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Vessel traffic and underwater noise pollution are increasing in the Arctic. Marine

mammals are sensitive to underwater noise from vessels which can negatively

impact them at the individual and population levels. The marine region of

Southampton Island, Nunavut, Canada, is a recognized key area for many

marine mammal species and is under consideration to become a marine

protected area. Given the increase in vessel traffic in the region, this study

explores the potential impact of vessel traffic noise on the vocal behavior of

walruses and belugas. This represents the first study to investigate walrus vocal

behavior during exposure to vessels. Underwater acoustic data were collected

near Southampton Island from June to November 2018. Vessel movements were

tracked using the Automatic Identification System (AIS) data and compared with

underwater recordings to identify noise sources by vessel type (ship or

motorboat). Generalized linear mixed models were used to assess changes in

walrus vocalization rates before, during, and after vessel encounters across

vessel type. The results showed that walrus vocalization rates decreased during

and after vessel encounters and were significantly lower in the presence of ships

than motorboats. Belugas were never recorded during motorboat transits, which

may indicate avoidance behavior. However, there was not enough data to

investigate this hypothesis further. Our findings demonstrate that vessel traffic

influences walrus vocal behavior and highlight the need for updated maritime

navigation mitigation measures in the study area.
KEYWORDS

passive acoustic monitoring (PAM), walrus, beluga, underwater noise, Arctic, vessel
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Introduction

Global vessel traffic has increased rapidly in recent decades,

driven by a growing merchant fleet and an increase in international

maritime transportation, which now accounts for 80% of the total

volume of trade goods (UNCTAD, 2022). As a result, underwater

noise from vessel traffic has also intensified and is now nearly

ubiquitous, reaching even marine areas that are far from major

shipping lanes (Clark et al., 2009; Duarte et al., 2021; Thomsen and

Popper, 2024). Once largely inaccessible, the Arctic is losing sea ice

at unprecedented rates, facilitating a fast increase in vessel traffic in

the region (Pizzolato et al., 2016; Andrews et al., 2018; Dawson

et al., 2018; Stevenson et al., 2019). Maritime traffic in the Arctic has

never been this high, nor its underwater soundscape so altered by

human activities (PAME, 2024).

The main bandwidth of vessel underwater noise ranges from 10

Hz to 1 kHz (Richardson et al., 1995; Malakoff, 2010), overlapping

with the frequency range used by many marine mammal species,

which is typically between 10 Hz and 20 kHz (Erbe et al., 2018;

Duarte et al., 2021). Recognized as a pervasive pollutant,

underwater noise can negatively affect marine ecosystems and has

been shown to cause a multitude of impacts on marine mammals,

including communication masking, temporary behavioral changes,

hearing loss, stranding, stress-induced health problems, permanent

abandonment of biologically important areas, and, over time,

potential consequences at the population level (Erbe et al., 2018;

Southall, 2021; Tervo et al., 2021; Pirotta et al., 2022; Sweeney et al.,

2022). Arctic marine mammals can be especially vulnerable to

vessel noise (Moore et al., 2012; Hauser et al., 2018), making it

cr i t ica l to understand their behavioral responses to

such disturbances.

The Southampton Island Area of Interest (AOI) in Hudson Bay,

Nunavut, is under consideration for designation as a marine

protected area (MPA) (Loewen et al., 2020). Vessel traffic in this

region is increasing rapidly and is expected to grow further

(Andrews et al., 2018; Dawson et al., 2018). The local community

of Salliq (ᓴᓪᓕᖅ)/Salliit (ᓴᓪᓖᑦ) – Coral Harbour has expressed

concern over the impact of vessels on marine mammals,

particularly Atlantic walrus (Odobenus rosmarus (Linnaeus,

1758)) and beluga (Delphinapterus leucas (Pallas, 1776))

(COSEWIC, 2017; Carter et al., 2019; Loewen et al., 2020). The

community has identified vessel activity as a major driver of

changes in species distribution and abundance and called for

changes in local maritime operations (Carter et al., 2019; Dawson

et al., 2020). Gaining a better knowledge of vessel traffic impacts on

marine mammals in this proposed MPA is essential for informed

conservation efforts. However, current data on marine mammal

habitat use in the AOI are limited (Loewen et al., 2020; Coppolaro

et al., 2024), and no studies have yet investigated the acoustic

responses of marine mammal species to vessels in the area.

Underwater passive acoustic monitoring (PAM) systems enable

autonomous and continuous monitoring of marine mammals

(Sousa-Lima et al., 2013; Heenehan et al., 2019; Halliday et al.,

2020; Kline et al., 2020; Castellote et al., 2021) as well as the natural

and anthropogenic sounds in their environment. PAM data can
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greatly contribute to assessing how marine species respond to vessel

traffic. In Hudson Bay, studies examining walrus and beluga

responses to vessels are limited and primarily based on visual

observations (Caron and Smith, 1990; Mansfield and St. Aubin,

1991; Born et al., 1995; Malcolm and Penner, 2011; Ausen et al.,

2022; Higdon et al., 2022). To date, no acoustic studies have

examined walrus responses to vessel noise, and little is known

about beluga vocal reactions to motorboats (Lesage et al., 1999;

Karlsen et al., 2002).

This study aims to (1) integrate Automatic Identification

System (AIS) data with PAM recordings to document vessel

traffic in the AOI, distinguishing between ships and motorboats,

and (2) investigate the underwater vocal responses of walruses and

belugas to vessel transits in the Southampton Island AOI.
Materials and methods

Acoustic data collection

In June 2018, a TR-ORCA hydrophone (Turbulent Research)1

was deployed in Evans Strait, in the southern part of the

Southampton Island AOI, Nunavut, Canada, approximately 120

km from the community of Salliq (Figure 1). The hydrophone was

deployed at a depth of 142 m as part of an oceanographic mooring

anchored to the sea floor. The deployment was conducted under the

University of Manitoba’s Southampton Island Marine Ecosystem

Project (Mundy, 2022). Acoustic data were recorded from June 5 to

November 30, 2018, using a duty cycle of 5 minutes per hour.

However, many files from October and November were corrupted

due to equipment malfunction. The hydrophone was programmed

with a sampling rate of 192 kHz with no set gain.
AIS data collection

To assess vessel traffic in the study area, AIS data and ship

information were downloaded from the Arctic Ship Traffic Data

(ASTD) database of the Protection of the Arctic Marine

Environment (PAME)2. Data covering the Canadian Exclusive

Economic Zone were downloaded for the period that goes from

June to November 2018. The Level 2 dataset included vessel location

and time, identification number, and type, classified using the

Statcode 5 ship type coding system (PAME, 2024). Because

pleasure craft and motorboats are not required to carry AIS

transceivers, motorboat traffic could not be captured through

this dataset.
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Data analyses

Acoustic analysis
The hydrophone recorded 4,287 5-minute audio files, of which

28.8% were corrupted. A total of 3054 audio files were analyzed

using the sound analysis software Raven Pro, version 1.6.5 (Raven

Pro, 2024). Spectrograms were created for each file using a Hann

window of 20,000 samples with 50% overlap, resulting in a

frequency resolution of 9.6 Hz and a time resolution of 0.05 s.

Visual analysis was conducted by scrolling through the files using a

30-second time window and a frequency range up to 1.4 kHz.

Contrast and brightness were adjusted as needed. Species

identification was based on comparisons with published

information on walrus (Stirling et al., 1983; Sjare et al., 2003;

Mouy et al., 2012) and beluga vocalizations (Sjare and Smith,

1986; Chmelnitsky and Ferguson, 2012; Garland et al., 2015; Booy

et al., 2023). Although beluga clicks were excluded from the main

acoustic analysis, their presence was investigated in each recording

and contributed to validating the presence of belugas in

combination with their whistles and pulsed calls. Additional

reference sounds were sourced from online libraries such as the

Discovery of Sound in the Sea (DOSITS)3 audio gallery and the

Macaulay library of the Cornell Lab of Ornithology4. Expert

consultation with specialists in acoustics of Arctic marine

mammals further supported species identification and contributed

to control for observer bias.

Vessel underwater noise was detected and analyzed using the

same software and methodology applied to marine mammal

sounds. Each vessel noise event was divided into three stages of

noise exposure: before, during and after. The file immediately

preceding the detection of vessel noise was labelled before; all the

consecutive files containing vessel noise were labelled during; and

the first file after the noise ceased, which did not include vessel

noise, was labelled after. If marine mammal vocalizations were

present in any of the three stages, the event was classified as vessel

encounter. Species calls were counted for each vessel encounter and

noise exposure stage. A single call was defined as one distinct

vocalization, except in the case of walrus knocks, which typically

occur in trains - each train was counted as one call, regardless of its

duration or number of consecutive knocks.

Vessel noise was categorized as either ship or motorboat based

on acoustic characteristics, such as main frequency, bandwidth, and

tonal components (Richardson et al., 1995; Sorensen et al., 2010;

Simard et al., 2016; Kuzin et al., 2022). Vessel type categorization

was supported by a comparison of our recordings to online audio

libraries dedicated to vessel underwater noise, such as Hear my

ship5. Vessel noise classified as ship typically exhibited broadband

frequencies ranging from around 50 Hz to 160 Hz. In contrast,

motorboat noise was characterized by a narrow-band signal

centered around 200 Hz (occasionally up to 400 Hz) with tonal

harmonics at higher frequencies. Moreover, motorboat

spectrograms often displayed rapid variations in frequency,
3 https://dosits.org/galleries/audio-gallery/

4 https://www.macaulaylibrary.org/
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indicative of changes in vessel speed or course direction (see, e.g.,

Reis et al., 2019).

AIS data analysis
AIS data were uploaded into ArcMap (Version 10.8.2) and

cleaned to remove anomalies. AIS data points from June to

November 2018 were overlaid with a polygon encompassing

Southampton Island and nearby communities in Hudson Bay,

referred to as the Vessel traffic Study Area (VSA). All points were

then merged into a single shapefile. To map vessel movements,

points were converted into tracks using the tool Points to Line and

vessel identification numbers were used to generate separate tracks

for each vessel. For vessels making multiple trips through the

Southampton Island AOI, track lines were segmented into

distinct trips based on the vessel’s entry and exit across the VSA

boundaries. Statistical analyses of AIS data were conducted in R (R

Core Team, 2022).

A comparison between vessel AIS tracks and underwater noise

recordings was performed to validate vessel type during the acoustic

analysis. A 10-km radius polygon was drawn around the

hydrophone mooring location in ArcMap. Since the goal of the

study was to detect walrus and beluga reactions to vessel noise, this

radius was chosen based on the average underwater propagation

range of walrus vocalizations (Sjare and Stirling, 1996; Sjare et al.,

2003). This range represents an upper limit for most beluga

vocalization (Simard et al., 2010; Vergara et al., 2021) and vessel

underwater noise propagation (McKenna et al., 2012; Hermannsen

et al., 2014; Jansen and De Jong, 2017). Each time a vessel crossed

this 10-km area, the event was classified as a transit. For each vessel

trip, the entry and exit times into the AOI were recorded, along with

notes on whether the vessel passed through Evans Strait or made a

stop in Salliq. The timing of vessel transits was then compared to

the date and time of the acoustic detections of vessel underwater

noise for validation.
Statistical analysis

Generalized linear mixed models (GLMMs) were run in

RStudio (RStudio Team, 2024) employing the glmer.nb function

from the lme4 package (Bates et al., 2015) to assess the effect of

vessel encounters on call detection rates. Separate models were run

for walrus and beluga encounters. Based on preliminary analyses, a

negative binomial distribution was selected. The number of call

detections was set as the response variable and modelled as a

function of two predictor variables considered as fixed effects:

vessel type (ship or motorboat) and noise exposure stage (before,

during, or after). Vessel encounter events were included as random

effects. To account for differences in encounter duration, the

logarithm of the number of consecutive files containing vessel

noise was included in the function as an offset. For each species,

model optimization was conducted for both fixed and random

structures. Model diagnostics were performed using the DHARMA
5 https://hearmyship.fer.hr/
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package (Hartig, 2016), and model selection was based on the

Akaike’s information criterion corrected for small sample size

(AICc) (Burnham and Anderson, 2002).
Results

Walrus grunts and knocks, as well as beluga pulsed calls and

whistles were detected during the study. Beluga were recorded in

8.1% and walrus in 5.9% of the total files. Vessel underwater noise

was detected in 5.6% of the files. Beluga vocalizations were primarily

recorded in June and November (Figure 2). Walrus vocal activity

was low in June and increased in July, remaining relatively constant

during the remainder of the monitoring period (Figure 2). Vessel

noise was present throughout the entire study period, increasing

throughout the summer and decreasing after October (Figure 2).

AIS data analysis revealed that 23 vessels entered the

Southampton Island AOI during the monitoring period (Table 1,

Figure 3). Most were general cargo ships and chemical tankers; no

bulk carriers were detected (Table 1). Seven vessels, primarily
Frontiers in Marine Science 04
general cargo ships, stopped in Salliq. Of the vessels transiting

Evans Strait, 70% did not stop in Salliq but continued to other

Hudson Bay communities, including Qamani’tuaq (Baker Lake),

Igluligaarjuk (Chesterfield Inlet), Kangiqtiniq (Rankin Inlet),

Tikirarjuaq (Whale cove), and Naujaat (Repulse Bay). A total of

50 vessel transits were detected in Evans Strait during the study

period, 34 of which passed within the 10-km area around the

hydrophone (Table 1). Ship traffic peaked between July and

October, with only one or two trips detected in June and

November (Figure 4). General cargo ships transited Evans Strait

throughout the monitoring period, while chemical tankers were

detected only between July and October (Figure 4).

Acoustic analysis detected 42 vessel transits during the entire

monitoring period, of which 15 were classified as motorboats and

27 as ships based on their noise signature. When comparing AIS

and PAM data, 15 of the 27 acoustically detected vessels classified as

ships matched AIS vessel tracks that passed within the 10-km radius

around the hydrophone. None of the vessels acoustically classified

as motorboats corresponded with any AIS tracks. A total of 31

vessel encounters with walruses and 5 encounters with belugas were
FIGURE 1

Map of the study area. The hydrophone (pin) was deployed in Evans Strait, Nunavut, Canada. The extent of the Southampton Island Area of Interest
is represented in turquoise.
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recorded (Table 2). No vessel encounters for either species were

recorded in November and no beluga encounter with motorboats

was detected for the entire monitoring period (Table 2).

Due to insufficient data, GLMMs could not be performed to

assess the effect of vessel encounters on beluga call detection rates.

As a result, modeling was limited to the walrus acoustic dataset.

Among the models tested with different combinations of predictor
Frontiers in Marine Science 05
variables, the model that included both noise exposure stage and

vessel type, and the model with vessel type alone were equally

supported as the best models based on AICc values (Table 3).

Walrus vocalization rates decreased during the transit of both

vessel types, with significantly lower estimates during ship

encounters compared to motorboat encounters (p<0.05)

(Table 4). Walrus vocalization rates were highest before vessel
TABLE 1 Vessel traffic in the Southampton Island Area Of Interest (AOI) as derived from the AIS dataset from June to November 2018.

Vessel
category

Vessel
size (GT)

Vessels in the
Area of Interest

Vessels that
stopped in Salliq

Vessels in
hydrophone

radius

Transits in
Evans Strait

Transits in
hydrophone

radius

General cargo 10000 - 24999 4 1 3 17 11

General cargo 5000 - 9999 7 5 2 10 5

Chemical
tanker

25000 - 49999 2 0 2 4 4

Chemical
tanker

5000 - 9999 5 1 5 12 10

Other
activities

10000 - 24999 1 0 0 0 0

Other
activities

5000 - 9999 2 0 1 3 2

Other
activities

< 1000 1 0 1 2 1

Unknown NA 1 0 1 2 1

Total 23 7 15 50 34
For each vessel category and size (in gross tonnage, GT) the table shows presence in the AOI; whether the vessel stopped in Salliq; if it crossed the 10-km area around the hydrophone; the total
number of transits in Evans Strait and those in the hydrophone 10-km area.
FIGURE 2

Monthly occurrence of vessel noise, and beluga and walrus sounds as recorded in Evans Strait, Nunavut, Canada, in 2018. The Y axis displays the
percentage of recordings containing sounds over the total recorded files for each category.
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transits and decreased during and after the encounters (p<0.1)

(Figure 5, Table 4). No statistically significant difference was found

between vocalization rates recorded during and after vessel

encounters (Figure 5, Table 4).
Discussion

Our results indicate that vessel traffic disrupted walrus vocal

behavior. A reduction in walrus vocalization rates was found during

encounters with both types of vessels, with ships causing more

changes than motorboats. Previous studies indicate that walruses

are vulnerable to vessel traffic (Moore et al., 2012; Erbe et al., 2018;

Hauser et al., 2018), and that vessel noise overlaps with their hearing

range in both air and water (Kastelein et al., 2002; Reichmuth et al.,

2020; Duarte et al., 2021). Walrus hearing sensitivity is centered at

frequencies between 1–12 kHz (Kastelein et al., 2002), which allows

them to hear the main frequencies of both ships and motorboats in

this study.

Most research on walrus vocal behavior has focused on the

Pacific walrus (Odobenus rosmarus divergens), with documentation

of their reactions to vessels being limited to visual observations of

behavioral changes. The few studies on Atlantic walrus disturbance

from vessels consist mainly of visual monitoring at haul-out sites

(Born et al., 1995; Øren et al., 2018; DFO, 2019; Higdon et al., 2022).
Frontiers in Marine Science 06
Reported reactions range from signs of short-term disturbance,

such as head-raising and diving, to stampedes, shifts in feeding

areas, and long-term abandonment of haul-out sites (Salter, 1979;

Fay et al., 1984; Mansfield and St. Aubin, 1991; Born et al., 1995;

COSEWIC, 2017; Higdon et al., 2022). To our knowledge, this is the

first study investigating walrus acoustic responses to vessel transits.

Walrus populations subject to hunting are particularly

susceptible to motorboat approaches (Malme et al., 1989; Higdon

and Stewart, 2018; Øren et al., 2018). The community of Salliq relies

on walrus for both subsistence and income (COSEWIC, 2017;

Carter et al., 2019; Loewen et al., 2020), with motorboats

commonly used for subsistence harvesting and sport hunting

(COSEWIC, 2017; Minister of Justice, 2018). In this study,

however, walrus vocalization rates were found to change

significantly more during ship transits compared to motorboats,

suggesting that motorboat traffic may have a lesser impact on

walrus vocal behavior compared to ships. This difference may

depend on the recurrence of exposure to the two vessel types,

with motorboats being a long-established means of transportation

in the study area, while consistent ship traffic is a more recent

phenomenon (Dawson et al., 2018; Carter et al., 2019; Dawson et al.,

2021). Repeated exposure to a stimulus can cause a decrease in the

amplitude of marine mammal responses, a process known as

habituation or acclimation (Groves and Thompson, 1970;

Romero, 2004; Wright et al., 2007; Götz and Janik, 2011). The
FIGURE 3

Vessel traffic map in the Southampton Island Area of Interest (AOI) from June to November 2018. Vessel category and size (in gross tonnage, GT)
are indicated by different colors. Vessel type names have been shortened for convenience. The circle shows the 10-km radius around the
hydrophone; the turquoise area represents the AOI extent; and the black line indicates the boundaries of the Vessel traffic Study Area.
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weaker response recorded for walruses during motorboat transits

compared to ships may therefore reflect a process of associative

learning from repeated events, as reported in other marine

mammals (Born et al., 1995; Erbe et al., 2018; Harris et al., 2018).

However, reduced behavioral reactions does not necessarily imply

reduced stress and physiological responses (Wright et al., 2007),

hence weaker responses should be carefully interpreted when

developing disturbance mitigation measures.

This study could not determine whether the decrease in walrus

vocalization rates during vessel encounters resulted from

abandonment of the area or from a tendency to remain silent in

those circumstances. Evans Strait is used by walruses for mating and

foraging, while the southern coast of Southampton Island and the

northern shore of Coats Island are important walrus haul-out sites

(Carter et al., 2019; Loewen et al., 2020; Higdon et al., 2022;

Coppolaro et al., 2024). Observed deviations from walrus

undisturbed vocal behavior may be indicative of disturbance

already occurring and should therefore be further investigated,

especially in trafficked walrus hotspots such as the study area.

Future acoustic monitoring efforts could benefit from

optimizing the recording duty cycle to align with the objectives of

the survey and the acoustic behavior of the focal species.

Specifically, longer listening durations or duty cycles with shorter

intervals may enhance the detection of walrus and beluga
Frontiers in Marine Science 07
vocalizations, improving assessments of acoustic presence, diel

acoustic patterns, and call rate estimates (Thomisch et al., 2015).

Such adjustments may also facilitate more accurate evaluations of

marine mammal responses to anthropogenic underwater noise by

better capturing potential changes in their vocal behavior. This

would be particularly valuable in combination with effective

assessments of noise exposure through measurements such as

sound pressure levels. Furthermore, integrating PAM with AIS

data and satellite telemetry from tagged animals would provide a

more comprehensive understanding of vessel traffic dynamics and

their impacts on marine mammals within the AOI (see, for

example, Martin et al., 2024).

Belugas are notoriously a vocal species (Au et al., 1985; Sjare

and Smith, 1986; Chmelnitsky and Ferguson, 2012; Panova et al.,

2019). In this study, beluga vocalizations were detected more

frequently than walrus sounds overall; however, detections were

primarily concentrated during the months corresponding to beluga

migration through the area (Carter et al., 2019; Loewen et al., 2020).

In contrast, walrus vocalizations were spread across the entire

monitoring period, reflecting the different habitat use of the two

species. While the walrus is a resident species of the Southampton

Island AOI, belugas mainly transit the area in early summer and

autumn (Carter et al., 2019; Loewen et al., 2020; Coppolaro

et al., 2024).
FIGURE 4

Monthly vessel trips in Evans Strait, Nunavut, Canada, as derived from AIS data for the period between June and November 2018.
TABLE 2 Species encounters with vessels as derived from the acoustic recordings in Evans Strait, Nunavut, Canada, between June and November
2018.

BELUGA

June July August September October Total

Ship 1 3 0 0 1 5

Motorboat 0 0 0 0 0 0
WALRUS

June July August September October Total

Ship 0 6 5 5 1 17

Motorboat 0 2 8 3 1 14
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During this study, beluga vocalizations were never recorded

during motorboat encounters and rarely during ship transits.

Although most beluga vocalizations were recorded outside the

main shipping season, AIS data and recordings of ship and

motorboat noise confirmed temporal overlap between vessel

transits and overall beluga acoustic activity in the study area. We

hypothesize that the complete absence of beluga vocalizations

during motorboat encounters may indicate an avoidance

response, either physical or vocal. Previous studies have

documented a decrease in beluga vocalizations in response to

motorboat traffic (Lesage et al., 1999; Karlsen et al., 2002), as well

as vocal interruptions in areas frequented by orcas (Orcinus orca)

(Castellote et al., 2022). During motorboat transits, belugas may

have reduced vocalizations to avoid detection by what could be

perceived as a potential predator. Belugas were also known to leave

an area when hunted from motorboats (Caron and Smith, 1990;

Mymrin et al., 1999; Malcolm and Penner, 2011). Since belugas are

subject to hunting in the AOI (Hoover et al., 2013; Carter et al.,

2019; Loewen et al., 2020), the absence of beluga vocalizations

during motorboat encounters in this study may also reflect their

physical displacement. However, the data collected in this study

were insufficient to assess beluga responses to vessel encounters. To

investigate the aforementioned hypotheses, future research should

include high-frequency analyses of beluga vocalizations—

particularly ultrasonic burst pulses (Vergara et al., 2025)—which

were beyond the scope of this work.

In this study, the combined use of PAM and AIS data allowed

for the inclusion of both ship and motorboat information in the

vessel traffic analysis. Including motorboats was deemed important

for the purpose of this study due to both their common use and the

growing presence of pleasure craft in the area (Dawson et al., 2018;

Carter et al., 2019). Each monitoring methodology has its
Frontiers in Marine Science 08
advantages and limitations. PAM allows for the detection of

vessels without AIS instrumentation on board, which generally

consists of motorboats, and of ships with AIS systems turned off

(Kline et al., 2020). The acoustic analysis identified more vessel

transits than those extracted from the AIS dataset, primarily due to

the inclusion of motorboats exclusively in the PAM dataset. For

ships, the detection discrepancy between the AIS and PAM datasets

may be caused by the use of the exploratory 10-km hydrophone

range. The selected range may have resulted in an underestimation

of the number of AIS-tracked vessels that passed sufficiently close to

the hydrophone to be acoustically detected. Also, AIS signal

irregularities, equipment turned off, and the use of Class B units

on some of the vessels may have contributed to inaccurate ship

positions relative to the hydrophone (Corsi et al., 2023). Future

studies would benefit from in situmeasurements of the hydrophone

sensitivity, local underwater sound propagation models, and from

comparison tests between AIS and acoustic datasets using different

distances for the hydrophone range (Aulanier et al., 2016). These

would enable estimates of vessel and marine mammal distances, as

well as a more accurate determination of the hydrophone detection

radius to use for comparison with AIS data. Moreover, the use of

multi-channel hydrophones would increase the number of

synchronized listening points and enable localization of vocalizing

individual positions in relation to vessels.

When applied to vessel traffic studies and compared to the use

of AIS data, PAM limitations include a higher effort in extracting

vessel position and speed, which often requires arrays or

multichannel hydrophones, and the lack of certain navigation

information such as vessel type (Zhu et al., 2018; Tesei et al.,

2020). Manual analysis of recordings is time consuming, hence

automated techniques are critical to significantly accelerate acoustic

data analyses for vessel traffic studies (Reis et al., 2019; Vieira et al.,
TABLE 3 Model comparison based on the Akaike’s information criterion corrected for small sample size (AICc) and corresponding weights (AICcWt).

Model Exposure stage Vessel type K AICc DAICc AICcWt LL

1 * * 6 705.71 0.00 0.38 -346.38

2 * 4 705.83 0.11 0.36 -348.69

3 * 5 709.26 3.55 0.06 -349.30
Values refer to the generalized linear mixed models run on the walrus acoustic dataset. Stars indicate whether the corresponding variable was included in the model. K is the number of
parameters, DAICc is the difference between the best selected model AICc and the corresponding model, and LL is the log-likelihood. Best models are shown in bold.
TABLE 4 Resulting parameters of the generalized linear mixed models of the effect of noise exposure stage and vessel type on walrus vocalization
rates.

Model Variables Estimate Std. Error z-value p-value

1 - Exposure stage and vessel
type

(intercept) 3.017 0.479 6.302 <0.001

Exposure stage: After -0.031 0.530 -0.058 0.954

Exposure stage: Before 0.950 0.515 1.845 0.065

Vessel type: Ship -1.169 0.472 -2.480 0.013

2 - Vessel type
(intercept) 3.261 0.391 8.352 <0.001

Vessel type: Ship -0.930 0.471 -1.976 0.048
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2020). The comparison between PAM and AIS data in this study

also served to validate the classification method used to distinguish

ships from motorboats based on their underwater acoustic

signature. Overall, combining these two techniques demonstrated

how passive acoustics can integrate standard marine

traffic monitoring.

Vessel underwater noise was recorded throughout the entire

monitoring period. Ship presence in early June and November

indicates that local ice conditions allowed for marine traffic in the

area, reflecting the prolonged ice-free season in the Arctic

(Parkinson, 2014; Crawford et al., 2021). Interestingly, bulk

carriers were not detected in the AIS data, despite the rapid

growth of bulk carrier traffic in the Arctic (PAME, 2024). Most

ships crossing Evans Strait in 2018 did not service the community of

Salliq but transited the area to reach other Hudson Bay

communities and the Baker Lake and Rankin Inlet mines. To

reduce the impact of vessel traffic on marine mammals, vessels

not servicing Salliq could be re-routed south of Coats Island, hence

avoiding crossing biologically important areas. Agnico Eagle Mines

Ltd. (2020) adopted such a rerouting plan for their sealift operations

to the aforementioned mines, following the low-impact shipping

corridors plan presented for the area by Dawson et al. (2018; 2020).

Disruption of individual activities can lead to long-term impacts

on fitness and populations (Pirotta et al., 2018; 2022). As the

ongoing reduction in sea ice is predicted to further boost Arctic

marine traffic (Dawson et al., 2018; Stevenson et al., 2019; Rodrıǵuez

et al., 2024), additional studies are needed to better understand

marine mammal reactions to vessel traffic in the Southampton

Island AOI. For a marine protected area to be effective in supporting

species health and conservation, measures must be implemented to

minimize species disturbance (Williams et al., 2015). Vessel slow-

downs and rerouting to avoid spatial and temporal overlap with key

areas, especially during ecologically important periods, have been

shown to reduce the impact of underwater noise pollution on

several species (Pine et al., 2018; Williams et al., 2019; Findlay

et al., 2023). Therefore, vessel traffic regulations and underwater

noise mitigation strategies are deemed essential to support the

establishment of a MPA around Southampton Island.
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