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Underwater noise levels in the
Strait of Gibraltar and
surrounding waters: findings
from the AMIGOS survey

Maria Perez Tadeo* and Joanne O'Brien

Marine and Freshwater Research Centre, Department of Natural Resources and the Environment,
Atlantic Technological University, Galway, Ireland

Snapshots of underwater sound were collected during a multidisciplinary
research survey at 14 stations south of the Iberian Peninsula, including the
Strait of Gibraltar, an area characterized by intense maritime traffic. Sound
Pressure Levels (SPLs) were quantified at each station using 1/3-octave bands,
with a focus on the 63 Hz and 125 Hz centered frequency bands, as
recommended by the Marine Strategy Framework Directive (MSFD). When
possible, the main noise sources were also identified. SPLs in the 63 Hz band
ranged from 104.91 to 132.24 dB re 1 uPa, with an average of 113.21dB re 1 uPa. In
the 125 Hz band, SPLs ranged from 104.31 to 129.82 dB re 1 uPa, with an average
of 110.27 dB re 1 uPa. The highest SPLs were recorded at the stations in the Strait
of Gibraltar and the Alboran Sea. A methodology consisting of attaching a
SoundTrap to the research vessel's CTD rosette was tested and proved to be
an effective approach for assessing the underwater soundscape from vessels
of opportunity.

KEYWORDS

passive acoustic monitoring (PAM), sound pressure levels (SPL), soundscape,
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1 Introduction

In the last decades, the oceans’ soundscape has undergone a significant transformation,
shifting from a predominantly natural composition of biological and geological sounds to
one increasingly dominated by anthropogenic sources (Duarte et al., 2021). Anthropogenic
noise in the ocean comes from different activities, including shipping, seismic surveys,
active sonar, and pile driving associated with renewable energy developments (Hildebrand,
2009; Newhall et al., 2016). Among these, shipping noise, produced by tankers, cargo
carriers, fishing vessels, recreational boats, and others, stands out as a continuous source,
increasing ocean background noise levels, particularly in the low to mid frequencies, over
the past six decades (Hildebrand, 2009; Malakoft, 2010).

Marine mammals, particularly cetaceans, rely heavily on sound for communication,
navigation and prey detection (Berrow et al., 2018; Hooker et al., 2018). This acoustic
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reliance makes them especially vulnerable to anthropogenic ocean
noise, which can impair their hearing abilities and compromise
their survival (Gordon et al., 2003; Aguilar Soto et al., 2006; Southall
et al,, 2007). Vessel noise typically propagates mostly between 10 to
1,000 Hz (Merchant et al,, 2012; 2014), overlapping significantly
with both sound production and hearing frequency ranges used by
baleen whales (Southall et al., 2007; Erbe et al., 2019). Consequently,
mysticetes are particularly susceptible to this noise source, which
may lead to masking, changes in their acoustic behavior, temporary
or permanent shifts in hearing thresholds, and increased stress
(Richardson et al., 1995; Erbe et al., 2019). Additionally, cavitation
noise can extend into medium and high frequency bands,
potentially affecting also toothed whales (Aguilar Soto et al., 20065
Jensen et al., 2009).

Being the connection between the Mediterranean Sea and the
North Atlantic Ocean, the Strait of Gibraltar is one of the most
important European shipping lanes in Europe (HM Government of
Gibraltar, 2015; Moreno-Gutiérrez and Duran-Grados, 2023). The
heavy maritime traffic in the area overlaps with the presence of both
resident and migratory cetacean species, including short-beaked
common, striped, and bottlenose dolphins, long-finned pilot whales
(de Stephanis et al., 2008; Bearzi et al., 2021; Verborgh and Gauffier,
2021), sperm whales (Pirotta et al., 2021), killer whales (Esteban
et al.,, 2014; 2016), fin whales (Gauffier et al., 2018) and Cuvier’s
beaked whales (Canadas and Vazquez, 2014). Additionally,
humpback whales and harbor porpoises have been rarely
recorded or found stranded (Rojo-Nieto et al., 2011). Of all these
species, common dolphins, fin whales, and sperm whales are
classified as endangered, while long-finned pilot whales and killer
whales are listed as critically endangered by the IUCN Red List of
Threatened Species (IUCN, 2023). All cetacean species are
protected under the European Union’s Habitats Directive (92/43/
EEC), and as Annex IV species, their habitats are strictly protected
within the Exclusive Economic Zones (EEZs). Furthermore,
disturbances caused by underwater noise must be assessed to
ensure compliance with the EU Habitats Directive and the
Marine Strategy Framework Directive (MSFD), under which
underwater noise is addressed as Descriptor 11, stating that ‘the
introduction of energy, including underwater noise, is at levels that
do not adversely affect the marine environment’.

The interdisciplinary research survey AMIGOS (Acoustic
Monitoring from Ireland to Gibraltar Oceanic waters Survey)
served as a platform for acoustic data collection as part of the
four-year STRAITS project (Strategic Infrastructure for improved
animal Tracking in European Seas), funded under the EU’s Horizon
research and innovation program. The survey contributed to the
project’s objectives in one of its key study sites, the Strait of
Gibraltar, an area of high marine biodiversity and conservation
interest. This study aims to provide a snapshot of ambient noise
levels south of the Iberian Peninsula, including the Strait of
Gibraltar, by quantifying ambient sound levels as Sound Pressure
Levels (SPLs) in 1/3-octave bands, focusing on the 63 Hz and 125
Hz-centered frequency bands, following the recommendations of
Descriptor 11 of the MSFD for assessing underwater noise in
European waters (Dekeling et al., 2015; Joint Research Centre,
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2018). Additionally, the study presents a methodology for short-
term, boat-based underwater Passive Acoustic Monitoring (PAM)
that enables broad spatial coverage, in contrast to long-term
monitoring at a limited number of locations.

2 Materials and methods

2.1 Study area

The study area encompassed the southwest and south of
Portugal, the Gulf of Cadiz, and the Strait of Gibraltar (Figure 1).

2.2 Acoustic data collection

Short-term Static Acoustic Monitoring deployments were
conducted during the multidisciplinary research survey AMIGOS
on board the Marine Institute’s RV Celtic Explorer between
October 21 and 24, 2024. A SoundTrap was attached to the CTD
rosette to record the soundscape at 14 stations across the southwest
and south of Portugal, the Gulf of Cadiz, and the Strait of Gibraltar
(Figures 1 and 2; Table 1).

The SoundTrap ST500 HF (Ocean Instruments, NZ), serial no.
5713 was paired with hydrophone no. 6089, calibrated by the
manufacturer with an end-to-end sensitivity of -175 dB re. 1 V
uPa. To integrate the SoundTrap into the CTD system, a Niskin
bottle was removed, and the device was mounted in its place using
the existing frame supports. No additional measures were taken to
acoustically isolate the recorder or reduce flow-induced or
mechanical noise. The device was deployed for either 30 or 60
minutes at depths of between 60 and 80 meters (Table 1), capturing
broadband sound in the 0-72 kHz frequency range with a sampling
rate of 144 kHz, resulting in 8.5 hours of recordings. Water depth at
the recording stations ranged from 74 to 1702 m (Table 1).

2.3 Data processing and analysis

Underwater acoustic.sud files recorded by the SoundTrap were
extracted as.wav files from October 21 to 24, 2024, using the
SoundTrap Host software (V 4.0.23). These files were trimmed to
retain only the periods when the recorder was underwater for analysis.

Ambient sound levels, expressed as Sound Pressure Levels
(SPLs) in dB re 1 pPa, were quantified in 1/3-octave bands
(Hanning window, 0% overlap to reduce computational time, 1-
second resolution) in the statistical software RStudio (version 4.4.1,
June 2024) using the third-octave level (TOL) function from the
sound analysis PAMGuide package from Merchant et al. (2015)
following the methodology of Van Geel et al. (2022) and similar to
Laute et al. (2024).

Average SPLs were calculated for each third-octave band across
the 0-48 kHz frequency range for each station (30- or 60-minute
recordings). Additionally, average SPLs within the 63Hz and 125 Hz
1/3 octave bands (center frequencies) were examined further as
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FIGURE 1

Acoustic monitoring stations using a SoundTrap deployed across the southwest and south of Portugal, the Gulf of Cadiz, and the Strait of Gibraltar

during the AMIGOS research survey in October 2024.

recommended by the MSFD (Dekeling et al., 2015; Joint Research
Centre, 2018). These frequency bands are commonly used to assess
potential impacts on marine mammals (Merchant et al., 2012; Van
Geel et al., 2022) and as a proxy for shipping noise levels (Picciulin
et al., 2016; Garrett et al., 2016; Basan et al., 2021).

Spectrograms of the acoustic files were visually and aurally
inspected using Raven Pro (version 1.6.5; K. Lisa Yang Center for
Conservation Bioacoustics, 2016) to identify noise sources. The
software settings were as follows: spectrogram brightness, contrast,
and window size were set to 52, 65, and 4000, respectively, but were
slightly modified when needed. The selected window type was
Default 1.3 Power. Representative spectrograms for each station
were generated using the R package seewave (Sueur et al., 2008),
applying a window length of 4096, 90% overlap and a frequency
range up to 70 kHz. Additionally, the software dBWav (version
1.3.5; Marshall Day Acoustics) was used to generate 1/3 octave band
plots for selected acoustic files.

3 Results

During the AMIGOS research survey (17-31 October 2024),
underwater recordings were collected at 14 stations, with 30 or 60
minutes of recordings captured at each station. Ambient sound
levels were analyzed to provide short-term characterizations of the
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soundscape in the study area, offering initial insights into ambient
noise conditions that may support future baseline assessments.

Overall, average Sound Pressure Levels (SPLs) were highest in
the lower frequency bands, particularly in the 1/3 octave bands
centered at between 31 and 158 Hz, with mean SPLs ranging
between 107.58 and 114.54 dB re 1pPa. Similarly, high SPLs were
observed in the higher frequency bands, in the 1/3 octave bands
centered at 25,118 and 31,622 Hz, with mean SPLs of 111.17 and
121.53 dB re 1uPa, respectively (Figure 3).

Some stations, notably Stations 9 and 13, exhibited high SPLs
across most frequency bands (Figure 3). The elevated SPLs in the
lower frequency rage likely correspond to shipping traffic, as the
0.01-1 kHz frequency range is commonly used for shipping noise
assessments (Merchant et al., 2012; 2014).

The highest SPLs were recorded at Stations 10 to 13, located in
the Strait of Gibraltar and the Alboran Sea (Figures 3 and 4).

Average SPLs for the 63 Hz-centered frequency band ranged
from 104.91 dB re 1uPa at Station 3 to 132.24 dB re 1uPa at Station
13 (Figure 4; Table 2). Similarly, SPLs for the 125 Hz-centered
frequency band ranged from 104.31 dB re 1puPa at Station 5 to
129.82 dB re 1uPa at Station 13 (Figure 4; Table 2). The highest
SPLs for both 63 Hz and 125 Hz-centered 1/3 octave frequency
bands were observed at Stations 10 to 13 (Figure 4; Table 2), which
correspond to the section where the Strait of Gibraltar becomes
narrower. This is most likely due to vessels converging as they
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FIGURE 2
SoundTrap attached to the CTD rosette on board the RV Celtic Explorer. Pictures taken by Barbara Segato Monteiro.

navigate through the traffic system, intensifying the sound. Further Manual visualization of the spectrograms for each recording
analysis of the acoustic recordings was conducted, and frequency  station was conducted to identify noise sources and detect the
band statistics plots were generated for each station. These are  presence of marine mammals (Figure 5; Table 3). The RV Celtic
presented as individual graphs in Appendix 1, showing the  Explorer’s echosounders were detected at all stations, including the
distribution of SPLs across 1/3 octave frequency bands at each of =~ Kongsberg EM302 multibeam echosounder and the Skipper GDs
the 14 stations recorded between October 21 and 24, 2024. 101 and Furuno FCV-12001 echosounders. These systems operate at

TABLE 1 Short-term PAM deployments using a SoundTrap during the AMIGOS survey.

Station Latitude Longitude Date Start time (UTC) End time (UTC) Equipment depth Water depth
1 37.0476 -9.5912 21/10/2024 00:35 01:05 80 1702
2 36.7363 -8.8162 21/10/2024 08:01 08:30 80 1386
3 36.8087 -7.9473 21/10/2024 13:04 13:34 80 740
4 36,9418 -7.0053 21/10/2024 18:05 18:35 60 74
5 36.6053 -7.5924 21/10/2024 22:39 23:09 80 634
6 36.2655 -8.1925 22/10/2024 03:41 04:11 80 1620
7 36.4276 -7.4396 22/10/2024 08:17 08:47 80 916
8 36.6096 -6.6901 22/10/2024 13:26 13:56 70 82
9 35.7869 -7.8404 22/10/2024 22:08 22:38 60 1591
10 35.9745 -5.2383 23/10/2024 20:12 21:13 60 714
11 36.0181 -4.9341 24/10/2024 00:01 01:01 60 906
12 36.0677 -4.5992 24/10/2024 04:10 05:10 60 1120
13 35.9825 -5.6546 24/10/2024 11:54 12:54 60 356
14 36.0253 -5.9188 24/10/2024 14:38 15:38 60 171
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Spectrogram of average Sound Pressure Levels (SPLs) across 1/3 octave frequency bands per each SoundTrap recording station.

a frequency of 30 kHz and 50 kHz, respectively, and appear in the
spectrogram as bright, intermittent vertical streaks within these
frequency ranges. The pulses are frequency-modulated chirps, with
energy spreading across a narrow frequency band over time. The
echosounders ping at regular intervals, which vary depending on
water depth and operational settings (e.g., every 4 and 2 seconds at
Station 1 and every 0.6 seconds at Station 3). While the primary
energy of the 30 kHz echosounder is concentrated in the 30-34 kHz
band, harmonics were also observed at higher frequencies, around
60 kHz.

Marine mammals were detected at 5 stations; dolphin clicks,
burst pulses, and whistles were detected at Stations 1, 6, 10, 11, and
12. Visual observations confirmed the presence of common
dolphins at Station 10 and both common and striped dolphins at
Station 11.

Continuous vessel noise was recorded at all stations, primarily
in the low-frequency range, although some extended into higher
frequencies at certain stations, such as Stations 1 and 13.
Additionally, mid-frequency sonar was detected at Station 12.

The soundscape at the short-term acoustic stations across the
southwest and south of Portugal, the Gulf of Cadiz, and the Strait of
Gibraltar was shaped by a combination of biological and
anthropogenic sources. Biological sounds, including dolphin
whistles, clicks, and burst pulses, were detected at 5 out of the 14
stations, often in proximity to the vessel, likely due to the animals
being attracted to its presence. These signals were especially
prominent and persistent throughout the recordings from
Stations 11 and 12. In contrast, the dominant contributors to the
soundscape at most of the other stations were anthropogenic
sources, notably continuous shipping noise, as well as self-noise
from the RV Celtic Explorer and its onboard echosounders. Sonar
signals were also detected at Station 12. Representative
spectrograms from the different stations are presented in Figure 5.
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4 Discussion

This study assessed SPLs from short-term underwater acoustic
recordings collected at 14 stations south of the Iberian Peninsula
and identified the main noise sources. The study also assessed a
methodology consisting of attaching a SoundTrap to the research
vessel's CTD rosette, which proved to be effective for capturing
acoustic snapshots across a broad spatial scale during a
multidisciplinary survey.

SPLs in the 63 Hz and 125 Hz-centered 1/3 octave frequency
bands were computed to assess the underwater noise environment,
as recommended by the MSFD Descriptor 11 (Dekeling et al., 2015;
Joint Research Centre, 2018). These bands are of particular
relevance because they overlap with the dominant frequencies
produced by large vessel engines and propellers (Picciulin et al.,
2016; Garrett et al., 2016; Basan et al., 2021). The high noise levels
observed in these bands are consistent with the intense maritime
traffic in the Strait of Gibraltar and adjacent areas, as previously
documented (Gimeno et al,, 2024), and with its designation as one
of the world’s busiest maritime regions (HM Government of
Gibraltar, 2015) with an average of 115,708 vessels per year
(Moreno-Gutiérrez and Duran-Grados, 2023).

Average SPLs for the 63 Hz-centered frequency band varied
across stations, ranging from 104.91 dB re 1uPa at Station 3 to
132.24 dB re 1puPa at Station 13 and from 104.31 dB re 1uPa at
Station 5 to 129.82 dB re 1pPa at Station 13 for the 125 Hz-centered
frequency band. SPLs were higher in the stations recorded in the
Strait of Gibraltar and Alboran Sea, (i.e., Stations 10 to 13). These
values were higher than those reported by Gimeno et al. (2024), who
documented average SPLs ranging from 98.71 to 101.92 dB re 1uPa
for the 63 Hz band and from 98.30 to 100.90 dB re 1uPa for the 125
Hz band. Our values are also higher than the ones reported by
Castellote et al. (2012) for the Strait of Gibraltar and the
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Alboran Sea, where values in the 10-585 Hz range were 112.5 and
103.7 dB re 1uPa, respectively. Our values were more in accordance
with Contreras Merida et al. (2024) who reported SPLs in the Bay of
Gibraltar between 95 and 125 dB re 1uPa for the 63 Hz band and
between 97 and 125 dB re 1uPa for the 125 Hz band. While seasonal
variation in vessel traffic may partially explain the elevated levels
observed during the AMIGOS survey, self-noise from the research
vessel and the CTD deployment system may also have contributed
to the measured SPLs. The AMIGOS survey was conducted in
October, a period when good weather still prevails in the South of
the Iberian Peninsula despite the end of summer. During this time,
ferry traffic and recreational vessel activity remain high. Although
fishing vessels in the area are most active in the winter months, their
presence begins to increase in autumn (Scuderi, 2023). Given these
potential sources of both anthropogenic and vessel-related noise,
comparisons with long-term, autonomous monitoring efforts
should be made with caution.

The intensive maritime traffic in the Strait of Gibraltar can
potentially have negative effects on the cetacean species found in the
area, including short-beaked common, striped, and bottlenose
dolphins, long-fine pilot whales (de Stephanis et al., 2008; Bearzi
etal., 2021; Verborgh and Gauffier, 2021), fin whales (Gauffier et al.,
2018), sperm whales (Pirotta et al., 2021), and killer whales (Esteban
et al,, 2014; 2016). The first four species were detected acoustically
and/or visually during this multidisciplinary survey in the Strait of
Gibraltar. SPLs exceeding 120 dB re 1 pPa, which have been
recorded in the Strait (Contreras Merida et al., 2024; present
study), have shown to lead to behavioral changes in baleen whales
(Richardson et al., 1995; Southall et al., 2007). Fin whales are known
to use the Strait as a migration corridor, heading towards the
Atlantic between May and July and back to the Mediterranean
between November and December (Gauffier et al., 2018). Castellote
etal. (2012) observed changes in the acoustic behavior of fin whales,
with a reduction of their songs under shipping noise conditions in

TABLE 2 Average Sound Pressure Levels (SPLs) for the 63 and 125 Hz-centred frequency bands at each recording station.

Station SPLs 63 Hz-centred frequency (dB re 1uPa) SPLs 125 Hz-centred frequency (dB re 1uPa)
1 114.95 110.93
2 110.57 109.45
3 104.91 105.82
4 106.24 106.94
5 106.46 104.31
6 109.44 105.65
7 108.01 104.42
8 107.89 104.78
9 114.32 112.79
10 121.94 114,97
11 120.45 115.07
12 118.58 11211
13 13224 129.82
14 108.63 106.16
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TABLE 3 Identified underwater noise sources at each recording station with corresponding frequency ranges.

Station Noise source Frequency (kHz) Period (s) Duration (s)

Kongsberg EM302 multibeam echosounder 30 4 Pulse
Skipper GDs 101, Furuno FCV-12001 echosounder 50 2 Pulse

1 Vessel noise throughout the file (propellers and thrusters) Main energy 0-10; up to 24 - -
Dolphin clicks - - -
Dolphin whistles (4) 5.1-15.9 - -
Kongsberg EM302 multibeam echosounder 30 3.8 Pulse
Skipper GDs 101, Furuno FCV-12001 echosounder 50 2.1 Pulse

’ Vessel noise <7; 11-12 - -
Unidentified anthropogenic noise Up to ~40 0.92-4.3 0.5-2.2
Kongsberg EM302 multibeam echosounder 30 0.7 Pulse
Skipper GDs 101, Furuno FCV-12001 echosounder 50 1 Pulse

’ Vessel noise <6; 11-12 - -
Unidentified anthropogenic noise beginning of file Broadband - -
Kongsberg EM302 multibeam echosounder 30 0.6 Pulse

4 Skipper GDs 101, Furuno FCV-12001 echosounder 50 0.6 Pulse
Vessel noise <2, 4, and 12 - Continuous
Kongsberg EM302 multibeam echosounder 30 0.8 Pulse

5 Skipper GDs 101, Furuno FCV-12001 echosounder 50 2.6 Pulse
Vessel noise <4, 6, and 11-12 - Continuous
Kongsberg EM302 multibeam echosounder 30 2.7 Pulse
Skipper GDs 101, Furuno FCV-12001 echosounder 50 2 Pulse

6 Vessel noise <2, 4, 6,11-12 and up to ~18 - Continuous
Dolphin whistles (2) 6.8-18.2 - -
Dolphin clicks - - -
Kongsberg EM302 multibeam echosounder 30 1.5 Pulse

7 Skipper GDs 101, Furuno FCV-12001 echosounder 50 2 Pulse
Vessel noise Main energy 0-4; up to 24 - Continuous
Kongsberg EM302 multibeam echosounder 30 1.5 Pulse

8 Skipper GDs 101, Furuno FCV-12001 echosounder 50 2 Pulse
Vessel noise Main energy 0-4; 6 and 11-12 - Continuous
Kongsberg EM302 multibeam echosounder 30 2.8 Pulse

9 Skipper GDs 101, Furuno FCV-12001 echosounder 50 2.1 Pulse
Unidentified anthropogenic noise Broadband,tzl;i)n energy up - Continuous
Kongsberg EM302 multibeam echosounder 30 0.9 Pulse
Skipper GDs 101, Furuno FCV-12001 echosounder 50 21 Pulse

10 ) Main energy 0-2:4, 6, 11-12 )
Vessel noise and up to 20 - Continuous
Dolphin clicks and burst pulses (throughout the file) - - -

(Continued)
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TABLE 3 Continued

Station Noise source

10.3389/fmars.2025.1655366

Period (s) Duration (s)

Frequency (kHz)

Dolphin whistles (throughout the file) 4.8-28.6 - -
Kongsberg EM302 multibeam echosounder 30 21 Pulse
Skipper GDs 101, Furuno FCV-12001 echosounder 50 1.9 Pulse

11 Low frequency vessel noise Most energy <1 - Continuous
Dolphin clicks (throughout the file) - - -
Dolphin whistles (throughout the file) 44-19.4 - -
Kongsberg EM302 multibeam echosounder 30 1.8 Pulse
Skipper GDs 101, Furuno FCV-12001 echosounder 50 3.1 Pulse

12 Dolphin clicks and burst pulses (throughout the file) - - -
Dolphin whistles (throughout the file) 4.5-19.8 - -
Sonar 5.5-6 28 1.8
Kongsberg EM302 multibeam echosounder 30 1.5 Pulse

13 Skipper GDs 101, Furuno FCV-12001 echosounder 50 24 Pulse
Vessel noise Most energy <4, up to 40 - Continuous
Kongsberg EM302 multibeam echosounder 30 1.5 Pulse

14 Skipper GDs 101, Furuno FCV-12001 echosounder 50 23 Pulse
Vessel noise Most energy <2, 4, 6 and 12 - Continuous

Period and duration were also specified for anthropogenic impulsive sources.

the Strait of Gibraltar. Other mysticete species, including blue,
humpback, and grey whales have also been observed to alter their
acoustic behavior in the presence of ship noise (Sousa-Lima et al.,
2002; Melcon et al.,, 2012; Dahlheim and Castellote, 2016).
Cavitation noise from vessels can extend to mid and high
frequency bands, and some studies have shown vessel noise to
mask communication delphinid species including bottlenose
dolphins and short-finned pilot whales (Jensen et al., 2009),
which are also present in our study area.

The soundscape at the various stations was shaped by a
combination of biological and anthropogenic factors. Biological
sounds, particularly dolphin whistles, clicks, and burst pulses, were
detected at five of the stations, with continuous presence at Stations
10, 11, and 12. These detections suggest not only the widespread
distribution of odontocetes in the area but also a potential attraction
to the vessel, likely related to light or vessel activity. Despite these
biological contributions, anthropogenic sources dominated the
acoustic environment at most locations. Shipping noise was the
most persistent and prominent, consistent with the known high
maritime traffic in the region, especially through the Strait of
Gibraltar. Additional anthropogenic contributions included the
RV Celtic Explorer’s own self-noise and onboard echosounders,
with consistent detection across all stations.

The methodological approach used in this study, deploying a
SoundTrap attached to the research vessel's CTD rosette, proved
effective for the collection of short-term acoustic data and the for the
assessment of the underwater soundscape. In contrast to long-term
monitoring programs, which often require multiple recorders,

Frontiers in Marine Science

separate missions for deployment and retrieval, licenses, and
significant personnel and funding, our approach enabled rapid data
collection at 14 locations within a few days of available ship-time.
While this method is not suitable for long-term acoustic monitoring
that captures diel and/or seasonal variability, and may not fully
represent the broader acoustic environment, it provides a valuable
snapshot of local soundscapes. A potential limitation of this approach
is that effective PAM recordings require the vessel to remain
stationary during CTD operations, typically for 30-60 minutes,
which may not always be feasible depending on operational
constraints. Additionally, recordings from a research vessel
introduce some degree of self-noise. Nevertheless, this method
offers a complementary tool for expanding spatial coverage and can
be particularly useful in under-sampled or resource-constrained
situations, allowing for the collection of acoustic data from
platforms of opportunity. This study provides updated short-term
measurements of underwater noise levels in southern Iberian waters
and demonstrates the value of integrating acoustic monitoring with
oceanographic operations. The findings contribute to ongoing eftorts
under the MSFD Descriptor 11 assessments and for broader marine
spatial planning initiatives aimed at mitigating acoustic impacts on
marine animals in one of Europe’s busiest maritime routes.
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