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The Permian-Triassic mass extinction was one of the worst crises for life on earth,

killing >90% of marine species, which induced the carbon cycle perturbation during

the entire Early Triassic. Previous studies indicated the global CO2 concentration

dropped sharply from 2,800 ppmv to a level of approximately 450 ppmv

(comparable to the present) at the Early–Middle Triassic boundary. This optimal

CO2 level, a stabilized record of 2‰ d13Ccarb, persisted throughout the Middle

Triassic. While how this long-term habitable CO2 level was maintained remains

puzzling. Here, we examined the sedimentary succession that spans the duration

from Late Olenekian (late Early Triassic) to Anisian (Middle Triassic), Upper Yangtze

Block. The results show that the volume content of microbialites in the carbonate

succession increased significantly after the transition from lower thin-bedded

dolostones to upper thick-bedded microbialites, indicating the carbon pump

shifted from a low-rate chemical carbonate production system to a high-rate

microbial carbonate factory. The expansion of microbial mats responded to

enhanced terrigenous input and elevated primary productivity. Coincidentally, the

d13Ccarb curve records a change from strong oscillations to a long-term stability.

This turnover coincided with the occurrence of plant fossil assemblages (e.g., from

northern Italy) and marine fossil assemblages (e.g., from South China). The findings

indicate that the enhanced microbial pump, as a dynamic mechanism for

atmospheric CO₂ sequestration, was a key modulator of the Middle Triassic

global climate system and helped sustain more resilient ecosystems.
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1 Introduction

The Permian-Triassic mass extinction (PTME; approximately

252 Ma ago) is the cataclysmic event that led to a restructuring of

marine life (Yin et al., 2001; Sahney and Benton, 2008; Alroy, 2010;

Luo et al., 2010; Luo et al., 2014; Zhou et al., 2017). Following the

extinction, Early Triassic ecosystems experienced a long-term

stepwise rebuilding (Chen and Benton, 2012), and it was not until

the early Middle Triassic epoch (Anisian) that biodiversity and

complexity became comparable to those of pre-extinction faunas

(Payne and Kump, 2007; Stanley, 2009; Whiteside andWard, 2011).

The plant fossil assemblages discovered in the dolostone Mountains

in northern Italy during the Middle Triassic show the rich

assemblages of wetland fossils and spores, indicating the extensive

forest coverage and the absence of xerophytic plant groups in the

setting of warm and humid land climate (Kustatscher et al., 2006;

Kustatscher and Roghi, 2006; Kustatscher et al., 2010), as well as in

the Luoping area of South China during Middle Triassic, marine

biota fossils have been discovered, documenting a complete food

chain from producers to consumers and top predators, also in

response to this transition (Li et al., 2016).

It is commonly perceived that the entire Triassic environment

gradually transformed from extremely warm conditions to a more

habitable climate, characterized by the optimal CO2 concentration

(~400 ppmv; Korte et al., 2005; Kiessling, 2010; Luo, 2011; Luo et al.,

2013). Several Early Triassic warming events were identified at the

late Dienerian-Smithian boundary, in the late Smithian as well as in

the late Spathian (e.g., Li et al., 2016). These warming events,

accompanied by marine anoxia, ocean acidification, and enhanced

weathering, were likely caused by a massive release of volcanic CO2

(Payne et al., 2004; Li et al., 2021). The concentration of CO2

reached 2181–2610 ppmv during the Griesbachian period in the

Early Triassic and remained at 1063–1757 ppmv in the late Early

Triassic. Subsequently, during the transition from the Early to

Middle Triassic, the CO2 level rapidly dropped to 343–634 ppmv

(Haq et al., 1987; Li et al., 2018; Joachimski et al., 2022). Analogous

trends occurred in carbon cycling (Payne and Kump, 2007; Stanley,

2009; Retallack et al., 2011; Luo et al., 2014), reflected by the

multiple strong carbon-isotope oscillations (-2‰ to 5‰) during

the Early Triassic. Subsequently, the d13Ccarb component of the

Anisian in the Middle Triassic gradually stabilized at 2‰

(Korngreen and Bialik, 2015). This optimal CO2 level and Stable

d13Ccarb persisted throughout the Middle Triassic. However, the

reason for the rapid drop in CO2 levels and the long-term carbon-

isotope trend remains enigmatic within the Anisian.

The vast carbonate on shallow water platforms plays a crucial role

in regulating the global carbon cycle and climate change (Geyman

et al., 2022). Although shallow water platforms occupy less than 10%

of the global ocean area, they account for over 90% of total carbon

burial in marine environments (Filbee-Dexter et al., 2024). Therefore,

in the marginal sea area, marine carbonates (microbial lime muds or

microbial dolostones) precipitated by microbial mediations represent

a key modulator of the global climate system (e.g., Lawrence and

Graham, 2012; Geyman et al., 2022). Microorganisms in the profound

transition of Earth’s climate during the Neoproterozoic Great
Frontiers in Marine Science 02
Oxygenation Event and the comparable life-climate co-evolution

processes in the Early Ordovician also reflect the role of regulating

the climate (e.g., Trotter et al., 2008). Marine carbonates archive the

geochemical variations in seawater chemistry associated with

paleoenvironmental changes. Therefore, characteristics of trace

element proxies reflect changes in the ancient environment, such as:

bioproductivity (e.g., Ni, Zn, Cu; Wignall and Twitchett, 1996; Algeo

and Maynard, 2004; Tribovillard et al., 2006; Luan et al., 2024), redox

conditions (e.g., Mo, U, V, Th; Śliwiński et al., 2010; Dickson and

Cohen, 2012; Tripathy et al., 2014), and climate (dry vs. wet) expressed

in riverine inputs of detrital weathered material (e.g., Al, REE; Acharya

et al., 2015; Moei et al., 2020; Wang and Azmy, 2020; Bian et al., 2021).

The microbialite section in the Hanwang area, located on the

western margin of the Upper Yangtze Platform in South China, is

characterized by a gradual transformation from thin-bedded

carbonate at the bottom to microbialite at the top, thus reflecting

the co-evolution of climate and life. The main objectives of the

current study are: (a) To evaluate the degree of petrographic and

geochemical preservation of the investigated microbialites of the

Middle Triassic Leikoupo Formation in the Hanwang section; (b)

To better understand the influence of Middle Anisian climate,

primary productivity, and redox conditions on microbial boom

during Middle Anisian; (c) To investigate the intrinsic connection

between the factors maintaining the long-term optimal CO2 level

and stable carbon isotopes and the dynamic carbon sink of

microorganisms during the Middle Triassic (Anisian) in

South China.
2 Geological setting

The South China Block (SCB) was located in the east of the

Paleo-Tethys during the Middle Triassic (Figure 1A), and this was

primarily composed of the Yangtze and the Cathaysia blocks

(Lehrmann et al., 2009; Zhao et al., 2013). The Southwestern part

of the Upper Yangtze Plate was the Kangdian Paleo-land, which

gradually transitioned to the open platform in the east (Figure 1B,

Faure et al., 2016). A continuous marine carbonate succession was

widely developed in the Yangtze block during the Early-Middle

Triassic that transformed into terrestrial deposits in the Late

Triassic (Feng et al., 1997). The Upper Yangtze Block of South

China was situated at low paleolatitude during the Triassic. It

consists mainly of shallow marine carbonates of a restricted

platform and tidal flat sedimentary facies.

The Hanwang section (E104° 09’ 48.10”, N31° 27’39.14”;

Figure 1C) is in Mianzhu City, Sichuan Province, China. During

the Middle Triassic period, it was surrounded by Paleo-land,

resulting in a relatively low sea level, restricted seawater, and

weak hydrodynamic cycle conditions, which formed a semi-

restricted platform environment, mainly composed of typical

shallow-water sedimentary lithology such as limestone and

dolostone (Huo et al., 2022). The bottom and top of the section

are respectively the Jialingjiang and Tianjingshan formations, and

the main part of the Hanwang section is the Leikoupo Formation

(Figure 1D). There is a lithological transition from dolostones to
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limestone between the Leikoupo Formation and the Tianjinshan

Formation. It is in parallel unconformable contact with the

Jialingjiang Formation, and the boundary between the two is

defined by the typical “Green Bean Rock”, which is a widespread

occurrence of volcanic tuff deposits in the early-middle Triassic

boundary in South China, serving as a clear indicator of the early-

middle Triassic boundary (Chen et al., 2019; He et al., 2019).
3 Samples and methods

Fifty-five fresh carbonate samples were carefully collected from

the outcrop of the Leikoupo Formation and the top of the

Jialingjiang Formation of the Hanwang section (Figures 1C, E

104° 09’ 48.10”, N31° 27’ 39.14”). Thin sections (105) were cut

for petrographic examination, and a clean mirror-image slab of

each thin section was cleaned in a sonic bath with de-ionized water

and dried to be used for geochemical sampling. Chips from the

most micritic spots were ground to 200 mesh in an agate mortar,
Frontiers in Marine Science 03
and 2 subsets were prepared for stable isotope (d13Ccarb and d18O)
and elemental (major and trace element) analyses.

We quantified the proportions of microbialites components in

the thin sections by dividing the field of view into regions measuring

60*45 units and identifying the microbialites components (as

shown in Figure 2). Subsequently, we calculate the proportions

that each component occupies within the visual field. We randomly

select multiple fields of view (typically more than five) and average

the calculated proportion values across these views, which ensures

the randomness and reliability of the data.

Carbon and oxygen isotope compositions of 55 samples were

measured at the Nanjing Hongchuang Exploration Technology

Service Co., Ltd, Nanjing, China. The sample powder was reacted

in an inert atmosphere with ultrapure concentrated (100%)

orthophosphoric acid at 70°C in a ThermoFinnigan GasBench II.

The produced gas was introduced into the IRMS (Ionic ratio mass

spectrometer, MAT253) by sampling through the standard 100 mL
sample loop, and CO2 was separated from other components using

a gas chromatographic column (Poraplot Q with fused silica tubing,
FIGURE 1

Geological background of the study area. (A) Palaeogeographic reconstruction of the Anisian (Early Middle Triassic) (modified from Huo et al., 2022).
(B) Lithofacies paleogeographic map of South China showing major blocks of the Upper Yangtze Plate (modified from Li et al., 2016). (C) Lithofacies
paleogeographic map of the Leikoupo Formation in the Middle Triassic. The red arrow indicates the approximate location of the study area (Han
Wang section, E104°09’48.10”, N31°27’39.14”). (D) Stratigraphic framework of the HanWang section and sampling depths.
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25m×0.32mm, Thermo Fisher Scientific), heated to 70°C. The peak

corresponding to CO2 was passed via an open split into the mass

spectrometer. Isotope ratios are reported in per mil (‰) notation

relative to the Vienna Pee Dee Belemnite standard (VPDB ‰).

Samples were calibrated using four China standards (GBW04405,

GBW04406, GBW04416, and GBW04417). The uncertainty (1s),
calculated from standards per run, is typically 0.1‰.

Major and trace elements (Appendix 1) were measured by a

ZSX Primus II X-ray fluorescence spectrometer. 50 mg of the

sample powder was dissolved in 1 M acetic acid in a small beaker

placed in an ultrasonic water bath at 30°C for 30 min, and the

solution was left at room temperature for 12h. The solution was

centrifuged and washed 3 times with de-ionized water, and the

residue was dried and weighed to calculate the percent of soluble

material. The supernatant was then evaporated to near dryness at

120°C and redissolved in 0.2M HNO3. The analysis process adopts

China standards GBW07314, GBW07315, GBW07316, and USGS

basalt standard material 6BHVO - 2 for quality control, and

uncertainty was generally better than 5%.

Since analysis results are based on the total composition of the

samples (carbonates and siliciclastic inclusions), the enrichment
Frontiers in Marine Science 04
factor values of the paleoenvironmental proxies were utilized to

minimize the influence of contributions from siliciclastic inclusions,

in case they occur. The enrichment factor was calculated using the

equation (Tribovillard et al., 2006):

XEF = [(X/Al)Sample/(X/Al)UCC] where X is the proxy element

and X and Al values (in ppm) are normalized to upper crust

composition (UCC; McLennan, 2001; Tribovillard et al., 2006).
4 Results

4.1 Petrography of microbialites

The basal boundary of the Leikoupo Formation is identified by

the “Green Bean Rock (GBR)”, which caps the Jialingjiang

Formation. The top boundary of the Leikoupo Formation is a

lithological transition that is from microbial dolostone to

limestone (Tianjinshan Formation). Macroscopically, the

succession of the Leikoupo Formation is characterized by thin

layers of dolostones in the lower part, but thick layers of

microbialites in the upper part (Figure 3A).
FIGURE 2

Photomicrographs of microbialites (Stromatolites in blue and Thrombolites in gray) in thin sections from the Leikoupo Formation Samples (A) HW36;
(B) HW44; (C) HW45 showing different modes of occurrences with their sketches (D–F), and biological content statistics (G–I), respectively.
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The lower non-microbial portion is dominated by micritic

dolostone beds interbedded with grainy dolostone and thin fine-

grained claystone layers (Figures 3B–F). The grainy dolostones occur

with horizontal bedding and cross-stratification (Figures 3C, D).

The microbialites in the upper portion of Leikoupo Formation

include three types in microtexture: thrombolites, Microbial debris,

and laminated stromatolite (Figures 4–6).

(1) Stromatolites: They occur as regular linear structures or the

layered structure with convex-upward characteristics, alternating dark

and light layers, and a thickness generally tens of centimeters

(Figures 4A, B, G). The dark bands are typically organic-rich, but the

lighter bands consist of trapped sediments. Based on morphology,

stromatolites are classified into three fundamental types: (a) Planar

stromatolites with tabular laminae (Figures 4A–C), (b) wavy

Stromatolites showing sinuous undulations (Figures 4B, C), (c) domal

Stromatolites characterized by convex-upward laminations (Figure 4F).

(2) Thrombolites: It is typically lack distinct structures and

instead exhibit large, dark-colored clumps (Figures 5A–C). The

microtexture of thrombolites occurs as narrow-laminar or pelletoid

structures (with thickness< 0.1 m; Figures 5D–F), and often can be

observed large numbers of tens of millimeter clots. The

Thrombolites generally developed between the stromatolitic layers

in the middle-Late Anisian. A few samples from the top microbialite

exhibit minor recrystallization with crystals up to 70 mm
(Figures 5G, H).

(3) Microbial debris: It is composed predominantly of grayish-

white clumps and sand-sized particles (Figures 6A–F). Usually,

obvious microbial debris and clotted structures can be observed

(Figures 6B, D, F). In a few samples, due to slight recrystallization,

the edges of the microbial debris structure become blurred (Figure 6A).
4.2 Evaluation of sample preservation

Diagenesis of marine carbonates significantly alters their

geochemical compositions (Veizer, 1983b; Swart and Eberli, 2005;

Azmy et al., 2011a). Therefore, it is crucial to evaluate their degree

of petrographic and geochemical preservation. Petrographic

examination has shown that the investigated carbonates are

mainly dolostones with micritic (≤ 4mm) to near-micritic/

microsparitic (≤ 10mm) grain size, suggesting a high degree of

textural preservation and almost pristine sedimentary fabrics with

insignificant recrystallization (e.g., Wang et al., 2023; Xia et al.,

2023), which is consistent with a previous study (Wang et al., 2023)

that proved the microbial origin of the Leikoupo Formation

dolostones. However, a few samples (Figures 5G, H), with

particularly high ∑REE (15–59 ppm; Figure 7; Appendix 1), show

some minor recrystallization (up to 70 mm). The ∑REE values are

sensitive to diagenetic alteration and increase considerably with

diagenetic alteration (Azmy et al., 2015). Thus, the retention of

microbial fabrics and micritic (≤ 4 mm) to near-micritic (4−10 mm)

grains supports an early stage of dolomitization at the surface to

near-surface conditions. The lack of evaporite interbeds (e.g.,

gypsum or anhydrite) in the HanWang section carbonates does

not support a sabkha origin (e.g., Azmy et al., 2001), which is
Frontiers in Marine Science 05
consistent with lower [Sr] contents of the investigated dolostones

relative to those of Sabkha sediments ≥ 470 ppm (Veizer, 1983a,

their table 3.3).

In addition, the molar Sr/Ca ratio of carbonates may provide

clues about their parent fluids, given that the estimates of the Sr

distribution coefficient (DSr=0.05–0.06) between the fluid and the

precipitated dolostone have been already established (Banner, 1995)

since (mSr/mCa)dolostone = DSr (
mSr/mCa)fluid. The estimates of the

mean (mSr/mCa)fluid of the investigated dolostones range from

0.0039 to 0.0046, which are lower than the values of modern

seawater (0.0086; Drever, 1988). Therefore, those dolostones were

originally microbial lime muds that were dolomitized at early stages

of diagenesis under surface conditions, likely by seawater that was

mixed with meteoric waters, which agrees with the lack of evaporite

interbeds and argues against a sabkha origin.

During diagenesis, the d18O values are generally depleted by

water/interactions, particularly (Okafor and Azmy, 2024). However,

unless there is pronounced organic matter alteration involved, the

d13Ccarb values are relatively less susceptible to diagenetic alteration

(Swart, 2015) and carbonates may, therefore, retain at least their

near-primary C-isotope composition. Therefore, the insignificant

correlation between the d13Ccarb and d18O values (R2 = 0.1,

Figure 7A) suggests the preservation of at least near-primary

d13Ccarb (e.g., Luan et al., 2024; Okafor and Azmy, 2024; Robacio

et al., 2024). This is supported by the d13Ccarb values of the Leikoupo

Formation carbonates that fall within the range of the best-

preserved Middle Triassic marine carbonates (Veizer et al., 1999).

On the other hand, the d18O values are dominantly higher than

those of the Middle Triassic marine carbonates (≥-2‰; Figure 7A),

likely reflecting the influence of dolomitization and hot weather

(Land, 1983, 1992).

The diagenetic alteration of carbonates leads to a significant

decrease in their Sr contents but enrichment in other proxies such

as Al, ∑REE, Mn, and Fe (Veizer, 1983b; Azmy et al., 2011b).

However, the contributions from the elemental compositions of

siliciclastic inclusions, particularly when using XRF analyses, may

mask those from diagenesis. Therefore, correlation with the Sr/Ca

ratio becomes a more reliable proxy of diagenesis since the Sr

contents in siliciclastics are much lower than in those carbonates

(McLennan, 2001; Luan et al., 2024). The poor correlation between

the Sr/Ca and d13Ccarb values (R
2 = 0.15; Figure 7B) supports at least

near-primary d13Ccarb signatures. The Sr/Ca ratios show

insignificant correlations with the Porg, ∑REE, and Al (R2 = 0.05,

0.003, 0.02, respectively; Figures 7C–E), supporting the preservation

of at least near-primary signatures of those proxies that reflect

ambient paleoenvironmental conditions. Diagenesis alters the

contents of Sr and Mn in carbonate, and the Mn/Sr ratio is

therefore used to assess the degree of diagenesis. Generally, the

Mn/Sr below 10 indicates that the carbonate rock has not

undergone intense alteration, and its isotopic composition can

represent the original sedimentary record; the Mn/Sr below 2

suggests that the sample has well preserved the isotopic

composition of the original seawater (Kaufman and Knoll, 1995),

the Mn/Sr ratios of the investigated carbonates are below 2. The

d18O values have to be taken with caution due to resetting by
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dolomitization (Land, 1983, 1992). The Sr/Ca ratios have

insignificant correlations with the Baorg, Rb/Sr, Th/U, Zn, Cu, Ni,

V, Mo, and Cu values (R2 = 0.070, 0.019, 0.004, 0.006, 0.019, 0.024,

0.116, 0.007, 0.004, respectively), which suggest an insignificant

impact of diagenesis on the signatures of those proxies.
4.3 Carbon isotopes and trace elements

The geochemical (isotopic and elemental) results are tabulated

in Appendix 1, and their statistics are in Table 1. Based on the

d13Ccarb profile of the Leikoupo Formation (Figure 8) and

transformation from dolostone to microbiolites division into 3

units. Unit 1 (~ 0–70m; d13Ccarb = –1.8‰ to +4.2‰; Table 1)

shows a distinct negative shift (~6‰). Unit2 (~ 70–330m; d13Ccarb

=+0.5‰ to +3.1‰; Table 1) exhibits a slow positive drift and Unit3
Frontiers in Marine Science 06
shows insignificant variations (~ 330–574m; d13Ccarb = +1.5‰ to

+2‰; Table 1).

The VEF (redox proxy; Śliwiński et al., 2010; Dickson and

Cohen, 2012; Tripathy et al., 2014), Th/U and MoEF values have

ranges of 0.7–62.0, 0.01–1.66, and 1.2–225.3ppm, respectively. The

VEF profile shows a relative increase throughout Unit 2 (2.0 - 62.0

ppm; Table 1) but a decrease throughout Unit 3 (33.8 - 0.7 ppm)

before an inflection near the top of Unit 3. The MoEF Profile is

similar, showing an increase from 8.6 to 124.4 ppm in Unit 2 and a

decrease from 225.3 - 3.7 ppm in Unit 3. On the contrary, the Th/U

profile shows a negative correlation with the VEF profile (Figure 8).

The Porg, Baorg, ZnEF, CuEF, and NiEF values (proxies for

primary productivity; e.g., Reinhard et al., 2017; Alcott et al.,

2022; Robacio et al., 2024) have ranges of 19.8–247.8, 0.5–77.47,

1.0–13.2, 1.5–90.0, and 0.8–14.6, respectively (Table 1). The Porg
profile shows minor depletion in Unit 1 (29.7 ppm; Table 1) and no
FIGURE 3

Field characteristics of Hanwang outcrop showing the depositional transition from underlying thin-layered micrite dolostones to overlying thick-
layered microbialites. (A) Panoramic macro-photos of HW sections (multiple images stitched together), (B) Horizontal bedding at the bottom of
Leikoupo Formation, (C) Micritic dolostones at approximately 160m, (D) Layered structure at the bottom of Leikoupo Formation, (E) Thin dolostone
bed interspersed with dolomicrite at the bottom of Leikoupo Formation, (F) granular dolostone at 180m, (G) bioclastic grain-dominated dolostone at
the bottom of Leikoupo Formation.
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major changes in Unit 2, but there is some increase near the top of

Unit 3 (19.8–247.8 ppm; Table 1). Similarly, the Baorg Profile shows

no major changes in Unit 2 but an increase near the top of Unit 3

(0.5–77.5 ppm; Table 1; Figure 8). The profiles of ZnEF, NiEF, and

CuEF show the same trend, almost flat through Unit 1 but increase

through Unit 2 (Table 1; Figure 5), followed by a decrease in Unit 3

except for a few peaks (Table 1; Figure 8).

The Al (200–17000 ppm; Table 1) and ∑REE (0.3–59.6 ppm;

Table 1) profiles display similar patterns with high variability in
Frontiers in Marine Science 07
Unit 1 compared to Unit 2 but a steady increase in Unit 3 (Figure 8).

The Rb/Sr ratios (0.002–0.327; Table 1) are dominantly below 0.1 in

Unit 2 although they are higher in Units 1 and 3 (Figure 8). The Al,

∑REE and Rb/Sr (weathering proxies) profiles show very consistent

and similar trends in Units 1 and 3 compared with those in Unit 2

but the Sr/Cu (paleosalinity proxy, 9.3–117.1; Table 1) shows and

opposite correlation (Figure 8). Unfortunately, measurements of

other key elements such as S, B, and Ga were below method

detection limits and we were unable to use them in the discussion.
FIGURE 4

Images from thin sections and field outcrops of the Stromatolite. (A) Field photo showing domal stromatolite morphology (HW sample 540 m),
interpreted as in situ microbial buildup. Note that the black arrows indicate the laminar structure formed in the microbialites. The pen is 20 cm in
length. (B) Stromatolite with laminar structure at approximately 517m, (C) Light grey stromatolite with laminar structure at the middle of Leikoupo
Formation (approximately 470m). Note that the black arrow conveys the same meaning. (D) Stromatolite at approximately 420m Note that the
yellow wavy line represents the structure of wavy-laminated. (E) Stromatolite at 400.15m. Note that the yellow wavy line represents the structure of
wavy-laminated. (F) Dark grey stromatolite at the top of Leikoupo Formation (approximately 510m). Note that the yellow wavy line represents the
structure of a domal-laminated. (G) The single-layer thickness of Microbialites (approximately 500m. The geological hammer is ~40 cm in length.
(H) Transition from thin layer to thick layer in the middle part of the Leikoupo Formation (approximately 250m).
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5 Discussion

5.1 A Middle Triassic stabilized 13C platform
post the late Early Triassic severe
fluctuations

The Green Bean Rock (GBR), dated 247.1 to 247.3 Ma (Feng

et al., 2021), is widely distributed in the Upper Yangtze,

constraining the boundary between the Leikoupo and Jialingjiang

formations. And the upper boundary is marked by a distinct

transition to limestone. This limestone is constrained to the

Ladinian (Middle Triassic) by conodont zones documented in

another Hanwang section (Jin et al., 2018), thereby dating the

boundary. Additionally, in the Middle-Upper Yangtze Platform, the

Luolou Formation from the adjacent area represents different

sedimentary facies from the same period as the Leikoupo
Frontiers in Marine Science 08
Formation (Tong et al., 2021). The age of the Luolou Formation

has been well constrained to 247.2 Ma–241.5 Ma, providing a

reliable reference for correlation (Li et al., 2016). Although this

dolostone succession lacks biostratigraphic controls, C-isotope

stratigraphy can confine the Leikoupo Formation to the Anisian

Stage (Figure 9, Li et al., 2016; Ha et al., 2019).

Aluminum and ∑REE, both enriched in crustal rocks, are used

as proxies for terrigenous input into the ocean (Śliwiński et al.,

2010) and are analogous to the Rb/Sr ratio due to their distinct

reactivities to weathering processes (Jin et al., 2006). The Rb/Sr and

∑REE profiles show a relative enrichment in Unit 1 reflecting the

enhancement of weathering that might have been associated with

the mass burial of organic carbon (e.g., Yang et al., 2014, 2018). This

may also explain the significant positive drift of d13Ccarb in Unit 1

(~4‰; Figure 8) compared with the general low values (almost flat

profile) throughout the overlying units. Compared with Sr
FIGURE 5

Images from thin sections of the Thrombolite. (A) Thrombolite at approximately 560m, (B) Thrombolite at approximately 547m, (C) Thrombolite at
approximately 542m, (D) Thrombolite at approximately 480m, (E)Thrombolite at approximately 562m, (F) Thrombolite at approximately 540m, (G, H)
Photomicrographs of thrombolite from Sample HW44, HW46 and their close-ups.
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(influenced by evaporation), Cu is an immobile element in

sediments, and the Sr/Cu ratio is therefore utilized as a

paleosalinity proxy subject to evaporation (Lerman et al., 1995).

The Sr/Cu profile shows a negative correlation with the Al, ∑REE,

and Rb/Sr (weathering proxies) profiles, which is consistent with a

relative decrease in salinity associated with the riverine inputs of

weathered material in Units 1 and 3 compared with Unit 2

(Table 1; Figure 8).

Unit 3 shows a relative decrease in the VEF and MoEF values

despite the relative enhancement of weathering as indicated by the

Al, ∑REE, and Rb/Sr profiles (Table 1; Figure 8), thus denoting a

transition towards more oxic conditions (Śliwiński et al., 2010;

Dickson and Cohen, 2012). This is consistent with the correlated

increase exhibited by the Porg and Baorg (organic productivity

proxies; Table 1) profiles and the general trend of decrease by the

ZnEF, CuEF, and NiEF (micronutrient proxies) profiles (Figure 8)

that may reflect a relative increase of primary productivity (Alcott

et al., 2022). However, the increase in primary productivity is not

correlated with a considerable stable setting on the d13Ccarb profile,

thus suggesting only a minor change likely under dysoxic rather

than fully oxic conditions (e.g., Azmy et al., 2011a; Okafor and

Azmy, 2024). This is consistent with the Th/U values that are

entirely< 2 (boundary of anoxic/oxic conditions; Wignall et al.,

2007) and barely reach ~ 1.8 in Units 1 and 3 (Figure 8).

The C-isotope fluctuation (highlighted red part in Figure 9) in

HW section was followed by a d13Ccarb long-term Middle-Triassic

optimum platform period, particularly in Unit 3 (Figure 9). The
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same d13Ccarb trend of the HanWang section was recorded by

equivalent sections in other regions, showing that the C-isotope

values remained stable at 2‰ for a long time; Figure 9, Atudorei

et al., 1997; Chen and Benton, 2012; Li et al., 2016; Ha et al., 2019),

which reflects a gradual attenuation of perturbations in the global

carbon cycle, eventually reaching a steady state. However,

considering that the changed environment will influence the

isotope signatures, we must compare with different sedimentary

facies in the same period. The d13Ccarb ranges from -2‰ to 2.5‰

VPDB across the Early–Middle Triassic transition in the shallow-

water Hanwang section (tidal flat) and shows higher amplitude

shifts (0‰-4‰) in the deep-water Guandao section (basinal).

Crucially, both sections’ profiles have a stable ~2‰ during the

Anisian. This synchronicity across disparate environments strongly

suggests that the Anisian d13Ccarb stability reflects a regional-to-

global signal rather than local facies.
5.2 The transition from low-rate chemical
to high-rate microbial carbonate factories

The lithological succession changes from the dolomicrites at the

bottom to Microbialits in the middle and top. Although the

sedimentological evidence indicates that the entire Hanwang

section remained within a tidal flat, the Hanwang section exhibits

a distinct vertical transition. The lower part of the Hanwang section

shows the characteristics of the supratidal zone. It is dominated by
FIGURE 6

Images from thin sections of the microbial debris. (A) Microbialite with microbial debris at approximately 247m. Note that the white circles represent
biological debris structures. (B) Thrombolitic boundstone at 220.15m. Note that the white circles represent clotted structures. (C) Microbialite with
peloidal fabric at approximately 240m, (D) thrombolitic boundstone at approximately 245m. Note that the white circles represent biological debris
structures. (E) Grain thrombolitic boundstone at 217m. (F) Microbialite with microbial debris at 240m. Note that the white circles represent biological
debris structures.
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FIGURE 7

Cross-plots of (A) d¹³Ccarb versus d¹⁸O and Sr/Ca versus (B) d¹³Ccarb; (C) Porg; (D) ∑REE; (E) Al; and (F) Mn/Sr for samples from the Hw section.
The square in (A) marks the range of composition of best-preserved Middle Triassic marine carbonates (Veizer et al., 1999).
TABLE 1 Summary of statistics of isotopic and trace element geochemical compositions of the Leikoupo Formation carbonates.

Unit
Sample

ID
d13C‰
(VPDB)

NiEF
∑REE
ppm

Porg

ppm
Baorg
ppm

Al
ppm

Rb/Sr VEF CuEF ZnEF Th/U MoEF Sr/Cu

Unit1

N 9 9 9 9 9 9 9 9 9 9 9 9 9

Mean 2.73 1.2 13.3 74.9 14.8 3600 0.081 3.7 5.5 1.7 0.64 5.9 29.8

Stdev 2.13 0.3 10.1 45.2 17.0 3500 0.085 2.4 2.0 0.5 0.57 6.8 15.8

Max 4.22 1.6 30.1 148.7 51.5 11400 0.275 8.9 8.8 2.3 1.66 21.4 58.4

Min -1.76 0.8 4.2 29.7 0.5 1000 0.018 1.2 2.6 1.0 0.05 1.2 9.3

Unit2
N 21 21 21 21 21 21 21 21 21 21 21 21 21

Mean 1.86 2.6 2.3 27.9 6.6 700 0.016 23.1 16.6 5.4 0.07 34.8 33.0

(Continued)
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columnar stromatolites in Unit 2, indicating adaptation to high-

energy shallow-water conditions (likely upper intertidal to shallow

subtidal) and characterized by laminar stromatolites in Unit 3,

suggesting deposition in deeper, lower-energy settings (probable
Frontiers in Marine Science 11
mid-subtidal zone; Riding, 2000). Columnar morphotypes

represent a microbial strategy to resist strong hydrodynamic

forces in shallow environments through vertical accretion. In

contrast, laminar forms develop where reduced wave energy
TABLE 1 Continued

Unit
Sample

ID
d13C‰
(VPDB)

NiEF
∑REE
ppm

Porg

ppm
Baorg
ppm

Al
ppm

Rb/Sr VEF CuEF ZnEF Th/U MoEF Sr/Cu

Stdev 0.79 2.8 1.8 10.0 13.4 400 0.011 15.3 8.1 2.6 0.07 26.5 12.5

Max 3.09 14.6 9.0 49.6 56.6 1900 0.058 62.0 40.7 13.2 0.37 124.4 71.5

Min -0.08 1.0 0.3 19.8 0.5 300 0.006 2.0 5.2 1.2 0.02 8.6 15.3

Unit3

N 25 25 25 25 25 25 25 25 25 25 25 25 25

Mean 1.79 2.4 10.4 63.2 12.97 3200 0.070 10.5 11.0 3.7 0.28 39.2 44.0

Stdev 0.41 2.0 12.8 50.5 15.77 3730 0.080 11.0 17.9 3.2 0.42 47.3 31.2

Max 2.55 11.0 59.6 247.8 77.47 17000 0.327 33.8 90.0 11.3 1.62 225.3 117.1

Min 1.02 1.0 0.3 19.8 0.5 200 0.002 0.7 1.5 1.1 0.01 3.7 9.6
fro
Porg = ½Psample � �½Alsample � (P=Al)UCC�;
Baorg = ½Basample � �½Basample � (Ba=Al)UCC� (e.g. Schoepfer et al., 2015).
UCC is from McLennan, 2001.
FIGURE 8

Profile of the enrichment factor of the geochemical proxies (d13Ccarb, Rb/Sr, Al, ∑REE, Baorg, Porg, VEF, NiEF, CuEF, ZnEF, Th/U, MoEF, Sr/Cu) across
the HanWang section.
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permits lateral microbial mat expansion, which is consistent with

regional transgressive trends during the late Anisian (e.g., Haq et al.,

1987; Li et al., 2016).

The thickness of microbial beds is approximately 5 to 10 times

thicker than that of thin non-microbial rocks (from 10–20 cm to 0.5 –

2 m; Figure 4G, H), which is caused by the much greater burial

efficiency of CO3
2- and HCO3

- in Microbialites than in non-microbial

processes (Chen et al., 2022; Boussagol et al., 2024). The considerable

rise in algae photosynthetic activities enhanced carbon sinks, which

influenced carbonate deposits, the burial of organic matter, as well as

establishment of a microbial carbonate factory (Nédélec et al., 2007;

Gérard et al., 2013). For example, cyanobacteria can accelerate the

deposition of carbonate because cyanobacteria actively promote the

formation ofMg-enrichedmicroenvironment andmaintain a high pH

and alkalinity (predominantly CO3
2- and HCO3

-) within the

sedimentary microenvironment (Nédélec et al., 2007; Gérard et al.,

2013). Contemporary experiments on stromatolites also provided

some supporting evidence (Gérard et al., 2013) since stromatolites

can locally alkalize water, which actively promoted the establishment

of carbonate rock factories and carbon burial. The structure of

cyanobacterial likewise might have provided a potential capacity to

construct frameworks that impeded water flow and trapped

sediments, which accelerated the buildup of microbial carbonate

factory (Geyman et al., 2022, Figure 10). Microbes trap and

adhesion sediments in situ, forming thrombolite with clumpy

internal characteristics and stromatolite with obvious light and dark
Frontiers in Marine Science 12
bands (Riding, 2000; Wu et al., 2014; Figure 10) to develop layers

of Microbialites.

Following the estimation by Shen et al. (2015) based on

Milankovitch cycle analysis, the carbonate deposition rates in

shallow-water regions dominated by microbialites are relatively

high, with a mean value of 23 cm/kyr. This is consistent with our

data from the Hanwang section, where approximately 250 meters of

Microbialites intervals were deposited within ~1.5 Ma after the

Pelsonian Humid Event. In contrast, the carbonate deposition rate

of non-microbialites in the lower part of the Leikoupo Formation is

approximately 10.0 cm/kyr, and the deposition rate of non-

microbialites at the top of the Jialingjiang Formation is only 4.6

cm/kyr. Following the Mid-Anisian, the increase in sediment flux

and the exponential thickening of microbial carbonate layers served

as evidence for the indispensable role of microorganisms in carbon

sequestration (Chen et al., 2022, Wu et al., 2014), which implies that

the carbon sequestration by microorganisms (Chen et al., 2022)

might have contributed to the acceleration of carbon burial and

onset of a habitable climate.
5.3 A long-term habitable climate linked to
microbial boom during the Middle Triassic

The climatic background of the Early Triassic was characterized

by multiple high-temperature events that led to a slow recovery of
FIGURE 9

Carbon isotope stratigraphic correlations of the Leikoupo Formation in the HanWang section (this study); the Guandao section from Li et al., 2018;
North-Central Coast region of Vietnam from Ha et al., 2019; Desli Caira and Agighiol section, North-Dobrogea from Atudorei et al., 1997; Meishan
section from Chen and Benton, 2012.
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life (Retallack et al., 2011; Luo et al., 2010, 2013, and 2014; Song

et al., 2015; Li et al., 2016; Cavicchioli et al., 2019). Among these, the

last extreme event occurred at the Anisian-Olenekian boundary

(OAB event), which caused high temperatures as documented by

the d18Oapatite (Sun et al., 2012), ocean hypoxia (Zhou et al., 2017),

and acidification (Figure 11; Song et al., 2015; Feng et al., 2021).

During the C-isotope negative drift event of the Late Olenekian, the

d13Ccarb values of the best-preserved marine carbonates worldwide

were recorded as close to –2‰ VPDB (shown as the red highlighted

part in Figure 9; Veizer et al., 1999), which is attributed to

contributions from the light CO2 associated with the large

volcanic eruptions around the latest Permian-Early Triassic time

interval (Feng et al., 2021; Li et al., 2018). Subsequently, the

temperature began to decline gradually, a process that lasted

approximately 5 Ma, and the climate and environment gradually

transitioned to more habitable conditions. At this stage, the

synchronous decrease in 87Sr/86Sr ratios with pCO2 (Veizer et al.,

1999; Hu et al., 2008; Brand et al., 2010; Joachimskil et al., 2022)

suggests that the enhanced weathering can explain the cooling trend
Frontiers in Marine Science 13
(Figure 11), as the weathering of silicic rocks consumed CO2 and

contributed to a decrease in temperature (e.g., Yang et al.,

2014, 2018).

Life evolution also responded to that shift towards more

habitable conditions. Evidence includes the recovery of reefs and

Dasyclad algae (Flügel, 2002; Payne et al., 2004), the discovery of the

complete marine biological fossils in Luoping (Benton et al., 2013;

Li et al., 2018), the discovery of complete plant fossils in the

dolostone Mountains of northern Italy (Kustatscher et al., 2006;

Kustatscher and Roghi, 2006; Kustatscher et al., 2010), as well as the

abundant hygrophytic paleobotanical and palynological

assemblages (Figure 11; Hermann et al., 2012; Retallack, 2013).

Coincidentally, the investigated dolostones of the HanWang section

also document a rapid shift from thin micrite carbonate to thick

microbialites during this crucial transition period (Figure 11). The

same situation occurred in other low-latitude regions during the

Middle Triassic. For instance, sedimentary records of stromatolites

have been documented in places such as the German Basin,

California, Greenland, and the Yunnan Province, South China
FIGURE 10

Expansion of microbialites and changes in carbonate factories from the late Early Triassic to the Middle Triassic.
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(e.g., Luo et al., 2014; Pei et al., 2022; Huang et al., 2022;

Palaeogeographical map in Figure 11).

The global paleoclimate records also revealed a transient wet

phase during the Pelsonian substage (~244.3 Ma; Middle Anisian;

Figure 11; Stefani et al., 2010; Sun et al., 2012). The warm and humid

climate further enhances the abundance of surface runoff and the

intensity of chemical weathering. The weathered organic matter from

terrestrial sources, particularly in warm conditions and high salinity,

decreases the solubility of O2 in water (e.g., Li et al., 2020; Zhu et al.,

2023; Okafor and Azmy, 2024; Robacio et al., 2024), and converts

phosphorus-containing rock minerals into soluble phosphates (such

as H2PO4
-, HPO4

2-) that are carried away by rainwater and surface

runoff to the ocean. The increase in Porg inputs is documented in

Middle-Late Anisian (similar evidence also recorded in Unit 3 of the

Hanwang section). A considerable rise in oceanic primary

productivity further fostered a flourishing of microorganisms that

increased carbon sink activity. Meanwhile, enhanced weathering

during the Middle Anisian stage provided Ca2+ and HCO3
- to the

microbial carbonate factory. This elevated production and

accumulation of carbonates and enhanced lithification. These

processes collectively exerted an advantageous influence on the

establishment of carbonate platforms (Reinhard et al., 2017),

resulting in the establishment of a microbial carbonate factory

increased the rate of carbonate production and accelerated carbon

burial and the formation of habitable environments. These changes
Frontiers in Marine Science 14
synchronized with the restoration of Middle Triassic terrestrial

ecosystems. It means that Microbial carbon sinks can sequester

atmospheric CO2 and more resilient burial of 12C, contributing to

the persistence of the long-term optimal CO2 level and Stable d13Ccarb

during the entire Middle Triassic.
6 Conclusion
1. The Leikoupo Formation carbonates of the HanWang section

span the entire Anisian (Middle Triassic) in the southwest of

the Upper Yangtze. Lithofacies and petrographic examinations

reveal a transition from thin layers of dolomicrites to thicker

microbialites, suggesting a microorganism-mediated origin that

enhanced the thickness.

2. The profiles of proxies such as those of terrigenous inputs (Rb/

Sr, ∑REE, and Al), paleo-redox conditions (Th/U, VEF, MoEF),

and primary productivity (Porg, Baorg, ZnEF, CuEF, NiEF) show

drastic changes in conditions during the Late Olenekian. The

climate conditions during the middle-late Anisian were

generally stable, with a biologically habitable background

characterized by a recovery in terrigenous input and primary

productivity. The recovery of paleoenvironmental conditions is

consistent with the transition of the carbonate lithofacies

temporally, indicating environmental revival closely
FIGURE 11

The expansion of the microbial carbon sink coincided with the stabilization of the Middle Triassic climate and the recovery of earth ecosystems. The
d13Ccarb is from this study; d18Oapatite is from Li et al. (2018); Luoping faunas is from Benton et al. (2013); Reef, Global Diversity, Largest known
gastropods and Dasyclad algae are from Flügel (2002) and Payne et al. (2004); Calcareous sponges and Scleractinian corals are from Kiessling et al.
(2002); Reconstruction of atmosphere pCO2 is from Joachimskil et al. (2022); Climate is from Stefani et al. (2010); Palaeogeographical map showing
the location of known stromatolite successions in the Middle Triassic.
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Fron
intertwined with the establishment of a microbial

carbonate factory.

3. The variations of proxy profiles across the investigated

HanWang section support critical changes in global sea level,

paleotemperature, atmosphere pCO2, paleoclimate, and

biological evolution, as well as the global d13Ccarb that led to

globally suitable, stable greenhouse climate and played a

significant role in the reproduction, development of

organisms, and the establishment of ecosystems during the

Anisian. The Pelsonian substage is a crucial time for biological

recovery, and the low-latitude microbial carbon sinks may be

an important factor in maintaining a resilient habitable climate.
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