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The Weddell Sea is one of Earth’s most remote and least studied regions. The

region around the Larsen C Ice shelf has been largely inaccessible because of its

remoteness, extreme cold, rough seas, ice cover, and deep waters. This study

documents the first discovery of maintained nesting sites of Lindbergichthys

nudifrons (yellowfin notie) in the western Weddell Sea. Nesting sites were found

at all locations surveyed during the Weddell Sea Expedition 2019 onboard the SA

Agulhas II using the remotely operated vehicle, Lassie. Unlike previous studies, no

significant differences in localised water temperature were detected between

nesting sites and surrounding waters, except at one site. Novel nesting patterns,

groups of nests close to each other, were discernible throughout the video

footage; These patterns are thought to have evolved as a form of group

predation protection behaviour. These findings provide critical evidence of

unique, structured breeding habitats, fulfilling key criteria for the designation of

Vulnerable Marine Ecosystems and strengthening the case for the proposed

Weddell Sea Marine Protected Area.
KEYWORDS

Antartica, cryonotothenioid, Lindbergichthys nudifrons, nesting patterns, Western
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Introduction

Antarctica, the southernmost continent beyond 60° S, is one of Earth’s most remote and

extreme environments. Its persistent sea ice, low winter light, and frigid temperatures make

it challenging to study. This also provides opportunities to uncover fundamental biological

and environmental processes (Vernet et al., 2019; Hutchinson et al., 2020). The Weddell

Sea, located within the Southern Ocean, is significant for its biological richness and its

contribution to global ocean circulation and climate (Hutchinson et al., 2020). It plays a

critical role in forming water mass interactions that drive large-scale ocean currents,
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regulate global gas exchanges, and influence climate patterns

(Foldvik et al., 2004; Vernet et al., 2019). These interactions make

the area a hotspot for biological productivity, activity, and

abundance (Nachtsheim et al., 2019).

The Commission for the Conservation of Antarctic Marine

Living Resources (CCAMLR) has proposed the establishment of

The Weddell Sea MPA (WSMPA; (Teschke, 2023). This area hosts

one of the richest communities in the Antarctic region for fish

(Baena et al., 2023), brittle stars (Lau et al., 2021), cephalopods

(Staffer et al., 2021; Nesis et al., 1998), sponges (Brey et al., 1994;

Brandt et al., 2007; Barthel and Gutt, 1992), marine birds (Reisinger

et al., 2022; Teschke et al., 2021), and mammals (Reisinger et al.,

2022; Teschke et al., 2020). Breeding grounds or key hunting and

foraging areas for cryonotothenioids, marine mammals, and birds

all occur within the proposed protection area (Hindell et al., 2020;

Fretwell et al., 2012; van Franeker, 1996; Purser et al., 2022).

The suborder Notothenioidei represents a group of fish

uniquely adapted to Antarctic environments (Near et al., 2015; La

Mesa et al., 2021). They exhibit slow maturation, low fecundity, and

large egg production, with most species spawning demersally and

showing parental care during incubation, which can exceed 100

days (Everson, 1984; Gon and Heemstra, 1990; La Mesa et al., 2021;

Marshall, 1953; Novillo et al., 2022).

The two species in Lindbergichthys have a benthic lifestyle as

adults and reach a maximum length of 15cm and 19.5cm for L.

mizops and L. nudifrons, respectively (Froese and Pauly, 2022). The

latter occupies a greater depth range between 3–400 m compared to

20–220 m for the former. Parental care behaviour has been found in

Antarctic icefish, with nesting and egg-guarding being the most

common forms (Ferrando et al., 2014; Novillo et al., 2022; Kock

et al., 2006). Species in the genus Lindbergichthys often exhibit

parental care nesting behaviour, which has been well-studied

(Eastman, 2013; La Mesa et al., 2021; Konecki and Targett, 1989).

For L. nudifrons, sexual maturity is reached at age 4 to 5 years and

length of 8 to 9cm (Hourigan and Radtke, 1989; La Mesa et al.,

2017). Females spawn in a nest in late Austral autumn to winter

(May to June), usually protected by crevices or rocks (Hourigan and

Radtke, 1989). The male guards the nest and eggs, including chasing

away egg predators. Post-hatching, larvae migrate to the pelagic

zone before returning to the benthos in April (Kellermann, 1989).
Study aims

Considering the challenges of observing the seafloor in Antarctica,

many study questions are conducted post-hoc, once exploration has

occurred. The Weddell Sea expedition 2019 (WSE) was a multi-

disciplinary scientific endeavour to explore habitats around the Larsen

C ice shelf that had recently calved. The resulting iceberg, A-68, and its

grounding provided a rare opportunity to explore the seabed that had

been previously beneath the ice. As part of this voyage of scientific

discovery, video of benthic areas was collected. Numerous benthic fish

nests were observed. Our aims are to present the resulting analysis of

videos taken from this expedition.
Frontiers in Marine Science 02
Materials and methods

Study site

Amajor component of the SouthernOcean, theWeddell Sea, is an

embayment off the coast of Antarctica between the Antarctic

Peninsula in the West and Coats Land in the East. The Weddell Sea

Expedition 2019 (WSE) sampling locations were on the North-West

Weddell Sea, off the coast of the Antarctic Peninsula (Figure 1).
Data acquisition and analysis

The WSE was conducted between 1 January and 22 February

2019 (Dowdeswell et al., 2019). Five days (14th January – Site B, 20th

January – Site D, 21st January – Site C, 22nd January – Site E, and

23rd January – Site A; Figure 1) were allocated to benthic surveys

using the ROV Lassie, with 27 hours of video data collected. The

survey locations were selected to represent areas that had been clear

of ice cover for varying lengths of time: Site C - 5–10 years, Site D -

15–18 years, and B - 50 years, and Site A, which has been clear of ice

cover in glacial history. Seafloor depth ranged between 350–360 m

for Site A, 394–407 m for Site B, 392–407 m for Site C, 290–294 m

for Site D, and 376–382 m for Site E. The mean maximum depth

across all five sites was 376 ± 19m. All video footage captured from

the ROV was visually inspected for fish nests, and if found, a

snapshot of the video was taken to capture the nests and timestamp.

These snapshots were then used to quantify the number of nests,

diameter of nests (cm), and unoccupied shells or rock presence

(with sizes if present) using ImageJ (Abràmoff et al., 2004). The GPS

location and depth were then noted alongside the outputs from the

measurement data. All distance measurements were facilitated by

the two lasers attached to the ROV at a 10cm distance from each

other. Other major epifauna were recorded and identified visually

during the video analysis, with emphasis on the surrounding

regions of the noted nesting locations. A thermometer measured

ambient water temperature around the ROV every 10 seconds,

although the Site E data was unretrievable. Due to the lack of

sediment samples, the sediment size was estimated visually, and

wide characteristics were given for each location. When

determining if a nest was present, small depressions in the

substratum (those below 6.5cm) were omitted. A large plankton

bloom before the video surveys caused flocculent to settle and

carpet the seabed, which enabled nests to be classified as ‘inactive’

abandoned nests (flocculent in the depression), and ‘active’

maintained nests (no flocculent inside the depression; Figure 2).

The grouping formations of nests were evaluated and

categorised into six nesting patterns (Figure 3), which represented

all the configurations seen within the videos. All data analyses and

mapping were performed in the open-source software R v.4.2.1 (R

Core Team, 2017). The maps were generated using the package

ggMap (Kahle and Wickham, 2013). Data collected underwent

normality testing, and diameter data had a log transformation to

achieve normality. T-test and ANOVA with post-hoc Tukey testing
frontiersin.or
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were used to compare the temperature, nesting pattern and site

using the ‘stats’ package (R Core Team, 2017). The occurrence of

rocks beside nests was also investigated with a generalised linear

mixed model with Gaussian distributions to determine whether the

rock size has any effect on the size of the nests. Six patterns were

present: ‘Cluster’, ‘Crescent’, ‘Line’, ‘Oval’, ‘Sharp U’, and ‘Singular’.
Results

Nests were generally circular and shallow, parabolic in shape,

with the sediment built up on all sides of the nests. Only L.

nudifrons were seen in the nests, suggesting these nests were

created by this species, which aligns with previous research (Gon

and Heemstra, 1990). The average nest size recorded here (12.3cm)

was larger than L. nudifrons published size at maturity (9.1 to

9.5cm). The average fish size (10.3cm) was also determined to be

greater than their maturation size. Other fishes identified as species

other than L. nudifrons were larger (greater than the published

maximum length of L. nudifrons) and are known to have larger sizes

at maturity (Hourigan and Radtke, 1989). No eggs were seen within

any of the nests, presumably as the WSE occurred after known

hatching times (Austral Spring; (Hourigan and Radtke, 1989). Some

larvae were seen within the nest circumference.
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Summary of sample site nesting statistics

A total of 1,036 individual active nests were located across 277

nesting groups on the five Remotely Operated Vehicles (ROV)

dives. 93 nests (9%) were classed as inactive and 72 (7%) contained

larvae in and/or around the nests. Both active and inactive nests

were discovered at depths between 290 and 411 metres. A mean of

2.72 ± 0.22 nests per nesting group was found across all the dives.

The most abundant nesting group location was found at site D, with

151 groups of nests, with a mean of 2.3 nests per group. The most

abundant location was Site E, with 461 individual nests recorded.
Novel nesting patterns

Six patterns were present: ‘Cluster’, ‘Crescent’, ‘Line’, ‘Oval’,

‘Sharp U’, and ‘Singular’ (Figure 3). The ‘Cluster’ pattern is defined

as a group of nests located close to each other without forming a

specific shape or structure. The ‘Crescent’ nesting pattern is

arranged in a curved line, resembling a crescent moon, and the

nests are wider at the base and shorter in diameter on the limbs. The

‘Line’ pattern contains nests that are in an approximate linear path

with one other nest, or many other nests. Nests that complete a full

‘Oval’ shape are thus named. Patterns of ‘Sharp U’ consist of a
FIGURE 1

Overview of the nesting site locations. The left panel shows the regional overview of the study area along the East coast of the Antarctic Peninsula.
Bathymetry is illustrated with colour shading from 0 to 2,500+ m. Contour intervals are set at 100m intervals to 500m, and then 1000, 2000 and
2500m deep. The inset map provides continental context, with the red rectangle indicating the area shown in the main panel. The black squares on
the main map outline the areas detailed in the side panels. The spatial distribution of individual nests (black points) is shown at Site B, Site A, Site D,
and Sites C and E. All site maps on the right are presented at the same geographic scale.
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typical ‘U’ shape, where the limbs are perpendicular to each other.

The ‘Singular’ pattern is those nests that are not adjacent to nor

associated with any other nest.

This is the first report of variable nesting grouping patterns

exhibited by cryonotothenioids. The Cluster pattern was

represented in 42.08% of all nests, followed by Singular, Sharp U,
Frontiers in Marine Science 04
Oval, Crescent, and Line at 18.82%, 16.8%, 10.14%, 8.5%, and

3.67%, respectively.

There was a significant difference in the diameter of the different

nesting patterns (ANOVA; F5,1030 = 13 p < 0.001) (Figure 4). Singular

nests had a significantly higher average diameter than those in Cluster,

Crescent, Oval, and Sharp U patterns (Tukey; p < 0.001).
FIGURE 2

Comparison of non-maintained, abandoned nests (left) and an ‘active’ maintained nest (right) found at Site D. Laser lights have been illustrated with a
red line and 10cm annotation.
FIGURE 3

Patterns of cryonotothenioid nests from top left to bottom right; Cluster, Crescent, Line, Oval, Sharp U, and Singular nests.
frontiersin.org
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Nest diameters were significantly different between the

sampling sites studied (ANOVA; F4,1031 = 8.44 p < 0.001)

(Figure 5). The diameters of the nests found on Site B were

significantly lower than Sites D and E (Tukey; p < 0.01, and 0.05,

respectively). The nests found in Site A had significantly lower

diameters than Sites D and E (Tukey; p < 0.001, and

0.001, respectively).
Distribution of nesting sites

Local temperature distribution ranged between -1.1 °C to -2.09 °

C across the nesting sites. The coldest nesting sites were on Site D at

304m deep (-2.04 to -2.09 °C), whereas the warmest site was on Site

B at 418m deep (-1.95 to -1.1 °C). The localised nesting temperature

in Site C and Site A was -1.7 °C and -1.75 to -1.8 °C, respectively.

Localised nesting temperatures did not significantly differ from the

surrounding areas (p > 0.05), apart from Site A, where the nesting

sites were slightly colder (~0.2 °C) than the surrounding non-nested

areas (t-test; t224.39 = -5.1227, p < 0.001).
Frontiers in Marine Science 05
A total of 154 nests (14.9% of total active nests) had pebbles

within and around the nests. Nesting sites adjacent to rocks were

seen at every site apart from Site C. Only 213 nests were recorded

adjacent to larger rocks, meaning 916 nests were not associated with

rocks. Mean rock sizes adjacent to the nests were 26.8 ± 0.86cm.

Whilst not significant, the nests adjacent to rocks were smaller, at a

mean diameter of 11.85 ± 0.34cm in comparison to 12.42 ± 0.16cm

for those not near rocks (p > 0.05). Inside nests, larger rocks at the

bottom were seen less frequently (34 nests), but smaller rocks and

shells were found aside on the edges of the nests. No relationships

were found between the extent of ice-free years and nest

characteristics (p > 0.05).

In all locations visited, the visible epifauna were typically low in

diversity. Echinoderms and Cnidaria were the most abundant fauna

observed, apart from the nests. Among the echinoderms, brittle

stars (Ophiuroidea) were the most frequently seen, followed in

abundance by feather stars (Crinoidea). Brittle stars were not found

inside the nests; however, many were seen on the peak rims or edges

of the nests. Individuals were located on the rim in 35% of observed

nests. Abundant cnidarians, including Umbellula and Leptogorgia,
FIGURE 4

Nesting diameter (cm) abundances faceted by grouping pattern exhibited with the corresponding number of nests found; red dotted line indicates
the mean nest diameter (cm).
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were observed in the surrounding areas but never physically in

contact with nests. Holothurians were also recorded near nests at

Sites B, D, E, and A, though these individuals were further away and

mainly seen resting. Similarly, the predatory ribbon worm,

Parborlasia corrugatus, was seen away from nesting locations.

Other less abundant individuals included two morphotypes of

siphonophores and an octopus.
Discussion

This study documents a large and widely dispersed nesting

aggregation of the yellowfin notothenioid, Lindbergichthys nudifrons,

in the western Weddell Sea, an area made accessible by the recent

calving of the Larsen C Ice Shelf. The most significant finding is the

discovery of six distinct, geometric nesting patterns, which we propose

are primarily driven by biotic interactions, namely predation pressure,

rather than the abiotic factors observed in other large Antarctic fish

breeding colonies. These findings, summarised in Table 1, provide new

insights into the complex behavioural ecology of Antarctic
Frontiers in Marine Science 06
notothenioids and underscore the ecological significance of this

recently uncovered region.

The sampling locations were chosen to represent the time since

ice coverage, allowing for a comparison between the duration of ice-

free conditions and nest characteristics; however, no relationships

were found. A more influential factor was the local substratum.

Different substrata were found between sites: visually, Site B was

rockier, with a high abundance of invertebrate fauna, such as brittle

stars, feather stars, and corals. In contrast, the other locations (A, C,

D, and E) sediment tended to be finer and hosted more nests and

teleosts. This suggests a species preference for softer sediment for

nest construction.

This study provides the first documentation of complex,

variable nesting patterns for L. nudifrons. The nests themselves

were parabolic in structure. The depth of nest depression varied,

though this was not possible to measure with precision from the

ROV footage. The presence of larger rocks that remained within the

nests, alongside smaller pebbles that appeared to have been moved

to the nest wall, could be indicative of the amount of energy

expended on nest creation. As no fish were observed actively
FIGURE 5

Nesting diameter abundances faceted by site sampled with their corresponding number of nests found, the red dotted line indicates the mean nest
diameter (cm).
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building nests, this remains an area for future investigation. A

consistent feature was that in grouped nests, the excavated sediment

was typically built up on the sides away from the centre of the

overall pattern, suggesting a coordinated construction effort that

maintains separation and structure. In a promising sign of

reproductive success, fish larvae, identified as L. nudifrons, could

be seen floating within the circumference of some nests. The

presence of larger rocks beside some nests, particularly evident in

the ‘Sharp U’ pattern, is a behaviour that has been noted before in

notothenioids (Hourigan and Radtke, 1989). We observed that

smaller nests were adjacent to rocks more often than larger nests.

These rocks may provide vital shelter from benthic currents or act

as enhanced refugia from predation. On a seafloor that is visually

rather flat and homogenous, any additional physical complexity,

such as a rock, would confer a significant advantage in predation

protection, corroborating earlier hypotheses by Hourigan and

Radtke (1989).

We identified and categorised six different nesting patterns

(Table 2). Of these, ‘Sharp U’, ‘Oval’, and ‘Crescent’ are the most

similar in their geometric structure. The observable differences

could be attributed to the ‘Sharp U’ and ‘Crescent’ patterns being

incomplete or interrupted versions of a full oval. The most common

pattern, ‘Cluster’, which accounted for over 42% of nests, lacked a

specific geometric shape and was instead a dense accumulation of

many nests in a small area. ‘Singular’ nests, the second most

abundant pattern, were isolated and had the highest mean nest

diameter. This observation could suggest that larger, older and

more dominant adults are more comfortable nesting away from the

group, being more capable of protecting their nests individually.
Frontiers in Marine Science 07
The ‘Line’ pattern was very distinct and the least abundant. We

hypothesise that these patterns are an anti-predator adaptation. The

rarity of the ‘Line’ pattern, for example, could be associated with a

reduction in its effectiveness for community anti-predator

adaptation, as no single nest achieves a centrally protected

position. In contrast, the ‘Cluster’ pattern strongly aligns with the

selfish herd theory proposed by Hamilton (1971), where individuals

reduce their domain of danger by putting other individuals between

themselves and an approaching predator. This would offer a

significantly reduced risk to the nests in the centre of the cluster.

Such defensive patterning, while novel for this species, is a well-

documented phenomenon in fish nesting colonies in shallow

tropical reef scenarios, where it is also attributed to increased

predation protection (Gross and MacMillan, 1981; Tyler Iii,

1995). Previous research on L. nudifrons has shown that guarding

males will defend a territory up to 25cm away from their nest

(Hourigan and Radtke, 1989). In the dense patterns recorded here,

this defence zone would frequently encroach on their neighbour’s

nests, suggesting a high level of tolerance and a communal

defensive posture.

This defensive behaviour is likely a direct response to the local

predators. The epifauna observed near the nests provides several

candidates. It is possible that scavenging brittle stars (Ophiuroidea)

positioned on the nest edges were predating on cryonotothenioid eggs, a

behaviour previously noted from stomach content analysis (Volage

et al., 2021; Fratt and Dearborn, 1984). The strategic location of these

brittle stars also suggests they may be taking advantage of food sources

carried by water currents that are channelled over the nests. A more

significant threat, however, may be the predatory nemertean,
TABLE 1 Summary of the five sites visited for nesting groups and different nest types (inactive and ones with larvae), mean nests per group (± SE),
average site depth (± SE), and the overall nest density calculated per kilometre of the ROV survey track.

Site
Number of
groups

Inactive
nests

Nests with
larvae

Mean nest per
group

Average depth
(m)

Nest density (nests/
km)

Site A 53 16 13 3.13 ± 0.44 356.13 ± 0.30 44.9

Site B 11 6 0 4.5 ± 0.89 399.5 ± 0.53 13.0

Site C 2 5 0 4.00 410.88 ± 0.16 11.4

Site D 151 48 43 2.3 ± 0.19 293.64 ± 0.23 115.8

Site E 60 18 16 7.68 ± 0.55 355.05 ± 0.37 332.2
TABLE 2 Definitions and characteristics of the described nesting patterns.

Pattern Definition Characteristics

Cluster Group of nests close together High density, often overlapping or touching

Crescent Nests in a curved line Wider nests at the base, shorter nests on limbs

Line Nests in a straight line Evenly spaced along a linear path

Oval Nests forming a closed oval shape Evenly spaced around the perimeter

Sharp U Nests in a U-shape with sharp limbs Straight limbs meeting at a sharp angle

Singular Individual nests not near others Isolated, typically larger nests
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Parborlasia corrugatus. This species is a voracious scavenger and

predator and was observed in the general area (Gibson, 1983). We

propose that the complex nesting patterns may serve to reduce

predation by P. corrugatus. As this predator utilises chemotactic

mechanisms to actively search for food, the aggregated nests may

disguise or dilute the individual odour plumes from the eggs. This

could create a confusing sensory environment for the nemertean,

making it more difficult to detect and target a single nest, a crucial

adaptive strategy during the long incubation period. Other fauna were

present but appeared to have neutral interactions; the absence of

physical contact between cnidarians like Umbellula sp. and

Leptogorgia sp. and the nests could imply a neutral relationship, while

the resting behaviour of holothurians near the nests may indicate a low-

energy interaction with the environment.

Two key unresolved questions remain regarding the creators of

these nests: the social structure and the certainty of the species

identification. It is not known whether one mating pair created all

the nests in a group or whether each nest was attributed to a

different, single mating pair; however, it is presumed that each nest

was for a single pair, given the high energetic costs and significant

predation risk involved in guarding even one nest. Furthermore, a

necessary limitation of this study is the certainty of species

attribution for every observed nest. Our attribution to L.

nudifrons is based on strong visual evidence; across 27 hours of

video, it was the only species directly observed occupying or actively

maintaining the nests. However, in the absence of a guarding fish or

eggs at every nest, we cannot definitively exclude the possibility that

a minority were created by other cryonotothenioid species. This is a

particularly relevant caveat, as a recent study have shown species

determination in this group is problematic (Schiavon et al., 2023),

highlighting a challenge common to deep-sea visual surveys.

A striking finding of this study is the lack of a strong, localised

abiotic driver for nest location, particularly when compared to other

known Antarctic fish colonies. Except for Site A, our data show no

significant difference between the water temperature at nesting locations

and the surrounding, nest-free waters. Site B, the warmest site, exhibited

slightly smaller nest diameters. Although the temperature difference

across all sites is marginal (approximately 0.2 °C), it is worth considering

its biological relevance. Studies on ectothermic Antarctic fish suggest

that even such minor temperature variations can influence metabolic

rates (Clarke, 1983; Sandersfeld et al., 2017; Enzor and Place, 2014;

Johnston et al., 1991). However, the considerable overlap in temperature

ranges between the sites, coupled with the lack of a consistent trend,

suggests this small difference is not sufficient to induce significant
Frontiers in Marine Science 08
biological effects such as changes in nest size or recruitment. While it

is uncertain whether this temperature change affects developmental

time, it requires further investigation.

This stands in stark contrast to the large Neopagetopsis ionah

breeding colony reported by Purser et al. (2022) (Table 3). That site

was defined by a dominant inflow of modified warm deep water

(mWDW) that was up to 2 °C warmer than the surrounding bottom

water, a feature hypothesised to be the key factor driving nest site

selection. While it is tempting to draw parallels, the short-term

nature of both temperature data, alongside the fact that the

temperature change in the N. ionah colony was an order of

magnitude greater, limits our ability to make a direct comparison

and underscores a fundamental difference between the two sites.

Since the waters of the high Antarctic shelf are known for their

thermal stability, even small temperature variations may be

ecologically significant, but without long-term monitoring, it is

difficult to assert whether these differences represent a consistent

environmental factor.

The broader oceanography of our study region is certainly a

contributing factor to its overall suitability. The mWDW has

been shown to reach this location, mixing with colder, denser Ice

Shelf Water (ISW) and High Salinity Shelf Water (HSSW). This

mixing of local shelf water masses and the mWDW is known to

drive a greater level of local productivity, likely creating a

favourable environment for a greater abundance of nesting

sites across this area. However, our data suggest this is a

regional, rather than a localised, driver. These oceanographic

processes and how they influence the selection of broad nesting

areas, versus the fine-scale patterns within them, are an advised

focus of future research.

The physical characteristics of the nests also differed logically

with species size, as did the water depths, which conformed with

each species’ published depth ranges and habitat preferences.

Spacing between L. nudifrons nesting sites was more stochastic,

and neighbouring nests were often touching, whereas at the N.

ionah site, nests were spaced ~25 cm away from each other.

Furthermore, the timing of the two expeditions revealed

different stages of the reproductive cycle, suggesting the wider

Weddell Sea is a critical site of species-dependent nesting for over

half the year.

Correctly identifying and defining these unique biological

features is crucial for their conservation. A recent proposal by

Teschke (2023) suggested the terms ‘nest’ and ‘potential nest’, which

are established by the presence of eggs for the former, and the
TABLE 3 The differing drivers and characteristics of these two major Weddell Sea nesting sites (this study, and Purser et al. (2022)).

Feature L. nudifrons (This study) N. ionah (Purser et al., 2022)

Mean Nest Diameter 12.3 cm ~75 cm

Nest Spacing Stochastic, often touching Uniform, ~25 cm apart

Depth Range 290–411 m 420–535 m

Local Temp. Anomaly Nonsignificant (typically < 0.2 °C) Significant (~2 °C warmer)

Primary Proposed Driver Biotic (Predation Pressure) Abiotic (Temperature)
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absence of eggs but with one or more fish present for the latter. Due

to our expedition’s timing post-hatching, it was not possible to

confirm the presence of eggs. However, we were able to confidently

identify occupied, active nesting sites because phytodetritus was

consistently ‘cleaned’ from the nests by adult fish as a form of

maintenance behaviour, whereas the surrounding, unmaintained

seafloor was carpeted in this detritus. This method provides a

reliable proxy for identifying active nesting sites outside of the

spawning season.

This discovery has immediate and significant conservation

importance. Within the 43rd meeting of the Commission for the

Conservation of Antarctic Marine Living Resources (CCAMLR),

the Antarctic and Southern Ocean Coalition agreed that clear video

evidence of fish nesting sites is required to create a Conservation

Measure. Our results provide precisely this evidence for one of the

few documented fish nesting sites in the entire Weddell Sea.

Spawning and nesting sites play a crucial role in the wider spatial

conservation landscape. They are key features used to identify

Vulnerable Marine Ecosystems (VMEs) under the FAO

Guidelines for Management of Deep-sea Bottom Fisheries in the

High Seas and are also identified as features of Ecologically and

Biologically Significant Areas (EBSAs) under the Convention on

Biological Diversity (CBD). Our findings match the criteria and

designations for these respective conservation measures. This work,

therefore, underscores the critical importance of protecting these

unique habitats and provides robust evidence for the designation of

the Weddell Sea Marine Protected Area (MPA).
Conclusion

In conclusion, this study presents the discovery of a large,

active, and well-dispersed cryonotothenioid nesting habitat in the

Western Weddell Sea. The differing nesting patterns are the first

described for this species and are strongly speculated to be a group

behaviour for predation evasion. Crucially, the nesting sites were

not shown to have any site-specificity driven by the tested abiotic

variables, such as localised temperature. This suggests that biotic

interactions are the primary drivers of this complex aggregation, a

significant contrast to other known notothenioid colonies. This

research also provides valuable ground-truthing for the

cryonotothenioid nesting site suitability model from Teschke

et al. (2016) and furthers the discussion into nesting site

definitions as proposed by Teschke (2023). The extensive, active

nesting sites documented here provide further compelling

evidence to support the designation of the proposed Weddell

Sea Marine Protected Area.
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