
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Yang Ding,
Ocean University of China, China

REVIEWED BY

Xuefeng Zhang,
Tianjin University, China
Wen Zhang,
National University of Defense Technology,
China

*CORRESPONDENCE

Chunlin Ning

clning@fio.org.cn

RECEIVED 08 July 2025
ACCEPTED 13 October 2025

PUBLISHED 06 November 2025

CITATION

Shao W, Ning C, Ma B, Li C, Li H, Yao Z and
Zeng L (2025) Intelligent quality control of
ocean buoy profile data using a GRU-mean
teacher framework.
Front. Mar. Sci. 12:1661373.
doi: 10.3389/fmars.2025.1661373

COPYRIGHT

© 2025 Shao, Ning, Ma, Li, Li, Yao and Zeng.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 06 November 2025

DOI 10.3389/fmars.2025.1661373
Intelligent quality control of
ocean buoy profile data using a
GRU-mean teacher framework
Wenmiao Shao1,2, Chunlin Ning1,2,3,4*, Benjun Ma1, Chao Li2,
Huanyong Li2,5, Zihao Yao2,6 and Lingkun Zeng2,7

1College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, China, 2First
Institute of Oceanography, Ministry of Natural Resources, Qingdao, China, 3Key Laboratory of Marine
Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, China, 4Shandong Key
Laboratory of Marine Science and Numerical Modeling, Qingdao, China, 5College of Ocean Science
and Engineering, Shandong University of Science and Technology, Qingdao, China, 6College of
Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China, 7College of
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To address the limitations in identifying complex anomaly patterns and the heavy

reliance on manual labeling in traditional oceanographic data quality control

(QC) processes, this study proposes an intelligent QC method that integrates

Gated Recurrent Units (GRU) with a Mean Teacher–based semi-supervised

learning framework. Unlike conventional deep learning approaches that require

large amounts of high-quality labeled data, our model adopts an innovative

training strategy that combines a small set of labeled samples with a large volume

of unlabeled data. Leveraging consistency regularization and a teacher–student

network architecture, the model effectively enhances its ability to learn

anomalous features from unlabeled observations. The input incorporates

multiple sources of information, including temperature, salinity, vertical

gradients, depth one-hot encodings, and seasonal encodings. A bidirectional

GRU combined with an attention mechanism enables precise extraction of

profile structure features and accurate identification of anomalous

observations. Validation on real-world profile datasets from the Bailong (BL01)

moored buoy and Argo floats demonstrates that the proposed model achieves

outstanding performance in detecting temperature and salinity anomalies, with

ROC-AUC scores of 0.966 and 0.940, and precision–recall AUCs of 0.952 and

0.916, respectively. Manual verification shows over 90% consistency, indicating

high sensitivity and robust generalization capability under challenging scenarios

such as weak anomalies and structural profile shifts. Compared to existing fully

supervised models, the proposed semi-supervised QC framework exhibits

superior practical value in terms of labeling efficiency, anomaly modeling

capacity, and cross-platform adaptability.
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1 Introduction

Ocean buoys, as key observational platforms, play a vital role in

the global ocean monitoring network. These buoys continuously

record various physical and chemical parameters from the sea such

as temperature, salinity, currents, atmospheric pressure, and wind

fields, providing essential scientific support for climate change

monitoring, marine ecosystem studies, and ocean disaster early

warning systems (Kolukula and Murty, 2025). However, due to the

long-term deployment in dynamic and complex marine

environments, buoy data are susceptible to anomalies caused by

sensor drift (Kent et al., 2019), extreme weather, and equipment

aging (Zhu and Yoo, 2016). Therefore, rigorous quality control

(QC) procedures are critical to ensure the reliability and usability of

buoy observations.

In recent years, for the purpose of tackling the observation

characteristics and data properties of various types of ocean buoys,

various QC techniques have been developed to enhance the stability

of data quality as well as its practical value. Traditional ocean data

quality control (QC) methods typically include consistency checks,

range tests, and distribution fitting to ensure the temporal, spatial,

and physical coherence of the observations (Wen, 2014). In

practice, several studies have proposed systematic QC procedures

for surface buoy data. For example, Lei et al. (2022) developed a

streamlined QC workflow consisting of preprocessing, statistical

screening, local feature recognition, error control, and manual

inspection. By introducing error tolerance mechanisms, their

method effectively avoids excessive data rejection and significantly

improves data integrity and representativeness. In addition, for

specific parameters such as wave data, Liu et al. (2016) constructed a

composite QC framework combining Grubbs’ test and local outlier

detection, enabling the preservation of true anomaly events while

enhancing sensitivity and adaptability. For moored buoy

observations, Li et al. (2019) proposed an automated QC method

based on meteorological and hydrological principles, incorporating

range checks, extreme value detection, and correlation analysis. For

Argo profiling floats, historical profile matching has been widely

adopted for anomaly detection and correction—this involves

comparing real-time data with statistical features from historical

databases to ensure physical and statistical consistency (Wang et al.,

2012). Moreover, Argo data also employ a delayed-mode quality

control (DMQC) system to correct long-term sensor drift in

pressure and salinity measurements, with fine adjustments using

the OWC algorithm (Core Argo Data Management Team, 2021).

However, these traditional methods largely rely on manual

verification. As data volume and real-time demands increase,

their low efficiency and high labor costs have become significant

limitations. Consequently, some researchers have attempted to

develop automated QC systems based on rule-based techniques

such as temperature range checks, vertical gradient analysis, and

profile shape recognition, aiming for real-time anomaly detection in

buoy datasets (Zhang et al., 2024). Nevertheless, these approaches

typically depend on static thresholds and empirical rules, which are

insufficient to accommodate the diversity of oceanic environments

(e.g., remote regions or ecologically anomalous zones).
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Furthermore, traditional QC methods heavily rely on historical

data for reference, which may itself be contaminated by noise,

regional biases, or sparse spatial-temporal coverage, ultimately

affecting the accuracy and robustness of quality control.

In recent years, deep learning methods have emerged as

promising tools in buoy data quality control due to their

nonlinear modeling capabilities, significantly improving anomaly

detection accuracy and adaptability. For example, Li et al. (2018)

leveraged association rules and clustering to identify extreme

meteorological events, building effective anomaly recognition

models. Leahy et al. (2018) applied neural networks to classify

and correct historical climate observations using multidimensional

features such as time, depth, and data source, thereby improving

overall data consistency. For Argo profile QC, Sugiura and Hosoda

(2020) proposed a learning method based on profile curve shapes,

replacing traditional rule-based detection with automatic

anomaly identification.

Further developments include the integration of multi-source

observational data with neural networks for real-time

meteorological anomaly detection (Xu et al., 2021); the

application of multilayer perceptrons (MLPs) and deep neural

networks (DNNs) to sea temperature classification tasks,

enhanced by synthetic minority oversampling and weighted loss

functions (Liu et al., 2021); the use of the SalaciaML model for

efficient temperature anomaly detection on large Mediterranean

datasets (Mieruch et al., 2021); the design of BP network–based

automated QC workflows to improve observation consistency

(Huang et al., 2023); the construction of particle swarm–

optimized BP neural networks for anomaly detection under high-

humidity conditions (Wang et al., 2024); and algorithm evaluation

for pH data quality control, where the addition of near-surface

reference points was proposed to improve QC accuracy (Wimart-

Rousseau et al., 2024).

Despite these advances, deep learning–based methods still face

significant challenges in real-world applications. Although MLPs

and signature-path models have reduced manual effort and

improved automation in anomaly detection, their performance

remains highly dependent on the availability of high-quality

labeled data. In practice, buoy observation data often suffer from

sparse labeling, uneven data quality, and class imbalance, which

hinder the ability of supervised learning models to fully capture the

distribution of anomalous features. Under complex and dynamic

oceanic conditions, such models tend to exhibit poor generalization

and stability, limiting their broader applicability and scalability.

To address the issues mentioned above, we proposed a novel

semi-supervised quality control framework based on the Mean

Teacher architecture combined with a GRU-Attention network.

This framework was designed to tackle label scarcity, complex

anomaly patterns, and the need for real-time application.

Structurally, it employed a teacher–student dual-network

architecture, where GRU (Gated Recurrent Unit) modules capture

temporal dependencies, and attention mechanisms enhance focus

on anomalous profi le layers. By enforcing consistency

regularization between the teacher and student models, the

framework enables the student model to learn from large volumes
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of unlabeled buoy data and discover underlying anomaly patterns,

even when labeled data are limited. This approach reduced reliance

on human labeling while maintaining high anomaly detection

accuracy. In practical applications, the model can be integrated

into automated buoy QC workflows for real-time anomaly

detection and label generation, thus improving operational

efficiency and responsiveness.
2 Data

2.1 Bailong buoy data

The Bailong-01 (BL01) buoy is a key fixed-point ocean

observation platform deployed in the southern equatorial Indian

Ocean warm pool under the RAMA program (Research Moored

Array for African–Asian–Australian Monsoon Analysis and

Prediction). It is located offshore to the southwest of Sumatra (see

Figure 1 for detailed location). This region lies within the core area

of tropical monsoon circulation and is influenced by a combination

of oceanic processes, including the Indonesian Throughflow,

seamount topography, and tropical gyre modulation (Sprintall

et al., 2009), making it an important window for studying

monsoon systems, oceanic dynamics, and climate variability.

BL01 is capable of long-term, all-weather automatic observations.

Its upper section is equipped with various meteorological sensors to

measure and record air temperature, relative humidity, atmospheric

pressure, wind speed, and wind direction. The lower section hosts

multilayer oceanographic instruments, primarily including

conductivity–temperature–depth (CTD) sensors and acoustic

Doppler current profilers (Aquadopp), which acquire seawater

temperature, salinity, and velocity data across multiple depth
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layers (Ning et al., 2022). The observation depth extends from the

sea surface down to 700 meters. This study focused on the 20–100 m

depth range, where sensor deployment is relatively dense and both

temperature and salinity are measured in real time. This

configuration offers high temporal and spatial resolution, making

it particularly suitable for quality control and anomaly detection

studies (see Figure 2 for the structure of the BL01 buoy).

The raw observational data used in this study were obtained

from the profile sensors deployed during the 2014 and 2016

deployment cycles from the BL01 buoy. The data cover the

period from 2014 to 2018 and were uniformly recorded in

Standard Time. Measurement units follow international

conventions: temperature is recorded in degrees Celsius (°C),

salinity in practical salinity units (PSU), depth in meters (m), and

pressure in decibars (dbar). The sampling interval is 10 minutes.

The two datasets include the following parameter fields:
-Depth: Sensor depth (m)

-Pressure: Pressure at the observation point (dbar)

-Temperature: Seawater temperature (°C)

-Salinity: Salinity (PSU)

-Standard time: Recorded timestamp (Julian day format)
As shown in the statistical summary in Figure 3, the dataset

from April 2014 to April 2015 contained a total of 259,348 records,

while the dataset from October 2016 to January 2018 included

324,371 records, yielding a combined total of approximately

584,000 samples.It is important to note that the data used in this

study were directly extracted by field technicians after buoy

recovery and have not undergone any interpolation, smoothing,

or quality control procedures. As a result, the dataset retains all

anomalous signals from the original observation process, including
FIGURE 1

Location of the Bailong-01 (BL01) Buoy. (Bathymetric data source: GEBCO Compilation Group (2024), GEBCO 2024 Grid. DOI: 10.5285/1c44ce99-
0a0d-5f4f-e063-7086abc0ea0f.).
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disturbances, sensor drift, measurement errors, and pre-

deployment test records.
2.2 Argo data

The dataset used in this study was obtained from the Argo float

observations provided by the Integrated Marine Observing System
Frontiers in Marine Science 04
(IMOS) of Australia. Specifically, four float IDs were selected:

5905211, 5905212, 5905213, and 5905214 (Hill et al., 2015).

These floats are based on the NAVIS_EBR platform,

manufactured by Sea-Bird Electronics (USA), and are equipped

with standard conductivity–temperature–depth (CTD) sensor

modules capable of real-time measurement of temperature

(TEMP), salinity (PSAL), and pressure (PRES). The observational

data are transmitted in real time via the IRIDIUM satellite network

to the Commonwealth Scientific and Industrial Research
FIGURE 2

Structural diagram of the BL01 buoy.
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Organisation (CSIRO) for data management and quality control

(Wong et al., 2020).

The above floats were deployed sequentially in mid-November

2017 in the tropical region of the southeastern Indian Ocean, within

a longitudinal range of 110.25°E to 119°E and a latitudinal band

between 13.5°S and 14°S. The floats have remained in stable

operational condition, and as of December 2024, each float had

completed approximately 259 to 260 profiling cycles. For example,

float 5905211 alone had produced approximately 256,921 raw

observational records.

The dataset primarily included six core physical parameters:

observation date, geographic coordinates (latitude and longitude),

pressure (PRES), depth (DEPTH), temperature (TEMP), and

salinity (PSAL). Each of these parameters was accompanied by a

corresponding quality control (QC) flag—such as TEMP_QC,

PSAL_QC, PRES_QC, DATE_QC, and POSITION_QC—to

indicate potential data quality issues. For the TEMP and PSAL

fields, every data point was tagged with a QC flag: a value of “1”

denoted data that had passed QC procedures and was considered

valid or high quality, while a value of “0” indicated data that failed

QC or was considered anomalous.

After filtering all measurements with depths shallower than 130

m, a total of 110,454 valid records were retained across the four

Argo floats. These data points were primarily distributed in the

tropical southeastern Indian Ocean, centered around approximately

13.5°S and 119°E, a location geographically close to the Bailong

buoy site. The time span of the Argo data begins in November 2017

and continues to the present, and as illustrated in Figure 4, the

vertical distributions of temperature and salinity from the selected

Argo profiles are clearly presented, providing an overview of their

spatial and temporal coverage that complements the Bailong

buoy observations.
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3 Methods

3.1 Basic model

Intelligent quality control of ocean buoy profile data faces two

major challenges: the high cost of manual labeling and the difficulty

of detecting complex anomaly patterns under dynamic ocean

conditions. To address the issue of label scarcity and enhance the

model’s generalization ability in handling diverse anomalies, this

study adopted a semi-supervised learning (SSL) approach. SSL is a

machine learning paradigm that leverages a small amount of labeled

data alongside a large volume of unlabeled data, aiming to build

models with strong generalization performance even in the absence

of abundant annotations (Li et al., 2023). In practical applications—

especially in fields such as ocean observation, remote sensing, and

bioinformatics—acquiring large, high-quality labeled datasets are

often expensive and labor-intensive. SSL provides a promising

solution via allowing the model to learn structural patterns from

labeled samples while using unlabeled data to better understand the

overall data distribution, thereby improving its discriminative

power and robustness in the input space.

Among SSL techniques, the Mean Teacher model is a widely

recognized and effective architecture. It consists of a dual-branch

neural network system: a student model and a teacher model. The

teacher’s weights are continuously updated using an Exponential

Moving Average (EMA) of the student’s weights, maintaining a

stable learning target for the student. During training, the student

model makes predictions on perturbed inputs, while the teacher

model generates target outputs from the original, unperturbed

inputs. The consistency between their outputs is minimized via a

consistency loss, enabling the model to learn structural patterns

from unlabeled data. This approach not only improves the
FIGURE 3

Distribution of BL01 buoy data [(a, b) Temperature and salinity data from 2014–2015; (c, d) Temperature and salinity data from 2016–2018].
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utilization of unlabeled data but also avoids the error accumulation

often observed in pseudo-labeling methods (Tarvainen and

Valpola, 2017).

The core mechanism of the Mean Teacher framework lies in its

use of abundant unlabeled data to drive model training, guided by a
Frontiers in Marine Science 06
stable consistency regularization process that encourages

convergence toward meaningful representations. Importantly, no

explicit labels are required for the unlabeled data; instead, the model

learns through “soft targets” generated by the teacher–student

structure (Deng et al., 2021). As a result, the model fits well to
FIGURE 4

(a-h) Full-profile Argo float observations this figure presents the ocean profile observations from four Argo floats (IDs 5905211–5905214) collected
between November 2017 and May 2025. It shows the variation of in situ temperature (ITS-90 scale, °C) and practical salinity (PSU) with depth
(pressure, in dbar). In each subplot, color indicates the profile number, transitioning from blue (early observations) to red (later observations), thereby
reflecting the temporal evolution of the dataset. Depth is plotted with 0 dbar at the surface, increasing downward. Only data from depths shallower
than 130 m are used in this study. Data source: Argo float observations (IDs: 5905211–5905214), retrieved from the official Argo website [(https://
argo.ucsd.edu) (https://argo.ucsd.edu)] via the Coriolis Data Center visualization tool, accessed in May 2025.© Argo Data Center. All rights reserved.
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labeled samples while also forms robust decision boundaries across

the entire input distribution. This property is particularly beneficial

in the presence of distributional shifts, outliers, or structurally

complex data, where traditional supervised models often struggle

to generalize.

In this study, we adopted the Gated Recurrent Unit (GRU) as

the backbone network of the Mean Teacher framework to perform

time-series modeling and feature extraction. GRU is a variant of

recurrent neural networks (RNNs) designed for processing

sequential data. It includes update and reset gate mechanisms

that effectively capture long-term dependencies while mitigating

the vanishing gradient problem (Dey and Salem, 2017).
3.2 Model design

3.2.1 Development framework and environment
The GRU–Mean Teacher model was implemented using the

PyTorch deep learning framework. All model development and

training procedures were conducted using Python, with the

integrated development environment (IDE) set as PyCharm. The

Python version used was 3.7.12. Core dependencies include pandas

(version 1.3.5) and numpy (version 1.21.6), which both were

managed and executed within an Anaconda virtual environment.

3.2.2 Model architecture
The model employed in this study adopted a two-layer GRU

architecture (a single-layer version as illustrated in Figure 5), which

was applied to both the student and teacher networks within the

Mean Teacher framework. Each directional GRU contained 64

hidden units, together forming a contextual encoder capable of

capturing both forward and backward information flows. This

enhanced the model’s ability to perceive multi-level structural

patterns across different oceanographic profile layers.
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On top of the GRU outputs, an attention mechanism was

introduced. The primary advantage of the attention mechanism

lies in its ability to simulate the way human experts examine profile

plots—by focusing on layers with abrupt changes, fluctuations, or

salient structural features, while down-weighting redundant or less

informative regions (Zhong et al., 2018). Specifically, the model

assigned a score to each GRU output using a single-layer fully

connected network. These scores were normalized via the Softmax

function and used as weights to compute a weighted sum of the

GRU outputs. This generated a fused representation that allowed

researchers to trace which layers the model “attended to” when

making predictions.

After the attention mechanism, layer normalization was applied

to stabilize the output. This involved computing the mean and

standard deviation across the feature dimension for each sample

individually, which helped mitigate numerical fluctuations arising

from input variability and gradient accumulation in multi-step

GRU hidden states. Such stabilization was of particular

importantance when the attention-weighted context vector

underwent scale shifts or becomes numerically unstable. Layer

normalization thus effectively alleviated gradient oscillation issues

that might occur during the joint optimization of anomaly detection

(regression) and quality control classification tasks, ensuring

training stability and efficient convergence.

In the Mean Teacher framework (as shown in Figure 6), GRUs

were embedded in the backbone of both the student and teacher

networks, and used to model and predict profile sequences (e.g.,

TEMP and PSAL as functions of DEPTH). During each training

iteration, the student GRU processed perturbed inputs to generate

predictions, while the teacher GRU produced reference outputs

based on unperturbed data. These outputs were aligned via

consistency loss, enhancing the model’s learning capability.

Notably, the GRU served a dual role in this semi-supervised

setup: it not only contributed to supervised learning objectives
FIGURE 5

Schematic diagram of the GRU with Attention model for each layer.
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(e.g., predicting true labels) but also supported unsupervised

consistency constraints, acting both as a feature extractor and an

executor of the learning strategy.

The core idea of the Mean Teacher framework was to maintain

two separate neural network models simultaneously: a student

model, which underwent parameter updates and drived the main

optimization process, and a teacher model, which did not

participate in backpropagation. Instead, the teacher’s parameters

were updated through the Exponential Moving Average (EMA) of

the student’s parameters. Structurally, the student and teacher

networks were identical, both comprising the aforementioned

GRU + Attention architecture. The only difference lied in how

their parameters were updated. Specifically, the parameters of the

teacher model are updated at each training step according to

Equation 1.

qteacher ←a · qteacher + (1 − a) · qstudent (1)

Here,  a denoted the decay factor, typically set close to 0.99, to

maintain the stability of the teacher model. The essence of this

strategy lied in introducing a “slow-moving” learning target for the

model, allowing the teacher network’s outputs to remain smooth

and robust. This facilitated the generation of high-confidence

pseudo-labels, which served to guide the student model’s learning

direction on unlabeled samples.

During training, the student model received a mixed input

comprising both labeled and unlabeled data. For the unlabeled

samples, this study implemented a “soft supervision” mechanism

through two complementary strategies: on one hand, noise was

added to the student model’s inputs (e.g., via Dropout or data
Frontiers in Marine Science 08
perturbations): on the other hand, the teacher model generated

stable predictions for the same inputs under noise-free conditions.

The consistency loss is defined as the Mean Squared Error (MSE)

between the outputs of the student and teacher models, as

formalized in Equation 2.

Lconsistency = MSE(fstudent(~x), fteacher(x)) (2)

Here, ~x  denoted the perturbed input sample, and f ( · )

represented the prediction function of the model. This

consistency loss reflected an important cognitive assumption: if

the model had a thorough understanding of the input structure, its

predictions should remain consistent under input perturbations.

This served not only as a form of regularization, but also as a crucial

pathway for deep networks to extract underlying structures from

unlabeled data.

However, in the early stages of training, the teacher model was

still unstable, and the pseudo-labels it generated may lack reliability.

Imposing consistency constraints too early may lead to suboptimal

convergence or overly confident yet incorrect predictions. To

address this issue, this study introduced the consistency ramp-up

strategy (Tarvainen and Valpola, 2017), where the influence l(t)
weight of the consistency loss was gradually increased during the

initial training phase. This allowed the model to rely mainly on

supervised signals during the first few training epochs, and to

enhance the guidance from unlabeled data once the outputs of

the student and teacher begin to align. Typically, l(t) followed a

sigmoid or exponential growth schedule, smoothly transitioning

from 0 to a predefined maximum value (e.g., 0.1) over the first

50 epochs.
FIGURE 6

Illustration of the overall architecture of the model. The blue solid lines indicate the processing flow of labeled data, while the blue dashed lines
indicate that of unlabeled data.
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3.2.3 Loss function design
To simultaneously achieve high-precision modeling of the

physical structures of temperature and salinity profiles, as well as

effective detection of anomalous observations, this study designed a

multi-task loss function framework composed of both regression

and classification objectives. This framework integrated supervised

signals from labeled samples and incorporated a structured

weighting mechanism together with semi-supervised consistency

guidance, enabling the model to maintain strong generalization

performance and stable learning even under conditions of label

imbalance and observational complexity.

For the regression task, Mean Squared Error (MSE) was

adopted as the optimization objective to measure the discrepancy

between the model’s predicted temperature and salinity values and

the original observations. Reconstruction was treated as a core task

because most physical oceanographic data exhibited continuity and

follow natural laws. By forcing the model to learn the patterns of

“normal” profile structures, this approach essentially enhanced the

model’s robustness to background noise in a self-supervised

manner. In addition, to emphasize the modeling priority of

salinity, the MSE loss for salinity was assigned a threefold weight.

This design was motivated by observational findings indicating that

salinity anomalies were generally more subtle in magnitude yet

more difficult to capture with simple trend-based models, and their

impacts can be significant. Therefore, reinforcing salinity

reconstruction accuracy at the loss level helped the model become

more s en s i t i v e to l ow-amp l i t ude bu t h i gh - impac t

anomalous behaviors.

For the classification task, a weighted Binary Cross-Entropy

(BCE) loss was employed to detect anomalies in TEMP_QC and

PSAL_QC labels. To address the real-world imbalance where QC =

0 (anomalous) samples were much fewer than normal ones, this

study assigned a significantly higher loss weight to anomalous

samples (5 for anomalies vs. 1 for normal samples). This

increased the model’s “penalization capacity” for anomalies,

guiding it to focus more on these rare yet critical cases during

training. Furthermore, to prevent anomalous samples from

dominating the gradient updates in the regression loss, their

weight in the regression component was downscaled to 0.2,

thereby weakening their influence on the reconstruction objective.

This differentiated weighting strategy effectively established a

“strategic synergy” between tasks: the regression branch focused

on learning normal patterns, while the classification branch

concentrated on identifying anomalous signals. Together, these

components formed a complementary, rather than conflicting,

multi-task framework. The total supervised loss Lsup for the

labeled samples is given by Equation 3.

Lsup = Lregression + Lclassification (3)

In the overall training objective, considering that the model

needed to handle both labeled and unlabeled samples, a consistency

loss was further introduced in this study, Thereby constructing the

complete semi-supervised training objective function as shown in

Equation 4.
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Ltotal = Lsup + l(t) · Lconsistency (4)

Here, l(t) was a dynamic scaling factor that varied with the

training progress, used to control the influence of the consistency

loss at different stages of training.

In terms of the overall process, during the labeled data training

phase, samples were passed through the student model and

involved in both regression and classification tasks. The

corresponding loss function consisted of two main components:

on the one hand, the regression loss minimized the discrepancy

between the model’s predicted temperature and salinity values and

the true observations, thereby performing the reconstruction task;

on the other hand, the classification loss used the actual TEMP_QC

and PSAL_QC labels to carry out anomaly detection.

In the unlabeled data training phase, the data were likewise fed

into the student model for forward propagation. However, unlike

the labeled samples—which relied on supervised signals to optimize

classification and regression outputs—the core of this phase lied in

guiding the model to learn the underlying data structure through

consistency constraints. Specifically, the student model generated

predictions based on perturbed inputs, while the teacher model

produced reference outputs from the same inputs without

perturbation. The discrepancy between the two outputs

constituted the consistency loss.

Therefore, in the training process for unlabeled data, the

student model did not participate in the classification task but

was still indirectly involved in the regression task through the

alignment of outputs between the student and teacher models.
3.3 Train

3.3.1 Feature selection
In machine learning research, feature engineering is one of the

key factors influencing algorithm performance. Appropriately

selecting and designing input features is crucial for enhancing a

model’s generalization ability and robustness. Specifically, in this

study, based on the practical requirements of oceanographic data

quality control and the characteristics of the observational data, we

selected a set of representative and informative input features, as

detailed below:
-Temperature (TEMP): Real-time temperature measurements

collected by the buoy (unit: °C);

-Salinity (PSAL): Real-time salinity measurements collected by

the buoy (unit: PSU);

-One-hot Encoded Season: One-hot encoded seasonal feature

based on the month of observation;

-Temperature Gradient: The gradient of temperature with

respect to depth;

-Salinity Gradient: The gradient of salinity with respect

to depth;

-One-hot Encoded Depth: One-hot encoded feature indicating

different depth levels.
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To enhance the model’s ability to detect anomalous data, this

study incorporated not only the raw physical variables directly

observed by the buoy—such as temperature (TEMP) and salinity

(PSAL)—but also several structured and derived features, aimed at

improving the model’s perception of profile structures, seasonal

variability, and contextual information. Temperature and salinity

served as the fundamental variables for anomaly detection. The

One-hot Encoded Season feature transformed the observation

month into a one-hot vector representing the corresponding

season.The temperature gradient(∂TEMP/∂DEPTH)and salinity

gradient (∂PSAL/∂DEPTH) reflected the vertical continuity and

rate of change within the profile data, serving as key indicators for

identifying sharp transitions or abnormal jumps in the water

column. Finally, since buoy data did not always provide full-

depth coverage, the One-hot Encoded Depth feature transformed

specific measurement depths into discrete dimensions, enabling the

model to recognize the depth level of each input sample during the

encoding stage (Potdar et al., 2017).

3.3.2 Data pre-processing
To ensure that the deep neural network can effectively learn

both physical patterns and anomaly structures during training, this

study first performed basic data cleaning and structured feature

construction on the raw observational data. Specifically, filtering

thresholds were set based on fundamental physical knowledge: only

observations with temperature within the range of [−5, 50]°C and

salinity within [1, 60] PSU were retained. This process eliminated

extreme outliers and invalid placeholder values that could interfere

with model gradients, improves the consistency and modelability of

the overall data distribution, and prevented disruptions to the

model’s convergence trajectory.

For numerical features (such as temperature, salinity, gradient

terms, and interaction terms), Z-score normalization was uniformly

applied to standardize the input, avoiding learning inefficiencies

caused by differences in variable scales. Depth and seasonal

information were processed using one-hot encoding. Each

observation’s depth was discretized into five representative levels

(20 m, 40 m, 60 m, 80 m, and 100 m) and encoded as a 0–1 vector.

The seasonal feature was constructed based on the timestamp of

each observation: by extracting the month field, each sample was

assigned to one of four seasons—spring (March–May), summer

(June–August), autumn (September–November), and winter

(December–February). A one-hot encoding strategy was then

applied to convert these discrete season categories into numerical

input vectors.In practice, the procedure first extracted the month

from the timestamp, then mapped each sample to its corresponding

season category (indexed 0 to 3), and finally generated a binary

vector of length 4 to represent seasonal information. For example,

spring was encoded as [1, 0, 0, 0], summer as [0, 1, 0, 0], and so on.

To further enhance the model’s ability to capture profile

structures, a sliding-window mechanism was introduced. Each

observation point was combined with its preceding and

succeeding neighbors to form a three-step sequence that

incorporated local contextual information, resulting in a

structured input tensor of size 3×12. The step size (stride) was set
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to 1 layer, meaning that the window shifted downward by one depth

level at a time. This design ensured sufficient overlap between

adjacent windows and allowed the model to capture fine-grained

vertical variability. In deep learning, this approach is often referred

to as local context enhancement, with the key advantage of

transforming point-wise prediction into segment-based structural

modeling. Consequently, the model no longer relied solely on the

instantaneous state of the current point but also perceived its spatial

continuity (Xu et al., 2024). Such contextual modeling is

particularly critical for anomaly detection in oceanographic

profiles. For example, when salinity at a given depth significantly

deviates from that of adjacent layers, the model can more accurately

identify this anomaly by comparing it with neighboring points

within the sliding window.

3.3.3 Model training
The labeled dataset was divided into four subsets: training data

(60%) is used for model parameter learning and updates; validation

data (15%) is employed to optimize model hyperparameters and

prevent underfitting or overfitting; testing data (10%) was used for

threshold adjustment; and control data (15%) was reserved for final

model performance evaluation. Unlabeled data was used during

training for computing the consistency loss, guiding the student

model to learn latent data structures from unlabeled samples and

thereby improving generalization.

The network architecture adopted a two-layer GRU structure

with 64 hidden units per layer, integrated with attention

mechanisms and layer normalization to enhance feature

representation and training stability. The training process was

based on the Mean Teacher framework, in which the student

model made predictions on perturbed inputs (e.g., with added

noise), while the teacher model predicted on the same inputs

without perturbations. The difference between these predictions

formed the consistency loss, which encouraged the student model to

align with the data distribution learned from unlabeled inputs.

In terms of the loss function, a dual-task strategy was employed,

combining both regression and classification objectives. The

regression loss was calculated using Mean Squared Error (MSE),

with the salinity loss component weighted three times higher than

that of temperature, enabling the model to be more sensitive to

subtle salinity anomalies. The classification loss used weighted

Binary Cross-Entropy (BCE), where significantly higher weights

were assigned to anomalous samples to enhance the model’s

sensitivity to rare but critical anomalies.

To avoid misleading gradients caused by the instability of the

teacher model during early training, a ramp-up strategy was

adopted for the consistency loss, gradually increasing its influence

over time. The optimization was performed using the Adam

optimizer, with an initial learning rate set to 0.001, and weight

decay of 0.01 applied to control model complexity.

The model was trained for 200 epochs, with dropout applied

during training to randomly deactivate a subset of neurons, thereby

reducing the risk of overfitting. In the later stages of training, the

Receiver Operating Characteristic (ROC) curve was used to

optimize the anomaly detection threshold (Fawcett, 2006). This
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threshold optimization considered the class imbalance in the

dataset, ensuring high efficiency and accuracy in distinguishing

between normal and anomalous data. Finally, model performance

was evaluated using a control dataset that was entirely excluded

from training, ensuring robust assessment of the model’s

generalization capability and real-world applicability.
4 Evaluation results and analysis

4.1 Performance evaluation of the model

To comprehensively evaluate the performance of the proposed

semi-supervised temperature and salinity quality control model
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based on GRU + Attention, two classical classification evaluation

metrics were introduced: the Receiver Operating Characteristic

(ROC) curve and the Precision-Recall (PR) curve. These metrics

respectively assessed the model’s overall discriminative capability

and anomaly detection precision, providing a systematic analysis of

its performance on the labeled validation dataset.

Figure 7 presented the ROC curve, where the x-axis represented

the False Positive Rate (FPR) and the y-axis represented the True

Positive Rate (TPR). By varying the reconstruction error threshold

used by the model to determine whether a sample was anomalous or

not, a series of FPR and TPR pairs were computed to form the ROC

curve. The Area Under the ROC Curve (AUC) is widely used in

binary classification tasks as a comprehensive performance

indicator. Specifically, the closer the AUC value is to 1, the

stronger the model’s discriminative ability; conversely, an AUC

close to 0.5 indicates performance no better than random guessing.

In this experiment, the model achieved an ROC AUC of 0.966

for temperature data and 0.940 for salinity data, both demonstrating

strong classification performance. Notably, the model showed high

sensitivity and specificity in detecting salinity anomalies.

Figure 8 showed the Precision-Recall (PR) curve, where the x-

axis denoted Recall and the y-axis denoted Precision. Compared to

the ROC curve, the PR curve was more sensitive under conditions of

extreme class imbalance (e.g., when anomalous samples were far

fewer than normal ones), making it particularly valuable for

anomaly detection tasks. The Area Under the PR Curve (PR

AUC) reflected the model’s overall trade-off between precision

and recall across all possible threshold settings.

In this study, the model achieved a PR AUC of 0.952 in the

temperature anomaly detection task and 0.916 in the salinity task,

both of which were considered high-performance levels. These

results indicated that the model not only effectively identifies the

majority of anomalous samples (high recall) but also maintained a

low rate of false positives (high precision).

Specifically, a higher Recall value indicates that the model has

strong sensitivity to anomalies, meaning that the majority of

anomalous samples are correctly identified without being missed.

Meanwhile, a higher Precision value suggests a lower false positive

rate for normal samples, which is beneficial for the stable operation

of downstream analysis or alert systems. Notably, in the anomaly

detection task for salinity data, the PR AUC reached 0.916, further

demonstrating the model’s robustness in handling salinity

anomalies, which are often complex, variable, and susceptible to

sensor drift. This strong performance was closely related to the

training design, in which the salinity regression loss was assigned a

higher weight, and the classification loss was adjusted through a

weighted strategy.

Moreover, during the model evaluation phase, the input used

for anomaly scoring was derived from the model’s reconstruction

module, specifically the absolute error between the model’s output

(predicted temperature and salinity) and the original input. Binary

classification scores were then computed based on the

corresponding QC labels. This evaluation method, which was

based on reconstruction error rather than raw features, more

accurately reflected the direct relationship between the model’s
FIGURE 7

ROC curves for temperature and salinity.
FIGURE 8

PR curves for temperature and salinity.
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FIGURE 9

Comparison between model-predicted labels and ground-truth labels for the temperature dataset.
FIGURE 10

Comparison between model-predicted labels and ground-truth labels for the salinity dataset.
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reconstruction capability and its ability to detect anomalies. It also

offered a more behaviorally interpretable assessment pathway

aligned with the model’s internal mechanisms.

Taken together, the analysis of both the ROC and PR curves

clearly demonstrated that the proposed semi-supervised model

achieved excellent performance in the task of temperature and

salinity quality control. It effectively fulfilled the objective of

anomaly detection and exhibited strong potential for

practical applications.
4.2 Evaluation of quality control
performance

To further validate the anomaly detection and classification

capabilities of the proposed semi-supervised quality control model

on real-world observational data, this study constructed a standard

confusion matrix based on the model’s final prediction outputs and

the ground-truth labels (i.e., the control dataset labels). From this

matrix, four key performance metrics were derived: True Positive

Rate (TPR), False Positive Rate (FPR), False Negative Rate (FNR),

and True Negative Rate (TNR):
Fron
-TPR represented the proportion of actual normal samples that

are correctly identified as normal by the model, measuring

the model’s ability to recognize valid data.

-FPR refered to the proportion of actual anomalous samples

that were incorrectly classified as normal, indicating the

model’s tendency to produce false negatives for anomalies.

-FNR indicated the proportion of actual normal samples that

were mistakenly classified as anomalous, reflecting the risk

of over-flagging valid observations.

-TNR represented the proportion of actual anomalous samples

that were correctly identified as anomalies, serving as a key

indicator of the model’s anomaly detection capability.
Together, these four metrics formed the core dimensions for

evaluating the classification performance of the model. By analyzing

these indicators, this study provided a more granular understanding

of the model’s behavior under various prediction scenarios, as well

as potential risks of misclassification or missed detection.

The confusion matr ix consis ted of the fol lowing

fundamental elements:
-TP (True Positive): Samples that were truly normal and

correctly identified as normal;

-FP (False Positive): Samples that were truly anomalous but

incorrectly classified as normal;

-FN (False Negative): Samples that were truly normal but

mistakenly identified as anomalous;

-TN (True Negative): Samples that were truly anomalous and

correctly identified as anomalous.
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In the temperature quality control task, the model

demonstrated excellent predictive performance (shows in Figure

9). Specifically, within the control dataset, the model correctly

identified 16,750 normal samples (True Positives, TP), while 589

anomalous samples were incorrectly classified as normal (False

Positives, FP). On the other hand, only 431 normal samples were

mistakenly classified as anomalous (False Negatives, FN), and 2,459

anomalous samples were correctly identified (True Negatives, TN).

Based on these results, four key performance metrics were

calculated (shows in Table 1):
-TPR (TPR = TP/(TP + FN)) reached 97.48%, indicating that

the model achieved very high coverage in detecting normal

samples—most normal data were correctly recognized.

-FPR (FPR = FP/(FP + TN)) was 19.33%, reflecting the

proportion of anomalous samples misclassified as normal,

which directly related to the model’s risk of false acceptance

in practical deployment.

-FNR (FNR = FN/(TP + FN)) was 2.52%, showing a very low

probability of missing normal samples, highlighting the

model’s reliability in preserving critical data.

-TNR (TNR = TN/(FP + TN)) reached 80.67%, demonstrating

the model’s strong capability in stably identifying the

majority of true anomalies.
In the salinity quality control task, the model likewise

demonstrated robust performance characteristics (shows in Figure

10). It successfully identified 15,761 normal samples (TP) and 2,988

abnormal samples (TN), while 768 abnormal samples were

incorrectly classified as normal (FP), and 712 normal samples

were mistakenly recognized as abnormal (FN).

Further metric analysis shows that the true positive rate (TPR)

reached 95.68%, indicating the model’s strong ability to correctly

recognize normal data. The false positive rate (FPR) was 20.43%,

slightly higher than that in the temperature detection task. This may

be attributed to the salinity data exhibiting more diverse anomaly

patterns and complex physical behaviors during observation, which

increased the difficulty of accurate discrimination. The false

negative rate (FNR) was 4.32%, meaning that the model

maintained a low and acceptable level of missed detections for

normal data. Meanwhile, the true negative rate (TNR) was 79.57%

(shows in Table 2), suggesting that the model remained stable in

identifying abnormal data—although slightly inferior to the

temperature detection task, it still effectively met the fundamental

requirements of anomaly detection overall.
4.3 Manual inspection

This study also designed and implemented a systematic manual

visual inspection procedure as a supplementary method for

evaluating the model’s detection accuracy and generalization

capability. Manual visual inspection was conducted by analysts
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with expertise in oceanographic observations, who professionally

reviewed the quality control results of unlabeled data. During the

assessment, the evaluators considered multiple factors, including

historical profile trends and the current station’s environmental

context, to determine whether a given data point exhibited

unreasonable deviations.

Thousands of data records identified as anomalous by the

model were randomly sampled and categorized by depth layers,

time periods, and anomaly intensity levels. Each category was then

manually verified. During this process, the observers paid special

attention to the following three typical types of anomalies:
Fron
-Abrupt anomalies, characterized by sharp discontinuities or

sudden jumps at a single depth point in the temperature or
tiers in Marine Science 14
salinity profiles—often indicative of sensor failure or data

writing errors.

-Gradual drift anomalies, where a systematic deviation

appeared across the entire profile (e.g., salinity being

uniformly higher by 0.3 PSU), usually associated with

calibration errors.

-Subtle edge anomalies, which may not exhibit obvious spikes

but deviate from historical trends and contradict known

physical processes—these often occur near the boundary of

normal conditions.
These three types of anomalies were the primary focus of

manual verification and served as critical indicators for assessing

the model’s comprehensive anomaly detection capability.

To quantitatively assess the consistency between model outputs

and manual evaluations, this study calculated the proportion of

anomalous samples identified in the unlabeled dataset. The

evaluation primarily relied on monthly anomaly rate curves

generated by the model on two sets of buoy profile data: the “14”

dataset (from April 2014 to April 2015) and the “16” dataset (from

October 2016 to January 2018), which were used to quantify the

stability of anomaly detection over time.

As shown in Figure 11a, the temperature anomaly rate in

Dataset14 remained consistently low throughout the observation

period, indicating no abnormal fluctuations. In contrast, Figure 11c

showed a slight increase in the temperature anomaly rate of

Dataset16 during October 2016 and January 2018, reaching 0.068

and 0.049, respectively, which might be attributed to potential

sensor disturbances during deployment and retrieval of the buoy.

In comparison, Figure 11b presented a sudden spike in the

salinity anomaly rate of Dataset14 in April 2015, rising to 0.0182,
FIGURE 11

(a–d) Estimated anomaly rates for temperature and salinity in the unlabeled dataset.
TABLE 1 Confusion matrix results and performance metrics for
temperature quality control (Temp_QC).

TP = 16750 FP = 589

FN = 431 TN = 2459

TPR = 0.9748 FPR = 0.1933

FNR = 0.0252 TNR = 0.8067
TABLE 2 Confusion matrix results and performance metrics for salinity
quality control (Sal_QC).

TP = 15761 FP = 768

FN = 712 TN = 2988

TPR = 0.9568 FPR = 0.2043

FNR = 0.0432 TNR = 0.7957
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which might also be related to buoy recovery activities. Meanwhile,

Figure 11d showed a multi-peak pattern in the salinity anomaly rate

of Dataset16, with values reaching 0.1398 in November 2016, 0.1533

in February 2017 (the highest), 0.1647 in November 2017, and

0.1662 in December 2017. Other time points, such as April 2017

(0.0621), May 2017 (0.1006), and January 2018 (0.0857), also

exhibited clear upward trends.

These results indicated that the model was more sensitive to

salinity anomalies, while remaining relatively conservative in

detecting temperature anomalies.

From the overall feedback of the manual inspection process, the

observers generally agreed that the model’s outputs were highly

interpretable and reliable. After conducting manual visual

inspections on the two buoy datasets in the early stages of the

study, it was found that when the buoy was stably deployed and in

good operational condition, the likelihood of abnormal values

appearing in the sensor-recorded profiles was relatively low. In

other words, the presence of genuine anomalies in the data itself was

sparse and limited.

Therefore, the near-zero monthly anomaly rates observed in the

temperature detection results (as shown in Figures 11A, C) serve as

a clear indication of the model’s effective ability to distinguish true

anomalies. Regarding salinity, the fluctuating anomaly rates in the

Dataset16 (Figures 11B, D) were partially confirmed through

manual inspection: some anomalies were indeed false positives,

caused by the model misclassifying boundary samples. This was

likely due to the semi-supervised model’s heightened sensitivity to

subtle deviations in the absence of labels, especially for salinity,

where tolerance for minor shifts was lower.

However, another important factor was the aftermath of the

strong El Niño event in 2015, which led to a prolonged period of

low-salinity conditions during recovery. In such cases, the identified

salinity anomalies reflected genuine physical changes in ocean

structure, rather than conventional data quality issues. Despite

this, the researchers still recommended using the model’s outputs

as the primary basis for manual review, with flagged anomalies

being prioritized for further expert verification.

As described above, during the in-depth analysis of the model’s

anomaly detection results, it was observed that some data samples

consistently identified as anomalous over extended periods were,

upon manual verification, not caused by data errors or sensor

malfunctions, but rather by actual physical processes associated

with intrusions of anomalous water masses. The hydrographic

characteristics of such water masses often exhibited significant

numerical deviations from the typical background fields—for

example, low temperature with high salinity, high temperature

with low salinity, or normal temperature with low salinity. As a

result, the model automatically classified them as anomalies based

on reconstruction error and probabilistic judgment mechanisms.

However, from the perspective of ocean dynamical processes,

such water masses represent genuine physical phenomena and

should be considered “atypical but physically plausible”

observations. These cases should not be simply categorized as

invalid data or erroneous measurements, but rather interpreted in
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the broader context of environmental variabil ity and

oceanographic events.

Taking the 100-meter depth observational data from 2016 as an

example, the model consistently labeled this depth layer as

anomalous over several consecutive periods.

However, manual verification through profile visualization and

comparison with historical data from the same period revealed that

these “anomalieswere” actually caused by a significant low-salinity

water mass intrusion event. This water mass induced a marked

decrease in salinity in the vertical profile, which deviated

substantially from the deep-water distribution patterns learned by

the model. Although these data points were statistically classified as

outliers, from an oceanographic perspective, they represent

important variations in the observed environment.

This phenomenon not only suggested the need to incorporate

stronger physical priors during model training to avoid

misclassifying real oceanic processes, but also highlighted the

potential value of semi-supervised learning models in

oceanographic research. Such models can be used not only for

anomaly elimination and quality control but also as auxiliary tools

for exploring atypical oceanographic events.

By reviewing model-identified anomalies and verifying them

manually, researchers can extract samples that may correspond to

unusual water masses, internal waves, oceanic fronts, or sudden

hydrographic structure changes. These insights serve as important

clues for subsequent physical process modeling and mechanism

analysis. In fact, such “informative misclassifications” may carry

greater scientific significance than accurate labels themselves,

demonstrating the unique potential of semi-supervised quality

control models in supporting exploratory ocean analysis and

anomaly detection.
5 Comparative analysis of models

Although deep learning has demonstrated strong data modeling

capabilities across various fields in recent years, its applications in

ocean data quality control (QC) remain relatively limited. Existing

deep learning models that are directly applicable to QC tasks are few

in number, differ significantly in architecture and training

strategies, and lack systematic comparison and evaluation. To

thoroughly investigate the adaptability and performance

differences of various deep learning paradigms in buoy-based QC

tasks, this study proposes a deep neural network QC model that

integrates GRU for sequential modeling with the semi-supervised

Mean Teacher framework, balancing temporal dynamics with

adaptability to label scarcity. This model is systematically

compared with the currently representative fully supervised

model—SalaciaML, which is based on a multilayer perceptron

(MLP) architecture. The SalaciaML model uses a two-layer fully

connected MLP structure, taking static input features such as

temperature, depth, and gradient. It relies on large-scale, high-

quality manually labeled datasets and is trained in a fully supervised

manner. Primarily applied in well-observed regions like the
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Mediterranean Sea, where annotated data are abundant, this model

achieves high classification accuracy. In previous evaluations, it

achieved a ROC-AUC of 0.952 for temperature anomaly detection,

with TPR (true positive rate) of 89% and TNR (true negative rate) of

86%, performing well in binary classification tasks for good/bad

samples. However, SalaciaML has several limitations in terms of

model design and scalability. First, it entirely depends on labeled

data and cannot learn effectively from unlabeled samples,

significantly limiting its application in data-sparse regions.

Second, it supports QC only for the temperature variable and

lacks generalizability to other key parameters such as salinity and

density. Third, due to its use of static features as input, it fails to

capture profile structure and temporal dynamics, making it less

effect ive in identi fying weak anomalies or nonlinear

profile transitions.

To address these issues, the GRU + Mean Teacher model

proposed in this study introduces a semi-supervised learning

mechanism that overcomes dependence on large volumes of

labeled data. The key advantage of this model lies in its ability to

jointly train with a small number of labeled samples and a large

number of unlabeled observations. It uses a teacher network to

generate high-confidence pseudo-labels for unlabeled samples and

leverages consistency regularization to guide the student model in

gradually approximating a reliable anomaly classification boundary.

Structurally, the model adopts a two-layer GRU architecture to

process vertical profile sequences (e.g., temperature and salinity as

functions of depth), and integrates an attention mechanism at the

output to enhance sensitivity to local anomalies. Moreover, a sliding

window mechanism is used to construct contextual feature

sequences, allowing the model to capture vertical trends between

adjacent layers, thereby improving its ability to detect structural

anomalies such as thermocline displacement, edge drift, or

subtle outliers.

In performance evaluations, the semi-supervised model

achieved an average ROC-AUC of 0.953 on the validation set,

with a TPR of 96.58% and a TNR of 80.12%, demonstrating stable

and reliable performance in both temperature and salinity anomaly

detection. Furthermore, even when applied to a large volume of

unlabeled data using pseudo-labels for auxiliary evaluation, the

model maintained approximately 90% accuracy, reflecting strong

label efficiency and generalization capability (shows in Table 3). In
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contrast, although SalaciaML achieved comparable results in some

metrics, its applicability is limited to the temperature variable and is

not effective on unlabeled data.

It is worth noting that despite the proposed model achieving

excellent performance in TPR, the relatively lower TNR indicates

some limitations in comprehensive anomaly detection. Several

factors contribute to this lower TNR: First, from the

instrumentation perspective, the moored buoys used in this study

are equipped with high-performance CTD sensors from Sea-Bird

(USA), which offer excellent accuracy, stability, and resistance to

interference. These sensors rarely produce systematic errors or

observation faults under normal operating conditions, resulting in

a very low proportion of true anomalies in the raw data. This leads

to pronounced class imbalance in the training set. Although sample

weighting was employed to enhance the model’s focus on anomaly

classes, the model still tends to adopt conservative predictions near

the decision boundary, leading to missed weak anomalies. Second,

some anomalies exhibit subtle variations or indistinct boundaries in

the profile, making them prone to misclassification as normal

fluctuations—this is particularly common in depth ranges with

highly continuous profiles. Additionally, the consistency

regularization in the Mean Teacher architecture enforces

prediction invariance under perturbations. To avoid systematic

bias due to false positives, the model adopts a more conservative

strategy when dealing with borderline cases. While this

“conservative recognition” enhances overall prediction stability, it

can limit the model’s ability to detect weak or concealed anomalies.

More importantly, the flexibility of the GRU + Mean Teacher

model in training strategy and data adaptability significantly

enhances its scalability for real-world ocean observation tasks.

When facing platforms deployed in different regions or under

varying observation conditions, the model can rapidly adapt and

optimize using only a small number of manually QC’ed samples,

making it especially suitable for remote marine areas with scarce

annotations but high monitoring demands.

It should be noted that the performance metrics of SalaciaML

are directly quoted from its original publication, where the model

was trained on a large Mediterranean dataset. Therefore, these

results are not strictly comparable with our re-trained models on

Argo and Bailong buoy data, and they are provided only as a

qualitative reference to highlight methodological differences.
6 Conclusion

This study addresses the challenge of quality control for buoy-

based ocean profile data by proposing a deep learning QC approach

that combines the sequential modeling capabilities of GRU with the

semi-supervised Mean Teacher framework. The method is designed

to overcome the limitations of both traditional QC techniques and

existing deep learning models, particularly their weak ability to

detect complex anomaly patterns and their strong reliance on

manually labeled data. The study utilized data from moored

buoys and Argo profiling floats, constructing high-dimensional

structured input features, including temperature, salinity,
TABLE 3 Model comparison.

Comparison
dimension

SalaciaML
model

Proposed model
(this study)

Type of Data Used
Only Labeled Data
(Fully Supervised)

Labeled+ Unlabeled Data
(Semi-supervised, 1:5 ratio)

QC Parameters Temperature Temperature, Salinity

ROC-AUC 0.952 0.953 (Average)

True Positive Rate
(TPR)

89% 96.58%

True Negative Rate
(TNR)

86% 80.12%
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pressure, depth, gradients, interaction terms, seasonal encodings,

and depth one-hot vectors. A sliding window mechanism was

incorporated to enhance contextual modeling capability.

In terms of model architecture, GRUs were employed to extract

sequential features from vertical profiles, combined with an

attention mechanism to highlight key layers, and layer

normalization was applied to stabilize the multi-task learning

process. During training, the model adopted the Mean Teacher

framework, using consistency regularization to guide learning from

unlabeled data when only partial QC labels were available, thereby

improving the model’s generalization performance. The loss

function was designed with a joint optimization strategy

combining regression errors for temperature and salinity and

classification loss, with higher weights assigned to salinity and

anomalous samples in the classification task, thus reinforcing the

learning focus on critical anomalies.

Experimental results showed that the model achieved excellent

performance on ROC and PR curve evaluations, with both

temperature and salinity AUC values exceeding 0.94 and strong

PR-AUC scores. In the confusion matrix, TPR exceeded 90%, and

the model reached approximately 90.0% consistency with human

visual assessments. More importantly, the model demonstrated

high sensitivity to weak anomalies, structural shifts, and water

mass intrusions, suggesting its potential for exploring underlying

physical processes.

However, several aspects remain to be further investigated and

optimized for practical deployment and cross-regional application.

Firstly, the current model still primarily relied on statistical

deviations when identifying anomalies, which may lead to

misclassification of physically valid but statistically abnormal

events (e.g., water mass intrusions or frontal thermoclines).

Future improvements may include incorporating more physical

constraints, such as vertical stability criteria (N²), mixed layer

depth, and other ocean dynamical parameters, to guide the neural

network with physical priors. Secondly, although the model

performed well on the control dataset, it still faces challenges of

data sparsity and feature shift in ultra-deep or low-frequency

regions. Future work should explore adaptive layer normalization,

meta-learning, or domain adaptation techniques to enhance cross-

platform generalization. Third, the current model treated

temperature and salinity anomalies within a unified architecture,

while their underlying physical mechanisms and anomaly behaviors

differ significantly. In future designs, multi-branch networks or

task-decoupling mechanisms may be introduced for more targeted

model ing strategies . Furthermore, to improve model

interpretability, attention-based or SHAP-based explainable

learning frameworks can be incorporated to assist expert

decision-making and model refinement. On the deployment side,

the model could be integrated with ocean observation systems

through embedded QC modules or edge-computing units,

enabling near real-time quality control and feedback at the buoy

level, and facilitating a closed-loop system of observation–
Frontiers in Marine Science 17
evaluation–feedback–optimization. Finally, in response to the

increasing heterogeneity of global multi-source oceanographic

data, future efforts should move toward multi-modal collaborative

learning, integrating satellite, meteorological, and auxiliary datasets

to improve the model’s spatial adaptability and intelligence level.
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