes of seamounts are extremely challenging to quantify and

model, yet such information is essential for predicting the spread

and intensity of potentially harmful mining plumes on and in the

seafloor, in the water column, and at the surface (as debris and

potentially toxic and radioactive; Vare et al., 2018; Weaver et al.,

2022; Volz et al., 2023; Dołhańczuk-Śródka et al., 2024), as well as

delineating the functional spatial extent of seamount ecosystems for

area-based management (e.g., Du Preez et al., 2023).

4.2.2 Risks to seamount ecologically and
biologically significant areas

Whether nodules, crusts, or sulphides, these mineral deposits

are structural components of the marine habitats themselves. DSM

cannot be considered in isolation from the complex biological

assemblages of targeted structures and their immediate,

surrounding, or associated habitats (Miller et al., 2018).

Seamounts support high benthic species turnover (beta diversity)

along steep environmental gradients associated with depth (e.g.,

salinity, temperature, oxygen), and across horizontal spaces, within

and between seamounts (e.g., Victorero et al., 2018). They can be

biological hotspots, especially on their ridges and summits, hosting

long-lived and vulnerable habitat-forming species, such as cold-

water corals and sponges (Rowden et al., 2010) (e.g., Figure 2: Vogt

Guyot ridge is known as a deep-sea “coral wonderland”22). Nodule

fields, hydrothermal vents, and other co-occurring features on

seamounts increase the biological diversity even further by

creating unique intra-seamount habitats that support different,

specialized, and/or rare species (e.g., Cuvelier et al., 2020; Stevens

et al., 2015).

Seamounts interact with large-scale processes, such as

productivity and nutrient cycling (e.g., Leitner et al., 2020).

Their ecological influence extends beyond their physical

boundaries, affecting surrounding benthic habitats (e.g., infauna,

Yang et al., 2020), pelagic zones (e.g., tuna, billfish, and sharks,

Morato et al., 2010), surface waters, and above (e.g., whales,

turtles, and sea birds; e.g., Kaschner, 2007). They are highly

interconnected systems, often functioning as ecological stepping

stones and exhibiting source-sink dynamics that facilitate gene
22 https://oceanexplorer.noaa.gov/okeanos/explorations/ex1605/

dailyupdates/july6.html.
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flow, species dispersal, and population connectivity across vast

oceanic distances (Shank, 2010).

Seamounts provide vital ecosystem services, including

supporting fisheries and regulating oceanic and climate processes

(summarized in DOSI, 2023). Although they cover only a small

fraction of the global seafloor, a long history of human activity has

demonstrated the high vulnerability of their ecosystems to

disturbances (e.g., bottom-contact fishing, pollution, and climate

change; Rowden et al., 2010; Du Preez et al., 2020; Ross et al., 2020).

In recognition of their ecological importance and sensitivity, many

seamounts and complexes have been designated as Ecologically or

Biologically Significant Areas, Vulnerable Marine Ecosystems, or

other conservation-related designations (FAO, 2009; CBD, 2016a, b,

Watling and Auster, 2017), including notable examples like the

Northwest Pacific seamounts in the ISA area (ISA, 2020; Du Preez

et al., 2023) i.e., the seamounts in Figure 2. However, the very

characteristics that make seamounts biologically rich can also

expose them to risks. For example, seamount eddies can

concentrate and deliver productivity to their summits, but they

can also funnel detrimental materials like DSM plumes to summit

communities. Given their exceptional productivity, biodiversity,

and ecological connectivity, localized harm to seamount

ecosystems is likely to result in disproportionately large and

potentially cascading impacts on regional and even global

marine biodiversity.
4.2.3 Risks to humans
Seamounts and seamount-like structures are often geologically

and spatially linked to island nations, forming part of the same

volcanic chains or tectonic features (e.g., Figure 2). In contrast,

abyssal plains are more remote, isolated from large landmasses by

an often broad continental shelf, slope, and rise. While DSM in

any location does not confine impacts to the deep sea (Carver

et al., 2020), the proximity of seamounts to landmasses increases

the likelihood of DSM impacting human populations and coastal

and terrestrial ecosystems. One of the most direct pathways for

risks to humans is through plume-contaminated seafood (Drazen

et al., 2020). For example, tuna are migratory fish that concentrate

around seamounts (Morato et al., 2010), are known for

bioaccumulation through the food chain (e.g., high mercury

levels; Choy et al., 2009). Many prey for tuna migrate vertically

1000 m where they can intersect plumes from seamount mining

machines or residual washings discharged midwater from

collector vessels (van der Grient and Drazen, 2021). Declines in

tuna stock and risks to human health through consumption have

been specifically identified as potential consequences of DSM

activities and associated plumes (e.g., WCPFC, 2024), with

growing concern due to interactions with climate change (Amon

et al., 2023).

Island nations that rely heavily on oceanic fisheries as food and

as an economic cornerstone have expressed concern that nearby

DSM could threaten this vital resource. American Samoa cites tuna

as its primary industry (WCPFC, 2024) and, in 2024, the American

Samoa Government issued a moratorium on DSM within its
frontiersin.org
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territorial seas (outside the jurisdiction of the ISA; Executive Order

006 - 202423). However, in 2025, the USA began reviewing

exploitation proposals within their EEZ (Executive Order 14285 -

2025: Unleashing America’s Offshore Critical Minerals and

Resources24), adjacent to the inhabited islands of American

Samoa in an area containing dozens of seamounts and seamount-

like features25.
4.3 Constrained protection options:
Northwest Pacific ISA area example

A key objective of the ISA REMP workshops is to propose

Areas of Particular Environmental Interest (APEIs). These area-

based tools aim to, among other conservation priorities, protect

habitat similar to the mined area to maintain ecological balance,

given the harmful effects of mining activities (ISA, 2019). In

general, developing APEIs is challenging because mining blocks

are designated before the REMP process begins, and APEIs

cannot be proposed within existing blocks or, ideally, within a

100 km buffer (e.g., ISA, 2019, 2020). This system creates a highly

constrained environment for designing protection after the fact.

Furthermore, working between two block types targeting the

same small and finite features adds more constraints. In the

Northwest Pacific, existing crust and nodule blocks were

designated between 2014 and 2019 and with no REMP

developed or adopted to date26. Thus, a large portion of

seamounts are within already zoned blocks (crust, nodules, or

both; Figure 2). In fact, over 70% of the region’s largest and

shallowest seamounts have existing blocks and therefore cannot

be identified as APEIs (ISA, 2020) despite having the highest

potential conservation value (Du Preez et al., 2023). This leaves

the REMP with very limited options to set aside and protect

representative seamount habitats as APEIs. Achieving even a

minimal 30% protection target is now highly constrained (ISA,

2020), while addressing additional broader conservation

principles (such as ecological rarity, connectivity, and system

resilience) or meeting higher protection standards is extremely

challenging or impossible (e.g., 100% seamount protection,

Watling and Auster, 2017) including potential Biodiversity

Beyond National Jurisdiction (BBNJ) targets (Zhou et al., 2024;

Agreement scheduled to enter into force in early 202627).

With limited options, REMP development workshop

participants have proposed irregularly shaped potential APEIs to

protect targeted habitats by carving out what remains of seamount
2 3 h t t p s : / / w w w . a m e r i c a n s a m o a . g o v / _ fi l e s /

ugd/4bfff9_d506713b44294367a572aab06f1fd5c2.pdf.

24 https://www.whitehouse.gov/presidential-actions/2025/04/

unleashing-americas-offshore-critical-minerals-and-resources/.

25 https://www.boem.gov/marine-minerals/american-samoa-activities.

26 https://www.isa.org.jm/events/workshop-on-the-development-of-a-

regional-environmental-management-plan-for-the-area-of-the-

northwest-pacific-2/.

27 https://www.un.org/bbnjagreement/en.

Frontiers in Marine Science 08
groups, in some cases splitting individual seamounts (ISA, 2020;

note: 2024 workshop report not yet available28). This seamount

fragmentation could undermine the potential for effective and

ecologically meaningful conservation—ideally, entire seamounts

or complexes are management units (Clark and Dunn, 2012).

Adaptive management based on this latest information could

include identifying unique, rare, and/or important APEIs within

existing blocks, and/or block relinquishment to ensure effective

protection of the marine environment. In contrast to the limited

nodule-seamount habitat, large 40,000 km2 square-shaped APEIs

have been proposed on the abyssal plains within the Saipan,

Pigafetta, and Northwest Pacific basins (ISA, 2020). While these

APEIs align with the recommended simple-shape, size, and

horizontal buffer distance (ISA, 2019), and were designed to

support ecological representativity and connectivity of targeted

habitats (ISA, 2020), they neither contain seamounts nor is there

much evidence they contain nodules (e.g., Figure 2); hence, they do

not represent the DSM targeted nodule-seamount habitat.
5 Conclusion

DSM is poised to begin with nodule extraction on and around

seamounts, with rapidly growing interest and activities in both

ABNJ and EEZs, particularly in the Northwest Pacific. While many

ISA regulations, standards, guidance, and REMPs—and some

national equivalents—are in advanced drafts, they do not address

the environmental implications of nodule mining on and around

seamounts. Given that States and miners are required to apply a

precautionary approach in ABNJ—according to the ISA (ISA, 2006,

2013) and BBNJ Agreement (UN, 2023)—we question whether

existing frameworks for nodules, crusts, or a combination of both

would be adequate, or if something new is required. Overlooked

seamount-related risks of nodule DSM could threaten biodiversity,

ecosystem functions, and human health. We recommend that

future REMPs and national equivalents explicitly include

protocols to assess the proximity, overlap, and cumulative

impacts of multiple mineral resources across all relevant habitats

within a region of interest. A more holistic and regionally nuanced

approach is essential. Ensuring meaningful environmental

protection will require quickly moving beyond the narrow

resource-habitat framework that assumes nodules occur only in

abyssal plains and critically assessing aspects of existing and

forthcoming DSM management processes.
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