
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Fabio Carneiro Sterzelecki,
Federal Rural University of the Amazon, Brazil

REVIEWED BY

Natalie Anne Dowling,
Oceans and Atmosphere (CSIRO), Australia
Peilong Ju,
Zhejiang Ocean University, China

*CORRESPONDENCE

Indah Rufiati

indah.rufiati@blueventures.org

RECEIVED 16 June 2025
ACCEPTED 13 October 2025

PUBLISHED 03 November 2025

CITATION

Prince JD, Rufiati I, Septiani WD,
Kembaren DD and Gough CLA (2025)
A novel size-based method for assessing
the spawning potential ratio of
data-poor octopus fisheries.
Front. Mar. Sci. 12:1647742.
doi: 10.3389/fmars.2025.1647742

COPYRIGHT

© 2025 Prince, Rufiati, Septiani, Kembaren and
Gough. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 03 November 2025

DOI 10.3389/fmars.2025.1647742
A novel size-based method
for assessing the spawning
potential ratio of data-poor
octopus fisheries
Jeremy D. Prince1,2, Indah Rufiati3*, Wahyu Dita Septiani3,
Duranta Diandria Kembaren4

and Charlotte Louise Anne Gough3,5

1Biospherics P/L, South Fremantle, WA, Australia, 2School of Veterinary and Life Sciences, Murdoch
University, Murdoch, WA, Australia, 3Blue Ventures Conservation, Bristol, United Kingdom, 4Research
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Cephalopod biology, which is characaterised by short lifespans, semelparous

reproduction, rapid non-asymptotic growth, and seasonally fluctuating biomass,

presents a particular challenge stock assessment. Small scale, data-poor artisanal

octopus fisheries are an increasingly important source of food and income for

coastal fishing communities but pose a particularly pernicious assessment

challenge. We developed and tested a novel size-based data-poor assessment

methodology, demonstrating its applicability with 17 Indonesian fisheries for

Octopus cyanea. The Short-Lived Assessment Model (SLAM) is similar to Length-

based Spawning Potential Ratio Assessment (LBSPR) and Length-based

Integrated Mixed Effects (LIME) methodologies, in assuming that taxa share

both growth curves and a relativity between maximum size and size of

maturity. Incorporating a power curve form of growth typical of cephalopods

and monthly time steps SLAM estimates selectivity at age schedules, monthly

fishing mortality rates (F) and spawning potential ratio (SPR). A minimum of 12

monthly samples of catch at weight data (CAW) are required, but longer time

series and additional indices of effort and/or catch will produce more reliable

results. SLAM’s structure is flexible; with <24 months of CAW it parallels LBSPR in

assuming equilibrium dynamics and constant monthly recruitment. With >24

months of CAW, a dynamic structure becomes possible similar to LIME, and

seasonal recruitment patterns can be estimated.
KEYWORDS

Octopus cyanea, spawning potential ratio, data-poor assessment, octopus fisheries,
short-lived assessment model
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1 Introduction

By some estimates, over 80% of the world’s fish stocks are

unassessable with standard age-based stock assessment

methodologies because they have insufficient biological

information and fisheries data (Costello et al., 2012).

Cephalopod biology presents particular challenges for

assessment due to the characteristically short lifespans (1–2

years), semelparous reproduction, rapid non-asymptotic growth,

high rates of natural mortality, complex population structures,

fluctuating biomass levels and high cost of ageing (Arkhipkin

et al., 2021). While squid comprise most of the global cephalopod

catches, cuttlefish and octopus contribute approximately ~10%

each. International demand for octopus is growing and reported

catches have doubled over the last three decades. Especially through

developing countries, small-scale artisanal octopus fisheries are

becoming increasingly important as a source of both food and

income for many coastal communities. A trend likely to continue as

more finfish stocks become either fully or over-exploited (Sauer

et al., 2021). Small-scale, coastal octopus fisheries present a

particularly pernicious assessment challenge due to the difficulty

of sustaining data collection programs in remote disparate

communities. Almost by definition they are data-poor and

practically unassessable.

Length or weight compositions of catches form the basis of

many data-poor assessment methodologies because they are

simpler and easier to monitor than age compositions. In recent

years several new approaches to size-based assessment have been

developed specifically for stocks that exhibit asymptotic, or Von

Bertalanffy growth (VBG), and for which length composition data

are the primary data source available (Hordyk et al., 2015, 2016;

Froese et al., 2018; Rudd and Thorson, 2018). Because of the ease of

collecting catch size composition data these size-based assessment

methods have been rapidly adopted globally, enabling the initial

assessment of many previously un-assessable fisheries (Canales

et al., 2021; Prince et al., 2023).

Previous length-based assessment models use individual life

history parameters to derive age compositions from size data, to

estimate biomass-based metrics of stock status. In contrast, Length-

based Spawning Potential Ratio (LBSPR) assessment (Hordyk et al.,

2015, 2016), Length-based Integrated Mixed Effects (LIME)

assessment (Rudd and Thorson, 2018) and length-based pseudo-

cohort analysis (LBPA) use life history ratios (LHR) to estimate

directly from the catch size compositions, a metric of fishing

pressure; spawning potential ratio (SPR) (Hordyk et al., 2015).

With SPR being defined as the proportion of lifetime reproductive

potential in a fished population, relative to the level expected in

unfished populations (Mace and Sissenwine, 1993). A limitation of

the original LBSPR methodology is that it relies on the assumption

that stocks are close to an equilibrium state to produce ‘snapshot’

estimates of SPR, whereas the LIME and LBPA methodologies

incorporate dynamic population assumptions, but then also require

time series data. Unfortunately none of these recently developed

sized-based assessment methodologies are applicable to
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cephalopods, because they assume asymptotic VBG growth over

annual time-steps through a life-cycle, which is incompatible with

non-asymptotic cephalopodic growth within an annual life- cycle.

So far, the most versatile and comprehensively applied

cephalopod assessment methodologies have been depletion

models, but these require accurate catch and effort data collected

at short time steps to iteratively estimate within-season biomass

trends. This renders them inapplicable to most cephalopod

fisheries, which lack the infrastructure and resources needed to

collect the data required (Arkhipkin et al., 2021; Sauer et al., 2021).

Moreover, as Arkhipkin et al. (2021) observed, many methodologies

estimate biomass-based reference points (RPs) because there is

insufficient data to estimate fishing mortality (F). However, in the

context of the rapid life history and terminal spawning of

cephalopods, RPs like SPR, which index the escapement of

spawning biomass to minimise the risk of recruitment

overfishing, would be preferable.

The aim of this study was to develop a simpler new size-based

assessment method for data-limited cephalopod fisheries.

Accepting that the LBSPR, LIME and LBPA methodologies are

inapplicable to cephalopods, this study never-the-less aimed to test

whether a parallel approach might still be applicable. Those

methods use the shape of growth curves and expected size

compositions, characterised across entire taxa but scaled to local

estimates of size of maturity, to assess the reproductive potential of

adults surviving to reproduce (e.g. Prince et al., 2015). The

assessment model described here incorporates cephalopodic

growth and size distributions, to predict size compositions and on

that basis estimate SPR trends.

We believe this novel size-based, assessment methodology for

cephalopods will find generic utility with many previously un-

assessable small-scale cephalopod fisheries. Here we describe its

initial simulation testing, and application to data collected from 45

Indonesian villages fishing for the big blue octopus, The big blue

octopus, Octopus cyanea is a relatively unstudied, medium-sized,

diurnally active octopus that inhabits tropical sub- and intertidal

reefs throughout the Indian and western Pacific Oceans, and

provides the basis for many locally important coastal fisheries

(Sauer et al., 2021). From 2010 to 2018, between 11,000 - 25,000

tonnes of O. cyanea, worth USD 100–50 million, were landed

annually in Indonesia, making it one of the largest octopus

producers in Asia (Cripps and Harris, 2018).
2 Methods

Based on our synthesis of the literature for O. cyanea and a size

of maturity study in Indonesia we constructing an age-structured

assessment model with monthly time steps which called the short-

lived assessment model (SLAM). The theoretical performance of

SLAM was evaluated using an operating model (OM) that was

coded separately but followed the same structure. For this

theoretical testing the OM was used to simulate data from

octopus stocks being fished under a plausible range of simulated
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conditions. Those data were then analysed with SLAM and its

results compared to the ‘known conditions’ used to generate the

data. Finally, having collected time series of catch size composition

from 45 Indonesian villages (Figure 1) we compiled 17

geographically contiguous datasets to which we appliec SLAM. In

consideration of space and a broader readership, only an overview

of our methods is presented here. A more detailed description of

model structures and algorithms can be found in the online

supporting documents.

The assumed context for applying SLAM is that a fishery that

has operated for an extended period, but data has only been

collected recently (i.e., data are not available since the fishery’s

inception). The main data source is assumed to be a time series of

monthly catch weight composition data (catch at weight; CAW),

and a minimum of 12 months of data is required. If available, an

index offishing effort and/or an index of catch can also be used to fit

the model. By default, these data are assumed to be relative indices

of effort and/or catch over time, rather than absolute measures. An

index of relative abundance, such as monthly average catch per unit

effort (CPUE), can also assist. If all three time series are available, by

default, the model fits to the time series of relative catch and the

index of abundance (CPUE), as the effort trend is inferred from the

other two time series. If absolute estimates of catch exist, the model

can be extended to estimate absolute population size, but in its

absence, the model estimates relative trends in abundance in

addition to SPR.

SLAM requires the following biological information or

assumptions as input parameters:
Fron
• mean weight at age schedule (with associated expected log-

normal variability of weight at age).
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• maturity at age.

• natural mortality at age.

• post-spawning mortality associated with each age class.

• steepness parameter of the Beverton-Holt stock

recruitment parameter.

• expected level variance in log-normally distributed

recruitment deviations.
2.1 Life history parameters

2.1.1 Longevity, natural mortality and spawning at
age

We assume that the annual recruitment patterns commonly

observed in O. cyanea fisheries reflect an underlying seasonality in

spawning biomass, which to remain consistent over time as

observed, implies that reproduction generally occurs around 12

months of age. Consequently, we assume an almost knife-edge

spawning at age schedule (ra), with almost all individuals spawning

at the end of their first year of life and a maximum possible age of 14

months (Supplementary Figures S2–S8 or Supplementary Figures

S1–S4). Reproduction is assumed to occur in the middle of the

monthly time step, and all spawning individuals are assumed to die

at the end of the same month [i.e., ja = ra (Supplementary Tables

S1–S3)].

SLAM requires information on the pre-spawning rate of natural

mortality, but there are few published estimates forO. cyanea or any

other octopus. Those that exist are commonly based on teleost-

based correlations, and their applicability to short-lived

semelparous cephalopods is questionable. Herwig et al. (2012)
FIGURE 1

Map showing the location of 43 of the 45 Indonesian villages where octopus catch size composition data were collected and SLAM assessments
completed. Location data for two villages (Grogos and Torosiaje) were unavailable for plotting. Village names of the same colour indicate adjacent
villages for which catch composition data were aggregated, so that 17 assessment were completed in total.
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used Hoenig’s (1983) method based on maximum age to estimate a

daily mortality rate that, assuming 30.4 days per month,

corresponds to 0.88 month-1. This value appears too high to be

consistent with a longevity of at least 12 months, perhaps because it

represents mortality averaged over the entire lifespan rather than

just the ‘before-spawning’ mortality rate. Silas et al. (2021) used the

Pauly (1980) correlation between natural mortality, water

temperature and fish length to estimate annual mortality rates

equivalent to 0.178 – 0.207 month-1; which given a 12-month

lifespan, appears more plausible. Although why a correlation

based on teleost length should apply to the mantle length of

octopus remains obscure. Furthermore, Roa-Ureta et al. (2020)

modelled population dynamics over 15 fishing seasons to develop

what they considered a robust estimate of average weekly pre-

spawning natural mortality for red octopus (Enteroctopus

megalocyathus) in southern Chile, which is the equivalent of

0.075 month-1. However, the evidence suggests that deeper, colder

water species like E. megalocyathus tend to live longer than

shallower, warmer water species like O. cyanea.

An alternative logic to illuminate these sparse observations can

be supplied by the concept of optimum size, which is widely applied

in fisheries biology, and posits that natural selection drives all

species to optimise evolutionary fitness by ensuring cohorts

mature asthey attain maximum biomass (optimum size) so as to

maximise their reproductive output (Beverton and Holt, 1957).

Assuming cephalopods are subject to the same evolutionary

pressures, we plotted trajectories of relative biomass with age

(months) for a range of natural mortality rates (0.05 – 0.45

month-1) and observed that cohort biomass is maximal around

12–14 months of age with 0.15 month-1 (Supplementary Figures

S1–S3). This we assume to be the best approximation of the pre-

spawning rate of natural mortality.

2.1.2 Weight at age
Herwig et al. (2012) fitted five growth models (i.e., exponential,

linear, logarithmic, power and VBG) to weight at age data, and

found the power function provided the best fit for O. cyanea. They

found no significant difference in growth between males and

females. The coefficients of the power function reported in

Table 1 of Herwig et al. (2012) did not reproduce the mean

weight at age curve shown in their Figure 1, which reported

different values for the coefficients that also did not reproduce the

plotted curve. Consequently, we re-digitised their data and re-fitted

a power function, resulting in slightly different coefficients, but a

similar line of best fit (Supplementary Figures S1–S5). The standard

deviation of the log-normally distributed weight at age was

estimated by Herwig et al. (2012) to be 0.48. We assume that, in

relative terms, this general form of growth and magnitude of

variability can be broadly applied to O. cyanea.

Herwig et al. (2012) draw attention to the variation in size at age

and maturity that has been observed in various studies of O. cyanea.

This variability is apparently associated with the ambient water

temperature in differing locations, a factor also known to influence
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size at age and maturity in teleosts (Brown et al., 2004). To account

for the differences in water temperature between Herwig et al.

(2012)’s study site at Ningaloo reef and the more equatorial waters

of our Indonesian study sites, we scaled Herwig et al. (2012)’s mean

weight at age schedule using an Indonesian estimate of weight at

maturity. For that purpose, data on the weight and stage of maturity

were collected for 575 animals, and a proportion mature at weight

ogive was estimated using a logistic regression with a general linear

model (Supplementary Figures S1–S6). Assuming the same

maturity at age schedule applies in both locations, we scaled the

assumed Indonesian weight at age schedule to Herwig et al. (2012)’s

schedule, using the proportional difference in the maturity at weight

schedules. This resulted in a smaller assumed mean weight at age

schedule for Indonesia compared to that estimated by Herwig et al.

(2012) (Supplementary Figures S1–S7) which, with the deviation

estimated by Herwig et al. (2012), we used in our assessment

model and simulation testing (Supplementary Figures S1–S7;

Supplementary Tables S1–S4).

2.1.3 Stock-recruit relationship
The stock assessment and monthly fishing optimisation models

developed require an estimate of the steepness of the Beverton-Holt

stock-recruit relationship. Steepness is difficult to estimate for most

species, and we could find no published studies of steepness in

octopus. Given that octopus populations are considered to be highly

productive, we assumed a relatively high value of 0.85 for steepness

of the stock-recruit relationship, similar to values assumed for

forage fish (Hilborn and Walters, 2021). Similarly, likely values

for the recruitment process error (s 2
R) are unknown. A value of 0.4

was assumed for the simulation testing and applied to the case

studies. If run assuming a steepness of 1.0 the model can be run as a

per-recruit model, however, using that assumption in the fishing

mortality optimisation routine (described below) will result in

extremely high estimates of optimal fishing mortality, because the

assumption will be that stable egg production results even from

extremely low spawning biomass.
2.2 Model outputs

Arkhipkin et al. (2021) noted that in the context of cephalopods’

rapid life history and terminal spawning, it would be advantageous

to estimate RPs that index the escapement of biomass so that the

risk of recruitment overfishing can be minimised by conserving

sufficient spawning. SLAM makes this possible by estimating

monthly F and the corresponding SPR, as well as the selectivity at

age schedule (assumed to be asymptotic and non-time-varying) and

a seasonal (monthly) pattern in recruitment.

The structure of SLAM is flexible. With <24 months of catch at

weight data available, the model assumes monthly recruitment

occurs without process error and the model follows a similar

structure to the LBSPR methodology, which assumes fisheries are

at equilibrium. With >24 months of catch at weight data available,
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the equilibrium assumption can be relaxed and the model becomes

more like the LIME methodology. In this mode SLAM estimates the

seasonal (monthly) pattern in recruitment as monthly recruitment

deviations, which are assumed to be log-normally distributed with a

user-specified variance. Both estimation routines can be controlled

by the model user, and either turned or fixed to user-

specified values.

A Hyperbolic Absolute Risk Aversion (HARA) model

(Mendelssohn, 1982), described in more detail in the supporting

documents, was used to calculate the pattern of monthly fishing

mortality that results in the highest utility of the resource. This

follows the structure of the assessment model, with the exception

that there is no process error on recruitment (s2
R = 0), and it runs

until the population comes to its equilibrium state. The HARA

optimisation model predicts the average fishing mortality for each

calendar month (Fopt
m ) that corresponds with the highest annual

utility (Uy) and is analogous to the FMSY metric. From the optimal

average fishing mortality and estimated selectivity at age schedule,

together with the life history parameters defined above, the optimal

monthly spawning potential ratio (SPRopt
m ) is calculated.

The HARAmodel can be modified to account for various socio-

economic aspects of the fishery. The estimate of annual utility (Uy)

is strongly influenced by the monthly utility parameter (l). When

0 < l < 1 the marginal utility of each unit of catch decreases as the

total catch increases, and utility is highest when catches are evenly

distributed throughout the year. When l = 1, the utility is the same

whether catch is all taken in one month or spread out evenly

throughout the year, and U is simply the total annual catch

corresponding with conventional maximum sustainable yield. If

there is no seasonal pattern in recruitment the optimal monthly

pattern in fishing effort depends entirely on variation in l. The
appropriate value for l could be determined through interviewing

fishers and other stakeholders, and might be used to account for

seasonal constraints on fishing effort, such as weather conditions

like monsoonal winds that prevent fishing so that potential catch in

some seasons have low utility. In addition, if the value of the catch is

related to the size of the landed octopus the equation for U can be

modified to include the relative value of the different size classes.

The code for the operating and assessment models described,

along with a compiled version of the assessment model as an R

package (SLAM; Short-Lived Assessment Model), are all available

in a public repository: https://github.com/Blue-Matter/SLAM.

Documentation for the SLAM package, including a User Manual,

is available at: https://slam.bluematterscience.com
2.3 Simulation testing the short-lived
assessment model

The operating model (OM) was developed following the

structure of SLAM described above, but was coded separately

from the assessment model using the R statistical computing

environment (R Core Team, 2022). The OM was used to simulate
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the SLAM’s results under different seasonal recruitment patterns,

and evaluate its ability to estimate the monthly fishing mortality,

SPR, and seasonal recruitment. The simulation testing described

here was prescribed by the limited time-line and resources available

for this project. It focussed on providing an initial test of SLAM as a

proof of principle, rather than the exhaustive documentation of

its performance.

Two seasonal patterns in recruitment were considered

(Constant and Pulse; Supplementary Figures S1–8). Each of these

two recruitment scenarios were simulated 100 times, with the

recruitment process error and observation processes of each

simulation being stochastically sampled according to five

monitoring scenarios (Supplementary Tables S2, S3) covering all

possible combinations of the data that could be collected: catch at

weight, catch, effort and abundance (i.e. CPUE). The combination

of effort, catch and abundance was not simulated as this would be

pseudo-replication as CPUE was generated from catch and effort

data. For each of the five monitoring scenarios, time series of 12, 24,

36, 48, and 60-month durations were simulated. This resulted in a

total of 50 scenarios simulated 100 times: five different

combinations of monitoring data, available over five different

time periods, for two different seasonal recruitment patterns.

From all 5,000 simulations, fishery data were generated

assuming an effective sample size of 400 for the monthly samples

of catch at weight, and a 15% coefficient of variation (CV) for the

observed indices of catch, effort and index of abundance

(Supplementary Tables S2, S3). The assessment model was

applied to each simulation and results summarised as the median

relative error (MRE) in estimated F and SPR for each scenario.

Seasonal recruitment patterns estimated by SLAM were also

compared to the ‘true seasonal pattern’ simulated by the OM. A

more detailed description of the OM and the simulation testing

conducted can be found in the online supporting documents.
2.4 Application of short-lived assessment
model to case studies

This study used data collected from 45 Indonesian villages in

between 2017 and 2023 (Figure 1). The data collected daily from

sampled fishers included time spent fishing, fishing method, and the

catch weight (kg), mantle length (cm), and sex of each octopus

caught. The daily CAW data were aggregated into monthly samples

combining both males and females. The CAW data were binned

into 100g weight classes. There were few measurements >4 kg,

although several few were considerably greater, all measurements

>4 kg were aggregated into a maximum weight class of 4 kg. After

the datasets from villages sharing the same fishing grounds were

aggregated, there were 17 datasets that complied with the criteria

described above to which SLAM could be applied (Figure 1).

At most sites, monthly catch and effort data could not be

collected from most fishers the model was primarily fitted to CAW

and relative catch trends. If available, mean monthly CPUE with
frontiersin.org
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standard deviations was calculated using a linear model of log-CPUE

with individual fishers and Year: Month as covariate factors. The

same biological parameters were assumed in the assessment model as

for the simulation testing. Reference points were calculated using the

HARA model with an assumed exponent value of 0.4.

The data used for the 17 assessments are the property of the

various fishing communities and local organisations involved with

collecting them and cannot be made freely available, however,

access to some of them maybe negotiated on a case-by-case basis

by corresponding with the authors.
3 Results

3.1 Simulation testing the short-lived
assessment model

The key finding from our simulation testing is the apparent

utility for fitting CAW data to expectations of population size

distributions relative to size of maturity, however, SLAM’s

reliability is critically dependent on both the number and length

of the monitoring time series increases. Across the scenarios

simulated, the relative error in the estimates of F and SPR

declined by ~70% as the duration of the time series of data

increased from 12 to 60 months (Figure 2). The greatest relative

error was observed when there was just 12 months of CAW data

(Figure 2; left). Adding additional time series of catch, effort and/or

abundance did not have a large impact on the relative error when

only 12 months of data was provided. As the length of the time

series data increased, however, additional time series reduced the

relative error of the estimates by ~50%. The lowest relative error was

observed with >36 months of CAW, effort and abundance data

(Figure 2; right).

The relative error around the estimates of F and SPR

were generally larger with the pulse recruitment scenarios
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(green), especially when only weight composition data was

used (Figure 2).
3.2 Application of short-lived assessment
model to case studies

Estimates of F varied widely across sites, and between months

within the 17 sites (Figure 3); in some cases being >1.0 (Bulutui,

Gangga Satu, Likupang Dua), but ~0 for all months in Uwedikan,

and in some months at many sites including Labuhan Lombok. In

contrast the estimated selectivity-at-age curves were quite similar

for most of the sites, although larger at the site that includes

Labuhan Lombok, and smaller at site that includes Jaya

Makmur (Figure 4).

The estimated trends in SPR within each site are essentially the

mirror image of the trends in F as at each site SPR is the product of

F and the selectivity at age curve, which is estimated to remain

constant across the time series (Figure 5). The importance of the

selectivity at age curve in determining SPR levels is illustrated by the

site that includes Labuhan Lombok having the largest selectivity at

age curve and relatively high SPR in contrast to the site that includes

Jaya Makmur having the smallest selectivity at age curve and

low SPR.

The seasonal recruitment pattern was estimated to be relatively

flat for most of the sites, although there was evidence of a

recruitment pulse around February at some sites (Figure 6).

For most sites, the HARA model predicted a relatively flat

optimal fishing pattern throughout the year, suggesting that utility

from the fishery is maximised with relatively constant fishing

pressure throughout the year (Figure 7). The exceptions were the

sites with a seasonal recruitment pulse (e.g., the site of Jaya Makmur

and associated villages; Figure 7). In these sites, the HARA model

predicted greater utility would be achieved by increasing the fishing

effort around May, about three months after the February peak of
FIGURE 2

The relative error in fishing mortality (top row) and spawning potential ratio (bottom row) for two recruitment patterns (continuous – red or pulsed –
blue) and 12–60 months of time-series data (x-axis). The five columns display the simulation results from five potential combinations of available
time series data; 1) weight composition only (CAW), 2) CAW and an index of catch, 3) CAW and indices of catch and abundance (i.e. CPUE), 4) CAW
and an index of fishing effort, and 5) CAW and indices of effort and abundance. The model was not fit to indices of effort, catch, and abundance,
because the index of abundance is generated from the catch and effort data.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1647742
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Prince et al. 10.3389/fmars.2025.1647742
FIGURE 4

The estimated selectivity-at-age curves from the 17 case study sites in Indonesia.
FIGURE 3

The estimated monthly fishing mortality from the 17 case study sites in Indonesia.
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recruitment (Figure 6) and a similar optimal pattern in

SPR (Figure 7).

The observed data and the assessment model’s fit are shown in

Supporting Document 2.
4 Discussion

The aim of this study was to develop, test, and demonstrate a

size-based, assessment methodology with general applicability to

data-poor cephalopod fisheries, which we have called SLAM. Our

main purpose was to demonstrate the potential of an ‘LBSPR-like’

approach to cephalopods, by fitting CAW data to expected

population size distributions scaled to size of maturity. As well as,

to test SLAM’s utility with data collected from 45 Indonesian

village-based fisheries for O. cyanea.
4.1 Simulation testing

Our simulation testing demonstrates that, under test

conditions, SLAM has potential to reliably estimate F and SPR

from monthly weight composition of the catch data (Figure 2). As

to be expected, the key finding from our simulation testing is that

the error in the estimates of F and SPR decrease as the length of the

time series data increases, and with addition of indices of effort,

catch, or abundance. The necessity for relatively lengthy, and

preference for several time series of monthly data, makes SLAM
Frontiers in Marine Science 08
similar to the more data-intensive LIME methodology, than the

‘snap-shot’ simplicity of LBSPR. While this greater requirement for

data will undoubtedly restrict the application of SLAM to some

extent, in the context of cephalopod biology this seems to be an

unavoidable restriction. The simpler snap-shot approach of the

original LBSPR is based on the assumption of populations being

close to equilibrium. The dynamic nature of cephalopod biology

necessitates a more complex fully dynamic model structure more

like LIME, which in turns must be informed by more complex time

series of data.

It should again be noted that our time-line and resources

limited our simulation testing to simply being a proof of

principle. Our simulation testing did not span the full range of

uncertainties likely to be associated with data-limited octopus

fisheries. For example, the simulated data was generated assuming

reasonably large sample sizes, relatively low sampling error on the

indices of catch, effort and abundance (CV = 15%), and a direct

relationship between fishing effort and fishing mortality. We also

have not considered uncertainty in the assumed life-history

parameters, growth, maturity, natural mortality, or the spawner-

recruitment relationship. Within the resources and time available

for our project it was infeasible to fully explore all the possibly

plausible sensitivity tests. Octopus biology is so poorly documented

that simply bounding uncertainty around the central life history

parameters is a challenging exercise. Nevertheless, these results still

demonstrate that in principle the size-based SLAM model can

estimate key indices for the escapement of breeding biomass with

potential to facilitate managing the risk of recruitment overfishing.
FIGURE 5

The estimated monthly spawning potential ratio (SPR) from the 17 case study sites in Indonesia.
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None of this diminishes the fact that the uncertainty associated

with the assumed life-history parameters, and the error associated

with sampling, will likely be greater than considered here, so that

results from datasets with only one or two years of available CAW

data should be interpreted with caution, as should the results from

our 17 case studies.
4.2 Application to case studies

In the context of the above caveats, we applied SLAM to 17

study sites revealing a range in the temporal patterns of F and SPR

within, and between (Figures 3, 5). Some of this apparent variation

may, however, serve to emphasise the results of our simulation

testing which demonstrates the importance of extending time series

and improving data.

For example, examining the villages with the most variable results

(Figures 3, 5) reveals they tended to have smaller CAW samples, which

often exhibited a degree of poly-modality that SLAM failed to fit

accurately (e.g. Bulutui, Gangga Satu, Likupang Dua; Supplementary

Figures S2–S8 and Uwedikan; Supplementary Figures S2–24) and/or

relatively short time series data (e.g. Ketapang; Supplementary Figures

S2–S16). The estimates from villages with the longest time series

(Figures 3, 5) and consistently larger unimodal CAW samples (i.e.

Kalumbatan, Lobuton and Popisi) were generally more consistent over

time, and fits to the CAWdata were closer (Supplementary Figures S2–
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S15). This observation only serves to emphasise the truism that

improving data collection is the key to making the assessment of

data-poor fisheries more reliable.

The primary assumptions underlying our application SLAM to

the case studies, is that the power curve form of growth documented

by Herwig et al. (2012), as well as that the relativity between size at

maturity and maximum size, are likely to be typical for all our study

sites when in a lightly exploited state.

A further underlying assumption in our application of SLAM is

that geographic variation in growth, can be accounted for by scaling

weight at age relationships, relative to observed differences in weight

at maturity e.g., a 30% larger weight at maturity indicates a 30%

larger average maximum size. These assumptions parallel the way

LBSPR assessment uses the LHR to generically define growth curves

for fish taxa, as well as to scale catch size compositions to local

estimates size of maturity (Prince et al., 2015). This parallel

application of teleost linked ideas might potentially provide a new

model for how biological information derived from a relatively

data-rich context (Herwig et al., 2012), might be used to inform the

assessment of data-poor cephalopod fisheries.

Another assumption implicit in our approach is that the source

of the estimates being used to provide the baseline against which

SLAM compares our case studies are compared is relatively lightly

fished. This assumption must be made explicit as it concerns our

baseline for assessing stock status. In the case of Herwig et al.

(2012)’s study of the Ningaloo Marine Park, this is probably a
FIGURE 6

The estimated mean monthly recruitment pattern from the 17 case study sites in Indonesia.
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reasonably safe assumption, as there was no commercial or artisanal

fisheries, and the recreational fishing primarily targets reef and

pelagic fish.

A more far-reaching assumption relied upon here is that, in

relative terms, the same form of power curve growth and the

relativity in lightly exploited populations between size of maturity

and maximum size is shared by different populations of O. cyanea

across their range. Given that Prince et al. (2023) have

demonstrated that entire families and genera of teleosts share the

same LHR and thus similarly shaped growth curves and relativities

between size of maturity and maximum size, it seems likely that all

octopus share the same growth pattern and relativity between

maturity and maximum size. Growth studies using daily growth

increments being conducted at some of our case study sites might

allow this premise to be tested, although the greater fishing pressure

at our sites may complicate comparison with Herwig et al. (2012)’s

relatively lightly exploited population.

Our application of a single estimate of weight at maturity to

scale Herwig et al. (2012)’s growth curve to all our 17 case studies
Frontiers in Marine Science 10
does, however, imply there are no regional differences in growth

between our sites, which given their geographic distribution and the

oceanographic complexity of Indonesia seems unlikely. The

accuracy of our assessments would almost certainly be improved

by scaling the form of growth to local estimates of weight of

maturity for each site. This again leads us back to the truism that

data-poor assessments will be improved by collecting more data.
4.3 Linking assessment model to
management

Traditionally the management of cephalopod fisheries has

focussed on managing catches (Arkhipkin et al., 2021; Caddy,

1983). This is problematic in the context of data-poor fisheries

which struggle to monitor, let alone manage catches. Effort-based

management systems are likely to be more effective for stabilising

harvest rates in fisheries exploiting rapidly changing levels of

biomass (Caddy, 1983). In the context of the rapid life history
FIGURE 7

The estimated mean monthly fishing mortality (F; red) and the optimal monthly pattern estimated by the HARA model (blue) with a risk aversion
parameter value of 0.4.
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and terminal spawning of cephalopods, Arkhipkin et al. (2021) has

suggested that it would be advantageous to estimate RPs that index

the escapement of biomass so that levels of reproductive

potential can be conserved sufficient to minimise the risk of

recruitment overfishing.

In this respect, the SPR metric estimated by SLAM is a

particularly useful RP. Originally developed to index the risk of

recruitment failure; it incorporates the impact of size of selectivity

together with F to index the proportion of unfished spawning

biomass escaping the fishery (Mace and Sissenwine, 1993). As a

management RP, the metric could be used simply to adjust the total

amount of effort, or fishing capacity in a fishery to achieve target

SPR levels. For example, taken at face value, the results suggest that

the fishing mortality at the Kadoda site is about twice as high as the

optimal level. This suggests that if fishing effort could be reduced by

around half (Figure 7), with fewer fishing days or collectors, similar

catches would result but the cost of fishing would be significantly

reduced. On the other hand, these results suggest that fishing effort

at the Grogos and Uwedikan sites could be increased (Figure 7). The

SPR metric might also be used to inform management policies

based on either permanently or rotationally closed areas. For

example, assuming that closures were being applied at similar

scales to that of component populations, as well as to areas

containing habitat of relatively uniform quality, the proportion of

fishing grounds closed to fishing could be assumed proportional to

SPR. Similarly, in the context of assessed levels of F, management

policy could also use minimum size limits, or gear restrictions, to

adjust size selectivity and conserve basal target levels of SPR.

The caveat here is that, as with many other facets of octopus

fisheries biology, little is known about the most appropriate SPR

targets for cephalopods. The widely and generically applied RPs for

SPR were developed originally in the context of teleost biology

(Mace and Sissenwine, 1993). Theoretically, at least, cephalopods

which are thought to be highly productive might potentially be

managed to lower RPs (Clark, 2002).
4.4 Further research and development

While demonstrating in principle the utility of SLAM for the

data-poor assessment of cephalopods, these results suggest the

following priorities for further development and research;

4.4.1 Additional simulation testing
Further sensitivity tests could evaluate the performance of

SLAM under a wider range of uncertainties than possible here.

For example, its performance is likely to deteriorate with smaller

monthly sample sizes of the weight composition data. Additionally,

data sets may have patchy time series data, or larger variability in

the observed indices of catch, effort and abundance. Further

simulation testing should evaluate the performance of SLAM

under a wider range of fishery dynamics and data collection

scenarios. Uncertainty around assumed life history parameters

also need to be more adequately addressed. Currently, SLAM

assumes single ‘best’ estimates of parameters such as natural
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mortality, growth pattern, and maturity at age schedules. Further

simulation testing could evaluate how estimates vary as assumed

parameter values change.

4.4.2 Further developments of the assessment
model

SLAM could also be extended into a Bayesian framework, which

would allow input parameters to be provided as distributions that

span uncertainty, rather than fixed values. Within a Bayesian

framework, SLAM could propagate uncertainty through the

assessment, and the resulting posterior distributions used to

quantify the uncertainty around assessment results (e.g. F and

SPR), as well as the extent to which the various estimates of life-

history parameters are supported by the data.

SLAM could also be extended into a hierarchical framework,

enabling it to share information across different but parallel data

sets which can be assumed to experience similar oceanographic

and/or biological conditions. For example, seasonal recruitment

patterns were common across our study sites but at many sites the

data were inadequate to resolve that effect. If that recruitment patter

was considered likely to be similar across different sites, a

hierarchical model could account estimate the seasonal

recruitment pattern simultaneously from all data sets, rather than

estimating them, or failing to estimate them independently for each

site as is currently done. In this way, information from multiple

data-limited applications could be used more effectively to inform

the assessment of individual fisheries.

4.4.3 Data-rich studies to inform data-limited
assessment

Cephalopod assessment in general would greatly informed by

some well executed data-rich studies of relatively lightly fished, or

preferably unfished octopus stocks, similar to the study of Herwig

et al. (2012). Such studies should focus on estimating rates of

natural mortality prior to spawning through direct observation and

aging studies, rather than the application of potentially spurious

teleost size correlations. Aiming to determine the extent to which

life history characteristics are shared across cephalopod populations

and taxa studies should focus on improving our knowledge of

typical forms of growth, variability around size and age of maturity,

and their relativity to unfished maximum size.

Ideally the performance of SLAM should be trialled alongside more

data-rich depletion methods for octopus assessment. Beyond the world

of simulation testing, such parallel testing would provide the ultimate test

bed for both methodologies. Conducted together they could also provide

an alternative means of directly estimating the pre-spawning rate of

natural mortality; which has so far proved very challenging to define.
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