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Coastal zones face growing threats from climate change, including sea-level rise

and intensified storm activity. Accurate numerical modelling is essential to predict

the impacts of anthropogenic and climate stressors on the coastal zone. However,

it is also a very challenging environment due to complex coastlines, rapid

topographic changes, and high spatial-temporal variability. Unstructured grid

models offer a promising solution, yet their integration with advanced data

assimilation (DA) methods remains limited. This study presents the

implementation of a 3D variational data assimilation (3DVar) scheme (OceanVar)

within an unstructured-grid ocean model (SHYFEM). A key innovation involves

generalizing the first-order recursive filter for horizontal background error

covariances to work with triangular unstructured meshes. An experiment was

conducted over the period 2017–2018, assimilating ARGO in-situ profiles, and sea

level anomaly (SLA) data from altimetry satellite missions. Results show substantial

skill improvement against a control run without assimilation, particularly in the

100–500m depth range, where the mean absolute error was reduced by 25–30%

through data assimilation. SLA assimilation had a more modest effect, improving

MAE by about 3% overall and up to 20% locally, without degrading temperature or

salinity estimates. The study demonstrates the feasibility and benefits of applying a

3DVar scheme to unstructured grid ocean models, paving the way for more

accurate and efficient coastal forecasting systems.
KEYWORDS

coastal ocean, variational data assimilation, unstructured grid ocean modelling, 3DVAR,
unstructured grid first order recursive filter algorithm, recursive filter
1 Introduction

Approximately 10% of the world’s population lives within 5km from the coastline, an

area that is increasingly threathened by the effects of climate change. The rising sea levels,

altering weather patterns and intensifying storms (Gruber, 2011; Masson-Delmotte et al.,

2018) have significant impacts on the coastal zone, causing coastal erosion, threatening

ecosystems, leading to habitat loss and endangering species. Accurate modelling of coastal
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dynamic processes is crucial to understand and predict the impacts

of anthropogenic and climate stressors in the coastal zone. This is

not an easy task, as this zone is characterised by complex coastline

shapes, interactions with inland waters, rapid changes in

topography and h igh space- t ime var i ab i l i t y o f the

phenomena involved.

Unstructured grid ocean models are well suited for this dynamic

environment, as they can provide a seamless cross-scale (from open

sea to coastal regions) modelling with varying resolution. While

data assimilation (DA) is a common component of regular grid

modelling systems, DA on unstructured grids is less mature.

Unstructured grid systems that do include DA typically use

statistical methods (e.g. nudging or Kalman filters). For example,

in Zhu et al. (2017) the Finite-Volume Community Ocean Model

(FVCOM, Chen et al., 2006) is used, and the Ensemble Kalman

Filter (EnKF) scheme (Evensen, 1994, 2003, 2009; Chen et al., 2009)

accompanied by the Monte Carlo method is implemented to

assimilate the coastal acoustic tomography data into the ocean

model. Another example of a finite-element ocean unstructured

mesh model coupled with a DA methodology is presented by

Aydoğdu et al. (2018). In that study, the ocean model used is the

Finite-Element Sea-ice Ocean Model (FESOM, Wang et al., 2014;

Nerger et al., 2019) coupled with an ensemble-based DA

framework, Data Assimilation Research Testbed (DART,

Anderson et al., 2009) that includes several different stochastic

and deterministic ensemble Kalman filtering algorithms. Finally,

Bajo (2020) and Ferrarin et al. (2021) used the Shallow water

HYdrodynamic Finite Element Model (SHYFEM) fully-baroclinic

unstructured-grid model (Umgiesser et al., 2004; Cucco and

Umgiesser, 2006) in the Lagoon of Venice (Italy). As DA scheme,

the first implemented a unidimensional Kalman filter, while the

second applied two methods based on nudging and the ensemble

square root filter. A major drawback of the statistical methods is the

computational time that is required, which typically scales linearly

with the number of observations. For fast assimilation of large

numbers of observations, variational schemes are generally

preferred as they offer better scalability.

The primary objective of this study is to address this issue by

coupling an unstructured grid oceanographic model with a variational

DA methodology. The modelling system chosen for this study is the

unstructured-grid coastal ocean forecasting system Southern Adriatic

Northern Ionian coastal Forecasting System (SANIFS, Federico et al.,

2017) based on SHYFEM. SANIFS is interfaced with the OceanVar

software (Dobricic and Pinardi, 2008; Storto et al., 2016), which

implements a state-of-the-art 3D variational data assimilation

(3DVar) scheme. OceanVar is currently used in several global and

regional modelling systems based on a regular grid (e.g. in the

Copernicus Marine Service1 models for the Mediterranean (Coppini

et al., 2023) and Black (Lima et al., 2021) Seas).

In order to succesfully use OceanVar to assimilate observations

in an unstructured mesh, some components of the software have

been modified. In particular, the modelling of the horizontal

background covariance has been adapted, generalising the
1 http://marine.copernicus.eu.
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recursive filter algorithm to triangular unstructured meshes with

varying resolution. To our knowledge, this is the first time that a

3DVar scheme has been interfaced to an unstructured-grid finite

element ocean model.

This manuscript is organised as follows. Section 2 treats the

methodological aspects, describing: the ocean model, the DA

algorithm and the generalisation of the recursive filter to

unstructured grids, and finally, the observational dataset used in the

assimilation process. Section 3 will detail the experiment setup and

discussion of the results. The conclusions are presented in Section 4.
2 Methodological aspects

2.1 SANIFS system

This study uses the parallel implementation of SHYFEM,

described in Micaletto et al. (2021). SHYFEM is a 3D finite

element unstructured mesh hydrodynamic model solving the

Navier-Stokes equations by applying the hydrostatic and

Boussinesq approximations. The unstructured grid is Arakawa-B

with triangular meshes (Bellafiore and Umgiesser, 2010 and Ferrarin

et al., 2013), which provides an accurate description of irregular

coastal boundaries. SHYFEM solves the ocean primitive equations,

assuming incompressibility in the continuity equation and

advection-diffusion equation for active tracers using finite-element

discretisation based on triangular elements (Umgiesser et al., 2004).

A semi-implicit algorithm is used for the time integration of the free

surface equation, the Coriolis term, the pressure gradient in the

momentum equation, and the divergence terms in the continuity

equation. Vertical eddy viscosity and vertical eddy diffusivity in the

tracer equations are treated fully implicitly for stability reasons.

Finally, the advective and horizontal diffusive terms in the

momentum and tracer equations are treated explicitly (Micaletto

et al., 2021). A turbulence closure scheme adapted from the k-e
module GOTM (General Ocean Turbulence Model, Burchard and

Petersen, 1999) is used to compute the vertical viscosities.

As described in Maicu et al. (2021), the momentum equations,

integrated over each layer, are:

∂Ul
∂ t + ul

∂Ul
∂ x + vl

∂Ul
∂ y +

Z zl−1

zl
w
∂ u
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where z = z (x, y, t) is the free surface, l = 1, 2… N is the vertical

layer index, zl = 1, 2… N are the depths of the layer interfaces at the

bottom with z0 being the free surface z and zN the bottom interface

of the deepest layer. zlmid is the depth at the middle of layer l. ul and

vl are the horizontal velocity components. The horizontal velocities

integrated over the layer l (layer transports) are defined by Ul = ulhl
and Vl = vlhl where hl is the layer thickness. Pa is the atmospheric

pressure at the sea surface, g is the gravitational acceleration, r0 is the
reference density of sea water, r = r0 + r0 is the water density with r0

representing the perturbation of the density from the reference value

r0. AH is the horizontal eddy viscosity computed following the

Smagorinsky formulation (Smagorinsky, 1963; Blumberg and

Mellor, 1987). wl is the vertical velocity for layer l defined at the

bottom interface. txz and tyz are the turbulent shear stresses defined
at the bottom interface of each layer and written according to the

flux-gradient theory (Maicu et al., 2021).

The continuity equation integrated over a vertical layer l is:

∂Ul
∂ x + ∂Vl

∂ y = wzl − wzl−1

The continuity equation at l = 1 has an additional term

representing the time variability of the 100 top layer thickness

and thus it reads as:

∂ h1
∂ t + ∂U1

∂ x + ∂V1
∂ y = wz1 − wz0

The layer integrated salinity and temperature equations read,

respectively:

∂ (hlSl)
∂ t + Ul

∂ Sl
∂ x + Vl

∂ Sl
∂ y +

Z zl−1

zl
w
∂ S
∂ z

dz = mh · (KH mh hlSl)

+
Z zl−1

zl

∂

∂ z
(KV

∂ S
∂ z

)dz

∂ (hlql)
∂ t + Ul

∂ ql
∂ x + Vl

∂ ql
∂ y +

Z zl−1

zl
w
∂ q
∂ z

dz = mh · (KH mh hlql)

+
Z zl−1

zl

∂

∂ z
KV

∂ q
∂ z

� �
dz

+ 1
r0Cp

(I(zl−1) − I(zl))

(1)

where KH and KV are the horizontal and vertical turbulent

diffusion coefficient respectively. Sl and ql are salinity and

temperature at layer l. The solar irradiance is expressed by the

last term on the right side of Equation 1. It express the solar

irradiance at depth z, parametrized with a double exponential

according to Paulson and Simpson (1977).

The hydrostatic pressure is obtained by the layer integrated

vertical momentum under the hydrostatic hypothesis:

pl(x, y, zlmid
, t) = r0g x − zlmid

� �
+
Z 0

zlmid 

r0gdz

Finally, the density r at layer l is computed from salinity,

temperature and pressure according to the UNESCO equation of

state (Fofonoff, 1985):

pl(x, y, zlmid
, t) = pl(Sl , ql , pl)
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In the experiments, we used the SANIFS application of

SHYFEM described by Federico et al. (2017). SANIFS is a coastal-

ocean operational system providing 3-day forecasts. The

operational chain is based on a downscaling approach starting

from the large-scale system, MedFS (Coppini et al., 2023), which

provides the open-sea fields. The SANIFS numerical domain, grid,

and bathymetry are shown in Figure 1a. In the coastal waters of the

eastern Italian coastlines, SANIFS has a high spatial resolution,

reaching an element size of 500m, with higher resolution in specific

areas (e.g. Mar Grande near Taranto) where it reaches 50m

(Figure 1b). In the open sea, the resolution is approximately 3-

4km, which provides a smoother nesting to the parent model

MedFS (1/24°, approximately 4km). The vertical grid consists of

92 unevenly distributed z-levels with higher resolution closer to the

sea surface. This is appropriate for solving the field in coastal and

open-sea regions (Federico et al., 2017). Thanks to the high

horizontal resolution, the model configuration has been shown to

provide reliable hydrodynamics and active tracer forecasts in

mesoscale-shelf-coastal waters of Southern Eastern Italy (Apulia,

Basilicata, and Calabria regions, Federico et al., 2017). The SANIFS

implementation includes both surface and lateral boundary

conditions. The air-sea heat flux is parameterised by bulk

formulas described in Pettenuzzo et al. (2010), the surface stress

is computed with the wind drag coefficient according to Hellerman

and Rosenstein 1983, and freshwater flux includes evaporation,

precipitation, and climatological river runoff from 20 major rivers in

the Adriatic and Ionian basins. River salinity is fixed at 15 psu.

ECMWF products provided atmospheric forcing, interpolated to

the model grid. At the open boundaries, SANIFS is nested to MedFS

outputs, prescribing non-tidal sea surface elevation, temperature,

salinity, and 2D velocity fields. Additionally, tidal elevations from

OTPS (Oregon State University Tidal Prediction Software; Egbert

and Erofeeva, 2002) with eight major constituents (M2, S2, N2, K2,

K1, O1, P1, Q1) are imposed at the boundary nodes. The complete

numerical model setup is extensively described in Federico et al.

(2017), and its spatial features are briefly summarised in Table 1.

The original SANIFS system was implemented as a pure

downscaling method, re-initialising from the MedFS system every

day. In this way, the model also inherits the observational data

assimilated into the parent model, and there is less need for a

dedicated DA system. However, as the SHYFEM model has

matured, it has become feasible and desirable for future

applications to run the system in a continuous way without re-

initialisation. As the parent model now only provides the lateral open

boundary conditions, the assimilation of observations directly into

the unstructured grid model is expected to improve the forecast skill.
2.2 OceanVar DA scheme

In this work, SANIFS is interfaced to OceanVar (Dobricic and

Pinardi, 2008), which implements a 3DVar data assimilation

scheme. Starting from a background state xb, OceanVar aims to

find the analysis state xa that corresponds to the x state which

minimises the cost function:
frontiersin.org

https://doi.org/10.3389/fmars.2025.1656879
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Stefanelli et al. 10.3389/fmars.2025.1656879
J (x) =
1
2
(x − xb)

TB−1(x − xb) +
1
2
(y − H(x))TR−1(y − H(x))

Here B is the background covariance matrix, R the

observational covariance matrix, y the observation vector and H

an observation operator that projects a model state x into

observation space.

The background covariance is a positive definite matrix that can

be written in the form B = VVT. OceanVar expands V further into a

series of distinct operators:

V = VhVHVV

The operator VV models the vertical covariance within a water

column by means of empirical orthogonal functions (EOFs) that are

derived from the model variability over a longer period. To capture

the seasonal changes in the vertical covariance, the EOFs are

monthly varying. This part of the covariance is equivalent to a

coordinate transformation, providing a pre-conditioned cost

function and allowing to reduce the dimensionality of the

minimisation problem by truncating the number EOFs. In our

case, 25 EOFs are used, computed from a four-year (2017–2020)

simulation of SANIFS.
Frontiers in Marine Science 04
The horizontal covariance operator, VH, describes the

covariance between neighbouring water columns at each level.

The horizontal covariance is modelled using a Gaussian function,

with a correlation length that can be locally varying and is typically

proportional to the Rossby radius of deformation. The VH operator

is implemented using the first order recursive filter (RF) algorithm

of Purser et al. (2003). However, this algorithm is designed for

regular grids where neighbouring points are straightforwardly

defined in two directions. In order to apply the RF on

unstructured triangular meshes, the algorithm has been

generalised. This novel approach and algorithm are described in

detail in the next section.

Finally, Vh is the dynamic height operator, which balances the

steric sea level increment with the temperature and salinity

increments in the water column to avoid incoherent analysis

states that may cause model instabilities. It additionally provides

OceanVar the ability to assimilate sea level observations into a state

vector of temperature and salinity without explicitly including the

sea level (Storto et al., 2011; Dobricic and Pinardi, 2008). As the

dynamic height operator requires calculating the density integral

over the water column down to a depth where horizontal velocities

are negligible, it is necessary to impose a no-motion level, which we
FIGURE 1

(a) SANIFS numerical domain, grid, and bathymetry. (b) Zoom on the Taranto region.
TABLE 1 Summary of the ocean model features.

Model Domain Grid
Coastal

resolution
Open sea
resolution

Levels

SHYFEM
SANIFS implementation Federico

et al. (2017)

SANIFS
(Figure 1)

Unstructured
Arakawa-B triangular

mesh
90351 nodes

50 − 500 m 3 − 4 km

92
2 m up to 40 m

stepwise up to the bottom max
step 200 m
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set to 700m. The system is run in offline mode, meaning that the

data assimilation step is executed separately from the ocean model

forecast. After each assimilation cycle, the updated ocean state is

used to initialise the subsequent model run.
2.3 Generalised recursive filter algorithm

Recursive filters are often used in data assimilation to model

horizontal covariances, as the covariances are typically Gaussian in

shape and the recursive filter is a simple but effective method to

impose a Gaussian shape on arbitrary data (Lorenc, 1992; Hayden

and Purser, 1995; Purser et al., 2003). The RF is a simple iterative

algorithm that requires only a few iterations to approximate the

Gaussian function. The algorithm itself is 1-dimensional, but it can

be straightforwardly applied in two or more dimensions by

alternating dimensions between iterations (Purser et al., 2003).

Furthermore, the RF has the ability to locally vary the spread of

the Gaussian distribution, which gives it greater flexibility when

working with inhomogeneous data. This feature will be

indispensable for applying the RF to an unstructured triangular

mesh such as for SANIFS.

The mathematical formulation of the RF on a regular grid is

relatively straightforward: considering a 1-dimensional field Ai with

i =1, 2, 3,…, n, the algorithm consists of a forward pass

Bi = aiBi−1 + (1 − ai)Ai       i = 2,   3,  …,   n (2)

followed by a backward pass

Ci = aiCi+1 + (1 − ai)Bi       i = n − 1,   n − 2,…,   1 (3)

where Bi is the field after the first application of the filter, and Ci

is the field after one filter pass in each direction. The RF is applied in

both directions to ensure zero phase change (Lorenc, 1992).

In Equation 2 and Equation 3, ai is the smoothing factor,

defined as:

ai = 1 + Ei −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei(Ei + 2)

p
Ei =

2Nd 2
i

4R2
i

(4)

with Ri the radius of the spread and N the number of iterations.

The subscript i denotes the local dependence of the smoothing

factor. For a grid with uniform resolution and a constant correlation

radius, ai ≡ a and the subscripts in Equation 4 can be dropped. The

Gaussian spread si of the approximate Gaussian is related to the

correlation radius Ri and the grid resolution di as:

si =
Ri

di

The RF algorithm is applied iteratively N times, and from N ≥ 2

it starts to approximate a Gaussian distribution (Purser et al., 2003).

While the RF assumes an infinite domain size, boundary conditions

(in open and closed boundaries) can be applied to approximate the

infinite line symmetry (Hayden and Purser, 1988; Dobricic and

Pinardi, 2008) on a finite domain. The 1D algorithm and its

extension to 2D grids is illustrated in Figure 2. The only
Frontiers in Marine Science 05
drawback of the RF algorithm is that with the infinite

formulation it is inherently sequential, this makes it difficult to

implement in parallelised code.

To apply the RF algorithm to an unstructured mesh, it’s vital to

recognise the importance of the node ordering. On a structured

mesh, the algorithm processes neighbouring nodes in order (either

1, 2, 3,…, n in the forward pass or n, n − 1, n − 2,… , 1 in the

backward pass), which ensures the main requirements for the filter

are met:
1. Each node receives contributions from its neighbour on

one side before providing a contribution to its neighbour

on the other side;

2. The forward and backward passes complement each other;

the neighbour that provides a contribution in one pass

becomes a neighbour that receives a contribution in the

opposite pass.
The node ordering problem is therefore really a node

connectivity problem and it can be discussed more generally in

terms of the mesh edges rather than the nodes themselves. A pass of

the recursive filter acting on an edge, directionally propagates

information along the edge from one node to the other. In this

way the filter can be applied also to triangular unstructured meshes,

as long as the above requirements can be met. It turns out that this

can be achieved by orienting and ordering the edges appropriately.

First the edges are oriented in the direction of the filter pass,

then the edges are sorted by the coordinates of the first node (i.e. the

node providing the contribution). If a pass of the filter is imagined

as a line of constant longitude or latitude sweeping through the

unstructured mesh, these conditions ensure that information is

always propagated from nodes at the filter position in the direction

that the filter is moving. In this way, the algorithm satisfies the

requirements outlined above. The x and y forward and backward

passes can be generalised as four passes in the four cardinal

directions, orienting and ordering the edges as summarised in

Table 2 and in the pseudo-code in the appendix (Algorithm 1).

At this point, the mathematical structure of the RF (Equations

2, 3) can be used, but the running index i is no longer over the nodes

but over the edges and all passes of the filter can be described by:

Bi,2 = aiBi,1 + (1 − ai)Ai,2         i = 1…, nedge (5)

with the ordering and orientation of the edges i as in Table 2

and the subscripts 1 and 2 referring to the first (source) and second

(target) nodes of the edge i. The fields A and B are the input and

output fields respectively, where B is initialised to 0. The coefficient

ai follows from Equation 4, with the resolution di corresponding to
the length of the edge i. Hereafter, we will refer to the generalised RF

algorithm as utRF (unstructured triangular Recursive Filter).

To demonstrate how the utRF reproduces the desired Gaussian

symmetry on the SANIFS grid, we show test results using synthetic

data with N = 6, which is also the iteration number used in the

experiments. Figures 3a, b show results for Ri = R = 8km and

Figures 3c, d for Ri = R = 20km. The testing locations have been

chosen considering the different grid features on the SANIFS
frontiersin.org
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domain. The two points in the Adriatic Sea (1 and 2 in Figure 3a)

test the spreading shape in locations with constant resolution, but

the grid tessellation is not homogeneous. Furthermore, they are

close to each other to demonstrate the spreading shape in the case of

intersecting correlation radii (Figure 3c). The point in the middle of

the Gulf of Taranto (3) is in a region where grid resolution and

triangle tessellation are highly variable. The result on that point

shows how the application of the local smoothing factor algorithm

avoids extending the Gaussian shape too close to the coast. This

aspect is important in real-case applications since it avoids

spreading open sea information on the coast. The point in the

Ionian open sea (4) is in the middle of an extended region with

constant grid resolution and homogeneous triangle tessellation.

Finally, a point on the coastline shows how utRF works without

boundary conditions in proximity to the closed boundary.
Frontiers in Marine Science 06
From all the cases in Figure 3 we see how the proposed first-

order recursive filter for an unstructured triangular grid well

approximates the Gaussian spreading using N = 6. We also tested

the utRF using different numbers of iterations, and we saw that

from N = 2, it starts to approximate a Gaussian spreading as in the

case of RF application on a regular grid (results not shown).
2.4 The observational dataset

In OceanVar, we assimilate temperature (T) and salinity (S)

from in-situ ARGO profiling floats and sea level anomaly (SLA)

from 4 satellite missions: Saral/AltiKa, CryoSat-2, Jason-3 and

Sentinel-3A. Both observational products are provided by the

Copernicus Marine Service.

Figures 4a, b show, respectively, the assimilated ARGO profiling

floats and along-track sea level anomaly distribution over the whole

experiment period (2017-2018). The average daily number of

ARGO observations assimilated is about 150. 122 days have no

ARGO observations. Regarding the SLA, the daily number of

assimilated observations is approximately 35. 187 Days have no

altimetry observations within the model domain.
3 Experiment set-up and results

The data assimilation experiment is performed over the period

2017-2018, with a 10-day spin-up of the SANIFS model. T, S and

SLA are assimilated using 25 trivariate EOFs. The experiment uses

an assimilation window of 24 hours. The utRF was used with 6
FIGURE 2

RF infinite line structure and its application on a 2D regular grid. Blue arrows represent the forward pass, and the green arrows are the backward
pass.
TABLE 2 Edge orientation and ordering for the unstructured triangular
mesh RF algorithm.

Filter
direction

Edge orientation (primary,
secondary)

Edge ordering
(first node)

East (X-FW) east to west, south to north
increasing longitude,

latitude

West (X-BW) west to east, north to south
decreasing longitude,

latitude

North (Y-
FW)

south to north, east to west
increasing latitude,

longitude

South (Y-BW) north to south, west to east
decreasing latitude,

longitude
Both orientation and ordering are using a primary and secondary ordering to make sure
identical values do not lead to ambiguities.
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iterations and a correlation radius set to 8km. The results are

compared to a control experiment without DA.

Since the assimilation of SLA has a net positive impact on SLA

and a negligible impact on the skills for T and S, the results

presented here will focus on the experiment that includes all three

variables. This choice enables the integrated discussion of the skill

scores for all variables that are commonly assimilated in

ocean models.

The SANIFS modelling system with DA alternates between

running SHYFEM and OceanVar in steps of 24 hours. These form

the assimilation windows in which the output of the SHYFEM

model is compared to the available observations within the window.

OceanVar calculates the minimum of the cost function using the

model background read from the output fields and calculates the

analysis increments. The increments are applied to the SHYFEM

restart files at the start of the next 24-hour cycle. Figure 5 shows an
Frontiers in Marine Science 07
example of a typical set of analysis increments on the unstructured

grid, with the horizontal spread (R = 8km) modelled using the novel

utRF algorithm. Similarly to the test performed on a synthetic

dataset in Figure 3, the utRF implemented in OceanVar shows a

good approximation of the Gaussian horizontal covariance.

Moreover, the figure shows how the triradiate dynamic height

operator produces increments in S and T fields from SLA

observations (Figures 5a, b) and vice versa S and T observations

produce increments in the SLA field (Figure 5c). The presence of

SLA observations can be inferred from the spatial arrangement of

the corresponding increments, which appear as regularly spaced

and aligned features, reflecting the along-track structure of

altimetric satellite measurements.

Following the methodology of Dobricic and Pinardi (2008), the

analysis is evaluated using a quasi-independent set of

measurements. In practice, this means that the same ARGO and
FIGURE 3

utRF test on synthetic values for different iterations number, N, and a constant correlation radius, R. Points 1–4 in panels (a, c) and the coastal point
in panels (b, d) are chosen to cover different regions with different grid features.
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satellite data used in the assimilation cycle were first applied for

validation before being assimilated into the analysis. The evaluation

relies on the misfits (observation minus background), which are

computed prior to the assimilation of the corresponding

observations. These misfits are expected to decrease compared to

the control run without data assimilation. In addition, the residuals
Frontiers in Marine Science 08
(observation minus analysis) are examined to quantify the

magnitude of the corrections introduced into the model.

Figure 6 shows the daily mean absolute value of the misfits

versus the daily mean absolute value of the residuals (observations

minus analysis) for S, T and SLA. The straight line indicates a slope

of 1. For S (Figures 6a–d) and T (Figures 6f-i), the results are
FIGURE 4

Assimilated ARGO and SLA observations over the period 2017-2018. (a) ARGO profiles (b) along-the-track L3 sea level anomaly observations from
altimeter satellites. Each profiler and satellite are shown in different colours.
FIGURE 5

Example on 2017–09–05 of increments spreading shape for the two sources of observation assimilated (ARGO and altimetry satellites). The figure
shows how the utRF approximates the Gaussian shape and how the dynamic height operator produces increments in S and T fields from SLA
observations, (a, b), and vice versa S and T observations produce increments in the SLA field (c). The utRF parameters are: N = 6, R = 8km.
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divided in four different water column layers to investigate the

improvement of various SANIFS system features:
Fron
• (0,2]m - This layer is intended to investigate near-surface T

and S features. The near-surface layer is one of the most

difficult to be represented in oceanographic models. It is

directly affected by atmospheric forces such as wind, solar

radiation, rain, and rivers from the land.

• (2,60]m - This layer is intended to investigate T and S

features in the mixing layer. Like the near-surface layer, the

mixing layer presents challenges in oceanographic
tiers in Marine Science 09
modelling. The thermocline seasonal variability and some

inputs propagating from the surface through turbulence

and heat exchange complicate modelling in this layer.

• (60,200]m - This layer is intended to investigate T and S

features in the region of the water column that approaches

the deep water layer. Here, the thermocline seasonal

variability can still affect the modelling skills.

• (200,2000]m - This layer is intended to investigate T and S

features in the region of the water column in which there

are no particular challenges and the errors are expected to

be smaller.
FIGURE 6

S, T and SLA mean absolute value of misfits and residuals. In (a–d) and (f–i) we show different water column layers for S and T. (e) refers to SLA.
Different colours refer to different months. Stars for 2017 and circles for 2018.
FIGURE 7

Skill scores of the data assimilation experiment compared to the control experiment without data assimilation for (a) salinity and (b) temperature as a
function of depth. Positive (red) values indicate an improved model skill with data assimilation.
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The assumption that the model error is smaller in deep ocean

layers is supported by the recent study of Benincasa et al. (2024),

who showed that the atmospherically forced response in the

Mediterranean Sea decreases rapidly with depth, while internal

variability dominates mainly in the upper ocean. Below a few

hundred meters, the system is comparatively more stable and less

sensitive to external perturbations.

Results confirm this interpretation. For both T and S, the daily

mean absolute values of the misfits and residuals decrease from the
Frontiers in Marine Science 10
surface to the deeper layers. All panels show that most of the points

are below the slope-1 line for both variables, meaning that our

assimilation is improving the local background state. In particular,

for T, it can be observed how we are introducing a consistent

correction in the first three layers (Figures 6f-h). All the points are

well below the diagonal line. For the layer (0,2]m (Figure 6f), we see

T residuals well below 2°C of the corresponding misfit. In the two

lower layers, we are introducing an improvement of about 1°C. In

the layer (200-2000] m (Figures 6d-i), we see how the model well
FIGURE 8

Skill scores of the data assimilation experiment compared to the control experiment without data assimilation for (a) salinity, (b) temperature, and
(c) SLA projected on the model domain. Positive (red) values indicate an improved model skill with data assimilation.
FIGURE 9

The effect of the assimilation on the mean barotropic velocity in the year 2018. Showing (a) the difference in magnitude between the assimilation
and the control run, and (b) the velocity field and its absolute magnitude.
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reproduces both S and T. Finally, Figure 6e refers to SLA. Here,

considering that the majority of the points are below the diagonal

line, we can conclude that SLA improves in a consistent way by

assimilating altimetry observations.

After the evaluation of the individual corrections, the

performance of the system as a whole is evaluated using only the

quasi-independent measurements (i.e. misfits). The 1-day forecast

skill of the system is evaluated by means of the skill score (Murphy,

1988), which is defined as:

SS = 1 −
MSEexp
MSEref

The skill score depends on the ratio of the mean square error

(MSE) of the experiment with DA (denoted exp) and the control

experiment without DA (denoted ref). The skill score is constructed

in such a way that it ranges from a value of 1 for an experiment that

agrees perfectly with the observations to 0 for an experiment that

shows no improvement over the reference model. If the experiment

performs worse than the reference, the skill score can assume any

negative value. The skill score is visualised in profiles for S and T

(Figure 7) and maps for all variables (Figure 8) for the DA

experiment in comparison with the control experiment, which

does not include DA.

The salinity skill in Figure 7a shows a consistent improvement

from the surface down to a depth of around 900m. Below the

thermocline the improvement in MSE is above 20%, with a

maximum of almost 35% around 300m. Below 1000m some

negative skills are found. This is most likely related to the fact

that only about 1 in 6 ARGO profiles extend below 1000m.

Increments originating from shallow profiles that are applied

below 1000m depend very strongly on the correct modelling of

the covariance matrix and are probably less accurate.

The temperature skill in Figure 7b exhibits a very similar

improvement down to approximately 600m. In the mixed layer

the MSE improves by more than 10%, while the improvement

reduces somewhat around the average depth of the thermocline.

The skill score reaches a maximum of over 0.2 for the layers

between 100m and 500m. Below 600m some layers show a small

degradation in MSE with a maximum of around 5%.

Figure 8 provides spatial maps illustrating how the

improvements introduced by data assimilation are distributed

across the SANIFS domain. For both S and T, positive skill scores

are observed at the majority of the observation locations.

Conversely, sea level anomaly (SLA) exhibits positive values

predominantly in the northern Ionian region, while negative

values are evident in the southern Adriatic. This discrepancy may

be attributed to diurnal variations of sea level and/or the incomplete

description of tides in the model.

The impact of data assimilation on the circulation is evaluated

by comparing the barotropic velocities between the assimilation and

control experiments. Figure 9 shows the annual mean fields for

2018. The difference in magnitude is displayed in Figure 9a, and the

circulation in the experiment with data assimilation is shown in
Frontiers in Marine Science 11
Figure 9b. The results indicate a 5–10% intensification of both the

Southern Adriatic Gyre and the Western Adriatic Current. While

additional differences are present at shorter timescales in other parts

of the basin, these largely cancel out in the long-term averages.

Importantly, the assimilation does not alter the direction or

structure of the major gyres and currents, resulting in no

significant impact on the overall circulation pattern.

As a future improvement, we propose implementing the First

Guess at Appropriate Time (FGAT) approach. FGAT would allow

for comparing the SLA observations to the instantaneous model

SLA at the correct time, rather than to a mean value. This enables a

more correct treatment of the tidal signal, potentially addressing the

observed limitations and further enhancing the performance of

the system.
4 Conclusions

The OceanVar 3DVar data assimilation scheme has been

successfully implemented in the SANIFS modelling system based

on the SHYFEM-MPI unstructured grid model. The first-order

recursive filter algorithm of Purser et al. (2003) for regular grids has

been generalised to unstructured meshes and implemented in the

OceanVar software. The new system has been used to assimilate

ARGO in-situ profiles and SLA from satellite during the period

2017-2018. The results are compared to a control run without DA.

The results for assimilating in-situ profiles are very promising,

showing a consistent improvement of the model skill over the entire

domain and across nearly all depth levels. The improvement is

especially notable in the 100-500m depth range, where data

assimilation reduces the mean absolute error of S and T by 25–30%.

The assimilation of SLA has a much smaller impact but

nevertheless shows an overall improvement of the MAE of 3%

and, especially in the southern part of the domain, improvements

that locally reach up to 20%. The reason for the smaller impact of

SLA is believed to be primarily technical and will be the subject of

future work. At present, for example, the model background

estimates use average values, while in the presence of tides,

instantaneous values should be preferred. Moreover, there is no

mean dynamic topography calculated from the SANIFS model yet,

and the SLA experiment used an interpolated low-resolution

regular-grid MDT. This may be an additional source of errors.

Overall, the new implementation has been shown to work

correctly and to have a positive impact on the model

performance. The experiments show promise for a future

operational coastal model with data assimilation using this

new methodology.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1656879
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Stefanelli et al. 10.3389/fmars.2025.1656879
Author contributions

MS: Data curation, Methodology, Investigation, Software,

Formal analysis, Validation, Visualization, Writing – original

draft, Writing – review & editing. EJ: Conceptualization,

Methodology, Software , Formal analys is , Val idat ion,

Visualization, Supervision, Writing – original draft, Writing –

review & editing. AA: Conceptualization, Methodology, Software,

Supervision, Writing – original draft, Writing – review & editing.

IF: Funding acquisition, Resources, Conceptualization, Supervision,

Project administration, Writing – original draft, Writing – review &

editing. GC: Funding acquisition, Conceptualization, Supervision,

Project administration, Writing – original draft, Writing – review

& editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. Part of this study was

funded by the FOCCUS project (Grant Agreement No. 101133911,

European Union). This study was carried out within the Space It Up

project funded by the Italian Space Agency, ASI, and the Ministry of

University and Research, MUR, under contract n. 2024-5-E.0 - CUP

n. I53D24000060005.
Frontiers in Marine Science 12
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The handling editor SB declared a past co-authorship with the

authors EJ, IF and GC.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., et al. (2009). The
Data Assimilation Research Testbed: A community facility. Bull. Am. Meteorological
Soc. 90, 1283–1296. doi: 10.1175/2009BAMS2618.1
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Appendix

Algorithm 1 implements the directional iterative recursive filter algorithm for triangular unstructured grids, referred to as utRF in the

text and discussed in section 2.3.
Fron
Data: Nodes with longitude/latitude; edges referencing two nodes; input field input(·)

Result: output (·) after iterative directional utRF application as Equation 5

1 struct node

2 float lon, lat

3

struct edges

4 float alpha; node nodes[2]

5

6 foreach edge ∈ edges do

7 # Calculate a using Equation 4 and use the node distance as d

edge.alpha ← alpha_from_distance (edge.node[0], edge.node[1])

8 for iteration ← 1 to N do

9 foreach direction ∈ {east, west, north, south} do

10 output•) ← 0

11 if direction == east then

12 foreach edge ∈ edges do

13 sort edge.nodes by increasing node[0].lon (then node[0].lat)

14 else if direction == west then

15 foreach edge ∈ edges do

16 sort edge.nodes by decreasing node[1].lon (then node[1].lat)

17 else if direction == north then

18 foreach edge ∈ edges do

19 sort edge.nodes by increasing node[0].lat (then node[0].lon)

20 else if direction == south then

21 foreach edge ∈ edges do

22 sort edge.nodes by decreasing node[1].lat (then node[1].lon)

23 foreach edge ∈ edges do

24 output(edge.nodes[1]) ← edge.alpha • output (edge.nodes[0]) + (1 − edge.alpha) •

input(edge.nodes[1])

25 input(•) ← output (•)
Algorithm 1. Directional iterative filtering over edges with utRF coefficient a.
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