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The Permian-Triassic mass extinction was one of the worst crises for life on earth,
killing >90% of marine species, which induced the carbon cycle perturbation during
the entire Early Triassic. Previous studies indicated the global CO, concentration
dropped sharply from 2,800 ppmv to a level of approximately 450 ppmv
(comparable to the present) at the Early—Middle Triassic boundary. This optimal
CO, level, a stabilized record of 2%. 8°Cc.p, persisted throughout the Middle
Triassic. While how this long-term habitable CO, level was maintained remains
puzzling. Here, we examined the sedimentary succession that spans the duration
from Late Olenekian (late Early Triassic) to Anisian (Middle Triassic), Upper Yangtze
Block. The results show that the volume content of microbialites in the carbonate
succession increased significantly after the transition from lower thin-bedded
dolostones to upper thick-bedded microbialites, indicating the carbon pump
shifted from a low-rate chemical carbonate production system to a high-rate
microbial carbonate factory. The expansion of microbial mats responded to
enhanced terrigenous input and elevated primary productivity. Coincidentally, the
3Cearp cUrve records a change from strong oscillations to a long-term stability.
This turnover coincided with the occurrence of plant fossil assemblages (e.g., from
northern ltaly) and marine fossil assemblages (e.g., from South China). The findings
indicate that the enhanced microbial pump, as a dynamic mechanism for
atmospheric CO, sequestration, was a key modulator of the Middle Triassic
global climate system and helped sustain more resilient ecosystems.
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1 Introduction

The Permian-Triassic mass extinction (PTME; approximately
252 Ma ago) is the cataclysmic event that led to a restructuring of
marine life (Yin et al., 2001; Sahney and Benton, 2008; Alroy, 2010;
Luo et al., 2010; Luo et al., 2014; Zhou et al., 2017). Following the
extinction, Early Triassic ecosystems experienced a long-term
stepwise rebuilding (Chen and Benton, 2012), and it was not until
the early Middle Triassic epoch (Anisian) that biodiversity and
complexity became comparable to those of pre-extinction faunas
(Payne and Kump, 2007; Stanley, 2009; Whiteside and Ward, 2011).
The plant fossil assemblages discovered in the dolostone Mountains
in northern Italy during the Middle Triassic show the rich
assemblages of wetland fossils and spores, indicating the extensive
forest coverage and the absence of xerophytic plant groups in the
setting of warm and humid land climate (Kustatscher et al., 20065
Kustatscher and Roghi, 2006; Kustatscher et al., 2010), as well as in
the Luoping area of South China during Middle Triassic, marine
biota fossils have been discovered, documenting a complete food
chain from producers to consumers and top predators, also in
response to this transition (Li et al., 2016).

It is commonly perceived that the entire Triassic environment
gradually transformed from extremely warm conditions to a more
habitable climate, characterized by the optimal CO, concentration
(~400 ppmv; Korte et al., 2005; Kiessling, 2010; Luo, 2011; Luo et al.,
2013). Several Early Triassic warming events were identified at the
late Dienerian-Smithian boundary, in the late Smithian as well as in
the late Spathian (e.g., Li et al., 2016). These warming events,
accompanied by marine anoxia, ocean acidification, and enhanced
weathering, were likely caused by a massive release of volcanic CO,
(Payne et al, 2004; Li et al., 2021). The concentration of CO,
reached 2181-2610 ppmv during the Griesbachian period in the
Early Triassic and remained at 1063-1757 ppmv in the late Early
Triassic. Subsequently, during the transition from the Early to
Middle Triassic, the CO, level rapidly dropped to 343-634 ppmv
(Hagq et al,, 1987; Li et al., 2018; Joachimski et al., 2022). Analogous
trends occurred in carbon cycling (Payne and Kump, 2007; Stanley,
2009; Retallack et al., 2011; Luo et al, 2014), reflected by the
multiple strong carbon-isotope oscillations (-2%o to 5%o) during
the Early Triassic. Subsequently, the 8'°Cc,, component of the
Anisian in the Middle Triassic gradually stabilized at 2%o
(Korngreen and Bialik, 2015). This optimal CO, level and Stable
3Carp persisted throughout the Middle Triassic. However, the
reason for the rapid drop in CO, levels and the long-term carbon-
isotope trend remains enigmatic within the Anisian.

The vast carbonate on shallow water platforms plays a crucial role
in regulating the global carbon cycle and climate change (Geyman
et al, 2022). Although shallow water platforms occupy less than 10%
of the global ocean area, they account for over 90% of total carbon
burial in marine environments (Filbee-Dexter et al., 2024). Therefore,
in the marginal sea area, marine carbonates (microbial lime muds or
microbial dolostones) precipitated by microbial mediations represent
a key modulator of the global climate system (e.g., Lawrence and
Graham, 2012; Geyman et al., 2022). Microorganisms in the profound
transition of Earth’s climate during the Neoproterozoic Great
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Oxygenation Event and the comparable life-climate co-evolution
processes in the Early Ordovician also reflect the role of regulating
the climate (e.g., Trotter et al., 2008). Marine carbonates archive the
geochemical variations in seawater chemistry associated with
paleoenvironmental changes. Therefore, characteristics of trace
element proxies reflect changes in the ancient environment, such as:
bioproductivity (e.g., Ni, Zn, Cu; Wignall and Twitchett, 1996; Algeo
and Maynard, 2004; Tribovillard et al., 2006; Luan et al., 2024), redox
conditions (e.g, Mo, U, V, Th; Sliwinski et al, 2010; Dickson and
Cohen, 2012; Tripathy et al., 2014), and climate (dry vs. wet) expressed
in riverine inputs of detrital weathered material (e.g., Al, REE; Acharya
et al., 2015; Moei et al., 2020; Wang and Azmy, 2020; Bian et al., 2021).

The microbialite section in the Hanwang area, located on the
western margin of the Upper Yangtze Platform in South China, is
characterized by a gradual transformation from thin-bedded
carbonate at the bottom to microbialite at the top, thus reflecting
the co-evolution of climate and life. The main objectives of the
current study are: (a) To evaluate the degree of petrographic and
geochemical preservation of the investigated microbialites of the
Middle Triassic Leikoupo Formation in the Hanwang section; (b)
To better understand the influence of Middle Anisian climate,
primary productivity, and redox conditions on microbial boom
during Middle Anisian; (c) To investigate the intrinsic connection
between the factors maintaining the long-term optimal CO, level
and stable carbon isotopes and the dynamic carbon sink of
microorganisms during the Middle Triassic (Anisian) in
South China.

2 Geological setting

The South China Block (SCB) was located in the east of the
Paleo-Tethys during the Middle Triassic (Figure 1A), and this was
primarily composed of the Yangtze and the Cathaysia blocks
(Lehrmann et al., 2009; Zhao et al., 2013). The Southwestern part
of the Upper Yangtze Plate was the Kangdian Paleo-land, which
gradually transitioned to the open platform in the east (Figure 1B,
Faure et al., 2016). A continuous marine carbonate succession was
widely developed in the Yangtze block during the Early-Middle
Triassic that transformed into terrestrial deposits in the Late
Triassic (Feng et al., 1997). The Upper Yangtze Block of South
China was situated at low paleolatitude during the Triassic. It
consists mainly of shallow marine carbonates of a restricted
platform and tidal flat sedimentary facies.

The Hanwang section (E104° 09” 48.107, N31° 27°39.14”;
Figure 1C) is in Mianzhu City, Sichuan Province, China. During
the Middle Triassic period, it was surrounded by Paleo-land,
resulting in a relatively low sea level, restricted seawater, and
weak hydrodynamic cycle conditions, which formed a semi-
restricted platform environment, mainly composed of typical
shallow-water sedimentary lithology such as limestone and
dolostone (Huo et al., 2022). The bottom and top of the section
are respectively the Jialingjiang and Tianjingshan formations, and
the main part of the Hanwang section is the Leikoupo Formation
(Figure 1D). There is a lithological transition from dolostones to
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FIGURE 1

Geological background of the study area. (A) Palaeogeographic reconstruction of the Anisian (Early Middle Triassic) (modified from Huo et al., 2022).
(B) Lithofacies paleogeographic map of South China showing major blocks of the Upper Yangtze Plate (modified from Li et al., 2016). (C) Lithofacies
paleogeographic map of the Leikoupo Formation in the Middle Triassic. The red arrow indicates the approximate location of the study area (Han
Wang section, E104°09'48.10", N31°27'39.14"). (D) Stratigraphic framework of the HanWang section and sampling depths.

limestone between the Leikoupo Formation and the Tianjinshan
Formation. It is in parallel unconformable contact with the
Jialingjiang Formation, and the boundary between the two is
defined by the typical “Green Bean Rock”, which is a widespread
occurrence of volcanic tuff deposits in the early-middle Triassic
boundary in South China, serving as a clear indicator of the early-
middle Triassic boundary (Chen et al., 2019; He et al., 2019).

3 Samples and methods

Fifty-five fresh carbonate samples were carefully collected from
the outcrop of the Leikoupo Formation and the top of the
Jialingjiang Formation of the Hanwang section (Figures 1C, E
104° 09’ 48.10”, N31° 27’ 39.14”). Thin sections (105) were cut
for petrographic examination, and a clean mirror-image slab of
each thin section was cleaned in a sonic bath with de-ionized water
and dried to be used for geochemical sampling. Chips from the
most micritic spots were ground to 200 mesh in an agate mortar,
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and 2 subsets were prepared for stable isotope (8"Ceapp and 8'°0)
and elemental (major and trace element) analyses.

We quantified the proportions of microbialites components in
the thin sections by dividing the field of view into regions measuring
60*45 units and identifying the microbialites components (as
shown in Figure 2). Subsequently, we calculate the proportions
that each component occupies within the visual field. We randomly
select multiple fields of view (typically more than five) and average
the calculated proportion values across these views, which ensures
the randomness and reliability of the data.

Carbon and oxygen isotope compositions of 55 samples were
measured at the Nanjing Hongchuang Exploration Technology
Service Co., Ltd, Nanjing, China. The sample powder was reacted
in an inert atmosphere with ultrapure concentrated (100%)
orthophosphoric acid at 70°C in a ThermoFinnigan GasBench II.
The produced gas was introduced into the IRMS (Ionic ratio mass
spectrometer, MAT253) by sampling through the standard 100 pL
sample loop, and CO, was separated from other components using
a gas chromatographic column (Poraplot Q with fused silica tubing,
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FIGURE 2
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Photomicrographs of microbialites (Stromatolites in blue and Thrombolites in gray) in thin sections from the Leikoupo Formation Samples (A) HW36;
(B) HW44; (C) HW45 showing different modes of occurrences with their sketches (D—F), and biological content statistics (G-1), respectively.

25mx0.32mm, Thermo Fisher Scientific), heated to 70°C. The peak
corresponding to CO, was passed via an open split into the mass
spectrometer. Isotope ratios are reported in per mil (%o) notation
relative to the Vienna Pee Dee Belemnite standard (VPDB %o).
Samples were calibrated using four China standards (GBW04405,
GBW04406, GBW04416, and GBW04417). The uncertainty (10),
calculated from standards per run, is typically 0.1%o.

Major and trace elements (Appendix 1) were measured by a
ZSX Primus II X-ray fluorescence spectrometer. 50 mg of the
sample powder was dissolved in 1 M acetic acid in a small beaker
placed in an ultrasonic water bath at 30°C for 30 min, and the
solution was left at room temperature for 12h. The solution was
centrifuged and washed 3 times with de-ionized water, and the
residue was dried and weighed to calculate the percent of soluble
material. The supernatant was then evaporated to near dryness at
120°C and redissolved in 0.2M HNOs. The analysis process adopts
China standards GBW07314, GBW07315, GBW07316, and USGS
basalt standard material 6BHVO - 2 for quality control, and
uncertainty was generally better than 5%.

Since analysis results are based on the total composition of the
samples (carbonates and siliciclastic inclusions), the enrichment
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factor values of the paleoenvironmental proxies were utilized to
minimize the influence of contributions from siliciclastic inclusions,
in case they occur. The enrichment factor was calculated using the
equation (Tribovillard et al., 2006):

Xgp = [(X/ADsampie/ (X/Al)ycc] where X is the proxy element
and X and Al values (in ppm) are normalized to upper crust
composition (UCC; McLennan, 2001; Tribovillard et al., 2006).

4 Results
4.1 Petrography of microbialites

The basal boundary of the Leikoupo Formation is identified by
the “Green Bean Rock (GBR)”, which caps the Jialingjiang
Formation. The top boundary of the Leikoupo Formation is a
lithological transition that is from microbial dolostone to
limestone (Tianjinshan Formation). Macroscopically, the
succession of the Leikoupo Formation is characterized by thin
layers of dolostones in the lower part, but thick layers of
microbialites in the upper part (Figure 3A).
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The lower non-microbial portion is dominated by micritic
dolostone beds interbedded with grainy dolostone and thin fine-
grained claystone layers (Figures 3B-F). The grainy dolostones occur
with horizontal bedding and cross-stratification (Figures 3C, D).

The microbialites in the upper portion of Leikoupo Formation
include three types in microtexture: thrombolites, Microbial debris,
and laminated stromatolite (Figures 4-6).

(1) Stromatolites: They occur as regular linear structures or the
layered structure with convex-upward characteristics, alternating dark
and light layers, and a thickness generally tens of centimeters
(Figures 4A, B, G). The dark bands are typically organic-rich, but the
lighter bands consist of trapped sediments. Based on morphology,
stromatolites are classified into three fundamental types: (a) Planar
stromatolites with tabular laminae (Figures 4A-C), (b) wavy
Stromatolites showing sinuous undulations (Figures 4B, C), (c) domal
Stromatolites characterized by convex-upward laminations (Figure 4F).

(2) Thrombolites: It is typically lack distinct structures and
instead exhibit large, dark-colored clumps (Figures 5A-C). The
microtexture of thrombolites occurs as narrow-laminar or pelletoid
structures (with thickness< 0.1 m; Figures 5D-F), and often can be
observed large numbers of tens of millimeter clots. The
Thrombolites generally developed between the stromatolitic layers
in the middle-Late Anisian. A few samples from the top microbialite
exhibit minor recrystallization with crystals up to 70 pm
(Figures 5G, H).

(3) Microbial debris: It is composed predominantly of grayish-
white clumps and sand-sized particles (Figures 6A-F). Usually,
obvious microbial debris and clotted structures can be observed
(Figures 6B, D, F). In a few samples, due to slight recrystallization,
the edges of the microbial debris structure become blurred (Figure 6A).

4.2 Evaluation of sample preservation

Diagenesis of marine carbonates significantly alters their
geochemical compositions (Veizer, 1983b; Swart and Eberli, 2005;
Azmy et al., 2011a). Therefore, it is crucial to evaluate their degree
of petrographic and geochemical preservation. Petrographic
examination has shown that the investigated carbonates are
mainly dolostones with micritic (< 4um) to near-micritic/
microsparitic (< 10um) grain size, suggesting a high degree of
textural preservation and almost pristine sedimentary fabrics with
insignificant recrystallization (e.g., Wang et al., 2023; Xia et al,
2023), which is consistent with a previous study (Wang et al., 2023)
that proved the microbial origin of the Leikoupo Formation
dolostones. However, a few samples (Figures 5G, H), with
particularly high YREE (15-59 ppm; Figure 7; Appendix 1), show
some minor recrystallization (up to 70 um). The YREE values are
sensitive to diagenetic alteration and increase considerably with
diagenetic alteration (Azmy et al, 2015). Thus, the retention of
microbial fabrics and micritic (< 4 wm) to near-micritic (4—10 wm)
grains supports an early stage of dolomitization at the surface to
near-surface conditions. The lack of evaporite interbeds (e.g.,
gypsum or anhydrite) in the HanWang section carbonates does
not support a sabkha origin (e.g., Azmy et al, 2001), which is
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consistent with lower [Sr] contents of the investigated dolostones
relative to those of Sabkha sediments > 470 ppm (Veizer, 1983a,
their table 3.3).

In addition, the molar Sr/Ca ratio of carbonates may provide
clues about their parent fluids, given that the estimates of the Sr
distribution coefficient (Dg,=0.05-0.06) between the fluid and the
precipitated dolostone have been already established (Banner, 1995)
since (MSr/™Ca)golostone = Dsr (TSr/™Ca)guiq. The estimates of the
mean ("Sr/™Ca)gyq of the investigated dolostones range from
0.0039 to 0.0046, which are lower than the values of modern
seawater (0.0086; Drever, 1988). Therefore, those dolostones were
originally microbial lime muds that were dolomitized at early stages
of diagenesis under surface conditions, likely by seawater that was
mixed with meteoric waters, which agrees with the lack of evaporite
interbeds and argues against a sabkha origin.

During diagenesis, the §'®0 values are generally depleted by
water/interactions, particularly (Okafor and Azmy, 2024). However,
unless there is pronounced organic matter alteration involved, the
8"3Cu, values are relatively less susceptible to diagenetic alteration
(Swart, 2015) and carbonates may, therefore, retain at least their
near-primary C-isotope composition. Therefore, the insignificant
correlation between the 8"°C.,y, and 8'®0 values (R? = 0.1,
Figure 7A) suggests the preservation of at least near-primary
3"Ceart (e.g., Luan et al., 2024; Okafor and Azmy, 2024; Robacio
et al,, 2024). This is supported by the 8'*C.,y;, values of the Leikoupo
Formation carbonates that fall within the range of the best-
preserved Middle Triassic marine carbonates (Veizer et al., 1999).
On the other hand, the 80 values are dominantly higher than
those of the Middle Triassic marine carbonates (=-2%o; Figure 7A),
likely reflecting the influence of dolomitization and hot weather
(Land, 1983, 1992).

The diagenetic alteration of carbonates leads to a significant
decrease in their Sr contents but enrichment in other proxies such
as Al, YREE, Mn, and Fe (Veizer, 1983b; Azmy et al, 2011b).
However, the contributions from the elemental compositions of
siliciclastic inclusions, particularly when using XRF analyses, may
mask those from diagenesis. Therefore, correlation with the Sr/Ca
ratio becomes a more reliable proxy of diagenesis since the Sr
contents in siliciclastics are much lower than in those carbonates
(McLennan, 2001; Luan et al., 2024). The poor correlation between
the Sr/Ca and §'°C_,y, values (R* = 0.15; Figure 7B) supports at least
near-primary 8'°C.,, signatures. The Sr/Ca ratios show
insignificant correlations with the P, YREE, and Al (R* = 0.05,
0.003, 0.02, respectively; Figures 7C-E), supporting the preservation
of at least near-primary signatures of those proxies that reflect
ambient paleoenvironmental conditions. Diagenesis alters the
contents of Sr and Mn in carbonate, and the Mn/Sr ratio is
therefore used to assess the degree of diagenesis. Generally, the
Mn/Sr below 10 indicates that the carbonate rock has not
undergone intense alteration, and its isotopic composition can
represent the original sedimentary record; the Mn/Sr below 2
suggests that the sample has well preserved the isotopic
composition of the original seawater (Kaufman and Knoll, 1995),
the Mn/Sr ratios of the investigated carbonates are below 2. The
8'%0 values have to be taken with caution due to resetting by
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FIGURE 3

Field characteristics of Hanwang outcrop showing the depositional transition from underlying thin-layered micrite dolostones to overlying thick-
layered microbialites. (A) Panoramic macro-photos of HW sections (multiple images stitched together), (B) Horizontal bedding at the bottom of
Leikoupo Formation, (C) Micritic dolostones at approximately 160m, (D) Layered structure at the bottom of Leikoupo Formation, (E) Thin dolostone
bed interspersed with dolomicrite at the bottom of Leikoupo Formation, (F) granular dolostone at 180m, (G) bioclastic grain-dominated dolostone at

the bottom of Leikoupo Formation.

dolomitization (Land, 1983, 1992). The Sr/Ca ratios have
insignificant correlations with the Bag Rb/Sr, Th/U, Zn, Cu, Nj,
V, Mo, and Cu values (R* = 0.070, 0.019, 0.004, 0.006, 0.019, 0.024,
0.116, 0.007, 0.004, respectively), which suggest an insignificant
impact of diagenesis on the signatures of those proxies.

4.3 Carbon isotopes and trace elements

The geochemical (isotopic and elemental) results are tabulated
in Appendix 1, and their statistics are in Table 1. Based on the
8"*Cearp profile of the Leikoupo Formation (Figure 8) and
transformation from dolostone to microbiolites division into 3
units. Unit 1 (~ 0-70m; 8"Ceyp, = ~1.8%o to +4.2%0; Table 1)
shows a distinct negative shift (~6%o). Unit2 (~ 70-330m; 8°Cary
=+0.5%o to +3.1%o; Table 1) exhibits a slow positive drift and Unit3
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shows insignificant variations (~ 330-574m; 8"*Ceorpy = +1.5%o to
+2%o; Table 1).

The Vgg (redox proxy; Sliwinski et al., 2010; Dickson and
Cohen, 2012; Tripathy et al,, 2014), Th/U and Mogg values have
ranges of 0.7-62.0, 0.01-1.66, and 1.2-225.3ppm, respectively. The
Vg profile shows a relative increase throughout Unit 2 (2.0 - 62.0
ppm; Table 1) but a decrease throughout Unit 3 (33.8 - 0.7 ppm)
before an inflection near the top of Unit 3. The Mogg Profile is
similar, showing an increase from 8.6 to 124.4 ppm in Unit 2 and a
decrease from 225.3 - 3.7 ppm in Unit 3. On the contrary, the Th/U
profile shows a negative correlation with the Vg profile (Figure 8).

The Pyrg Bagr, Zngp, Cugp, and Nigp values (proxies for
primary productivity; e.g., Reinhard et al., 2017; Alcott et al,
2022; Robacio et al., 2024) have ranges of 19.8-247.8, 0.5-77.47,
1.0-13.2, 1.5-90.0, and 0.8-14.6, respectively (Table 1). The Py,
profile shows minor depletion in Unit 1 (29.7 ppm; Table 1) and no
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major changes in Unit 2, but there is some increase near the top of
Unit 3 (19.8-247.8 ppm; Table 1). Similarly, the Ba,,, Profile shows
no major changes in Unit 2 but an increase near the top of Unit 3
(0.5-77.5 ppm; Table 1; Figure 8). The profiles of Zngg, Nigr, and
Cugr show the same trend, almost flat through Unit 1 but increase
through Unit 2 (Table 1; Figure 5), followed by a decrease in Unit 3
except for a few peaks (Table 1; Figure 8).

The Al (200-17000 ppm; Table 1) and YREE (0.3-59.6 ppm;
Table 1) profiles display similar patterns with high variability in

10.3389/fmars.2025.1663981

Unit 1 compared to Unit 2 but a steady increase in Unit 3 (Figure 8).
The Rb/Sr ratios (0.002-0.327; Table 1) are dominantly below 0.1 in
Unit 2 although they are higher in Units 1 and 3 (Figure 8). The Al,
YREE and Rb/Sr (weathering proxies) profiles show very consistent
and similar trends in Units 1 and 3 compared with those in Unit 2
but the Sr/Cu (paleosalinity proxy, 9.3-117.1; Table 1) shows and
opposite correlation (Figure 8). Unfortunately, measurements of
other key elements such as S, B, and Ga were below method
detection limits and we were unable to use them in the discussion.

{waby-1amyated

g ‘! 3

FIGURE 4

Images from thin sections and field outcrops of the Stromatolite. (A) Field photo showing domal stromatolite morphology (HW sample 540 m),
interpreted as in situ microbial buildup. Note that the black arrows indicate the laminar structure formed in the microbialites. The pen is 20 cm in
length. (B) Stromatolite with laminar structure at approximately 517m, (C) Light grey stromatolite with laminar structure at the middle of Leikoupo
Formation (approximately 470m). Note that the black arrow conveys the same meaning. (D) Stromatolite at approximately 420m Note that the
yellow wavy line represents the structure of wavy-laminated. (E) Stromatolite at 400.15m. Note that the yellow wavy line represents the structure of
wavy-laminated. (F) Dark grey stromatolite at the top of Leikoupo Formation (approximately 510m). Note that the yellow wavy line represents the
structure of a domal-laminated. (G) The single-layer thickness of Microbialites (approximately 500m. The geological hammer is ~40 cm in length.
(H) Transition from thin layer to thick layer in the middle part of the Leikoupo Formation (approximately 250m).
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FIGURE 5

Images from thin sections of the Thrombolite. (A) Thrombolite at approximately 560m, (B) Thrombolite at approximately 547m, (C) Thrombolite at
approximately 542m, (D) Thrombolite at approximately 480m, (E)Thrombolite at approximately 562m, (F) Thrombolite at approximately 540m, (G, H)

Photomicrographs of thrombolite from Sample HW44, HW46 and their close-ups

5 Discussion

5.1 A Middle Triassic stabilized *C platform
post the late Early Triassic severe
fluctuations

The Green Bean Rock (GBR), dated 247.1 to 247.3 Ma (Feng
et al, 2021), is widely distributed in the Upper Yangtze,
constraining the boundary between the Leikoupo and Jialingjiang
formations. And the upper boundary is marked by a distinct
transition to limestone. This limestone is constrained to the
Ladinian (Middle Triassic) by conodont zones documented in
another Hanwang section (Jin et al,, 2018), thereby dating the
boundary. Additionally, in the Middle-Upper Yangtze Platform, the
Luolou Formation from the adjacent area represents different
sedimentary facies from the same period as the Leikoupo

Frontiers in Marine Science

Formation (Tong et al., 2021). The age of the Luolou Formation
has been well constrained to 247.2 Ma-241.5 Ma, providing a
reliable reference for correlation (Li et al.,, 2016). Although this
dolostone succession lacks biostratigraphic controls, C-isotope
stratigraphy can confine the Leikoupo Formation to the Anisian
Stage (Figure 9, Li et al., 2016; Ha et al., 2019).

Aluminum and YREE, both enriched in crustal rocks, are used
as proxies for terrigenous input into the ocean (Sliwinski et al.,
2010) and are analogous to the Rb/Sr ratio due to their distinct
reactivities to weathering processes (Jin et al., 2006). The Rb/Sr and
YREE profiles show a relative enrichment in Unit 1 reflecting the
enhancement of weathering that might have been associated with
the mass burial of organic carbon (e.g., Yang et al., 2014, 2018). This
may also explain the significant positive drift of 8'*>Cey, in Unit 1
(~4%o; Figure 8) compared with the general low values (almost flat
profile) throughout the overlying units. Compared with Sr
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FIGURE 6

Images from thin sections of the microbial debris. (A) Microbialite with microbial debris at approximately 247m. Note that the white circles represent
biological debris structures. (B) Thrombolitic boundstone at 220.15m. Note that the white circles represent clotted structures. (C) Microbialite with
peloidal fabric at approximately 240m, (D) thrombolitic boundstone at approximately 245m. Note that the white circles represent biological debris
structures. (E) Grain thrombolitic boundstone at 217m. (F) Microbialite with microbial debris at 240m. Note that the white circles represent biological

debris structures.

(influenced by evaporation), Cu is an immobile element in
sediments, and the Sr/Cu ratio is therefore utilized as a
paleosalinity proxy subject to evaporation (Lerman et al., 1995).
The Sr/Cu profile shows a negative correlation with the Al, YREE,
and Rb/Sr (weathering proxies) profiles, which is consistent with a
relative decrease in salinity associated with the riverine inputs of
weathered material in Units 1 and 3 compared with Unit 2
(Table 1; Figure 8).

Unit 3 shows a relative decrease in the Vip and Mogg values
despite the relative enhancement of weathering as indicated by the
Al, ¥REE, and Rb/Sr profiles (Table 1; Figure 8), thus denoting a
transition towards more oxic conditions (gliwiﬁski et al., 2010;
Dickson and Cohen, 2012). This is consistent with the correlated
increase exhibited by the P, and Ba,, (organic productivity
proxies; Table 1) profiles and the general trend of decrease by the
Zngp, Cugg, and Nigp (micronutrient proxies) profiles (Figure 8)
that may reflect a relative increase of primary productivity (Alcott
et al, 2022). However, the increase in primary productivity is not
correlated with a considerable stable setting on the §'>C,y, profile,
thus suggesting only a minor change likely under dysoxic rather
than fully oxic conditions (e.g., Azmy et al,, 2011a; Okafor and
Azmy, 2024). This is consistent with the Th/U values that are
entirely< 2 (boundary of anoxic/oxic conditions; Wignall et al.,
2007) and barely reach ~ 1.8 in Units 1 and 3 (Figure 8).

The C-isotope fluctuation (highlighted red part in Figure 9) in
HW section was followed by a 3Ceuny long-term Middle-Triassic
optimum platform period, particularly in Unit 3 (Figure 9). The
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same 8°C.,yp trend of the HanWang section was recorded by
equivalent sections in other regions, showing that the C-isotope
values remained stable at 2%o for a long time; Figure 9, Atudorei
et al., 1997; Chen and Benton, 2012; Li et al., 2016; Ha et al., 2019),
which reflects a gradual attenuation of perturbations in the global
carbon cycle, eventually reaching a steady state. However,
considering that the changed environment will influence the
isotope signatures, we must compare with different sedimentary
facies in the same period. The 8"Ceyp ranges from -2%o to 2.5%o
VPDB across the Early-Middle Triassic transition in the shallow-
water Hanwang section (tidal flat) and shows higher amplitude
shifts (0%0-4%o) in the deep-water Guandao section (basinal).
Crucially, both sections’ profiles have a stable ~2%o during the
Anisian. This synchronicity across disparate environments strongly
suggests that the Anisian 8'°C,,y, stability reflects a regional-to-
global signal rather than local facies.

5.2 The transition from low-rate chemical
to high-rate microbial carbonate factories

The lithological succession changes from the dolomicrites at the
bottom to Microbialits in the middle and top. Although the
sedimentological evidence indicates that the entire Hanwang
section remained within a tidal flat, the Hanwang section exhibits
a distinct vertical transition. The lower part of the Hanwang section
shows the characteristics of the supratidal zone. It is dominated by
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TABLE 1 Summary of statistics of isotopic and trace element geochemical compositions of the Leikoupo Formation carbonates.

Sample  §°CY : REE P Ba
P i NIEF Z org org Rb/Sr VEF CuEF ZnEF Th/U MOEF Sr/Cu
|D) (VPDB) ppm ppm ppm ppm
N 9 9 9 9 9 9 9 9 9 9 9 9 9
Mean 273 1.2 133 74.9 14.8 3600 0.081 37 55 1.7 0.64 59 29.8
Unitl Stdev 213 0.3 10.1 45.2 17.0 3500 0.085 24 2.0 0.5 0.57 6.8 15.8
Max 422 1.6 30.1 148.7 51.5 11400 0.275 8.9 8.8 23 1.66 214 58.4
Min -1.76 0.8 4.2 29.7 0.5 1000 0.018 1.2 2.6 1.0 0.05 12 9.3
N 21 21 21 21 21 21 21 21 21 21 21 21 21
Unit2
Mean 1.86 2.6 2.3 279 6.6 700 0.016 23.1 16.6 54 0.07 34.8 33.0
(Continued)
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TABLE 1 Continued

10.3389/fmars.2025.1663981

Nige 2REE  Porg Cuge Znge  Th/U  Mogr  Sr/Cu
pPM  ppm
Stdev 0.79 2.8 1.8 10.0 13.4 400 0.011 15.3 8.1 2.6 0.07 26.5 12.5
Max 3.09 14.6 9.0 49.6 56.6 1900 0.058 62.0 40.7 13.2 0.37 1244 71.5
Min -0.08 1.0 0.3 19.8 0.5 300 0.006 2.0 52 1.2 0.02 8.6 15.3
N 25 25 25 25 25 25 25 25 25 25 25 25 25
Mean 1.79 2.4 10.4 63.2 12.97 3200 0.070 10.5 11.0 3.7 0.28 39.2 44.0
Unit3 Stdev 041 2.0 12.8 50.5 15.77 3730 0.080 11.0 17.9 3.2 0.42 47.3 31.2
Max 2.55 11.0 59.6 247.8 77.47 17000 0.327 33.8 90.0 11.3 1.62 2253 117.1
Min 1.02 1.0 0.3 19.8 0.5 200 0.002 0.7 1.5 1.1 0.01 3.7 9.6

Porg = [Paample] —[Alsample X (P/ADyccls
Bagry = [Bagumpie] —[Bagmplie X (Ba/Alycc] (e.g. Schoepfer et al,, 2015).
UCC is from McLennan, 2001.

columnar stromatolites in Unit 2, indicating adaptation to high-
energy shallow-water conditions (likely upper intertidal to shallow
subtidal) and characterized by laminar stromatolites in Unit 3,
suggesting deposition in deeper, lower-energy settings (probable

mid-subtidal zone; Riding, 2000). Columnar morphotypes
represent a microbial strategy to resist strong hydrodynamic
forces in shallow environments through vertical accretion. In
contrast, laminar forms develop where reduced wave energy
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the HanWang section.
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FIGURE 9

Carbon isotope stratigraphic correlations of the Leikoupo Formation in the HanWang section (this study); the Guandao section from Li et al., 2018;

North-Central Coast region of Vietnam from Ha et al., 2019; Desli Caira and
section from Chen and Benton, 2012.

permits lateral microbial mat expansion, which is consistent with
regional transgressive trends during the late Anisian (e.g., Haq et al,
1987; Li et al,, 2016).

The thickness of microbial beds is approximately 5 to 10 times
thicker than that of thin non-microbial rocks (from 10-20 cm to 0.5 —
2 m; Figure 4G, H), which is caused by the much greater burial
efficiency of CO;* and HCO;  in Microbialites than in non-microbial
processes (Chen et al., 2022; Boussagol et al., 2024). The considerable
rise in algae photosynthetic activities enhanced carbon sinks, which
influenced carbonate deposits, the burial of organic matter, as well as
establishment of a microbial carbonate factory (Nedelec et al., 2007;
Gerard et al, 2013). For example, cyanobacteria can accelerate the
deposition of carbonate because cyanobacteria actively promote the
formation of Mg-enriched microenvironment and maintain a high pH
and alkalinity (predominantly CO5”>" and HCO;") within the
sedimentary microenvironment (Nedelec et al.,, 2007; Gerard et al,
2013). Contemporary experiments on stromatolites also provided
some supporting evidence (Gerard et al., 2013) since stromatolites
can locally alkalize water, which actively promoted the establishment
of carbonate rock factories and carbon burial. The structure of
cyanobacterial likewise might have provided a potential capacity to
construct frameworks that impeded water flow and trapped
sediments, which accelerated the buildup of microbial carbonate
factory (Geyman et al, 2022, Figure 10). Microbes trap and
adhesion sediments in situ, forming thrombolite with clumpy
internal characteristics and stromatolite with obvious light and dark
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Agighiol section, North-Dobrogea from Atudorei et al.,, 1997; Meishan

bands (Riding, 2000; Wu et al., 2014; Figure 10) to develop layers
of Microbialites.

Following the estimation by Shen et al. (2015) based on
Milankovitch cycle analysis, the carbonate deposition rates in
shallow-water regions dominated by microbialites are relatively
high, with a mean value of 23 cm/kyr. This is consistent with our
data from the Hanwang section, where approximately 250 meters of
Microbialites intervals were deposited within ~1.5 Ma after the
Pelsonian Humid Event. In contrast, the carbonate deposition rate
of non-microbialites in the lower part of the Leikoupo Formation is
approximately 10.0 cm/kyr, and the deposition rate of non-
microbialites at the top of the Jialingjiang Formation is only 4.6
cm/kyr. Following the Mid-Anisian, the increase in sediment flux
and the exponential thickening of microbial carbonate layers served
as evidence for the indispensable role of microorganisms in carbon
sequestration (Chen et al., 2022, Wu et al., 2014), which implies that
the carbon sequestration by microorganisms (Chen et al., 2022)
might have contributed to the acceleration of carbon burial and
onset of a habitable climate.

5.3 A long-term habitable climate linked to
microbial boom during the Middle Triassic

The climatic background of the Early Triassic was characterized
by multiple high-temperature events that led to a slow recovery of
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Expansion of microbialites and changes in carbonate factories from the late Early Triassic to the Middle Triassic.

life (Retallack et al., 2011; Luo et al,, 2010, 2013, and 2014; Song
etal, 2015; Li et al., 2016; Cavicchioli et al., 2019). Among these, the
last extreme event occurred at the Anisian-Olenekian boundary
(OAB event), which caused high temperatures as documented by
the SISOapame (Sun et al,, 2012), ocean hypoxia (Zhou et al., 2017),
and acidification (Figure 11; Song et al., 2015; Feng et al.,, 2021).
During the C-isotope negative drift event of the Late Olenekian, the
8"3Cearp values of the best-preserved marine carbonates worldwide
were recorded as close to —2%o VPDB (shown as the red highlighted
part in Figure 9; Veizer et al, 1999), which is attributed to
contributions from the light CO, associated with the large
volcanic eruptions around the latest Permian-Early Triassic time
interval (Feng et al, 2021; Li et al, 2018). Subsequently, the
temperature began to decline gradually, a process that lasted
approximately 5 Ma, and the climate and environment gradually
transitioned to more habitable conditions. At this stage, the
synchronous decrease in 87Gr/36Sr ratios with pCO, (Veizer et al.,
1999; Hu et al., 2008; Brand et al., 2010; Joachimskil et al., 2022)
suggests that the enhanced weathering can explain the cooling trend
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(Figure 11), as the weathering of silicic rocks consumed CO, and
contributed to a decrease in temperature (e.g., Yang et al,
2014, 2018).

Life evolution also responded to that shift towards more
habitable conditions. Evidence includes the recovery of reefs and
Dasyclad algae (Fliigel, 2002; Payne et al., 2004), the discovery of the
complete marine biological fossils in Luoping (Benton et al., 2013;
Li et al, 2018), the discovery of complete plant fossils in the
dolostone Mountains of northern Italy (Kustatscher et al., 20065
Kustatscher and Roghi, 2006; Kustatscher et al., 2010), as well as the
abundant hygrophytic paleobotanical and palynological
assemblages (Figure 11; Hermann et al., 2012; Retallack, 2013).
Coincidentally, the investigated dolostones of the HanWang section
also document a rapid shift from thin micrite carbonate to thick
microbialites during this crucial transition period (Figure 11). The
same situation occurred in other low-latitude regions during the
Middle Triassic. For instance, sedimentary records of stromatolites
have been documented in places such as the German Basin,
California, Greenland, and the Yunnan Province, South China
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The expansion of the microbial carbon sink coincided with the stabilization of the Middle Triassic climate and the recovery of earth ecosystems. The
8"Cearp is from this study; 80 patite is from Li et al. (2018); Luoping faunas is from Benton et al. (2013); Reef, Global Diversity, Largest known
gastropods and Dasyclad algae are from Flugel (2002) and Payne et al. (2004); Calcareous sponges and Scleractinian corals are from Kiessling et al.
(2002); Reconstruction of atmosphere pCO, is from Joachimskil et al. (2022); Climate is from Stefani et al. (2010); Palaeogeographical map showing

the location of known stromatolite successions in the Middle Triassic.

(e.g., Luo et al, 2014; Pei et al., 2022; Huang et al,,

Palaeogeographical map in Figure 11).

2022;

The global paleoclimate records also revealed a transient wet
phase during the Pelsonian substage (~244.3 Ma; Middle Anisian;
Figure 11; Stefani et al., 2010; Sun et al., 2012). The warm and humid
climate further enhances the abundance of surface runoff and the
intensity of chemical weathering. The weathered organic matter from
terrestrial sources, particularly in warm conditions and high salinity,
decreases the solubility of O, in water (e.g., Li et al., 2020; Zhu et al.,
2023; Okafor and Azmy, 2024; Robacio et al.,, 2024), and converts
phosphorus-containing rock minerals into soluble phosphates (such
as H,PO,, HPO,*) that are carried away by rainwater and surface
runoff to the ocean. The increase in P, inputs is documented in
Middle-Late Anisian (similar evidence also recorded in Unit 3 of the
Hanwang section). A considerable rise in oceanic primary
productivity further fostered a flourishing of microorganisms that
increased carbon sink activity. Meanwhile, enhanced weathering
during the Middle Anisian stage provided Ca®* and HCO5 to the
microbial carbonate factory. This elevated production and
accumulation of carbonates and enhanced lithification. These
processes collectively exerted an advantageous influence on the
2017),
resulting in the establishment of a microbial carbonate factory

establishment of carbonate platforms (Reinhard et al.,

increased the rate of carbonate production and accelerated carbon
burial and the formation of habitable environments. These changes
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synchronized with the restoration of Middle Triassic terrestrial
ecosystems. It means that Microbial carbon sinks can sequester
atmospheric CO, and more resilient burial of 2¢, contributing to
the persistence of the long-term optimal CO; level and Stable 3"Cearb
during the entire Middle Triassic.

6 Conclusion

1. The Leikoupo Formation carbonates of the HanWang section
span the entire Anisian (Middle Triassic) in the southwest of
the Upper Yangtze. Lithofacies and petrographic examinations
reveal a transition from thin layers of dolomicrites to thicker
microbialites, suggesting a microorganism-mediated origin that
enhanced the thickness.

2. The profiles of proxies such as those of terrigenous inputs (Rb/
Sr, XREE, and Al), paleo-redox conditions (Th/U, Vg, Mogg),
and primary productivity (Porg Bagrg Zngp, Cugr, Nigg) show
drastic changes in conditions during the Late Olenekian. The
climate conditions during the middle-late Anisian were
generally stable, with a biologically habitable background
characterized by a recovery in terrigenous input and primary
productivity. The recovery of paleoenvironmental conditions is
consistent with the transition of the carbonate lithofacies
temporally, indicating environmental revival closely
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intertwined with the establishment of a microbial
carbonate factory.

3. The variations of proxy profiles across the investigated
HanWang section support critical changes in global sea level,
paleotemperature, atmosphere pCO,, paleoclimate, and
biological evolution, as well as the global §'">Ceyy, that led to
globally suitable, stable greenhouse climate and played a
significant role in the reproduction, development of
organisms, and the establishment of ecosystems during the
Anisian. The Pelsonian substage is a crucial time for biological
recovery, and the low-latitude microbial carbon sinks may be
an important factor in maintaining a resilient habitable climate.
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