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To address the limitations in identifying complex anomaly patterns and the heavy
reliance on manual labeling in traditional oceanographic data quality control
(QC) processes, this study proposes an intelligent QC method that integrates
Gated Recurrent Units (GRU) with a Mean Teacher—based semi-supervised
learning framework. Unlike conventional deep learning approaches that require
large amounts of high-quality labeled data, our model adopts an innovative
training strategy that combines a small set of labeled samples with a large volume
of unlabeled data. Leveraging consistency regularization and a teacher—student
network architecture, the model effectively enhances its ability to learn
anomalous features from unlabeled observations. The input incorporates
multiple sources of information, including temperature, salinity, vertical
gradients, depth one-hot encodings, and seasonal encodings. A bidirectional
GRU combined with an attention mechanism enables precise extraction of
profile structure features and accurate identification of anomalous
observations. Validation on real-world profile datasets from the Bailong (BLO1)
moored buoy and Argo floats demonstrates that the proposed model achieves
outstanding performance in detecting temperature and salinity anomalies, with
ROC-AUC scores of 0.966 and 0.940, and precision—-recall AUCs of 0.952 and
0.916, respectively. Manual verification shows over 90% consistency, indicating
high sensitivity and robust generalization capability under challenging scenarios
such as weak anomalies and structural profile shifts. Compared to existing fully
supervised models, the proposed semi-supervised QC framework exhibits
superior practical value in terms of labeling efficiency, anomaly modeling
capacity, and cross-platform adaptability.
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1 Introduction

Ocean buoys, as key observational platforms, play a vital role in
the global ocean monitoring network. These buoys continuously
record various physical and chemical parameters from the sea such
as temperature, salinity, currents, atmospheric pressure, and wind
fields, providing essential scientific support for climate change
monitoring, marine ecosystem studies, and ocean disaster early
warning systems (Kolukula and Murty, 2025). However, due to the
long-term deployment in dynamic and complex marine
environments, buoy data are susceptible to anomalies caused by
sensor drift (Kent et al., 2019), extreme weather, and equipment
aging (Zhu and Yoo, 2016). Therefore, rigorous quality control
(QC) procedures are critical to ensure the reliability and usability of
buoy observations.

In recent years, for the purpose of tackling the observation
characteristics and data properties of various types of ocean buoys,
various QC techniques have been developed to enhance the stability
of data quality as well as its practical value. Traditional ocean data
quality control (QC) methods typically include consistency checks,
range tests, and distribution fitting to ensure the temporal, spatial,
and physical coherence of the observations (Wen, 2014). In
practice, several studies have proposed systematic QC procedures
for surface buoy data. For example, Lei et al. (2022) developed a
streamlined QC workflow consisting of preprocessing, statistical
screening, local feature recognition, error control, and manual
inspection. By introducing error tolerance mechanisms, their
method effectively avoids excessive data rejection and significantly
improves data integrity and representativeness. In addition, for
specific parameters such as wave data, Liu et al. (2016) constructed a
composite QC framework combining Grubbs’ test and local outlier
detection, enabling the preservation of true anomaly events while
enhancing sensitivity and adaptability. For moored buoy
observations, Li et al. (2019) proposed an automated QC method
based on meteorological and hydrological principles, incorporating
range checks, extreme value detection, and correlation analysis. For
Argo profiling floats, historical profile matching has been widely
adopted for anomaly detection and correction—this involves
comparing real-time data with statistical features from historical
databases to ensure physical and statistical consistency (Wang et al.,
2012). Moreover, Argo data also employ a delayed-mode quality
control (DMQC) system to correct long-term sensor drift in
pressure and salinity measurements, with fine adjustments using
the OWC algorithm (Core Argo Data Management Team, 2021).

However, these traditional methods largely rely on manual
verification. As data volume and real-time demands increase,
their low efficiency and high labor costs have become significant
limitations. Consequently, some researchers have attempted to
develop automated QC systems based on rule-based techniques
such as temperature range checks, vertical gradient analysis, and
profile shape recognition, aiming for real-time anomaly detection in
buoy datasets (Zhang et al., 2024). Nevertheless, these approaches
typically depend on static thresholds and empirical rules, which are
insufficient to accommodate the diversity of oceanic environments
(e.g., remote regions or ecologically anomalous zones).
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Furthermore, traditional QC methods heavily rely on historical
data for reference, which may itself be contaminated by noise,
regional biases, or sparse spatial-temporal coverage, ultimately
affecting the accuracy and robustness of quality control.

In recent years, deep learning methods have emerged as
promising tools in buoy data quality control due to their
nonlinear modeling capabilities, significantly improving anomaly
detection accuracy and adaptability. For example, Li et al. (2018)
leveraged association rules and clustering to identify extreme
meteorological events, building effective anomaly recognition
models. Leahy et al. (2018) applied neural networks to classify
and correct historical climate observations using multidimensional
features such as time, depth, and data source, thereby improving
overall data consistency. For Argo profile QC, Sugiura and Hosoda
(2020) proposed a learning method based on profile curve shapes,
replacing traditional rule-based detection with automatic
anomaly identification.

Further developments include the integration of multi-source
observational data with neural networks for real-time
meteorological anomaly detection (Xu et al., 2021); the
application of multilayer perceptrons (MLPs) and deep neural
networks (DNNs) to sea temperature classification tasks,
enhanced by synthetic minority oversampling and weighted loss
functions (Liu et al., 2021); the use of the SalaciaML model for
efficient temperature anomaly detection on large Mediterranean
datasets (Mieruch et al., 2021); the design of BP network-based
automated QC workflows to improve observation consistency
(Huang et al., 2023); the construction of particle swarm-
optimized BP neural networks for anomaly detection under high-
humidity conditions (Wang et al., 2024); and algorithm evaluation
for pH data quality control, where the addition of near-surface
reference points was proposed to improve QC accuracy (Wimart-
Rousseau et al., 2024).

Despite these advances, deep learning-based methods still face
significant challenges in real-world applications. Although MLPs
and signature-path models have reduced manual effort and
improved automation in anomaly detection, their performance
remains highly dependent on the availability of high-quality
labeled data. In practice, buoy observation data often suffer from
sparse labeling, uneven data quality, and class imbalance, which
hinder the ability of supervised learning models to fully capture the
distribution of anomalous features. Under complex and dynamic
oceanic conditions, such models tend to exhibit poor generalization
and stability, limiting their broader applicability and scalability.

To address the issues mentioned above, we proposed a novel
semi-supervised quality control framework based on the Mean
Teacher architecture combined with a GRU-Attention network.
This framework was designed to tackle label scarcity, complex
anomaly patterns, and the need for real-time application.
Structurally, it employed a teacher-student dual-network
architecture, where GRU (Gated Recurrent Unit) modules capture
temporal dependencies, and attention mechanisms enhance focus
on anomalous profile layers. By enforcing consistency
regularization between the teacher and student models, the
framework enables the student model to learn from large volumes
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of unlabeled buoy data and discover underlying anomaly patterns,
even when labeled data are limited. This approach reduced reliance
on human labeling while maintaining high anomaly detection
accuracy. In practical applications, the model can be integrated
into automated buoy QC workflows for real-time anomaly
detection and label generation, thus improving operational
efficiency and responsiveness.

2 Data
2.1 Bailong buoy data

The Bailong-01 (BLO1) buoy is a key fixed-point ocean
observation platform deployed in the southern equatorial Indian
Ocean warm pool under the RAMA program (Research Moored
Array for African-Asian-Australian Monsoon Analysis and
Prediction). It is located offshore to the southwest of Sumatra (see
Figure 1 for detailed location). This region lies within the core area
of tropical monsoon circulation and is influenced by a combination
of oceanic processes, including the Indonesian Throughflow,
seamount topography, and tropical gyre modulation (Sprintall
et al,, 2009), making it an important window for studying
monsoon systems, oceanic dynamics, and climate variability.
BLO1 is capable of long-term, all-weather automatic observations.
Its upper section is equipped with various meteorological sensors to
measure and record air temperature, relative humidity, atmospheric
pressure, wind speed, and wind direction. The lower section hosts
multilayer oceanographic instruments, primarily including
conductivity—-temperature-depth (CTD) sensors and acoustic
Doppler current profilers (Aquadopp), which acquire seawater
temperature, salinity, and velocity data across multiple depth

10.3389/fmars.2025.1661373

layers (Ning et al., 2022). The observation depth extends from the
sea surface down to 700 meters. This study focused on the 20-100 m
depth range, where sensor deployment is relatively dense and both
temperature and salinity are measured in real time. This
configuration offers high temporal and spatial resolution, making
it particularly suitable for quality control and anomaly detection
studies (see Figure 2 for the structure of the BLO1 buoy).

The raw observational data used in this study were obtained
from the profile sensors deployed during the 2014 and 2016
deployment cycles from the BLO1 buoy. The data cover the
period from 2014 to 2018 and were uniformly recorded in
Standard Time. Measurement units follow international
conventions: temperature is recorded in degrees Celsius (°C),
salinity in practical salinity units (PSU), depth in meters (m), and
pressure in decibars (dbar). The sampling interval is 10 minutes.
The two datasets include the following parameter fields:

-Depth: Sensor depth (m)

-Pressure: Pressure at the observation point (dbar)
-Temperature: Seawater temperature (°C)

-Salinity: Salinity (PSU)

-Standard time: Recorded timestamp (Julian day format)

As shown in the statistical summary in Figure 3, the dataset
from April 2014 to April 2015 contained a total of 259,348 records,
while the dataset from October 2016 to January 2018 included
324,371 records, yielding a combined total of approximately
584,000 samples.It is important to note that the data used in this
study were directly extracted by field technicians after buoy
recovery and have not undergone any interpolation, smoothing,
or quality control procedures. As a result, the dataset retains all
anomalous signals from the original observation process, including
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disturbances, sensor drift, measurement errors, and pre-

deployment test records.

2.2 Argo data

The dataset used in this study was obtained from the Argo float
observations provided by the Integrated Marine Observing System
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(IMOS) of Australia. Specifically, four float IDs were selected:
5905211, 5905212, 5905213, and 5905214 (Hill et al., 2015).
These floats are based on the NAVIS_EBR platform,
manufactured by Sea-Bird Electronics (USA), and are equipped
with standard conductivity-temperature-depth (CTD) sensor
modules capable of real-time measurement of temperature
(TEMP), salinity (PSAL), and pressure (PRES). The observational
data are transmitted in real time via the IRIDIUM satellite network
to the Commonwealth Scientific and Industrial Research

frontiersin.org
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Distribution of BLO1 buoy data [(a, b) Temperature and salinity data from 2014-2015; (c, d) Temperature and salinity data from 2016-2018].

Organisation (CSIRO) for data management and quality control
(Wong et al., 2020).

The above floats were deployed sequentially in mid-November
2017 in the tropical region of the southeastern Indian Ocean, within
a longitudinal range of 110.25°E to 119°E and a latitudinal band
between 13.5°S and 14°S. The floats have remained in stable
operational condition, and as of December 2024, each float had
completed approximately 259 to 260 profiling cycles. For example,
float 5905211 alone had produced approximately 256,921 raw
observational records.

The dataset primarily included six core physical parameters:
observation date, geographic coordinates (latitude and longitude),
pressure (PRES), depth (DEPTH), temperature (TEMP), and
salinity (PSAL). Each of these parameters was accompanied by a
corresponding quality control (QC) flag—such as TEMP_QC,
PSAL_QC, PRES_QC, DATE_QC, and POSITION_QC—to
indicate potential data quality issues. For the TEMP and PSAL
fields, every data point was tagged with a QC flag: a value of “1”
denoted data that had passed QC procedures and was considered
valid or high quality, while a value of “0” indicated data that failed
QC or was considered anomalous.

After filtering all measurements with depths shallower than 130
m, a total of 110,454 valid records were retained across the four
Argo floats. These data points were primarily distributed in the
tropical southeastern Indian Ocean, centered around approximately
13.5°S and 119°E, a location geographically close to the Bailong
buoy site. The time span of the Argo data begins in November 2017
and continues to the present, and as illustrated in Figure 4, the
vertical distributions of temperature and salinity from the selected
Argo profiles are clearly presented, providing an overview of their
spatial and temporal coverage that complements the Bailong
buoy observations.
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3 Methods
3.1 Basic model

Intelligent quality control of ocean buoy profile data faces two
major challenges: the high cost of manual labeling and the difficulty
of detecting complex anomaly patterns under dynamic ocean
conditions. To address the issue of label scarcity and enhance the
model’s generalization ability in handling diverse anomalies, this
study adopted a semi-supervised learning (SSL) approach. SSL is a
machine learning paradigm that leverages a small amount of labeled
data alongside a large volume of unlabeled data, aiming to build
models with strong generalization performance even in the absence
of abundant annotations (Li et al., 2023). In practical applications—
especially in fields such as ocean observation, remote sensing, and
bioinformatics—acquiring large, high-quality labeled datasets are
often expensive and labor-intensive. SSL provides a promising
solution via allowing the model to learn structural patterns from
labeled samples while using unlabeled data to better understand the
overall data distribution, thereby improving its discriminative
power and robustness in the input space.

Among SSL techniques, the Mean Teacher model is a widely
recognized and effective architecture. It consists of a dual-branch
neural network system: a student model and a teacher model. The
teacher’s weights are continuously updated using an Exponential
Moving Average (EMA) of the student’s weights, maintaining a
stable learning target for the student. During training, the student
model makes predictions on perturbed inputs, while the teacher
model generates target outputs from the original, unperturbed
inputs. The consistency between their outputs is minimized via a
consistency loss, enabling the model to learn structural patterns
from unlabeled data. This approach not only improves the

frontiersin.org
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utilization of unlabeled data but also avoids the error accumulation

often observed in pseudo-labeling methods (Tarvainen and

Valpola, 2017).

The core mechanism of the Mean Teacher framework lies in its

use of abundant unlabeled data to drive model training, guided by a
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stable consistency regularization process that encourages

convergence toward meaningful representations. Importantly, no

explicit labels are required for the unlabeled data; instead, the model

learns through “soft targets” generated by the teacher-student
structure (Deng et al., 2021). As a result, the model fits well to
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labeled samples while also forms robust decision boundaries across
the entire input distribution. This property is particularly beneficial
in the presence of distributional shifts, outliers, or structurally
complex data, where traditional supervised models often struggle
to generalize.

In this study, we adopted the Gated Recurrent Unit (GRU) as
the backbone network of the Mean Teacher framework to perform
time-series modeling and feature extraction. GRU is a variant of
recurrent neural networks (RNNs) designed for processing
sequential data. It includes update and reset gate mechanisms
that effectively capture long-term dependencies while mitigating
the vanishing gradient problem (Dey and Salem, 2017).

3.2 Model design

3.2.1 Development framework and environment
The GRU-Mean Teacher model was implemented using the
PyTorch deep learning framework. All model development and
training procedures were conducted using Python, with the
integrated development environment (IDE) set as PyCharm. The
Python version used was 3.7.12. Core dependencies include pandas
(version 1.3.5) and numpy (version 1.21.6), which both were

managed and executed within an Anaconda virtual environment.

3.2.2 Model architecture

The model employed in this study adopted a two-layer GRU
architecture (a single-layer version as illustrated in Figure 5), which
was applied to both the student and teacher networks within the
Mean Teacher framework. Each directional GRU contained 64
hidden units, together forming a contextual encoder capable of
capturing both forward and backward information flows. This
enhanced the model’s ability to perceive multi-level structural
patterns across different oceanographic profile layers.
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On top of the GRU outputs, an attention mechanism was
introduced. The primary advantage of the attention mechanism
lies in its ability to simulate the way human experts examine profile
plots—by focusing on layers with abrupt changes, fluctuations, or
salient structural features, while down-weighting redundant or less
informative regions (Zhong et al, 2018). Specifically, the model
assigned a score to each GRU output using a single-layer fully
connected network. These scores were normalized via the Softmax
function and used as weights to compute a weighted sum of the
GRU outputs. This generated a fused representation that allowed
researchers to trace which layers the model “attended to” when
making predictions.

After the attention mechanism, layer normalization was applied
to stabilize the output. This involved computing the mean and
standard deviation across the feature dimension for each sample
individually, which helped mitigate numerical fluctuations arising
from input variability and gradient accumulation in multi-step
GRU hidden states. Such stabilization was of particular
importantance when the attention-weighted context vector
underwent scale shifts or becomes numerically unstable. Layer
normalization thus effectively alleviated gradient oscillation issues
that might occur during the joint optimization of anomaly detection
(regression) and quality control classification tasks, ensuring
training stability and efficient convergence.

In the Mean Teacher framework (as shown in Figure 6), GRUs
were embedded in the backbone of both the student and teacher
networks, and used to model and predict profile sequences (e.g.,
TEMP and PSAL as functions of DEPTH). During each training
iteration, the student GRU processed perturbed inputs to generate
predictions, while the teacher GRU produced reference outputs
based on unperturbed data. These outputs were aligned via
consistency loss, enhancing the model’s learning capability.
Notably, the GRU served a dual role in this semi-supervised
setup: it not only contributed to supervised learning objectives

context

o
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FIGURE 5
Schematic diagram of the GRU with Attention model for each layer.
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Illustration of the overall architecture of the model. The blue solid lines indicate the processing flow of labeled data, while the blue dashed lines

indicate that of unlabeled data.

(e.g., predicting true labels) but also supported unsupervised
consistency constraints, acting both as a feature extractor and an
executor of the learning strategy.

The core idea of the Mean Teacher framework was to maintain
two separate neural network models simultaneously: a student
model, which underwent parameter updates and drived the main
optimization process, and a teacher model, which did not
participate in backpropagation. Instead, the teacher’s parameters
were updated through the Exponential Moving Average (EMA) of
the student’s parameters. Structurally, the student and teacher
networks were identical, both comprising the aforementioned
GRU + Attention architecture. The only difference lied in how
their parameters were updated. Specifically, the parameters of the
teacher model are updated at each training step according to
Equation 1.

eteacher —o- eteacher + (1 - 06) . estudent (1)

Here, o denoted the decay factor, typically set close to 0.99, to
maintain the stability of the teacher model. The essence of this
strategy lied in introducing a “slow-moving” learning target for the
model, allowing the teacher network’s outputs to remain smooth
and robust. This facilitated the generation of high-confidence
pseudo-labels, which served to guide the student model’s learning
direction on unlabeled samples.

During training, the student model received a mixed input
comprising both labeled and unlabeled data. For the unlabeled
samples, this study implemented a “soft supervision” mechanism
through two complementary strategies: on one hand, noise was
added to the student model’s inputs (e.g., via Dropout or data
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perturbations): on the other hand, the teacher model generated
stable predictions for the same inputs under noise-free conditions.
The consistency loss is defined as the Mean Squared Error (MSE)
between the outputs of the student and teacher models, as
formalized in Equation 2.

‘Cconsistency = MSE(fstudent (52) >fteacher (x)) (2)

Here, X denoted the perturbed input sample, and f(-)
represented the prediction function of the model. This
consistency loss reflected an important cognitive assumption: if
the model had a thorough understanding of the input structure, its
predictions should remain consistent under input perturbations.
This served not only as a form of regularization, but also as a crucial
pathway for deep networks to extract underlying structures from
unlabeled data.

However, in the early stages of training, the teacher model was
still unstable, and the pseudo-labels it generated may lack reliability.
Imposing consistency constraints too early may lead to suboptimal
convergence or overly confident yet incorrect predictions. To
address this issue, this study introduced the consistency ramp-up
strategy (Tarvainen and Valpola, 2017), where the influence A(f)
weight of the consistency loss was gradually increased during the
initial training phase. This allowed the model to rely mainly on
supervised signals during the first few training epochs, and to
enhance the guidance from unlabeled data once the outputs of
the student and teacher begin to align. Typically, A(t) followed a
sigmoid or exponential growth schedule, smoothly transitioning
from 0 to a predefined maximum value (e.g.,, 0.1) over the first
50 epochs.
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3.2.3 Loss function design

To simultaneously achieve high-precision modeling of the
physical structures of temperature and salinity profiles, as well as
effective detection of anomalous observations, this study designed a
multi-task loss function framework composed of both regression
and classification objectives. This framework integrated supervised
signals from labeled samples and incorporated a structured
weighting mechanism together with semi-supervised consistency
guidance, enabling the model to maintain strong generalization
performance and stable learning even under conditions of label
imbalance and observational complexity.

For the regression task, Mean Squared Error (MSE) was
adopted as the optimization objective to measure the discrepancy
between the model’s predicted temperature and salinity values and
the original observations. Reconstruction was treated as a core task
because most physical oceanographic data exhibited continuity and
follow natural laws. By forcing the model to learn the patterns of
“normal” profile structures, this approach essentially enhanced the
model’s robustness to background noise in a self-supervised
manner. In addition, to emphasize the modeling priority of
salinity, the MSE loss for salinity was assigned a threefold weight.
This design was motivated by observational findings indicating that
salinity anomalies were generally more subtle in magnitude yet
more difficult to capture with simple trend-based models, and their
impacts can be significant. Therefore, reinforcing salinity
reconstruction accuracy at the loss level helped the model become
more sensitive to low-amplitude but high-impact
anomalous behaviors.

For the classification task, a weighted Binary Cross-Entropy
(BCE) loss was employed to detect anomalies in TEMP_QC and
PSAL_QC labels. To address the real-world imbalance where QC =
0 (anomalous) samples were much fewer than normal ones, this
study assigned a significantly higher loss weight to anomalous
samples (5 for anomalies vs. 1 for normal samples). This
increased the model’s “penalization capacity” for anomalies,
guiding it to focus more on these rare yet critical cases during
training. Furthermore, to prevent anomalous samples from
dominating the gradient updates in the regression loss, their
weight in the regression component was downscaled to 0.2,
thereby weakening their influence on the reconstruction objective.
This differentiated weighting strategy effectively established a
“strategic synergy” between tasks: the regression branch focused
on learning normal patterns, while the classification branch
concentrated on identifying anomalous signals. Together, these
components formed a complementary, rather than conflicting,
multi-task framework. The total supervised loss Ly, for the
labeled samples is given by Equation 3.

['sup = ‘Cregression + ‘Cclassiﬁcation (3)

In the overall training objective, considering that the model
needed to handle both labeled and unlabeled samples, a consistency
loss was further introduced in this study, Thereby constructing the
complete semi-supervised training objective function as shown in
Equation 4.
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Etotal = ‘Csup + )“(t) : ['consistency (4)

Here, A(t) was a dynamic scaling factor that varied with the
training progress, used to control the influence of the consistency
loss at different stages of training.

In terms of the overall process, during the labeled data training
phase, samples were passed through the student model and
involved in both regression and classification tasks. The
corresponding loss function consisted of two main components:
on the one hand, the regression loss minimized the discrepancy
between the model’s predicted temperature and salinity values and
the true observations, thereby performing the reconstruction task;
on the other hand, the classification loss used the actual TEMP_QC
and PSAL_QC labels to carry out anomaly detection.

In the unlabeled data training phase, the data were likewise fed
into the student model for forward propagation. However, unlike
the labeled samples—which relied on supervised signals to optimize
classification and regression outputs—the core of this phase lied in
guiding the model to learn the underlying data structure through
consistency constraints. Specifically, the student model generated
predictions based on perturbed inputs, while the teacher model
produced reference outputs from the same inputs without
perturbation. The discrepancy between the two outputs
constituted the consistency loss.

Therefore, in the training process for unlabeled data, the
student model did not participate in the classification task but
was still indirectly involved in the regression task through the
alignment of outputs between the student and teacher models.

3.3 Train

3.3.1 Feature selection

In machine learning research, feature engineering is one of the
key factors influencing algorithm performance. Appropriately
selecting and designing input features is crucial for enhancing a
model’s generalization ability and robustness. Specifically, in this
study, based on the practical requirements of oceanographic data
quality control and the characteristics of the observational data, we
selected a set of representative and informative input features, as
detailed below:

-Temperature (TEMP): Real-time temperature measurements
collected by the buoy (unit: °C);

-Salinity (PSAL): Real-time salinity measurements collected by
the buoy (unit: PSU);

-One-hot Encoded Season: One-hot encoded seasonal feature
based on the month of observation;

-Temperature Gradient: The gradient of temperature with
respect to depth;

-Salinity Gradient: The gradient of salinity with respect
to depth;

-One-hot Encoded Depth: One-hot encoded feature indicating
different depth levels.
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To enhance the model’s ability to detect anomalous data, this
study incorporated not only the raw physical variables directly
observed by the buoy—such as temperature (TEMP) and salinity
(PSAL)—but also several structured and derived features, aimed at
improving the model’s perception of profile structures, seasonal
variability, and contextual information. Temperature and salinity
served as the fundamental variables for anomaly detection. The
One-hot Encoded Season feature transformed the observation
month into a one-hot vector representing the corresponding
season.The temperature gradient(0TEMP/ODEPTH)and salinity
gradient (0PSAL/ODEPTH) reflected the vertical continuity and
rate of change within the profile data, serving as key indicators for
identifying sharp transitions or abnormal jumps in the water
column. Finally, since buoy data did not always provide full-
depth coverage, the One-hot Encoded Depth feature transformed
specific measurement depths into discrete dimensions, enabling the
model to recognize the depth level of each input sample during the
encoding stage (Potdar et al., 2017).

3.3.2 Data pre-processing

To ensure that the deep neural network can effectively learn
both physical patterns and anomaly structures during training, this
study first performed basic data cleaning and structured feature
construction on the raw observational data. Specifically, filtering
thresholds were set based on fundamental physical knowledge: only
observations with temperature within the range of [-5, 50]°C and
salinity within [1, 60] PSU were retained. This process eliminated
extreme outliers and invalid placeholder values that could interfere
with model gradients, improves the consistency and modelability of
the overall data distribution, and prevented disruptions to the
model’s convergence trajectory.

For numerical features (such as temperature, salinity, gradient
terms, and interaction terms), Z-score normalization was uniformly
applied to standardize the input, avoiding learning inefficiencies
caused by differences in variable scales. Depth and seasonal
information were processed using one-hot encoding. Each
observation’s depth was discretized into five representative levels
(20 m, 40 m, 60 m, 80 m, and 100 m) and encoded as a 0-1 vector.
The seasonal feature was constructed based on the timestamp of
each observation: by extracting the month field, each sample was
assigned to one of four seasons—spring (March-May), summer
(June-August), autumn (September-November), and winter
(December-February). A one-hot encoding strategy was then
applied to convert these discrete season categories into numerical
input vectors.In practice, the procedure first extracted the month
from the timestamp, then mapped each sample to its corresponding
season category (indexed O to 3), and finally generated a binary
vector of length 4 to represent seasonal information. For example,
spring was encoded as [1, 0, 0, 0], summer as [0, 1, 0, 0], and so on.

To further enhance the model’s ability to capture profile
structures, a sliding-window mechanism was introduced. Each
observation point was combined with its preceding and
succeeding neighbors to form a three-step sequence that
incorporated local contextual information, resulting in a
structured input tensor of size 3x12. The step size (stride) was set
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to 1 layer, meaning that the window shifted downward by one depth
level at a time. This design ensured sufficient overlap between
adjacent windows and allowed the model to capture fine-grained
vertical variability. In deep learning, this approach is often referred
to as local context enhancement, with the key advantage of
transforming point-wise prediction into segment-based structural
modeling. Consequently, the model no longer relied solely on the
instantaneous state of the current point but also perceived its spatial
continuity (Xu et al., 2024). Such contextual modeling is
particularly critical for anomaly detection in oceanographic
profiles. For example, when salinity at a given depth significantly
deviates from that of adjacent layers, the model can more accurately
identify this anomaly by comparing it with neighboring points
within the sliding window.

3.3.3 Model training

The labeled dataset was divided into four subsets: training data
(60%) is used for model parameter learning and updates; validation
data (15%) is employed to optimize model hyperparameters and
prevent underfitting or overfitting; testing data (10%) was used for
threshold adjustment; and control data (15%) was reserved for final
model performance evaluation. Unlabeled data was used during
training for computing the consistency loss, guiding the student
model to learn latent data structures from unlabeled samples and
thereby improving generalization.

The network architecture adopted a two-layer GRU structure
with 64 hidden units per layer, integrated with attention
mechanisms and layer normalization to enhance feature
representation and training stability. The training process was
based on the Mean Teacher framework, in which the student
model made predictions on perturbed inputs (e.g., with added
noise), while the teacher model predicted on the same inputs
without perturbations. The difference between these predictions
formed the consistency loss, which encouraged the student model to
align with the data distribution learned from unlabeled inputs.

In terms of the loss function, a dual-task strategy was employed,
combining both regression and classification objectives. The
regression loss was calculated using Mean Squared Error (MSE),
with the salinity loss component weighted three times higher than
that of temperature, enabling the model to be more sensitive to
subtle salinity anomalies. The classification loss used weighted
Binary Cross-Entropy (BCE), where significantly higher weights
were assigned to anomalous samples to enhance the model’s
sensitivity to rare but critical anomalies.

To avoid misleading gradients caused by the instability of the
teacher model during early training, a ramp-up strategy was
adopted for the consistency loss, gradually increasing its influence
over time. The optimization was performed using the Adam
optimizer, with an initial learning rate set to 0.001, and weight
decay of 0.01 applied to control model complexity.

The model was trained for 200 epochs, with dropout applied
during training to randomly deactivate a subset of neurons, thereby
reducing the risk of overfitting. In the later stages of training, the
Receiver Operating Characteristic (ROC) curve was used to
optimize the anomaly detection threshold (Fawcett, 2006). This
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ROC curves for temperature and salinity.
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threshold optimization considered the class imbalance in the
dataset, ensuring high efficiency and accuracy in distinguishing
between normal and anomalous data. Finally, model performance
was evaluated using a control dataset that was entirely excluded
from training, ensuring robust assessment of the model’s

generalization capability and real-world applicability.

4 Evaluation results and analysis
4.1 Performance evaluation of the model

To comprehensively evaluate the performance of the proposed
semi-supervised temperature and salinity quality control model
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based on GRU + Attention, two classical classification evaluation
metrics were introduced: the Receiver Operating Characteristic
(ROC) curve and the Precision-Recall (PR) curve. These metrics
respectively assessed the model’s overall discriminative capability
and anomaly detection precision, providing a systematic analysis of
its performance on the labeled validation dataset.

Figure 7 presented the ROC curve, where the x-axis represented
the False Positive Rate (FPR) and the y-axis represented the True
Positive Rate (TPR). By varying the reconstruction error threshold
used by the model to determine whether a sample was anomalous or
not, a series of FPR and TPR pairs were computed to form the ROC
curve. The Area Under the ROC Curve (AUC) is widely used in
binary classification tasks as a comprehensive performance
indicator. Specifically, the closer the AUC value is to 1, the
stronger the model’s discriminative ability; conversely, an AUC
close to 0.5 indicates performance no better than random guessing.

In this experiment, the model achieved an ROC AUC of 0.966
for temperature data and 0.940 for salinity data, both demonstrating
strong classification performance. Notably, the model showed high
sensitivity and specificity in detecting salinity anomalies.

Figure 8 showed the Precision-Recall (PR) curve, where the x-
axis denoted Recall and the y-axis denoted Precision. Compared to
the ROC curve, the PR curve was more sensitive under conditions of
extreme class imbalance (e.g., when anomalous samples were far
fewer than normal ones), making it particularly valuable for
anomaly detection tasks. The Area Under the PR Curve (PR
AUC) reflected the model’s overall trade-off between precision
and recall across all possible threshold settings.

In this study, the model achieved a PR AUC of 0.952 in the
temperature anomaly detection task and 0.916 in the salinity task,
both of which were considered high-performance levels. These
results indicated that the model not only effectively identifies the
majority of anomalous samples (high recall) but also maintained a
low rate of false positives (high precision).

Specifically, a higher Recall value indicates that the model has
strong sensitivity to anomalies, meaning that the majority of
anomalous samples are correctly identified without being missed.
Meanwhile, a higher Precision value suggests a lower false positive
rate for normal samples, which is beneficial for the stable operation
of downstream analysis or alert systems. Notably, in the anomaly
detection task for salinity data, the PR AUC reached 0.916, further
demonstrating the model’s robustness in handling salinity
anomalies, which are often complex, variable, and susceptible to
sensor drift. This strong performance was closely related to the
training design, in which the salinity regression loss was assigned a
higher weight, and the classification loss was adjusted through a
weighted strategy.

Moreover, during the model evaluation phase, the input used
for anomaly scoring was derived from the model’s reconstruction
module, specifically the absolute error between the model’s output
(predicted temperature and salinity) and the original input. Binary
classification scores were then computed based on the
corresponding QC labels. This evaluation method, which was
based on reconstruction error rather than raw features, more
accurately reflected the direct relationship between the model’s
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reconstruction capability and its ability to detect anomalies. It also
offered a more behaviorally interpretable assessment pathway
aligned with the model’s internal mechanisms.

Taken together, the analysis of both the ROC and PR curves
clearly demonstrated that the proposed semi-supervised model
achieved excellent performance in the task of temperature and
salinity quality control. It effectively fulfilled the objective of
anomaly detection and exhibited strong potential for
practical applications.

4.2 Evaluation of quality control
performance

To further validate the anomaly detection and classification
capabilities of the proposed semi-supervised quality control model
on real-world observational data, this study constructed a standard
confusion matrix based on the model’s final prediction outputs and
the ground-truth labels (i.e., the control dataset labels). From this
matrix, four key performance metrics were derived: True Positive
Rate (TPR), False Positive Rate (FPR), False Negative Rate (FNR),
and True Negative Rate (TNR):

-TPR represented the proportion of actual normal samples that
are correctly identified as normal by the model, measuring
the model’s ability to recognize valid data.

-FPR refered to the proportion of actual anomalous samples
that were incorrectly classified as normal, indicating the
model’s tendency to produce false negatives for anomalies.

-FNR indicated the proportion of actual normal samples that
were mistakenly classified as anomalous, reflecting the risk
of over-flagging valid observations.

-TNR represented the proportion of actual anomalous samples
that were correctly identified as anomalies, serving as a key
indicator of the model’s anomaly detection capability.

Together, these four metrics formed the core dimensions for
evaluating the classification performance of the model. By analyzing
these indicators, this study provided a more granular understanding
of the model’s behavior under various prediction scenarios, as well
as potential risks of misclassification or missed detection.

The confusion matrix consisted of the following
fundamental elements:

-TP (True Positive): Samples that were truly normal and
correctly identified as normal;

-FP (False Positive): Samples that were truly anomalous but
incorrectly classified as normal;

-FN (False Negative): Samples that were truly normal but
mistakenly identified as anomalous;

-TN (True Negative): Samples that were truly anomalous and
correctly identified as anomalous.
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In the temperature quality control task, the model
demonstrated excellent predictive performance (shows in Figure
9). Specifically, within the control dataset, the model correctly
identified 16,750 normal samples (True Positives, TP), while 589
anomalous samples were incorrectly classified as normal (False
Positives, FP). On the other hand, only 431 normal samples were
mistakenly classified as anomalous (False Negatives, FN), and 2,459
anomalous samples were correctly identified (True Negatives, TN).

Based on these results, four key performance metrics were
calculated (shows in Table 1):

-TPR (TPR = TP/(TP + FN)) reached 97.48%, indicating that
the model achieved very high coverage in detecting normal
samples—most normal data were correctly recognized.

-FPR (FPR = FP/(FP + TN)) was 19.33%, reflecting the
proportion of anomalous samples misclassified as normal,
which directly related to the model’s risk of false acceptance
in practical deployment.

-FNR (FNR = FN/(TP + FN)) was 2.52%, showing a very low
probability of missing normal samples, highlighting the
model’s reliability in preserving critical data.

-TNR (TNR = TN/(FP + TN)) reached 80.67%, demonstrating
the model’s strong capability in stably identifying the
majority of true anomalies.

In the salinity quality control task, the model likewise
demonstrated robust performance characteristics (shows in Figure
10). It successfully identified 15,761 normal samples (TP) and 2,988
abnormal samples (TN), while 768 abnormal samples were
incorrectly classified as normal (FP), and 712 normal samples
were mistakenly recognized as abnormal (FN).

Further metric analysis shows that the true positive rate (TPR)
reached 95.68%, indicating the model’s strong ability to correctly
recognize normal data. The false positive rate (FPR) was 20.43%,
slightly higher than that in the temperature detection task. This may
be attributed to the salinity data exhibiting more diverse anomaly
patterns and complex physical behaviors during observation, which
increased the difficulty of accurate discrimination. The false
negative rate (FNR) was 4.32%, meaning that the model
maintained a low and acceptable level of missed detections for
normal data. Meanwhile, the true negative rate (TNR) was 79.57%
(shows in Table 2), suggesting that the model remained stable in
identifying abnormal data—although slightly inferior to the
temperature detection task, it still effectively met the fundamental
requirements of anomaly detection overall.

4.3 Manual inspection

This study also designed and implemented a systematic manual
visual inspection procedure as a supplementary method for
evaluating the model’s detection accuracy and generalization
capability. Manual visual inspection was conducted by analysts
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TABLE 1 Confusion matrix results and performance metrics for
temperature quality control (Temp_QC).

TP = 16750 FP = 589

FN = 431 TN = 2459
TPR = 0.9748 FPR = 0.1933
FNR = 0.0252 TNR = 0.8067

TABLE 2 Confusion matrix results and performance metrics for salinity
quality control (Sal_QC).

TP = 15761 FP =768

FN =712 TN = 2988
TPR = 0.9568 FPR = 0.2043
FNR = 0.0432 TNR = 0.7957

with expertise in oceanographic observations, who professionally
reviewed the quality control results of unlabeled data. During the
assessment, the evaluators considered multiple factors, including
historical profile trends and the current station’s environmental
context, to determine whether a given data point exhibited
unreasonable deviations.

Thousands of data records identified as anomalous by the
model were randomly sampled and categorized by depth layers,
time periods, and anomaly intensity levels. Each category was then
manually verified. During this process, the observers paid special
attention to the following three typical types of anomalies:

-Abrupt anomalies, characterized by sharp discontinuities or
sudden jumps at a single depth point in the temperature or

14: Monthly Temperature Anomaly Rate (ROC)
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salinity profiles—often indicative of sensor failure or data
writing errors.

-Gradual drift anomalies, where a systematic deviation
appeared across the entire profile (e.g., salinity being
uniformly higher by 0.3 PSU), usually associated with
calibration errors.

-Subtle edge anomalies, which may not exhibit obvious spikes
but deviate from historical trends and contradict known
physical processes—these often occur near the boundary of
normal conditions.

These three types of anomalies were the primary focus of
manual verification and served as critical indicators for assessing
the model’s comprehensive anomaly detection capability.

To quantitatively assess the consistency between model outputs
and manual evaluations, this study calculated the proportion of
anomalous samples identified in the unlabeled dataset. The
evaluation primarily relied on monthly anomaly rate curves
generated by the model on two sets of buoy profile data: the “14”
dataset (from April 2014 to April 2015) and the “16” dataset (from
October 2016 to January 2018), which were used to quantify the
stability of anomaly detection over time.

As shown in Figure 1la, the temperature anomaly rate in
Dataset14 remained consistently low throughout the observation
period, indicating no abnormal fluctuations. In contrast, Figure 11c
showed a slight increase in the temperature anomaly rate of
Dataset16 during October 2016 and January 2018, reaching 0.068
and 0.049, respectively, which might be attributed to potential
sensor disturbances during deployment and retrieval of the buoy.

In comparison, Figure 11b presented a sudden spike in the
salinity anomaly rate of Dataset14 in April 2015, rising to 0.0182,

14: Monthly Salinity Anomaly Rate (ROC)
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(a—d) Estimated anomaly rates for temperature and salinity in the unlabeled dataset.
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which might also be related to buoy recovery activities. Meanwhile,
Figure 11d showed a multi-peak pattern in the salinity anomaly rate
of Dataset16, with values reaching 0.1398 in November 2016, 0.1533
in February 2017 (the highest), 0.1647 in November 2017, and
0.1662 in December 2017. Other time points, such as April 2017
(0.0621), May 2017 (0.1006), and January 2018 (0.0857), also
exhibited clear upward trends.

These results indicated that the model was more sensitive to
salinity anomalies, while remaining relatively conservative in
detecting temperature anomalies.

From the overall feedback of the manual inspection process, the
observers generally agreed that the model’s outputs were highly
interpretable and reliable. After conducting manual visual
inspections on the two buoy datasets in the early stages of the
study, it was found that when the buoy was stably deployed and in
good operational condition, the likelihood of abnormal values
appearing in the sensor-recorded profiles was relatively low. In
other words, the presence of genuine anomalies in the data itself was
sparse and limited.

Therefore, the near-zero monthly anomaly rates observed in the
temperature detection results (as shown in Figures 11A, C) serve as
a clear indication of the model’s effective ability to distinguish true
anomalies. Regarding salinity, the fluctuating anomaly rates in the
Datasetl6 (Figures 11B, D) were partially confirmed through
manual inspection: some anomalies were indeed false positives,
caused by the model misclassifying boundary samples. This was
likely due to the semi-supervised model’s heightened sensitivity to
subtle deviations in the absence of labels, especially for salinity,
where tolerance for minor shifts was lower.

However, another important factor was the aftermath of the
strong El Niflo event in 2015, which led to a prolonged period of
low-salinity conditions during recovery. In such cases, the identified
salinity anomalies reflected genuine physical changes in ocean
structure, rather than conventional data quality issues. Despite
this, the researchers still reccommended using the model’s outputs
as the primary basis for manual review, with flagged anomalies
being prioritized for further expert verification.

As described above, during the in-depth analysis of the model’s
anomaly detection results, it was observed that some data samples
consistently identified as anomalous over extended periods were,
upon manual verification, not caused by data errors or sensor
malfunctions, but rather by actual physical processes associated
with intrusions of anomalous water masses. The hydrographic
characteristics of such water masses often exhibited significant
numerical deviations from the typical background fields—for
example, low temperature with high salinity, high temperature
with low salinity, or normal temperature with low salinity. As a
result, the model automatically classified them as anomalies based
on reconstruction error and probabilistic judgment mechanisms.

However, from the perspective of ocean dynamical processes,
such water masses represent genuine physical phenomena and
should be considered “atypical but physically plausible”
observations. These cases should not be simply categorized as
invalid data or erroneous measurements, but rather interpreted in
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the broader context of environmental variability and
oceanographic events.

Taking the 100-meter depth observational data from 2016 as an
example, the model consistently labeled this depth layer as
anomalous over several consecutive periods.

However, manual verification through profile visualization and
comparison with historical data from the same period revealed that
these “anomalieswere” actually caused by a significant low-salinity
water mass intrusion event. This water mass induced a marked
decrease in salinity in the vertical profile, which deviated
substantially from the deep-water distribution patterns learned by
the model. Although these data points were statistically classified as
outliers, from an oceanographic perspective, they represent
important variations in the observed environment.

This phenomenon not only suggested the need to incorporate
stronger physical priors during model training to avoid
misclassifying real oceanic processes, but also highlighted the
potential value of semi-supervised learning models in
oceanographic research. Such models can be used not only for
anomaly elimination and quality control but also as auxiliary tools
for exploring atypical oceanographic events.

By reviewing model-identified anomalies and verifying them
manually, researchers can extract samples that may correspond to
unusual water masses, internal waves, oceanic fronts, or sudden
hydrographic structure changes. These insights serve as important
clues for subsequent physical process modeling and mechanism
analysis. In fact, such “informative misclassifications” may carry
greater scientific significance than accurate labels themselves,
demonstrating the unique potential of semi-supervised quality
control models in supporting exploratory ocean analysis and
anomaly detection.

5 Comparative analysis of models

Although deep learning has demonstrated strong data modeling
capabilities across various fields in recent years, its applications in
ocean data quality control (QC) remain relatively limited. Existing
deep learning models that are directly applicable to QC tasks are few
in number, differ significantly in architecture and training
strategies, and lack systematic comparison and evaluation. To
thoroughly investigate the adaptability and performance
differences of various deep learning paradigms in buoy-based QC
tasks, this study proposes a deep neural network QC model that
integrates GRU for sequential modeling with the semi-supervised
Mean Teacher framework, balancing temporal dynamics with
adaptability to label scarcity. This model is systematically
compared with the currently representative fully supervised
model—SalaciaML, which is based on a multilayer perceptron
(MLP) architecture. The SalaciaML model uses a two-layer fully
connected MLP structure, taking static input features such as
temperature, depth, and gradient. It relies on large-scale, high-
quality manually labeled datasets and is trained in a fully supervised
manner. Primarily applied in well-observed regions like the
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Mediterranean Sea, where annotated data are abundant, this model
achieves high classification accuracy. In previous evaluations, it
achieved a ROC-AUC of 0.952 for temperature anomaly detection,
with TPR (true positive rate) of 89% and TNR (true negative rate) of
86%, performing well in binary classification tasks for good/bad
samples. However, SalaciaML has several limitations in terms of
model design and scalability. First, it entirely depends on labeled
data and cannot learn effectively from unlabeled samples,
significantly limiting its application in data-sparse regions.
Second, it supports QC only for the temperature variable and
lacks generalizability to other key parameters such as salinity and
density. Third, due to its use of static features as input, it fails to
capture profile structure and temporal dynamics, making it less
effective in identifying weak anomalies or nonlinear
profile transitions.

To address these issues, the GRU + Mean Teacher model
proposed in this study introduces a semi-supervised learning
mechanism that overcomes dependence on large volumes of
labeled data. The key advantage of this model lies in its ability to
jointly train with a small number of labeled samples and a large
number of unlabeled observations. It uses a teacher network to
generate high-confidence pseudo-labels for unlabeled samples and
leverages consistency regularization to guide the student model in
gradually approximating a reliable anomaly classification boundary.
Structurally, the model adopts a two-layer GRU architecture to
process vertical profile sequences (e.g., temperature and salinity as
functions of depth), and integrates an attention mechanism at the
output to enhance sensitivity to local anomalies. Moreover, a sliding
window mechanism is used to construct contextual feature
sequences, allowing the model to capture vertical trends between
adjacent layers, thereby improving its ability to detect structural
anomalies such as thermocline displacement, edge drift, or
subtle outliers.

In performance evaluations, the semi-supervised model
achieved an average ROC-AUC of 0.953 on the validation set,
with a TPR of 96.58% and a TNR of 80.12%, demonstrating stable
and reliable performance in both temperature and salinity anomaly
detection. Furthermore, even when applied to a large volume of
unlabeled data using pseudo-labels for auxiliary evaluation, the
model maintained approximately 90% accuracy, reflecting strong
label efficiency and generalization capability (shows in Table 3). In

TABLE 3 Model comparison.

SalaciaML
model

Comparison

Proposed model

dimension (this study)

Labeled+ Unlabeled Data
(Semi-supervised, 1:5 ratio)

Only Labeled Data

T f Data Used
ype ot Data Lse (Fully Supervised)

QC Parameters Temperature Temperature, Salinity

ROC-AUC 0.952 0.953 (Average)

True Positive Rate

89%
(TPR) ’

96.58%

True Negative Rate

86%
(TNR) ’

80.12%
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contrast, although SalaciaML achieved comparable results in some
metrics, its applicability is limited to the temperature variable and is
not effective on unlabeled data.

It is worth noting that despite the proposed model achieving
excellent performance in TPR, the relatively lower TNR indicates
some limitations in comprehensive anomaly detection. Several
factors contribute to this lower TNR: First, from the
instrumentation perspective, the moored buoys used in this study
are equipped with high-performance CTD sensors from Sea-Bird
(USA), which offer excellent accuracy, stability, and resistance to
interference. These sensors rarely produce systematic errors or
observation faults under normal operating conditions, resulting in
a very low proportion of true anomalies in the raw data. This leads
to pronounced class imbalance in the training set. Although sample
weighting was employed to enhance the model’s focus on anomaly
classes, the model still tends to adopt conservative predictions near
the decision boundary, leading to missed weak anomalies. Second,
some anomalies exhibit subtle variations or indistinct boundaries in
the profile, making them prone to misclassification as normal
fluctuations—this is particularly common in depth ranges with
highly continuous profiles. Additionally, the consistency
regularization in the Mean Teacher architecture enforces
prediction invariance under perturbations. To avoid systematic
bias due to false positives, the model adopts a more conservative
strategy when dealing with borderline cases. While this
“conservative recognition” enhances overall prediction stability, it
can limit the model’s ability to detect weak or concealed anomalies.

More importantly, the flexibility of the GRU + Mean Teacher
model in training strategy and data adaptability significantly
enhances its scalability for real-world ocean observation tasks.
When facing platforms deployed in different regions or under
varying observation conditions, the model can rapidly adapt and
optimize using only a small number of manually QCed samples,
making it especially suitable for remote marine areas with scarce
annotations but high monitoring demands.

It should be noted that the performance metrics of SalaciaML
are directly quoted from its original publication, where the model
was trained on a large Mediterranean dataset. Therefore, these
results are not strictly comparable with our re-trained models on
Argo and Bailong buoy data, and they are provided only as a
qualitative reference to highlight methodological differences.

6 Conclusion

This study addresses the challenge of quality control for buoy-
based ocean profile data by proposing a deep learning QC approach
that combines the sequential modeling capabilities of GRU with the
semi-supervised Mean Teacher framework. The method is designed
to overcome the limitations of both traditional QC techniques and
existing deep learning models, particularly their weak ability to
detect complex anomaly patterns and their strong reliance on
manually labeled data. The study utilized data from moored
buoys and Argo profiling floats, constructing high-dimensional
structured input features, including temperature, salinity,
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pressure, depth, gradients, interaction terms, seasonal encodings,
and depth one-hot vectors. A sliding window mechanism was
incorporated to enhance contextual modeling capability.

In terms of model architecture, GRUs were employed to extract
sequential features from vertical profiles, combined with an
attention mechanism to highlight key layers, and layer
normalization was applied to stabilize the multi-task learning
process. During training, the model adopted the Mean Teacher
framework, using consistency regularization to guide learning from
unlabeled data when only partial QC labels were available, thereby
improving the model’s generalization performance. The loss
function was designed with a joint optimization strategy
combining regression errors for temperature and salinity and
classification loss, with higher weights assigned to salinity and
anomalous samples in the classification task, thus reinforcing the
learning focus on critical anomalies.

Experimental results showed that the model achieved excellent
performance on ROC and PR curve evaluations, with both
temperature and salinity AUC values exceeding 0.94 and strong
PR-AUC scores. In the confusion matrix, TPR exceeded 90%, and
the model reached approximately 90.0% consistency with human
visual assessments. More importantly, the model demonstrated
high sensitivity to weak anomalies, structural shifts, and water
mass intrusions, suggesting its potential for exploring underlying
physical processes.

However, several aspects remain to be further investigated and
optimized for practical deployment and cross-regional application.
Firstly, the current model still primarily relied on statistical
deviations when identifying anomalies, which may lead to
misclassification of physically valid but statistically abnormal
events (e.g., water mass intrusions or frontal thermoclines).
Future improvements may include incorporating more physical
constraints, such as vertical stability criteria (N?), mixed layer
depth, and other ocean dynamical parameters, to guide the neural
network with physical priors. Secondly, although the model
performed well on the control dataset, it still faces challenges of
data sparsity and feature shift in ultra-deep or low-frequency
regions. Future work should explore adaptive layer normalization,
meta-learning, or domain adaptation techniques to enhance cross-
platform generalization. Third, the current model treated
temperature and salinity anomalies within a unified architecture,
while their underlying physical mechanisms and anomaly behaviors
differ significantly. In future designs, multi-branch networks or
task-decoupling mechanisms may be introduced for more targeted
modeling strategies. Furthermore, to improve model
interpretability, attention-based or SHAP-based explainable
learning frameworks can be incorporated to assist expert
decision-making and model refinement. On the deployment side,
the model could be integrated with ocean observation systems
through embedded QC modules or edge-computing units,
enabling near real-time quality control and feedback at the buoy
level, and facilitating a closed-loop system of observation-
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evaluation-feedback-optimization. Finally, in response to the
increasing heterogeneity of global multi-source oceanographic
data, future efforts should move toward multi-modal collaborative
learning, integrating satellite, meteorological, and auxiliary datasets
to improve the model’s spatial adaptability and intelligence level.
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