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Coastal zones face growing threats from climate change, including sea-level rise
and intensified storm activity. Accurate numerical modelling is essential to predict
the impacts of anthropogenic and climate stressors on the coastal zone. However,
it is also a very challenging environment due to complex coastlines, rapid
topographic changes, and high spatial-temporal variability. Unstructured grid
models offer a promising solution, yet their integration with advanced data
assimilation (DA) methods remains limited. This study presents the
implementation of a 3D variational data assimilation (3DVar) scheme (OceanVar)
within an unstructured-grid ocean model (SHYFEM). A key innovation involves
generalizing the first-order recursive filter for horizontal background error
covariances to work with triangular unstructured meshes. An experiment was
conducted over the period 2017-2018, assimilating ARGO in-situ profiles, and sea
level anomaly (SLA) data from altimetry satellite missions. Results show substantial
skill improvement against a control run without assimilation, particularly in the
100-500 m depth range, where the mean absolute error was reduced by 25-30%
through data assimilation. SLA assimilation had a more modest effect, improving
MAE by about 3% overall and up to 20% locally, without degrading temperature or
salinity estimates. The study demonstrates the feasibility and benefits of applying a
3DVar scheme to unstructured grid ocean models, paving the way for more
accurate and efficient coastal forecasting systems.

KEYWORDS

coastal ocean, variational data assimilation, unstructured grid ocean modelling, 3DVAR,
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1 Introduction

Approximately 10% of the world’s population lives within 5km from the coastline, an
area that is increasingly threathened by the effects of climate change. The rising sea levels,
altering weather patterns and intensifying storms (Gruber, 2011; Masson-Delmotte et al.,
2018) have significant impacts on the coastal zone, causing coastal erosion, threatening
ecosystems, leading to habitat loss and endangering species. Accurate modelling of coastal
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dynamic processes is crucial to understand and predict the impacts
of anthropogenic and climate stressors in the coastal zone. This is
not an easy task, as this zone is characterised by complex coastline
shapes, interactions with inland waters, rapid changes in
topography and high space-time variability of the
phenomena involved.

Unstructured grid ocean models are well suited for this dynamic
environment, as they can provide a seamless cross-scale (from open
sea to coastal regions) modelling with varying resolution. While
data assimilation (DA) is a common component of regular grid
modelling systems, DA on unstructured grids is less mature.
Unstructured grid systems that do include DA typically use
statistical methods (e.g. nudging or Kalman filters). For example,
in Zhu et al. (2017) the Finite-Volume Community Ocean Model
(FVCOM, Chen et al., 2006) is used, and the Ensemble Kalman
Filter (EnKF) scheme (Evensen, 1994, 2003, 2009; Chen et al., 2009)
accompanied by the Monte Carlo method is implemented to
assimilate the coastal acoustic tomography data into the ocean
model. Another example of a finite-element ocean unstructured
mesh model coupled with a DA methodology is presented by
Aydogdu et al. (2018). In that study, the ocean model used is the
Finite-Element Sea-ice Ocean Model (FESOM, Wang et al.,, 2014;
Nerger et al., 2019) coupled with an ensemble-based DA
framework, Data Assimilation Research Testbed (DART,
Anderson et al,, 2009) that includes several different stochastic
and deterministic ensemble Kalman filtering algorithms. Finally,
Bajo (2020) and Ferrarin et al. (2021) used the Shallow water
HYdrodynamic Finite Element Model (SHYFEM) fully-baroclinic
unstructured-grid model (Umgiesser et al., 2004; Cucco and
Umgiesser, 2006) in the Lagoon of Venice (Italy). As DA scheme,
the first implemented a unidimensional Kalman filter, while the
second applied two methods based on nudging and the ensemble
square root filter. A major drawback of the statistical methods is the
computational time that is required, which typically scales linearly
with the number of observations. For fast assimilation of large
numbers of observations, variational schemes are generally
preferred as they offer better scalability.

The primary objective of this study is to address this issue by
coupling an unstructured grid oceanographic model with a variational
DA methodology. The modelling system chosen for this study is the
unstructured-grid coastal ocean forecasting system Southern Adriatic
Northern Tonian coastal Forecasting System (SANIFS, Federico et al,,
2017) based on SHYFEM. SANIES is interfaced with the OceanVar
software (Dobricic and Pinardi, 2008; Storto et al., 2016), which
implements a state-of-the-art 3D variational data assimilation
(3DVar) scheme. OceanVar is currently used in several global and
regional modelling systems based on a regular grid (e.g. in the
Copernicus Marine Service' models for the Mediterranean (Coppini
et al., 2023) and Black (Lima et al., 2021) Seas).

In order to succesfully use OceanVar to assimilate observations
in an unstructured mesh, some components of the software have
been modified. In particular, the modelling of the horizontal
background covariance has been adapted, generalising the

1 http://marine.copernicus.eu.
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recursive filter algorithm to triangular unstructured meshes with
varying resolution. To our knowledge, this is the first time that a
3DVar scheme has been interfaced to an unstructured-grid finite
element ocean model.

This manuscript is organised as follows. Section 2 treats the
methodological aspects, describing: the ocean model, the DA
algorithm and the generalisation of the recursive filter to
unstructured grids, and finally, the observational dataset used in the
assimilation process. Section 3 will detail the experiment setup and
discussion of the results. The conclusions are presented in Section 4.

2 Methodological aspects
2.1 SANIFS system

This study uses the parallel implementation of SHYFEM,
described in Micaletto et al. (2021). SHYFEM is a 3D finite
element unstructured mesh hydrodynamic model solving the
Navier-Stokes equations by applying the hydrostatic and
Boussinesq approximations. The unstructured grid is Arakawa-B
with triangular meshes (Bellafiore and Umgiesser, 2010 and Ferrarin
et al,, 2013), which provides an accurate description of irregular
coastal boundaries. SHYFEM solves the ocean primitive equations,
assuming incompressibility in the continuity equation and
advection-diffusion equation for active tracers using finite-element
discretisation based on triangular elements (Umgiesser et al., 2004).
A semi-implicit algorithm is used for the time integration of the free
surface equation, the Coriolis term, the pressure gradient in the
momentum equation, and the divergence terms in the continuity
equation. Vertical eddy viscosity and vertical eddy diffusivity in the
tracer equations are treated fully implicitly for stability reasons.
Finally, the advective and horizontal diffusive terms in the
momentum and tracer equations are treated explicitly (Micaletto
et al,, 2021). A turbulence closure scheme adapted from the k-¢
module GOTM (General Ocean Turbulence Model, Burchard and
Petersen, 1999) is used to compute the vertical viscosities.

As described in Maicu et al. (2021), the momentum equations,
integrated over each layer, are:
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where § = {(x,y,t) is the free surface, | = 1,2 ... N is the vertical
layer index, z; = 1,2 ... N are the depths of the layer interfaces at the
bottom with z, being the free surface { and zy the bottom interface
of the deepest layer. z;,,,;; is the depth at the middle of layer . u; and
v; are the horizontal velocity components. The horizontal velocities
integrated over the layer [ (layer transports) are defined by U, = uh
and V] = v;h; where h; is the layer thickness. P, is the atmospheric
pressure at the sea surface, g is the gravitational acceleration, pj is the
reference density of sea water, p = p, + p’ is the water density with p’
representing the perturbation of the density from the reference value
Po- Ay is the horizontal eddy viscosity computed following the
Smagorinsky formulation (Smagorinsky, 1963; Blumberg and
Mellor, 1987). w; is the vertical velocity for layer I defined at the
bottom interface. 7., and 7,, are the turbulent shear stresses defined
at the bottom interface of each layer and written according to the
flux-gradient theory (Maicu et al., 2021).

The continuity equation integrated over a vertical layer [ is:

v v

ox dy 5~ W

Z1-1

The continuity equation at [ = 1 has an additional term
representing the time variability of the 100 top layer thickness
and thus it reads as:

oh, , 0U, , 0V, _ _
at Tax T dy =Way T Wy

The layer integrated salinity and temperature equations read,
respectively:
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where Ky and Ky are the horizontal and vertical turbulent
diffusion coefficient respectively. S; and 6, are salinity and
temperature at layer [. The solar irradiance is expressed by the
last term on the right side of Equation 1. It express the solar
irradiance at depth z, parametrized with a double exponential
according to Paulson and Simpson (1977).

The hydrostatic pressure is obtained by the layer integrated
vertical momentum under the hydrostatic hypothesis:

0

Pl(%)’, Zlmid> t) = pOg(é - Zlmid) + / p/gdZ

Flnia

Finally, the density p at layer [ is computed from salinity,
temperature and pressure according to the UNESCO equation of
state (Fofonoff, 1985):

iy, 2z t) = pi(Ss, O pr)
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In the experiments, we used the SANIFS application of
SHYFEM described by Federico et al. (2017). SANIEFS is a coastal-
ocean operational system providing 3-day forecasts. The
operational chain is based on a downscaling approach starting
from the large-scale system, MedFS (Coppini et al., 2023), which
provides the open-sea fields. The SANIFS numerical domain, grid,
and bathymetry are shown in Figure 1a. In the coastal waters of the
eastern Italian coastlines, SANIFS has a high spatial resolution,
reaching an element size of 500m, with higher resolution in specific
areas (e.g. Mar Grande near Taranto) where it reaches 50m
(Figure 1b). In the open sea, the resolution is approximately 3-
4km, which provides a smoother nesting to the parent model
MedFS (1/24°, approximately 4km). The vertical grid consists of
92 unevenly distributed z-levels with higher resolution closer to the
sea surface. This is appropriate for solving the field in coastal and
open-sea regions (Federico et al, 2017). Thanks to the high
horizontal resolution, the model configuration has been shown to
provide reliable hydrodynamics and active tracer forecasts in
mesoscale-shelf-coastal waters of Southern Eastern Italy (Apulia,
Basilicata, and Calabria regions, Federico et al., 2017). The SANIES
implementation includes both surface and lateral boundary
conditions. The air-sea heat flux is parameterised by bulk
formulas described in Pettenuzzo et al. (2010), the surface stress
is computed with the wind drag coefficient according to Hellerman
and Rosenstein 1983, and freshwater flux includes evaporation,
precipitation, and climatological river runoff from 20 major rivers in
the Adriatic and Ionian basins. River salinity is fixed at 15 psu.
ECMWF products provided atmospheric forcing, interpolated to
the model grid. At the open boundaries, SANIFES is nested to MedFS
outputs, prescribing non-tidal sea surface elevation, temperature,
salinity, and 2D velocity fields. Additionally, tidal elevations from
OTPS (Oregon State University Tidal Prediction Software; Egbert
and Erofeeva, 2002) with eight major constituents (M2, S2, N2, K2,
K1, O1, P1, Q1) are imposed at the boundary nodes. The complete
numerical model setup is extensively described in Federico et al.
(2017), and its spatial features are briefly summarised in Table 1.

The original SANIFS system was implemented as a pure
downscaling method, re-initialising from the MedFS system every
day. In this way, the model also inherits the observational data
assimilated into the parent model, and there is less need for a
dedicated DA system. However, as the SHYFEM model has
matured, it has become feasible and desirable for future
applications to run the system in a continuous way without re-
initialisation. As the parent model now only provides the lateral open
boundary conditions, the assimilation of observations directly into
the unstructured grid model is expected to improve the forecast skill.

2.2 OceanVar DA scheme

In this work, SANIFS is interfaced to OceanVar (Dobricic and
Pinardi, 2008), which implements a 3DVar data assimilation
scheme. Starting from a background state x,, OceanVar aims to
find the analysis state x, that corresponds to the x state which
minimises the cost function:
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SANIFS GRID AND BATHYMETRY
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FIGURE 1

(@) SANIFS numerical domain, grid, and bathymetry. (b) Zoom on the Taranto region.
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TABLE 1 Summary of the ocean model features.

Coastal
resolution

Open sea
resolution

Levels

Domain
Unstructured
. SHYFEM_ . SANIFS Arakawa-B triangular
SANIFS implementation Federico i
(Figure 1) mesh
et al. (2017)

90351 nodes

92
2 to 40
50 - 500 m 4muptosfm
stepwise up to the bottom max

step 200 m

T =3 6= 3) B (- x3) + 3 (5 - HE'R (y ~ HE)

Here B is the background covariance matrix, R the
observational covariance matrix, y the observation vector and H
an observation operator that projects a model state x into
observation space.

The background covariance is a positive definite matrix that can
be written in the form B = VV". OceanVar expands V further into a
series of distinct operators:

V = VI]VHVV

The operator Vi models the vertical covariance within a water
column by means of empirical orthogonal functions (EOFs) that are
derived from the model variability over a longer period. To capture
the seasonal changes in the vertical covariance, the EOFs are
monthly varying. This part of the covariance is equivalent to a
coordinate transformation, providing a pre-conditioned cost
function and allowing to reduce the dimensionality of the
minimisation problem by truncating the number EOFs. In our
case, 25 EOFs are used, computed from a four-year (2017-2020)
simulation of SANIES.

Frontiers in Marine Science

The horizontal covariance operator, Vy, describes the
covariance between neighbouring water columns at each level.
The horizontal covariance is modelled using a Gaussian function,
with a correlation length that can be locally varying and is typically
proportional to the Rossby radius of deformation. The Vy; operator
is implemented using the first order recursive filter (RF) algorithm
of Purser et al. (2003). However, this algorithm is designed for
regular grids where neighbouring points are straightforwardly
defined in two directions. In order to apply the RF on
unstructured triangular meshes, the algorithm has been
generalised. This novel approach and algorithm are described in
detail in the next section.

Finally, V,, is the dynamic height operator, which balances the
steric sea level increment with the temperature and salinity
increments in the water column to avoid incoherent analysis
states that may cause model instabilities. It additionally provides
OceanVar the ability to assimilate sea level observations into a state
vector of temperature and salinity without explicitly including the
sea level (Storto et al., 2011; Dobricic and Pinardi, 2008). As the
dynamic height operator requires calculating the density integral
over the water column down to a depth where horizontal velocities
are negligible, it is necessary to impose a no-motion level, which we

04 frontiersin.org
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set to 700m. The system is run in offline mode, meaning that the
data assimilation step is executed separately from the ocean model
forecast. After each assimilation cycle, the updated ocean state is
used to initialise the subsequent model run.

2.3 Generalised recursive filter algorithm

Recursive filters are often used in data assimilation to model
horizontal covariances, as the covariances are typically Gaussian in
shape and the recursive filter is a simple but effective method to
impose a Gaussian shape on arbitrary data (Lorenc, 1992; Hayden
and Purser, 1995; Purser et al., 2003). The RF is a simple iterative
algorithm that requires only a few iterations to approximate the
Gaussian function. The algorithm itself is 1-dimensional, but it can
be straightforwardly applied in two or more dimensions by
alternating dimensions between iterations (Purser et al., 2003).
Furthermore, the RF has the ability to locally vary the spread of
the Gaussian distribution, which gives it greater flexibility when
working with inhomogeneous data. This feature will be
indispensable for applying the RF to an unstructured triangular
mesh such as for SANIFS.

The mathematical formulation of the RF on a regular grid is
relatively straightforward: considering a 1-dimensional field A; with
i=1,2,3,..., n, the algorithm consists of a forward pass

Bi = OC,-B,»_I + (1 - OC,-)A,» i= 2, 3, ey N (2)
followed by a backward pass
Ci=0C +(1-0)B; i=n-1,n-2,..., 1 (3)

where B, is the field after the first application of the filter, and C;
is the field after one filter pass in each direction. The RF is applied in
both directions to ensure zero phase change (Lorenc, 1992).

In Equation 2 and Equation 3, ¢; is the smoothing factor,
defined as:

o =1+E; —+\/E(E; +2)
4)
2N§?
E; = w

with R; the radius of the spread and N the number of iterations.
The subscript i denotes the local dependence of the smoothing
factor. For a grid with uniform resolution and a constant correlation
radius, ¢; = « and the subscripts in Equation 4 can be dropped. The
Gaussian spread o; of the approximate Gaussian is related to the
correlation radius R; and the grid resolution &; as:

The RF algorithm is applied iteratively N times, and from N > 2
it starts to approximate a Gaussian distribution (Purser et al., 2003).
While the RF assumes an infinite domain size, boundary conditions
(in open and closed boundaries) can be applied to approximate the
infinite line symmetry (Hayden and Purser, 1988; Dobricic and
Pinardi, 2008) on a finite domain. The 1D algorithm and its
extension to 2D grids is illustrated in Figure 2. The only
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drawback of the RF algorithm is that with the infinite
formulation it is inherently sequential, this makes it difficult to
implement in parallelised code.

To apply the RF algorithm to an unstructured mesh, it’s vital to
recognise the importance of the node ordering. On a structured
mesh, the algorithm processes neighbouring nodes in order (either
1, 2, 3,..., n in the forward pass or n, n — 1, n — 2,... , 1 in the
backward pass), which ensures the main requirements for the filter
are met:

1. Each node receives contributions from its neighbour on
one side before providing a contribution to its neighbour
on the other side;

2. The forward and backward passes complement each other;
the neighbour that provides a contribution in one pass
becomes a neighbour that receives a contribution in the
opposite pass.

The node ordering problem is therefore really a node
connectivity problem and it can be discussed more generally in
terms of the mesh edges rather than the nodes themselves. A pass of
the recursive filter acting on an edge, directionally propagates
information along the edge from one node to the other. In this
way the filter can be applied also to triangular unstructured meshes,
as long as the above requirements can be met. It turns out that this
can be achieved by orienting and ordering the edges appropriately.

First the edges are oriented in the direction of the filter pass,
then the edges are sorted by the coordinates of the first node (i.e. the
node providing the contribution). If a pass of the filter is imagined
as a line of constant longitude or latitude sweeping through the
unstructured mesh, these conditions ensure that information is
always propagated from nodes at the filter position in the direction
that the filter is moving. In this way, the algorithm satisfies the
requirements outlined above. The x and y forward and backward
passes can be generalised as four passes in the four cardinal
directions, orienting and ordering the edges as summarised in
Table 2 and in the pseudo-code in the appendix (Algorithm 1).

At this point, the mathematical structure of the RF (Equations
2, 3) can be used, but the running index i is no longer over the nodes
but over the edges and all passes of the filter can be described by:

By = o4B; + (1 — o)A, i=1...,Nedge (5)

with the ordering and orientation of the edges i as in Table 2
and the subscripts 1 and 2 referring to the first (source) and second
(target) nodes of the edge i. The fields A and B are the input and
output fields respectively, where B is initialised to 0. The coefficient
o; follows from Equation 4, with the resolution J; corresponding to
the length of the edge i. Hereafter, we will refer to the generalised RF
algorithm as utRF (unstructured triangular Recursive Filter).

To demonstrate how the utRF reproduces the desired Gaussian
symmetry on the SANIES grid, we show test results using synthetic
data with N = 6, which is also the iteration number used in the
experiments. Figures 3a, b show results for R; = R = 8km and
Figures 3¢, d for R; = R = 20km. The testing locations have been
chosen considering the different grid features on the SANIFS
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FIGURE 2

RF infinite line structure and its application on a 2D regular grid. Blue arrows represent the forward pass, and the green arrows are the backward

pass.

domain. The two points in the Adriatic Sea (1 and 2 in Figure 3a)
test the spreading shape in locations with constant resolution, but
the grid tessellation is not homogeneous. Furthermore, they are
close to each other to demonstrate the spreading shape in the case of
intersecting correlation radii (Figure 3c). The point in the middle of
the Gulf of Taranto (3) is in a region where grid resolution and
triangle tessellation are highly variable. The result on that point
shows how the application of the local smoothing factor algorithm
avoids extending the Gaussian shape too close to the coast. This
aspect is important in real-case applications since it avoids
spreading open sea information on the coast. The point in the
Tonian open sea (4) is in the middle of an extended region with
constant grid resolution and homogeneous triangle tessellation.
Finally, a point on the coastline shows how utRF works without
boundary conditions in proximity to the closed boundary.

TABLE 2 Edge orientation and ordering for the unstructured triangular
mesh RF algorithm.

Filter Edge orientation (primary, Edge ordering
direction secondary) (first node)
i ing longitude,
East (X-FW) east to west, south to north mcreasmg ongitude
latitude
d ing longitude,
West (X-BW) west to east, north to south ecreasmg ongitude
latitude
North (Y- increasing latitude,
south to north, east to west ©
FW) longitude
d ing latitude,
South (Y-BW) north to south, west to east ecreasmg atitude
longitude

Both orientation and ordering are using a primary and secondary ordering to make sure
identical values do not lead to ambiguities.

Frontiers in Marine Science

From all the cases in Figure 3 we see how the proposed first-
order recursive filter for an unstructured triangular grid well
approximates the Gaussian spreading using N = 6. We also tested
the utRF using different numbers of iterations, and we saw that
from N = 2, it starts to approximate a Gaussian spreading as in the
case of RF application on a regular grid (results not shown).

2.4 The observational dataset

In OceanVar, we assimilate temperature (T) and salinity (S)
from in-situ ARGO profiling floats and sea level anomaly (SLA)
from 4 satellite missions: Saral/AltiKa, CryoSat-2, Jason-3 and
Sentinel-3A. Both observational products are provided by the
Copernicus Marine Service.

Figures 4a, b show, respectively, the assimilated ARGO profiling
floats and along-track sea level anomaly distribution over the whole
experiment period (2017-2018). The average daily number of
ARGO observations assimilated is about 150. 122 days have no
ARGO observations. Regarding the SLA, the daily number of
assimilated observations is approximately 35. 187 Days have no
altimetry observations within the model domain.

3 Experiment set-up and results

The data assimilation experiment is performed over the period
2017-2018, with a 10-day spin-up of the SANIFS model. T, S and
SLA are assimilated using 25 trivariate EOFs. The experiment uses
an assimilation window of 24 hours. The utRF was used with 6

frontiersin.org
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UtRF test on synthetic values for different iterations number, N, and a constant correlation radius, R. Points 1-4 in panels (a, ) and the coastal point
in panels (b, d) are chosen to cover different regions with different grid features.

iterations and a correlation radius set to 8km. The results are
compared to a control experiment without DA.

Since the assimilation of SLA has a net positive impact on SLA
and a negligible impact on the skills for T and S, the results
presented here will focus on the experiment that includes all three
variables. This choice enables the integrated discussion of the skill
scores for all variables that are commonly assimilated in
ocean models.

The SANIFS modelling system with DA alternates between
running SHYFEM and OceanVar in steps of 24 hours. These form
the assimilation windows in which the output of the SHYFEM
model is compared to the available observations within the window.
OceanVar calculates the minimum of the cost function using the
model background read from the output fields and calculates the
analysis increments. The increments are applied to the SHYFEM
restart files at the start of the next 24-hour cycle. Figure 5 shows an

Frontiers in Marine Science

example of a typical set of analysis increments on the unstructured
grid, with the horizontal spread (R = 8km) modelled using the novel
utRF algorithm. Similarly to the test performed on a synthetic
dataset in Figure 3, the utRF implemented in OceanVar shows a
good approximation of the Gaussian horizontal covariance.
Moreover, the figure shows how the triradiate dynamic height
operator produces increments in S and T fields from SLA
observations (Figures 5a, b) and vice versa S and T observations
produce increments in the SLA field (Figure 5¢). The presence of
SLA observations can be inferred from the spatial arrangement of
the corresponding increments, which appear as regularly spaced
and aligned features, reflecting the along-track structure of
altimetric satellite measurements.

Following the methodology of Dobricic and Pinardi (2008), the
analysis is evaluated using a quasi-independent set of
measurements. In practice, this means that the same ARGO and
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FIGURE 4

Assimilated ARGO and SLA observations over the period 2017-2018. (a) ARGO profiles (b) along-the-track L3 sea level anomaly observations from
altimeter satellites. Each profiler and satellite are shown in different colours.

satellite data used in the assimilation cycle were first applied for
validation before being assimilated into the analysis. The evaluation
relies on the misfits (observation minus background), which are
computed prior to the assimilation of the corresponding
observations. These misfits are expected to decrease compared to
the control run without data assimilation. In addition, the residuals

S INCREMENTS

T INCREMENTS

(observation minus analysis) are examined to quantify the
magnitude of the corrections introduced into the model.

Figure 6 shows the daily mean absolute value of the misfits
versus the daily mean absolute value of the residuals (observations
minus analysis) for S, T and SLA. The straight line indicates a slope
of 1. For S (Figures 6a-d) and T (Figures 6f-i), the results are

SLA INCREMENTS
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FIGURE 5

Example on 2017-09-05 of increments spreading shape for the two sources of observation assimilated (ARGO and altimetry satellites). The figure
shows how the utRF approximates the Gaussian shape and how the dynamic height operator produces increments in S and T fields from SLA
observations, (a, b), and vice versa S and T observations produce increments in the SLA field (c). The utRF parameters are: N = 6, R = 8km.
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MISFITS

S, T and SLA mean absolute value of misfits and residuals. In (a—=d) and (f—i) we show different water column layers for S and T. (e) refers to SLA.

Different colours refer to different months. Stars for 2017 and circles for 2018.

divided in four different water column layers to investigate the
improvement of various SANIFS system features:

¢ (0,2]m - This layer is intended to investigate near-surface T
and S features. The near-surface layer is one of the most
difficult to be represented in oceanographic models. It is
directly affected by atmospheric forces such as wind, solar
radiation, rain, and rivers from the land.

* (2,60]m - This layer is intended to investigate T and S
features in the mixing layer. Like the near-surface layer, the
mixing layer presents challenges in oceanographic

SALINITY

modelling. The thermocline seasonal variability and some
inputs propagating from the surface through turbulence
and heat exchange complicate modelling in this layer.
(60,200]m - This layer is intended to investigate T and S
features in the region of the water column that approaches
the deep water layer. Here, the thermocline seasonal
variability can still affect the modelling skills.

(200,2000]m - This layer is intended to investigate T and S
features in the region of the water column in which there
are no particular challenges and the errors are expected to
be smaller.
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FIGURE 7
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Skill Score

Skill scores of the data assimilation experiment compared to the control experiment without data assimilation for (a) salinity and (b) temperature as a
function of depth. Positive (red) values indicate an improved model skill with data assimilation.
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(c) SLA projected on the model domain. Positive (red) values indicate an improved model skill with data assimilation.

The assumption that the model error is smaller in deep ocean
layers is supported by the recent study of Benincasa et al. (2024),
who showed that the atmospherically forced response in the
Mediterranean Sea decreases rapidly with depth, while internal
variability dominates mainly in the upper ocean. Below a few
hundred meters, the system is comparatively more stable and less
sensitive to external perturbations.

Results confirm this interpretation. For both T and S, the daily
mean absolute values of the misfits and residuals decrease from the

surface to the deeper layers. All panels show that most of the points
are below the slope-1 line for both variables, meaning that our
assimilation is improving the local background state. In particular,
for T, it can be observed how we are introducing a consistent
correction in the first three layers (Figures 6f-h). All the points are
well below the diagonal line. For the layer (0,2]m (Figure 6f), we see
T residuals well below 2°C of the corresponding misfit. In the two
lower layers, we are introducing an improvement of about 1°C. In
the layer (200-2000] m (Figures 6d-i), we see how the model well
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The effect of the assimilation on the mean barotropic velocity in the year 2018. Showing (a) the difference in magnitude between the assimilation
and the control run, and (b) the velocity field and its absolute magnitude.
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reproduces both S and T. Finally, Figure 6e refers to SLA. Here,
considering that the majority of the points are below the diagonal
line, we can conclude that SLA improves in a consistent way by
assimilating altimetry observations.

After the evaluation of the individual corrections, the
performance of the system as a whole is evaluated using only the
quasi-independent measurements (i.e. misfits). The 1-day forecast
skill of the system is evaluated by means of the skill score (Murphy,
1988), which is defined as:

The skill score depends on the ratio of the mean square error
(MSE) of the experiment with DA (denoted exp) and the control
experiment without DA (denoted ref). The skill score is constructed
in such a way that it ranges from a value of 1 for an experiment that
agrees perfectly with the observations to 0 for an experiment that
shows no improvement over the reference model. If the experiment
performs worse than the reference, the skill score can assume any
negative value. The skill score is visualised in profiles for S and T
(Figure 7) and maps for all variables (Figure 8) for the DA
experiment in comparison with the control experiment, which
does not include DA.

The salinity skill in Figure 7a shows a consistent improvement
from the surface down to a depth of around 900m. Below the
thermocline the improvement in MSE is above 20%, with a
maximum of almost 35% around 300m. Below 1000m some
negative skills are found. This is most likely related to the fact
that only about 1 in 6 ARGO profiles extend below 1000m.
Increments originating from shallow profiles that are applied
below 1000m depend very strongly on the correct modelling of
the covariance matrix and are probably less accurate.

The temperature skill in Figure 7b exhibits a very similar
improvement down to approximately 600m. In the mixed layer
the MSE improves by more than 10%, while the improvement
reduces somewhat around the average depth of the thermocline.
The skill score reaches a maximum of over 0.2 for the layers
between 100m and 500m. Below 600m some layers show a small
degradation in MSE with a maximum of around 5%.

Figure 8 provides spatial maps illustrating how the
improvements introduced by data assimilation are distributed
across the SANIFS domain. For both S and T, positive skill scores
are observed at the majority of the observation locations.
Conversely, sea level anomaly (SLA) exhibits positive values
predominantly in the northern Ionian region, while negative
values are evident in the southern Adriatic. This discrepancy may
be attributed to diurnal variations of sea level and/or the incomplete
description of tides in the model.

The impact of data assimilation on the circulation is evaluated
by comparing the barotropic velocities between the assimilation and
control experiments. Figure 9 shows the annual mean fields for
2018. The difference in magnitude is displayed in Figure 9a, and the
circulation in the experiment with data assimilation is shown in
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Figure 9b. The results indicate a 5-10% intensification of both the
Southern Adriatic Gyre and the Western Adriatic Current. While
additional differences are present at shorter timescales in other parts
of the basin, these largely cancel out in the long-term averages.
Importantly, the assimilation does not alter the direction or
structure of the major gyres and currents, resulting in no
significant impact on the overall circulation pattern.

As a future improvement, we propose implementing the First
Guess at Appropriate Time (FGAT) approach. FGAT would allow
for comparing the SLA observations to the instantaneous model
SLA at the correct time, rather than to a mean value. This enables a
more correct treatment of the tidal signal, potentially addressing the
observed limitations and further enhancing the performance of
the system.

4 Conclusions

The OceanVar 3DVar data assimilation scheme has been
successfully implemented in the SANIFS modelling system based
on the SHYFEM-MPI unstructured grid model. The first-order
recursive filter algorithm of Purser et al. (2003) for regular grids has
been generalised to unstructured meshes and implemented in the
OceanVar software. The new system has been used to assimilate
ARGO in-situ profiles and SLA from satellite during the period
2017-2018. The results are compared to a control run without DA.

The results for assimilating in-situ profiles are very promising,
showing a consistent improvement of the model skill over the entire
domain and across nearly all depth levels. The improvement is
especially notable in the 100-500m depth range, where data
assimilation reduces the mean absolute error of S and T by 25-30%.

The assimilation of SLA has a much smaller impact but
nevertheless shows an overall improvement of the MAE of 3%
and, especially in the southern part of the domain, improvements
that locally reach up to 20%. The reason for the smaller impact of
SLA is believed to be primarily technical and will be the subject of
future work. At present, for example, the model background
estimates use average values, while in the presence of tides,
instantaneous values should be preferred. Moreover, there is no
mean dynamic topography calculated from the SANIFS model yet,
and the SLA experiment used an interpolated low-resolution
regular-grid MDT. This may be an additional source of errors.

Overall, the new implementation has been shown to work
correctly and to have a positive impact on the model
performance. The experiments show promise for a future
operational coastal model with data assimilation using this
new methodology.
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Appendix

Algorithm 1 implements the directional iterative recursive filter algorithm for triangular unstructured grids, referred to as utRF in the
text and discussed in section 2.3.

Data: Nodes with longitude/latitude; edges referencing two nodes; input field input(-)
Result: output (-) after iterative directional utRF application as Equation 5
1 struct node
2 L float lon, lat
3
struct edges
4 L float alpha; node nodes[2]
5
6 foreach edge € edges do

7 # Calculate ausing Equation 4 and use the node distance as &
L edge.alpha « alpha_from_distance (edge.node[0], edge.node[1])
8 for iteration « 1 to N do
9 foreach direction € {east, west, north, south} do
10 output+) « @
11 if direction == east then
12 foreach edge € edges do
13 Lsort edge.nodes by increasing node[@] .1on (then node[0@].1lat)
14 else if direction == west then
15 foreach edge € edges do
16 L sort edge.nodes by decreasing node[1].1on (then node[1].1at)
17 else if direction == north then
18 foreach edge € edges do
19 L sort edge.nodes by increasing node[0].1lat (then node[®@].1on)
20 else if direction == south then
21 foreach edge € edges do
22 L sort edge.nodes by decreasing node[1].1at (then node[1].1on)
23 foreach edge € edges do
24 output(edge.nodes[1]) « edge.alpha * output (edge.nodes[@]) + (1 - edge.alpha) -
input(edge.nodes[1])
25 7—1‘nput( <) <« output (*)

Algorithm 1. Directional iterative filtering over edges with utRF coefficient .
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