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Evaluating the performance
of CMIP6 models in the
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1School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and
Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China, 2Southern Marine Science and
Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China, 3State Key Laboratory of Earth System
Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, China, 4Key Laboratory of Marine Hazards Forecasting, National Marine Environmental
Forecasting Center, Ministry of Natural Resources, Beijing, China
The Southern Temperate Zone (STZ, 30°S–55°S) plays a crucial role in global

energy, water, and carbon cycles. While the Earth SystemModels (ESMs) of phase

6 of the Coupled Model Intercomparison Project (CMIP6) provide essential data

for climate research focused on the Southern Hemisphere, significant inter-

model discrepancies still necessitate a comprehensive evaluation, especially in

the STZ. This study employs a multivariable integrated evaluation (MVIE) method

to assess 17 CMIP6 ESMs in simulating the near-surface atmospheric fields and

the oceanic temperature and salinity fields over the STZ, enabling holistic

assessment of multiple variables. The multi-model ensemble (MME) mean of

the near-surface atmospheric fields exhibits systematic biases, including

overestimated westerly winds, northerly winds, and specific humidity. For the

oceanic fields, pervasive warm biases in the potential temperature have been

found in the deep ocean, whereas fresh biases in the salinity have been identified

in the deep layer. According to the results of the MVIE, tenmodels show relatively

good performance in simulating climatological annual means. Based on

integrated statistical indices, eight models (ACCESS-ESM1-5, CanESM5,

CanESM5-CanOE, CNRM-ESM2-1, GFDL-ESM4, MRI-ESM2-0, NorESM2-LM,

NorESM2-MM) rank ahead among 17 CMIP6 ESMs. Evaluation of the seasonal

climatology indicates that ESMs generally exhibit better performance during the

austral summer than in winter. GFDL-ESM4 performs best in summer and

autumn, whereas MPI-ESM1-2-HR and NorESM2-MM excel in winter, and MPI-

ESM1-2-HR leads in spring. The study reveals persistent challenges in CMIP6

ESMs for simulating deep-ocean processes in the STZ.
KEYWORDS

CMIP6 models, Southern Temperate Zone, multivariable integrated evaluation, model
bias, model assessment
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1 Introduction

The mid-latitude region in the Southern Hemisphere, generally

recognized as the Southern Temperate Zone (STZ), plays a crucial

role in the global climate system (Simmonds and King, 2004; Cai

et al., 2023; Fogt and Marshall, 2020). The oceans in the STZ

contribute substantially to the global carbon cycle, acting as major

carbon sinks that absorb excess atmospheric heat and

anthropogenic carbon emissions (Khatiwala et al., 2009; Tjiputra

et al., 2010; Yang et al., 2019). The northern flank of the Antarctic

Circumpolar Current (ACC), recognized as the strongest current in

the world’s oceans (Barker and Thomas, 2004), flows through the

STZ and is associated with steeply tilted isopycnal surfaces in the

meridional direction (Böning et al., 2008). Westerlies in the STZ are

also the strongest time-mean oceanic winds globally (Russell et al.,

2006). The intensification and poleward shift of westerlies are

accompanied by a poleward and upward shift and intensification

of the storm tracks. This results in more low clouds, poleward shifts

in precipitation, and enhanced poleward eddy energy flux at high

latitudes (Korhonen et al., 2010; Hendon et al., 2007; Thompson

et al., 2011; Yin, 2005; Goyal et al., 2021; Chemke et al., 2022). Due

to the complex air-sea interactions, large-scale sea surface

temperature (SST) anomalies in the STZ are influenced by modes

of atmospheric variability (Kushnir et al., 2002), and midlatitude

SST anomalies may also affect the storm track and strength

(Kushnir et al., 2002; Czaja et al., 2019). In addition, in the STZ,

the ACC and westerlies also influence the marine biota and

ecosystems in the Southern Ocean and beyond by regulating the

distribution of nutrients and dispersals of diverse species

(Sanmartín et al., 2007; Hunt et al., 2016). Due to the sparsity of

observations in the Southern Ocean, ESMs provide insights into the

investigations of long-term changes and predictions of the complex

climate system in the Southern Ocean.

The Coupled Model Intercomparison Project (CMIP) was

established for the investigation and comparisons between

coupled ocean-atmosphere-cryosphere-land general circulation

models (Meehl et al., 2000). The CMIP6 comprises over 100

ESMs and a series of experiments (Eyring et al., 2016), including

CMIP historical simulations (1850-2014) and future scenario

experiments. Compared to previous CMIP Phases, contemporary

models in CMIP6 present improved estimation in simulating the

surface wind stress in the Southern Hemisphere, with stronger and

less equatorward-biased winds (Beadling et al., 2020). Meanwhile,

the ACC transport in the CMIP6 models largely falls within

observational uncertainty in the Southern Ocean (Beadling et al.,

2020). By comparing historical experiments with future global

warming scenarios, Fahad et al. (2020) suggested that projected

intensification of southern-hemisphere subtropical anticyclones

would intensify in strength at their southern flank and center.

Purich and England (2021) assessed the temperature mean-state

and trends of Antarctic Shelf Bottom Water (ASBW) in CMIP6

models, and a projected warming of ASBW is found to be related to

high CO2 emissions in future scenarios. Using CMIP6 historical

simulations and observations, Hu et al. (2024) found that the SST in

the Southern Ocean (50°S-70°S) shows a remarkable cooling in the
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austral spring and summer in response to a positive Southern

Annular Mode.

By employing the simulated results from CMIP6, previous

studies have improved our understanding of the air-sea

interaction in the Southern Hemisphere, yet comprehensive

evaluations of the model abilities are still necessary due to the

model uncertainties. For example, ESMs may severely

underestimate the intensification of storm tracks in the Southern

Ocean in recent decades (Chemke et al., 2022), and systematically

biased warm and fresh water relative to observations remains

evident in the simulated upper Southern Ocean (Beadling et al.,

2020). While the Antarctic sea ice remains poorly represented

(Beadling et al., 2020), the Antarctic bottom water formation is

also via open-ocean deep convection in the Southern Ocean rather

than via shelf processes in most CMIP6 models (Heuzé, 2021).

Therefore, comprehensive assessments of ESMs’ capabilities within

CMIP6 remain necessary.

Previous studies have provided some model evaluations of

CMIP6 in simulating the climate system in the Southern

Hemisphere. Beadling et al. (2020) assessed the representation of

Southern Ocean properties across CMIP phases. Heuzé (2021)

evaluates the formation, properties, and transport of Antarctic

bottom water and North Atlantic deep water in CMIP6. Luo et al.

(2023) assessed the biased warm SST in the Southern Ocean in

CMIP6 models. Bracegirdle et al. (2020) evaluated the simulated

extratropical atmospheric circulation in the Southern Hemisphere

from CMIP6 models, including the representations of the westerly

jet, the Southern Annular Mode, and the Amundsen Sea Low. Gao

et al. (2024) evaluate the Southern Ocean SST biases in the CMIP5

and CMIP6 models. Such assessments of CMIP6 focused on the

Southern Hemisphere are important to improve our understanding

of the ESMs ability to represent the climate system in the broad

Southern Ocean. However, the CMIP6 performance within the STZ

in the Southern Hemisphere has not been separately evaluated in

previous studies. Indeed, the model ability within a relatively

smaller domain may be different from in the Southern Ocean.

Considering the far-reaching implications of the STZ for the

Southern Ocean carbon uptake, storm tracks, and ecosystems,

therefore, it is important to further evaluate the representation in

the STZ in ESMs that comprise the CMIP6.

In this study, we use an improved multivariable integrated

evaluation method to assess the near-surface atmospheric fields and

three-dimensional ocean fields in the STZ in CMIP6 models.

Section 2 outlines the selected ESMs and fields from CMIP6 and

describes the method. Section 3 presents the assessments of the

ESMs in the STZ. Section 4 summarizes the results with

a discussion.
2 Data and methods

2.1 Data

This study evaluated the historical experiments from 1850–

2014 of 17 CMIP6 ESMs (Table 1). We select these ESMs because
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they provided full periods of the following three standard CMIP6

experiments: piControl, historical, and SSP5-8.5 experiments

(Bourgeois et al., 2022). Although this study focuses on evaluating

historical experiments, the assessments of these ESMs can provide

benchmark results for future sensitivity studies of climate change.

Table 1 shows an overview of the ESMs used in this study.

Since this study aims to evaluate the ESMs performance in the

STZ, the spatial domain is confined within 30°S-55°S. Previous

studies have documented the important roles of the atmosphere and

oceans in the STZ in the climate system. Westerlies in the Southern

Ocean exert wind stress on the sea surface and drive the ACC and

downwelling of surface water in the STZ (Rintoul et al., 2001;

Rintoul and Garabato, 2013). As surface waters are transported

northward, the subduction of mode water and intermediate water

can greatly contribute to the carbon sink in the STZ (Gruber et al.,

2019; DeVries et al., 2017). Meanwhile, the carbon uptake in the

STZ is also modulated by the SST and overlying atmospheric

temperatures via air-sea heat fluxes (Frölicher et al., 2015).

Overall, air-sea interactions in the STZ, including heat and

freshwater fluxes, can affect the ocean stratification and water

masses formation, with implications for the global climate system

(IPCC, 2021). Therefore, we evaluate and compare the performance

of 17 CMIP6 ESMs in terms of the zonal and meridional 10 m

winds (u10m, v10m), 2 m temperature (t2m), 2 m specific humidity

(q2m), precipitation (P), surface downwelling shortwave radiation
Frontiers in Marine Science 03
(rsds), surface downwelling longwave radiation (rlds), and the

oceanic potential temperature (q) and salinity (S).

The analysis in this study utilizes a single ensemble member

(r1i1p1f1 or equivalent) of the CMIP6 historical experiments. For

the ESMs that have not provided the r1i1p1f1 ensemble member,

equivalent ensemble members are selected.

To evaluate the simulation performance of the CMIP6 ESMs,

we adopt the fifth-generation European Centre for Medium-Range

Weather Forecasts (ECMWF; ERA5) atmospheric reanalysis data

set to evaluate the atmospheric fields (Hersbach et al., 2020, 2023),

and we adopt the objective analysis data set of the World Ocean

Atlas 2023 (WOA23) to evaluate q and S (Reagan et al., 2023).

The performance of the ERA5 reanalysis has been

comprehensively evaluated by Hersbach et al. (2020). Produced

by using the 4D-Var data assimilation and the ECMWF Integrated

Forecasting System (IFS), the atmospheric model is coupled to a

land-surface model and an ocean wave model. With a spatial

resolution of 31 km and hourly outputs, ERA5 provides

comprehensive atmospheric data on 37 vertical pressure levels.

The ERA5 provides the reanalysis data from 1940 to the present.

To assess the CMIP6 performance in the STZ, we use the ‘Surface or

single level’ data category, which has been provided as 2D

parameters, including u10m, v10m, t2m, q2m, P, rsds, and rlds.

The WOA23 provides climatological annual means and

monthly climatology of in situ temperature and S. Building upon
TABLE 1 Evaluate 17 selected CMIP6 Earth system model information.

Serial number Model Institution (Country)
Resolution
(atmosphere/ocean)

Ensemble member

1 ACCESS-ESM1-5 CSIRO (Australia) ~250km/~100km r1i1p1f1

2 CanESM5 CCCma (Canada) ~500km/~100km r1i1p1f1

3 CanESM5-CanOE CCCma (Canada) ~500km/~100km r1i1p2f1

4 CESM2 NCAR (USA) ~100km/~100km r1i1p1f1

5 CESM2-WACCM NCAR (USA) ~100km/~100km r1i1p1f1

6 CNRM-ESM2-1 CNRM-CERFACS (France) ~250km/~100km r1i1p1f2

7 GFDL-CM4 NOAA-GFDL (USA) ~100km/~25km r1i1p1f1

8 GFDL-ESM4 NOAA-GFDL (USA) ~100km/~50km r1i1p1f1

9 IPSL-CM6A-LR IPSL (France) ~250km/~100km r1i1p1f1

10 MIROC-ES2L MIROC (Japan) ~500km/~100km r1i1p1f2

11 MPI-ESM1-2-LR MPI-M (Germany) ~250km/~250km r1i1p1f1

12 MPI-ESM1-2-HR MPI-M (Germany) ~100km/~50km r1i1p1f1

13 MRI-ESM2-0 MRI (Japan) ~100km/~100km r1i1p1f1

14 NorESM2-LM NCC (Norway) ~250km/~100km r1i1p4f1

15 NorESM2-MM NCC (Norway) ~100km/~100km r1i1p1f1

16 UKESM1-0-LL MOHC (UK) ~250km/~100km r1i1p1f2

17 INM-CM4-8 INM (Russian) ~100km/~100km r1i1p1f1
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the fundamental framework of the Climatological Atlas of the

World Ocean (Levitus, 1983), WOA23 is the latest advancement

of these oceanographic climatological analyses. Compared to the

last version WOA18 that is based on oceanographic casts during

1955-2017, WOA23 incorporates more hydrographic observations

during 1955–2022 from the World Ocean Database 2023

(Mishonov et al., 2024). World Ocean Database 2023 includes in

situ measurements from ships, autonomous floats and gliders (e.g.,

Argo program), and moored buoys. Based on an objective analysis

of observations, WOA23 provides a climatological analysis of in situ

temperature and salinity on the 0.25° × 0.25° horizontal grids, with

102 vertical layers ranging from 5 m at the sea surface to 100 m at

5500 m depth. Note that the climatological annual mean of WOA23

provides data with the full 5500 m depth range, while monthly

climatology data are only provided in the upper 1500 m layers. In

this study, we employ the climatological mean data with the label of

‘all’, an average of all available data, on the 0.25° × 0.25°

grid resolution.
2.2 Methods

To evaluate the ESMs representation in the STZ, the

climatological annual mean of every ESM is calculated, and

monthly climatology data are also calculated for the evaluations

across seasons. Generally, the seasonal cycle in the Southern

Hemisphere is defined as the austral spring (September, October,

and November), the austral summer (December, January, and

February), the austral autumn (March, April, and May), and the

austral winter (June, July, and August), respectively.

To show the inter-model spread, the standard deviation (SD) of

climatological annual means across the 17 CMIP6 ESMs was

calculated as follows (Huang et al., 2020):

SDESM   =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(Pi − PMME)

2

r
(1)

where Pi is the climatological annual mean of an ensemble from

individual ESM, PMME is the multi-model ensemble (MME) mean,

and N = 17 is the number of ESMs employed. The SDESM

Equation 1 indicates the dispersion of CMIP6 ESMs relative to

their MME.

To evaluate the model abilities of ESMs, we adopt the MVIE

method. The development of the MVIE method undergoes three

phases. First, Xu et al. (2016) devised the vector field evaluation

(VFE) diagram, which is a generalized Taylor diagram (Taylor,

2001). The VFE diagram quantifies model skill in simulating vector

fields through three statistical metrics: the root-mean-square length

(RMSL), the vector similarity coefficient (VSC), and the root-mean-

square vector difference (RMSVD). The RMSL can measure the

magnitude and variance of vector lengths, the VSC can assess the

pattern similarity of normalized vector pairs, and the RMSVD can

represent overall deviations. The RMSL, VSC, and RMSVD are

calculated as follows:
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RMSL2016 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1 ❘Ai ❘

2

r
(2)

where A denotes a vector field that can be written as a pair of

vector sequences; In Equations 2–4, Ai = (xi, yi), i = 1, 2,…, N. N

means the number of vectors in the sequence.

VSC2016 =
oN

i=1Ai   •  Biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1 ❘Ai ❘
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1 ❘Bi ❘
2

q (3)

where B denotes a reference vector field, and the • symbol

denotes the inner product. The value of the VSC ranges from -1 and

1, with the larger value corresponding to the higher similarity

between vector fields.

RMSVD2016 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1 ❘Ai − Bi ❘

2

r
(4)

where the RMSVD becomes smaller when two vector fields

approach more alike in both direction and vector length. The VFE

diagram overcomes the limitations of scalar-based Taylor diagrams,

enabling the assessments of both the directions and amplitudes of

vector fields.

Second, Xu et al. (2017) have proposed the MVIE method. By

normalizing and grouping scalar fields into a multidimensional vector,

Xu et al. (2017) introduced the multivariable integrated evaluation

index (MIEI) to summarize the model performance across simulated

fields. For multiple scalar fields, the MIEI is calculated as follows:

MIEI2 =
1
MoM

m=1(L
*
Am

− 1)2 + F · (1 − VSC) (5)

L*Am
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NoN

i=1A
2
mi

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NoN

i=1B
2
mi

q (6)

where M is the number of scalar fields, L*Am
in Equation 5 denotes

the ratio of the root mean square (RMS) of the m-th standardized

scalar field to the reference value (Equation 6). When the RMS of the

simulated scalar fields approaches the RMS of the reference data, L*Am

approaches 1. F is a weighting factor that adjusts the relative

importance of data amplitude and data similarity in the MIEI. When

F > 1, the MIEI is more sensitive to the changes of data similarity than

the changes of amplitude, and vice versus. In this study, we adopt F = 2

that was proposed by Xu et al. (2017) and used in Han et al. (2022).

The MIEI combined the RMSL deviations and VSC into a single

metric, taking the pattern similarity of multiple scalar fields and

amplitude into account. Additionally, it fulfills the requirement that

a model performance index should have the monotonic property

with respect to the performance of ESMs. The MIEI can

comprehensively reflect the overall performance of the simulated

multiple scalar fields. A smaller value of the MIEI denotes a better

performance of a model in simulating multiple scalar fields.

Third, Zhang et al. (2021) further improved the MVIE method

by incorporating the area-weighted statistics and the combination
frontiersin.org
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of multiple scalar and vector fields. The area-weighted RMSL, VSC,

and RMSVD are reintroduced as follows (Equations 7–9):

RMSL =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

m=1oN
i=1wiA

2
mi

q
(7)

VSC= oM
m=1oN

i=1wiAmiBmiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

m=1oN
i=1wiA2

mi

q
 • 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

m=1oN
i=1wiB2

mi

q (8)

RMSVD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

m=1oN
i=1wi(Ami−Bmi)

2
q

(9)

where wi is an area-weighting factor and the sum of wi is equal

to 1. The area-weighting statistics are more accurate for a global

evaluation of ESMs (Zhang et al., 2021). Since the first term on the

RHS of Equation 5 can vary from 0 to +∞, while the second term on

the RHS of Equation 5 only ranges from 0 to 4, the MIEI may be

somehow too sensitive to the RMS bias rather than the pattern bias.

To further improve the representation of the evaluation index, the

multivariable integrated skill score (MISS) was proposed as a

normalized index (Zhang et al., 2021). The MISS is a flexible

index that can adjust the relative importance of the pattern

similarity and amplitude errors, which is defined as follows:

MISS = 1 −
1

F + 1
(
1
MoM

m=1(R
*
m − 1)2 + F · (1 − VSC)) (10)

R*m =
L*Am

, L*Am
≤ 1

1

L*Am
, L*Am

> 1

8><
>: (11)

where R*m in Equation 10 is a piecewise function determined by

the value of L�Am
(Equation 11). The MISS varies monotonically with

the overall performance of ESMs, typically ranging from 0 to 1. If

ESMs results are same as the reference values, the MISS is equal to 1.

Zhang et al. (2021) further proposed a centered mode of the

above statistical metrics. Uncentered statistical metrics are

calculated using the original field, while centered statistical

metrics are calculated by the anomaly field generated by

removing the spatial mean from each grid point of the original

field. The statistical metrics in the centered mode provide insights

into the evaluation of the multivariable anomalous fields. The

centered RMSL, VSC, RMSVD, and the vector mean error (VME)

are introduced as follows (Equations 12–15):

cRMSL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

m=1oN
i=1wi(Ami−�Ai)

2
q

(12)

cVSC= oM
m=1oN

i=1wi(Ami−�Ai)(Bmi−�Bi)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

m=1oN
i=1wi(Ami−�Ai)

2
q

 • 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

m=1oN
i=1wi(Bmi−�Bi)

2
q

(13)

cRMSVD=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

m=1oN
i=1wi½(Ami−�Ai)−(Bmi−�Bi)�2

q
(14)
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VME=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oM

m=1(oN
i=1wiAmi−oN

i=1wiBmi)
2

q
(15)

Indeed, the framework of the MVIE can be introduced to the

evaluation of both scalar and vector fields (Han et al., 2022). In this

study, we combine the multiple normalized scalar and vector fields

into a single vector field for every selected ESM and reference data,

respectively. Then, the VFE diagram is used to compare the

combined vector fields from ESMs with reference data.

To show more details of the performance of the ESMs, we also

use several statistical metrics to reveal the model ability in

simulating a single scalar or vector field. For the first level of

scalar and vector fields, we use the mean error (ME), root-mean-

square difference (RMSD), correlation coefficient (CORR), and

standard deviation (SD) to evaluate the model performance. For

the second level of a multiple dimension vector field, which is

composed of group scalar and vector fields, we use the VME, VSC,

RMSL, and RMSVD to show the model performance. For the third

level, we use the MIEI and MISS to provide a synthesized evaluation

index for the model performance. Note that the SD and ME are

normalized by dividing by the SD of the reference data.

In previous studies, this MVIE method has been employed in

evaluations of ESMs. For example, Huang et al. (2019) used the VFE

diagram and statistical quantities devised by Xu et al. (2016) to

evaluate vector winds in the Asian-Australian monsoon region

simulated by CMIP5 models. Building on the MVIE framework,

Lv et al. (2020) assessed the overall performance of the Weather

Research and Forecasting (WRF) model with various physics

schemes in simulating precipitation and soil moisture over the

central Tibetan Plateau. Han et al. (2022) evaluated the

performance of CMIP6 models in simulating the large-scale

environmental fields of tropical cyclones in the low and middle

latitudes. Dai et al. (2021) diagnosed the influences of different

parametrization schemes in the WRF model on the precipitation

and temperature in northern China. Zhang et al. (2022) evaluated

and ranked the ability of CMIP6 ESMs over coordinated regional

downscaling experiment domains.

To our knowledge, the performance of the CMIP6 ESMs in the

STZ has not been comprehensively evaluated in term of multiple

variables, and thus we tend to assess the CMIP6 ESMs in the STZ in

this study. The q and S fields are divided into three layers, including

the surface layer, the upper 1500 m layer, and the layer below 1500

m. Then, depth-averaged q and S are calculated to derive 2D scalar

fields. To assess the ability of ESMs on a uniform grid, we

interpolate all the fields onto a 0.25° × 0.25° grid mesh with the

bilinear interpolation method. Bilinear interpolation is a statistical

method and widely used in model evaluation (e.g., Han et al., 2022;

Qiu et al., 2024; Talukder et al., 2025). It is especially suitable for

continuous variables such as q, S, and winds. And this method

preserves spatial gradients reasonably well while avoiding the

excessive smoothing or artefacts from higher-order interpolation

methods. Note that the in-situ temperature from WOA23 is

converted to q as the reference values.
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3 Results

3.1 Climatological annual mean of
reference data and the MME mean

Before conducting the multivariable assessment, we show the

climatological annual mean of the reference fields in STZ (Figure 1).

In the STZ, the u10m is generally weak around 30°S (Figure 1A), mainly

dominated by trade winds (Spiridonov and Ćurić , 2021), with the wind
direction from east to west. Between 35°S and 55°S, the westerlies are

prevailing and strong. The v10m is dominated by north wind over

higher latitudes, while strong south winds occur at the western

boundaries of the mainland (Figure 1B). The t2m in the STZ has a

remarkable meridional gradient (Figure 1C), with a gradual decrease as

the latitude increases. The climatological annual mean of t2m typically

ranges from 10 °C to 20 °C north of 50°S, whereas it cools significantly

south of 50°S. The q2m decreases with increasing latitude in the STZ,

with a relatively large band to the east of themainland (Figure 1D). The

P is generally low in the Southern Ocean (Figure 1E), while the strong

precipitation occurs at the western boundaries of New Zealand and
Frontiers in Marine Science 06
South America, due to the influence of westerlies and terrain features

(Garreaud et al., 2009). The rsds and rlds represent the downward solar

radiation reaching the Earth surface and the downward longwave

radiation, respectively. They influence the surface radiation budget

directly (He et al., 2023; Wild et al., 2015). As latitude increases

southward, the climatological annual means of both rsds and rlds

gradually decrease (Figures 1F, G), with strong radiation at 30°S and

weak radiation at higher latitudes.

The climatological mean of qsurface is higher around 30°S,

typically exceeding 20 °C, and gradually decreases southward

(Figure 1H). In the 50°S, qsurface approaches 0 °C. The

climatological mean of qabove1500 ranges from 0 °C to 15 °C in

most regions in the STZ (Figure 1I), while qbelow1500 is colder

(Figure 1J). The spatial distribution of Ssurface and Sabove1500 in the

STZ also exhibits noticeable meridional gradients (Figures 1K, L).

As latitude increases, the climatological annual mean of Ssurface and

Sabove1500 decreases, whereas the spatial gradient of Sbelow1500 is

much weaker (Figure 1M).

Figure 2 shows the difference between the CMIP6 MME

climatological mean and the climatological mean of two reference
FIGURE 1

Climatological annual mean of the reference data sets. (A-G) The climatological annual (1940-2023) mean derived from ERA5: (A) u10m (m s-1), (B)
v10m (m s-1), (C) t2m (°C), (D) q2m (g kg-1), (E) P (kg m-2 s-1), (F) rsds (W m-2), and (G) rlds (W m-2). (H-M) The climatological annual (1955-2022) mean
derived from WOA23: (H) qsurface (°C), (I) qabove1500 (°C), and (J) qbelow1500 (°C); (K-M) similar to (H-J) but for S (psu).
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datasets (ERA5 and WOA23). The CMIP6 ESMs show stronger

biases in westerlies (Figures 2A, B), with intensified west and north

winds in the ESMs. The CMIP6 MME mean overestimates u10m by

0.5-1.5 m s⁻¹ over the STZ, particularly in the Indian Ocean sector

and the southern Australian ocean. Meanwhile, the CMIP6 MME

mean overestimates the negative v10m by 0.5–1 m s⁻¹ in most areas

of the STZ. In terms of t2m, a cold bias of 1-2 °C dominates the

simulated 2 m air temperature across most ocean surface at 30-45°S

(Figure 2C). At 45-55°S, there is a warm bias of ~1 °C in the Indian

and Atlantic Oceans (Figure 2C). In the STZ region, q2m is generally

overestimated by about 1-1.5 g kg-1 in the CMIP6 simulations, while

an underestimation occurs in the South American continent

(Figure 2D). In the north of 40°S, the CMIP6 ESMs show a

negative bias in the simulated climatological annual mean of P,

whereas P generally presents a positive bias in the south of 40°S

(Figure 2E). The biases of the rsds are generally opposite to that of

the rlds bias (Figures 2F, G). The rsds shows an overestimation in

the north of 40°S and an underestimation in the south (Figure 2F),

while the rlds shows an opposite spatial distribution (Figure 2G).
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This result shows reasonable concordance with Xu et al. (2022). Xu

et al. (2022) evaluated the simulated rlds by comparing the CMIP6

simulation results with CMIP5 results and ground measurements

and identified the positive biases of rlds at 40-55°S.

The oceanic fields reveal pronounced thermal biases: the

MME mean underestimates the qsurface by 1-2 °C at 40-55°S but

shows 1-2 °C warm anomalies at 30-40°S (Figure 2H). In terms of

qabove1500, the CMIP6 ESMs overestimate q by 1-2 °C across most of

the STZ ocean (Figure 2I). However, the simulated qbelow1500 is

grossly overestimated by CMIP6 MME (Figure 2J). At 30°S, this

warm deviation approaches 5 °C (Figure 2J). On the contrary, the

simulated climatological annual mean of Ssurface and Sabove1500
shows a clearly fresh bias (Figures 2K, L). In terms of Sbelow1500,

the fresh bias between the CMIP6 MME mean and reference data is

still very large (Figure 2M).

These biases underscore the substantial discrepancies in the

CMIP6 MME mean across variables. Indeed, the magnitude of

biases between the CMIP6 MME mean and reference data may

remarkably depend on the region analyzed.
FIGURE 2

Similar to Figure 1, but for the differences of climatological mean between the MME mean and the reference data (MME mean minus the reference data). (A)
u10m (m s-1), (B) v10m (m s-1), (C) t2m (°C), (D) q2m (g kg-1), (E) P (kg m-2 s-1), (F) rsds (W m-2), and (G) rlds (W m-2). (H-M) The climatological annual (1955-
2022) mean derived from WOA23: (H) qsurface (°C), (I) qabove1500 (°C), and (J) qbelow1500 (°C); (K-M) similar to (H-J) but for S (psu).
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3.2 Inter-model spread among CMIP6
ESMs

The SDESM (Equation 1) can serve as a metric to quantify the

dispersion of CMIP6 ESMs outputs relative to their MME mean. The

inter-model spread, quantified by the SDESM across CMIP6 simulations

(Figure 3), highlights significant uncertainty in the near-surface

atmospheric fields and the oceanic q and S. The u10m shows

maximum variability over the ACC region, reflecting divergent

simulations of westerly jet intensity (Figure 3A). The v10m and t2m
fields exhibit similar patterns with respect to the inter-model spread

(Figures 3B, C), and their SDESM are generally smaller than 1 m s-1 and

1.5 °C across most regions in the STZ, respectively. In terms of q2m,

CMIP6 ESMs show a greater inter-model spread at 30-40°S, especially

in the coastal region (Figure 3D). Relatively larger inter-model spread

of P is identified at the western Andes in South America and the

western side of the New Zealand Island (Figure 3E). Compared to other

variables, the rsds and rlds fields exhibit consistently higher inter-

model SDESM values in CMIP6 ESMs (Figures 3F, G), underscoring
Frontiers in Marine Science 08
systemic challenges in radiative fluxes. The inter-model spread of

qsurface is less than 2 °C (Figure 3H), except for the region of the

Brazil Current on the eastern side of South America. In terms of the

inter-model spread of qabove1500 and qbelow1500, the CMIP6 ESMs

exhibit similar spatial patterns, with a greater spread in 30-45°S, and

the Southern Indian Ocean, and a relatively small spread in 45-55°S

(Figures 3I, J). The distribution of the SDESM of S exhibits distinct

spatial patterns in different layers: larger values of the SDESM are

concentrated in subtropical regions (30-40°S) at the surface layer

(Figure 3K), while there is a relatively larger inter-model spread over

45-55°S below 1500m depths (Figure 3M). At the upper 1500m depth,

the SDESM of Sabove1500 is relatively small (Figure 3L). The maximums

of the SDESM of Sabove1500 are still around the South American

continent (Figures 3K-M).

Based on the inter-model spread analysis of CMIP6 ESMs,

significant discrepancies still exist among simulations of these key

fields. These inter-model spreads underscore persistent systematic

challenges in representing the near-surface atmospheric fields, sea

fields, and air-sea coupling interactions in the ESMs.
FIGURE 3

Similar to Figure 1, but for the SDESM among 17 CMIP6 ESMs. (A) u10m (m s-1), (B) v10m (m s-1), (C) t2m (°C), (D) q2m (g kg-1), (E) P (kg m-2 s-1), (F) rsds
(W m-2), and (G) rlds (W m-2). (H-M) The climatological annual (1955-2022) mean derived from WOA23: (H) qsurface (°C), (I) qabove1500 (°C), and (J)
qbelow1500 (°C); (K-M) similar to (H-J) but for S (psu).
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3.3 Ability of CMIP6 ESMs in simulating the
climatological annual mean

As discussed in sections 3.1 and 3.2, there are notable

discrepancies between the CMIP6 ESMs and the reference data,

and the inter-model spread is identified in the simulated multiple

variables from the CMIP6. To further analyze the simulation ability

of the CMIP6 ESMs, in this section, we employ the MVIE method

to systematically evaluate the individual CMIP6 ESMs in simulating

multiple variables. Our evaluation focuses on the nine variables

specified in section 2.1, encompassing both near-surface

atmospheric fields and three-dimensional oceanic fields (denoted

by q and S fields at varying depths).

The VFE diagram uses the RMSL, RMSVD, and VSC to offer

comprehensive statistics on the abilities of the ESMs, including the

differences between various ESMs and the differences between

ESMs and reference data. Figure 4 provides a straightforward

intercomparison of 17 CMIP6 ESMs by evaluating their simulated

climatological annual mean vector fields that represent all variables.

In the VFE diagram, the model ability can be diagnosed by the

RMSVD between the model and reference data, with a smaller

distance from the REF (the black reference point in Figure 4)
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suggesting a good representation of an ESM. A smaller RMSVD is

usually associated with a higher VSC and an RMSL approaching 1.

The statistics, such as RMSVD, VSC, and RMSL, of 10 ESMs (the

blue names in Figure 4) are close to the reference data, indicating

that the differences between these 10 ESMs products and the

reference data are relatively small over the STZ region. The VSCs

of the 10 ESMs (the blue names in Figure 4) range from 0.94 to 0.99,

suggesting that these ESMs can reproduce the spatial pattern of the

near-surface atmospheric fields and the oceanic q and S, with the

best estimation from the ACCESS-ESM1-5. The normalized RMSLs

of the 10 ESMs are generally larger than 1, indicating that these

ESMs tend to overestimate the simulated climatological annual

mean vector fields, with the best estimation from the INM-CM4-8.

In contrast, the VSCs of the rest 7 ESMs (the black names in

Figure 4) range from 0.6 to 0.85, implying great differences in the

spatial patterns of the climatological annual mean vector field between

the ESMs products and the reference data. In addition, these 7 ESMs

also greatly overestimate the amplitude of the climatological annual

mean vector field. Furthermore, we also used the centered VFE

diagram to evaluate the anomaly vector fields (Supplementary Figure

S2), and the results of model evaluation are similar to those derived

from the climatological annual mean vector fields.
FIGURE 4

Normalized uncentered VFE diagram of climatological annual mean vector field. The azimuthal position gives the VSC, the radial distance from the
origin indicates the RMSL, and the distance between the model and the reference point denotes the RMSVD. The RMSL and the RMSVD are
normalized by the RMSL derived from reference data. Different colors and ID numbers represent different CMIP6 ESMs, and the matching
relationship between the number and the mode is shown in the legend. The reference data is represented by ‘REF’ (the black point). The blue names
of ESMs denote that the differences of the RMSL between the ESMs and reference data are less than 0.5.
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The VFE diagram provides insights into the model abilities of

ESMs by the VSC and RMSL. To show the performance of ESMs in

detail, we further assess more statistical metrics (Figure 5). In

addition, we calculated the cMISS to show the multivariable
Frontiers in Marine Science 10
integrated skill, which takes the cVSC and SD into account

together. The metrics table adopted the centered statistics that

decompose the original fields into anomaly and mean fields.

Evaluations of anomaly fields are conducted from three
FIGURE 5

Statistical metrics measuring the abilities of CMIP6 ESMs in simulating the climatology annual mean vector field. VME (ME) quantifies the mean error
of the multivariable (scalar) fields. cRMSVD (cRMSD) measures the overall difference in multivariable (scalar) anomaly fields between the CMIP6 ESMs
and reference data. cRMSL (SD) and cVSC (CORR) assess the amplitude and pattern similarity of the anomaly fields for the multivariable field
(individual field). The SD, cRMSD, and ME are normalized by dividing by the SD of the reference data. The darker colors represent results that are far
from the reference data, and vice versa. Warm and cold colors indicate that the biases are larger and smaller than the reference data, respectively.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1651187
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pan et al. 10.3389/fmars.2025.1651187
perspectives: the variance characteristics (SD, cRMSL), the spatial

pattern consistency (CORR, cVSC), and the root-mean-square

differences between the reference data and ESMs results (cRMSD,

cRMSVD). The ME is also incorporated in Figure 5 to show the

systematic biases of the simulated original fields of ESMs from the

reference data.

In terms of the simulated spatial pattern of t2m, q2m, rsds, rlds,

and qsurface, the CMIP6 ESMs generally show relatively good

performance, with CORRs higher than 0.9. In contrast, with

CORRs ranging from 0.1 to 0.9, the CMIP6 ESMs cannot match

closely with the spatial pattern of P, qbelow1500 and S from the

reference data. It is not easy for these ESMs to adequately reproduce

the spatial pattern of q and S in the deep ocean. Nonetheless, some

models still perform relatively well, including CanESM5,

CanESM5-CanOE, GFDL-ESM4, and MRI-ESM2-0, with CORRs

larger than 0.8. Most ESMs can capture the spatial patterns of the

u10m and v10m, yet CORRs of winds from four models are lower

than 0.9, including MIROC-ES2L, MRI-ESM2-0, NorESM2-LM,

and INM-CM4-8. To derive a comprehensive estimation of the

ESMs in simulating the spatial pattern of fields in the STZ, we

calculated the cVSC to evaluate the overall performance. The

GFDL-ESM4 model shows the highest cVSC (~0.939) among the

17 CMIP6 ESMs, indicating that this model is the most consistent

with the reference data in simulating the spatial pattern of the near-

surface atmospheric fields and the oceanic q and S in the

STZ region.

The CMIP6 ESMs exhibit considerable differences in simulating

the spatial SD of the different fields. For instance, most ESMs tend to

overestimate the spatial variability of 10 m vector wind, with 11 out of

17 CMIP6 ESMs overestimating both u10m and v10m over the STZ

region. In terms of the spatial variability of q2m, most ESMs tend to

have an overestimation by 1%-35%, while the MIROC-ES2L, MPI-

ESM1-2-LR, and INM-CM4–8 models tend to have an

underestimation by 3%-9%. In terms of the spatial variability of

qbelow1500 and Sbelow1500, characterized by an SD larger than 2, some

CMIP6 ESMs have a significant overestimation, including the

ACCESS-ESM1-5, CESM2, CESM2-WACCM, GFDL-CM4, IPSL-

CM6A-LR, MPI-ESM1-2-LR, MPI-ESM1-2-HR, NorESM2-LM,

NorESM2-MM, UKESM1-0-LL, and INM-CM4–8 models. In terms

of t2m, P, rlds, qsurface, and Ssurface, most CMIP6 ESMs overestimate the

spatial variability, whereas the simulated rsds tends to be systematically

underestimated. Yet, the SD values of these fields are smaller than 2. As

the total SD across all selected fields, the value of the normalized

cRMSL larger (smaller) than 1 denotes that the ESM overestimates

(underestimates) the anomaly field’s amplitude error. Most ESMs have

overestimations, whereas the CNRM-ESM2–1 and MIROC-ES2L

models have underestimations. Although the INM-CM4–8 model

overestimates the spatial variability of Sbelow1500, it is in most

agreement with the reference data, with the cRMSL approaching 1.

The CMIP6 ESMs also show remarkable diversity in simulating

the ME of different variables, with ME ranging from -9.2 to 19.9

(Figure 5). Apart from IPSL-CM6A-LR and MIROC-ES2L, with the

ME ranging from -0.22 to -0.02, most CMIP6 ESMs overestimate

u10m over the STZ. These stronger biases are consistent with the

differences between the MME mean and the reference data
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(Figure 2A). Conversely, apart from the IPSL-CM6A-LR model,

most CMIP6 ESMs underestimate v10m, which is in agreement with

the broad negative values in Figure 2B. For t2m, the ME of CESM2

has the minimal absolute value that approaches 0, whereas the

MIROC-ES2L model has the largest maximum up to 0.297. The

INM-CM4–8 model captures the minimum ME of P, while the

MIROC-ES2L model tends to overestimate the ME of P mostly. In

terms of q2m, the CMIP6 ESMs all tend to have overestimation as

indicated by the positive ME. Indeed, the ME values of the near-

surface atmospheric fields are all less than 1, implying the relatively

good agreement with the reference data. In contrast, the q and S in

the CMIP6 ESMs show relatively larger biases in the ME, especially

in the qbelow1500 and Sbelow1500. The qsurface and Ssurface still match

well with the reference data, except for the INM-CM4–8 model with

the ME of S up to -1.188. In terms of qabove1500 and Sabove1500, the

ME values of the CESM2, CESM2-WACCM, and INM-CM4–8

models are larger than 1. Twelve ESMs show strong biases in

simulating the qbelow1500, whereas the ACCESS-ESM1-5, MRI-

ESM2-0, NorESM2-LM, NorESM2-MM, and INM-CM4–8

models still can have the ME values of qbelow1500 less than 1.

Similarly, thirteen ESMs show strong biases in simulating the

Sbelow1500, whereas the ACCESS-ESM1-5, CanESM5, CanESM5-

CanOE, and CNRM-ESM2–1 models can be close to the

Sbelow1500 of the reference data, with the ME values less than 1.

The VME measures the differences between two vector fields, and

the ACCESS-ESM1-5, CanESM5, CanESM5-CanOE, CNRM-

ESM2-1, GFDL-ESM4, NorESM2-LM, NorESM2-MM, and INM-

CM4–8 models have relatively smaller VME, with the values less

than 0.5.

The statistics of cRMSD are similar to those of ME (Figure 5).

The cRMSD values of the near-surface atmospheric fields are also

less than 1, indicating statistical agreement with the reference data.

The qsurface, qabove1500, Ssurface, and Sabove1500 still match well with the

reference data, with the cRMSD values all less than 1. Akin to the

ME values, the CMIP6 ESMs exhibit larger values of the cRMSD for

the oceanic qbelow1500 and Sbelow1500. Most ESMs show strong

differences in anomaly fields between the simulations and the

reference data in the abyssal ocean, whereas the cRMSD values of

qbelow1500 and Sbelow1500 of the CanESM5, CanESM5-CanOE,

CNRM-ESM2-1, and MRI-ESM2–0 models are still less than 1.

The cRMSD of multiple fields is measured by the cRMSVD, which

indicates the overall difference of the anomaly field in terms of the

near-surface atmospheric fields and the oceanic q and S. Among the

CMIP6 ESMs, GFDL-ESM4 has the minimal cRMSVD (0.367),

indicating the smallest overall error of multiple anomaly fields.

On the whole, there is no CMIP6 ESM that performs best in

every simulated field. The cRMSVD provides an overall evaluation

of the model performance, with a smaller RMSVD value

corresponding to a better consistency between the CMIP6 ESM

and the reference data. However, improvements in the model

performance may not always be associated with a monotonically

decreasing RMSVD (Huang et al., 2019; Xu et al., 2017). Therefore,

the values of the cMIEI and cMISS are computed to provide an

overall evaluation that is monotonically associated with the model

performance (Figure 5).
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In order to assess the overall simulation capability for the near-

surface atmospheric fields and the oceanic q and S, we further focus

on the values of the centered MIEI andMISS of the 17 CMIP6 ESMs

in the STZ region (Figure 6). A better model performance is

indicated by a smaller value of the cMIEI and a larger value of

the cMISS. We define two benchmark thresholds for a quantitative

evaluation: (i) the ESMs with cMIEI < 1 exhibit better simulation

skill with respect to the climatology annual mean vector field

(including the ACCESS-ESM1-5, CanESM5, CanESM5-CanOE,

CNRM-ESM2-1, GFDL-ESM4, MIROC-ES2L, MRI-ESM2-0,

NorESM2-LM, NorESM2-MM, and INM-CM4-8); (ii) the ESMs

with cMISS > 0.9 exhibit better simulation skill (including the

ACCESS-ESM1-5, CanESM5, CanESM5-CanOE, CNRM-ESM2-1,

GFDL-ESM4, MRI-ESM2-0, NorESM2-LM, and NorESM2-MM).

The cMISS is an advance over the cMIEI in the reduced

sensitivity to amplitude errors, yet we still provide the values of

cMIEI for a reference. Based on these two indices, the model

performance of the CMIP6 ESMs evaluated is generally

consistent, except for the MIROC-ES2L and INM-CM4-8. Finally,

eight ESMs (including the ACCESS-ESM1-5, CanESM5, CanESM5-

CanOE, CNRM-ESM2-1, GFDL-ESM4, MRI-ESM2-0, NorESM2-

LM, and NorESM2-MM) satisfy both criteria, suggesting their
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better representation of the near-surface atmospheric fields and

the oceanic q and S in the STZ.
3.4 Ability of CMIP6 ESMs in simulating the
seasonal climatology

Notable discrepancies of climatological annual means between

the CMIP6 ESMs and reference data have been discussed above.

Since there is a strong seasonality in the near-surface atmospheric

fields and the oceanic q and S in the STZ (Supplementary Figure

S3), a quantitative evaluation of the simulated seasonal climatology

could also provide insights into the ESMs ability. Based on the

classification of four seasons (DJF, MAM, JJA, SON) described in

section 2.2, we further compare the CMIP6 ESMs with the reference

data across seasons. Note that our assessments of the seasonality

exclude the oceanic q and S below 1500 m depth because the

monthly climatology data of WOA23 only provides data in the

upper 1500 m layers.

To compare the performance of various CMIP6 ESMs in

reproducing multivariable fields in different seasons, Figure 7

illustrates the VFE diagram of the climatological seasonal means
FIGURE 6

(A) cMIEI and (B) cMISS values for 17 CMIP6 ESMs in the STZ region, measuring the abilities of CMIP6 ESMs in simulating the vector field of
climatology annual mean. The dashed red lines denote two selected thresholds for the cMIEI and cMISS, respectively.
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with multiple statistics. The VSCs of all ESMs are larger than 0.95,

suggesting that these ESMs can properly replicate the spatial

patterns for near-surface atmospheric fields and oceanic q and S

in different seasons. In contrast, the normalized RMSLs generally

exceed 1 across seasons, indicating that most ESMs tend to

overestimate the vector fields of climatological seasonal means.

According to the differences of the RMSL between the ESMs and

reference data, the ESMs have better representation in the austral

summer (13 ESMs with blue names) and lowest model ability in the

austral winter (4 ESMs with blue names).

In stark contrast to the VSCs of the climatological annual mean

(Figure 4), the VSCs are mostly improved in the ESMs seasonal

products (Figure 7), implying better representations of the spatial

patterns of the ESMs seasonal products. The better representation

of the seasonal evaluation should be attributed to the exclusion of
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the oceanic q and S in the deeper layer, indicating that the oceanic q
and S in the deep layer have larger uncertainties than in the upper

layer in the CMIP6 ESMs. We have used the centered VFE diagram

to evaluate the anomaly vector fields of seasonal climatology

(Supplementary Figure S4), with the outcomes closely resembling

those obtained from the uncentered VFE diagram.

The VFE diagrams preliminarily show the model abilities of

ESMs through the VSC and RMSL metrics across all four seasons.

To delineate the capacity of these models in detail, the 17 CMIP6

ESMs are compared with the reference data. We conduct the

comparison by evaluating the VME (ME), cRMSVD (cRMSD),

cRMSL (SD), and cVSC (CORR) of the seasonal climatology of the

near-surface atmospheric fields and the oceanic q and S (Figures 8,

9; see Supplementary Figures S5-S8 in the Supplementary Material

for the quantitative values in detail). Consistent with the annual
FIGURE 7

Similar to Figure 4, but for the vector fields of climatological seasonal mean. (A) the climatological seasonal mean during the austral summer
(December, January, and February), (B) Similar to (A), but for the austral autumn (March, April, and May), (C) Similar to (A), but for the austral winter
(June, July, and August), and (D) Similar to (A), but for the austral spring (September, October, and November). The blue names of ESMs denote that
the differences of the RMSL between the ESMs and reference data are less than 0.25.
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assessment, these metrics also employ the centered statistics

decomposing seasonal fields into anomaly and mean components.

Considerable differences have been identified among the CMIP6

ESMs in the simulated spatial SD of different fields and seasons

(Figure 8). Across all seasons in the STZ region, a larger number of

models, 10 of 17 CMIP6 ESMs, tend to overestimate the variability of

10 m winds. In terms of the spatial variability of q2m, most ESMs also

tend to have an overestimation by 2%-45% in the austral summer,

autumn, and winter. The CanESM5 and CanESM5-CanOE models

both exhibit overestimations up to 45% in winter. In contrast, most
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CMIP6 ESMs have a better representation of q2m in spring. Most

CMIP6 ESMs underestimate the spatial variability of t2m, rlds,

qsurface, and Ssurface fields across all seasons, with the lowest

estimation of Ssurface by the INM-CM4-8, while the simulation of

rsds field tends to be systematically overestimated. Most CMIP6

ESMs can properly capture the spatial SD of P in different seasons. In

terms of the spatial variability of qabove1500 and Sabove1500, the CESM2

and CESM2-WACCM models exhibit significant overestimation

across all seasons. In contrast, the MPI-ESM1-2-LR and INM-

CM4–8 models show a significant underestimation in simulating
FIGURE 8

Similar to Figure 5, but measures the abilities of CMIP6 ESMs in simulating the seasonal climatology. As shown in the bottom-left legend, each
square is divided into four triangles representing the ESM performance in different seasons. Below the table are shown the colored bars for different
statistical metrics.
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the Sabove1500. With cRMSL larger than 1, most ESMs have

overestimation across all seasons, whereas the IPSL-CM6A-LR

models have underestimations throughout the year. Since the

CESM2 and CESM2-WACCM models have relatively larger

overestimations of the spatial variability of u10m, v10m, and

qabove1500, these two models have the largest cRMSL in the austral

autumn, with values of 1.392 and 1.409, respectively.

For the simulated spatial pattern of t2m, q2m, rsds, rlds, qsurface, and
qabove1500, the CMIP6 ESMs generally exhibit good performance across

four seasons, with CORRs typically exceeding 0.9 (Figure 8). In

contrast, in terms of the simulated spatial pattern of P, Ssurface, and

Sabove1500, the CMIP6 ESMs show relatively poorer performance in

reproducing the spatial pattern of the reference data, exhibiting CORRs

between 0.5 and 0.9. While reproducing oceanic S spatial patterns

remains challenging for the CMIP6 ESMs, several models, including

the CanESM5, CanESM5-CanOE, GFDL-ESM4, IPSL-CM6A-LR,

MPI-ESM1-2-HR, and UKESM1-0-LL show relatively good

performance, with the CORRs of S exceeding 0.8 across all seasons.

While most ESMs can capture the spatial patterns of the u10m and v10m
during the austral summer, the MIROC-ES2L exhibits a poor wind

pattern similarity with the winds of the reference data across all

seasons, with the CORRs lower than 0.9. To comprehensively assess

the simulated spatial patterns of the ESMs in the STZ, we calculate the

cVSCmetric for an overall performance evaluation. TheMIROC-ES2L

model shows the lowest cVSC among the 17 CMIP6 ESMs across four

seasons. Most CMIP6 ESMs exhibit relatively poorer performance in

simulating the spatial pattern of the near-surface atmospheric fields

and the oceanic q and S during the austral winter, with cVSC generally

lower than 0.9.

Remarkable diversity exists among the CMIP6 ESMs in

simulating the ME of different variables across different seasons

(Figure 9). Most CMIP6 ESMs overestimate u10m over the STZ

across four seasons, except for IPSL-CM6A-LR and MIROC-ES2L.

In contrast, most CMIP6 ESMs underestimate v10m across four

seasons, with the lowest value of -0.774 from the MRI-ESM2–0 in

spring, except for the IPSL-CM6A-LR, MIROC-ES2L, and INM-

CM4–8 models. Most CMIP6 ESMs have a good representation of

t2m and P in simulating the ME across seasons. Yet, the MIROC-ES2L

model has a relatively large estimation of the ME of P across all

seasons. The ME of q2m and rlds, are generally overestimated in most

CMIP6 ESMs, whereas the rsds in most CMIP6 ESMs shows negative

biases in the ME. The ME of qsurface of all the CMIP6 models shows

negative biases in the austral winter. In terms of Ssurface, the MPI-

ESM1-2-LR, MPI-ESM1-2-HR, and NorESM2-MM models match

well with the reference data, with the absolute values of ME less than

0.1 across all seasons. In terms of both Ssurface and Sabove1500, most

CMIP6 ESMs exhibit underestimation as indicated by the negative

ME values, while the INM-CM4–8 model shows relatively poor

performance with the ME values less than -1 across all seasons.

Measuring the differences between two vector fields, the VME metric

shows that theMPI-ESM1-2-HRmodel has the minimumVME value

in the austral summer, autumn, and winter, while the UKESM1-0-LL

model has the minimum VME value in the austral spring.

The statistics of cRMSD exhibit similar results to the estimation of

ME (Figure 9). During the austral summer, autumn, and winter, the
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values of cRMSD of the near-surface atmospheric fields and the oceanic

q and S are all less than 1, indicating relatively good agreement with the

reference data. Yet, the MIROC-ES2L model shows relatively poor

performance in simulating the u10m, v10m, and P, with the values of

cRMSD larger than 0.95 in winter. Among the CMIP6 ESMs, the

GFDL-ESM4 model has the minimal cRMSVD (0.242 and 0.308) in

the austral summer and autumn. The MPI-ESM1-2-HRmodel has the

minimal cRMSVD (0.361 and 0.472) in the austral spring and winter.

These results indicate that these two models have the smallest overall

error of multiple anomaly fields in the corresponding season.

Similar to the evaluation of the climatology annual mean vector

field, we further calculate the values of the cMIEI and cMISS. These

statistical metrics are used to assess the simulation capability of the

17 CMIP6 ESMs for the near-surface atmospheric fields and the

oceanic q and S in the STZ region in different seasons (Figures 9, 10).

Most CMIP6 ESMs show good performance in the austral summer

and relatively poor performance in the austral winter (Figure 10A).

The MIROC-ES2L model has the maximum values of cMIEI across

all seasons, implying a relatively poor performance. The evaluation

of cMISS is largely consistent with the results of cMIEI (Figure 10B).

Based on the cMIEI and cMISS metrics, GFDL-ESM4 shows the best

performance during the austral summer and autumn. MPI-ESM1-2-

HR and NorESM2-MM perform best in the austral winter, andMPI-

ESM1-2-HR leads in the austral spring. In addition, the original

vector fields are also analyzed with uncentered statistical metrics

(Supplementary Figures S9-11).
4 Conclusion and discussion

The critical role of air-sea interactions in the STZ, particularly

the freshwater and heat fluxes, influences water mass formation and

ocean stratification, which in turn affect the global climate (IPCC,

2021). However, the overall performance of the CMIP6 ESMs over

the STZ remains unclear. To address this gap, the study aims to

provide a comprehensive evaluation of the CMIP6 ESMs over the

STZ by using the MVIE method. Unlike previous studies that

focused primarily on individual variables, the MVIE method

evaluates the multivariable fields as an integrated vector field.

Based on the MVIE method, we evaluate the performance of 17

CMIP6 ESMs in reproducing the near-surface atmospheric fields

and the oceanic q and S fields over the STZ region. Eleven variables,

including u10m, v10m, t2m, q2m, P, rsds, rlds, qsurface, qabove1500,
qbelow1500, Ssurface, Sabove1500, and Sbelow1500, have been introduced

as an integrated vector field for the multivariable evaluation. Our

systematic evaluation identifies the advantages and limitations of

these ESMs in reproducing the near-surface atmospheric fields and

the oceanic q and S fields over the STZ region.

Our evaluation shows that the MME of CMIP6 ESMs shows

relatively strong biases in u10m, v10m, q2m, qsurface, qbelow1500, and
Sbelow1500 over the STZ relative to the reference data (ERA5 and

WOA23). For the atmospheric fields, positive biases of u10m and

overestimated negative values of v10m dominate the Indian Ocean

and southern Australian sectors, while q2m is overestimated across the

STZ region. For oceanic fields, the simulated qsurface shows a zonally
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banded thermal structure, with cold biases prevalent at 40-55°S and

warm biases dominating at 30-40°S in the Indian and Atlantic sectors.

This pattern aligns with the warm SST biases in most CMIP6 ESMs,

which may be attributed to the adiabatic AMOC transport of deep-

ocean heat anomalies from the North Atlantic (Luo et al., 2023).

Critically, for deeper ocean layers, qbelow1500 shows pervasive warm

biases, while Sbelow1500 exhibits broad fresh biases.

A comprehensive evaluation of 17 CMIP6 ESMs in simulating

climatological annual mean fields in the STZ has been conducted.

Significant inter-model disparities have been identified in simulating

both spatial patterns and amplitudes, with particular challenges for

most models in representing qbelow1500 and Sbelow1500 in deeper layers.

The GFDL-ESM4 has the best spatial pattern similarity (cVSC closest
Frontiers in Marine Science 16
to 1), while the INM-CM4–8 shows the minimal amplitude bias

(cRMSL closest to 1). We find that 10 models, including the

ACCESS-ESM1-5, CanESM5, CanESM5-CanOE, CNRM-ESM2-1,

GFDL-ESM4, MIROC-ES2L, MRI-ESM2-0, NorESM2-LM,

NorESM2-MM, and INM-CM4-8, exhibit relatively good skill in

reproducing the integrated climatological annual mean vector field,

as indicated by their lower cMIEI values. Furthermore, eight models,

including the ACCESS-ESM1-5, CanESM5, CanESM5-CanOE,

CNRM-ESM2-1, GFDL-ESM4, MRI-ESM2-0, NorESM2-LM, and

NorESM2-MM, consistently rank highest in the integrated skill.

These models show both cMIEI < 1 and cMISS > 0.9, signifying

relatively better overall representations of the near-surface atmospheric

conditions and upper-ocean q and S fields over the STZ.
FIGURE 9

Similar to Figure 8, but for the ME and cRMSD.
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FIGURE 10

Similar to Figure 6, but measuring the abilities of CMIP6 ESMs in simulating the vector fields of climatology seasonal mean. (A) cMIEI and (B) cMISS
values for 17 CMIP6 ESMs in the STZ region. Blue bars represent the austral summer, green bars represent the austral autumn, orange bars represent
the austral winter, and purple bars represent the austral spring.
FIGURE 11

Bootstrap evaluation of the performance of ESMs based on the cMISS and cMIEI values. The boxplots illustrate ranking distributions of 17 CMIP6 models
derived from the climatological annual mean (blue color denotes the cMIEI; orange color denotes the cMISS), with rankings obtained through 10,000
bootstrap resampling iterations. Each box represents the interquartile range and median, with the whiskers indicating the 90% confidence interval. Better
model performance is indicated by lower rank values (numerically smaller), corresponding to lager cMISS values or lower cMIEI values. Models are
ordered along the x-axis by descending cMISS values, positioning better-performing models toward the left side of the figure.
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To further evaluate the significance of the model rankings, we

employed a bootstrap resampling method to show the robustness of

our evaluation. The leading models still occupy top positions

(Figure 11), including the GFDL-ESM4, CNRM-ESM2-1,

CanESM5, CanESM5-CanOE, ACCESS-ESM1-5, MRI-ESM2-0,

NorESM2-MM, NorESM2-LM, INM-CM4-8, and MIROC-ES2L

models. Although the bootstrap resampling confirms the statistical

significance of the superior performance of these models, there are

some slight differences between the cMIEI and cMISS rankings. The

differences between the cMIEI and cMISS rankings should be

attributed to the adjustment of the relative importance between

the pattern similarity and amplitude errors in the calculation of

cMISS (Zhang et al., 2021).

The CMIP6 ESMs also show notable differences in their ability

to simulate the seasonal climatology of multiple variables in the

STZ. The capabilities of the CMIP6 ESMs show seasonal

dependence, with better performance during the austral summer

and relatively reduced ability in the austral winter. Compared to the

evaluation of the annual mean climatology, the assessments of the
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seasonal climatology reveal generally improved pattern similarity,

suggesting more reliable model representations in the ocean upper

layer. The performance of ESMs is sensitive to the vertical depth of

the ocean layers involved, with particular biases in q and S below

1500 m, which may significantly degrade the overall results of

evaluation. Overall, the evaluation of the seasonal climatology

underscores the importance of better resolving the oceanic q and

S in the deep layer to enhance the ability of ESMs. For the austral

winter, the NorESM2-MM and MPI-ESM1-2-HR exhibit the best

performance according to the cMIEI and cMISS metrics, while

MPI-ESM1-2-HR leads in the spring. During the summer and

autumn, GFDL-ESM4 shows better performance. These model

rankings are also validated by the bootstrapping method

(Supplementary Figures S5-S8).

Furthermore, to analyze potential interrelationships among

biases in model variables, we calculated the pairwise correlation

coefficients of cRMSD values across the ESMs (Figure 12). These

high positive (low negative) correlations suggest that error patterns

in these variables tend to co-occur across models: models that
FIGURE 12

The CORR of cRMSD between pairwise variables of the climatology annual mean across 17 CMIP6 ESMs. Bold black numbers indicate that the CORR
between two variables reaches the significance level of 0.05.
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perform well in simulating one variable tend to perform well (poor)

in the correlated variables, and conversely, models showing large

errors in one typically show large (small) errors in the others. We

mainly discuss the statistically significant correlations, with CORRs

lager than 0.8. The bias of u10m shows a strong positive correlation

with v10m, with the CORR of 0.83, indicating that the ESMs

exhibiting larger errors in one wind component typically show

larger errors in the other. Similarly, model bias in t2m shows

particularly strong positive correlations with P, rlds, qsurface, and
Ssurface, with the maximum of 0.94 with qsurface. The bias of P has a

strong positive correlation with t2m, with the CORR of 0.86. The

bias of qbelow1500 shows an extremely high correlation with Sbelow1500
(CORR = 0.99), yet the capability of ESMs in simulating qbelow1500
and Sbelow1500 appears relative independence of other variables.

Conversely, the bias of q2m shows no significant correlation with

other variables, suggesting that the representation of q2m may

operate independently from other examined variables. The

CMIP6 ESMs exhibit substantial biases and pronounced inter-

model spread in simulating multivariable fields in the STZ region.

The warm and fresh biases in the simulated deep-ocean layers

(below 1500 m) of the STZ likely stem from deficiencies in

representing some key processes. A primary reason is probably the

biased representation of AABW formation (Heuzé, 2021). For many

ESMs, AABW forms via open-ocean convection rather than through

more realistic shelf processes, leading to insufficient ventilation and

incomplete isolation of the abyssal ocean from atmospheric forcing.

This can result in an accumulation of heat and a failure to replicate

the salinity characteristics in the deep STZ. In addition, remote

processes may also contribute to these biases. The adiabatic

transport of heat anomalies from the North Atlantic via the

AMOC has been proposed as a mechanism for generating

Southern Ocean surface warm biases (Luo et al., 2023). It is

plausible that this mechanism also influences warming at depth.

Moreover, uncertainties in freshwater forcing around Antarctica may

contribute to the generation of overly dilute shelf waters (Purich and

England, 2021). Such biases can arise from excessive precipitation,

unrealistic representations of sea-ice melt and export, or

underestimated basal and ice-shelf melt. These freshwater

anomalies can alter the density of shelf bottom waters, reducing the

efficiency of dense water formation and downslope export, and may

therefore lead to the fresh bias that is simulated in the deep Southern

Ocean (Purich and England, 2021). More importantly, the relatively

coarse resolution inmost CMIP6models cannot adequately represent

oceanic mesoscale processes (Hewitt et al., 2020), yet mesoscale

eddies are critical for the accurate transport and mixing of heat

and freshwater in the Southern Ocean. The influences of mesoscale

eddies may not be fully represented through parameterization

schemes in most CMIP6 models, and such caveats could introduce

biases in the deep ocean. The combination of these local and remote

processes may result in a challenge for current ESMs in reproducing

the structure of q and S in the deep region of the Southern Ocean.

This study still has several limitations. First, due to the limited

observational data employed in the assimilation of ERA5 and the

objective analysis in WOA23, these two reference data sets may still

have uncertainties, particularly in the data-sparse Southern Ocean.
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Second, the three-layer classification of the oceanic fields in this

study has not evaluated the thermocline and halocline structures

and water masses, respectively. Therefore, a refined vertical

discretization aligned with the oceanic mixed layer depth may

favor the representation of ESMs in the STZ.
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