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Introduction: Marine petroleum pollution has adversely affected marine

ecosystems and human living environments, while improvements in shipping

efficiency offer a new avenue for mitigating such pollution.

Methods: Based on panel data from 11 coastal regions in China spanning 2010 to

2022, this study examines the impact mechanisms of shipping efficiency on

marine petroleum pollution and further analyzes the moderating effects of port

specialization and environmental regulation.

Results: The results indicate that, overall, shipping efficiency in coastal regions

has shown a steady upward trend, with an average efficiency index of 1.046 and

an annual growth rate of 4.6%. However, some regions, such as Liaoning,

Shandong, and Tianjin, have experienced declines in efficiency, highlighting

regional disparities in development. Regression analysis reveals a significant

negative relationship between shipping efficiency and marine petroleum

pollution. The two-way fixed effects model shows that a 0.01 increase in

shipping efficiency corresponds to an approximate 0.01% reduction in marine

petroleum pollution, suggesting that enhanced shipping efficiency effectively

contributes to improving marine environmental quality. Furthermore, the

moderating effect analysis demonstrates that both port specialization and

environmental regulation exert significant negative moderating effects on the

relationship between shipping efficiency and marine petroleum pollution.

Discussion: Overall, this study enriches the theoretical understanding of the

relationship between the operational efficiency of transport infrastructure and

environmental pollution and provides robust empirical support for formulating

green and efficient shipping policies and advancing sustainable marine

environmental governance in coastal regions.
KEYWORDS

shipping efficiency, marine petroleum pollution, fixed effect, moderating effect,
coastal regions
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1 Introduction

Marine pollution has become one of themost significant challenges

to global environmental security. By disrupting and even degrading

marine ecosystems, it poses a severe threat to marine biodiversity and

has profound impacts on human living environments (Bani Hani et al.,

2019). According to a report by the Group of Experts on the Scientific

Aspects of Marine Environmental Protection (GESAMP), more than

80% of marine pollution originates from land-based sources, with

petroleum pollution being one of the most significant forms (United

Nations Environment Programme (UNEP), 2021). It is estimated that

approximately 1.5 to 10 million tons of petroleum hydrocarbons enter

the marine environment each year, primarily resulting from

anthropogenic activities, including untreated wastewater discharges,

municipal and industrial runoff, and offshore and onshore

petrochemical operations (Varjani and Upasani, 2017; Hazaimeh and

Ahmed, 2021). These pollutants, often consisting of persistent and

recalcitrant compounds, alter the physical and chemical properties,

including viscosity, of seawater, thereby posing a high risk to marine

ecosystems (Yan et al., 2019).

The ecological impacts of petroleum pollution are highly

complex, characterized by the multidimensional nature of its

pollution mechanisms, the staged responses of ecosystems, and

the long-term nature of ecosystem recovery processes. This implies

that once ecological damage occurs, restoration often requires

considerable time and incurs high ecological costs (Da Silva et al.,

1997; Dey et al., 2023). Although the hazards of petroleum pollution

have attracted widespread attention, existing research has

predominantly focused on the following aspects: first, the sources

of petroleum pollution (Latimer et al., 1990; Zhang et al., 2007; Guo

et al., 2022); second, the removal and remediation of petroleum

pollution (Das and Chandran, 2011; Mohammadi et al., 2020);

third, the toxic effects and structural damage of petroleum pollution

on ecosystems (Gao et al., 2022; Koduvayur Habeebullah et al.,

2025; Mohanta et al., 2024); and fourth, the potential threats of

petroleum pollution to human health (Freije, 2015; Adipah, 2019).

In summary, although current research has provided substantial

evidence regarding the micro-level mechanisms of petroleum

pollution, the relationship between pollution sources and macro-

level structural variables remains underexplored, highlighting the

urgent need for further in-depth analysis of the driving factors

behind marine petroleum pollution.

At present, research specifically addressing the drivers of marine

petroleum pollution remains limited, with most existing studies

focusing on the broader determinants of marine pollution and

examining them from multiple perspectives. The literature indicates

that the level of economic development and regional characteristics are

important variables influencing marine pollution (Wang et al., 2020).

While the growth of the marine economy has contributed positively to

industrial upgrading, its impact on the discharge of marine pollutants

(such as industrial wastewater) exhibits certain nonlinear

characteristics (Hou and Zhan, 2023). In addition, typical marine

industries such as coastal tourism, mariculture, and shipbuilding

exert direct pressure on the aquatic environment and are widely

recognized as key contributors to water quality degradation (Ji and
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Ding, 2024a; Yu et al., 2024). Trade liberalization is also viewed as an

external shock variable that exacerbates pollution (Ullah et al., 2023),

while seafood trade has been found to exert a dual effect—intensifying

pollution pressures in the short term but promoting sustainable

governance in the long term (Liu F. et al., 2022). At a deeper level,

the extensive use of fossil fuels and the lag in environmental governance

capacity constitute fundamental causes of the persistent nature of

marine pollution (Alsaleh and Abdul-Rahim, 2024). It is worth

noting that shipping, as an integral part of coastal and marine

development, exerts significant direct and indirect impacts on the

marine environment (McConnell, 2002; Venkatesh et al., 2017).

However, current research still lacks a systematic perspective on how

shipping influences marine petroleum pollution, with its theoretical

mechanisms and empirical pathways remaining insufficiently explored.

Building on this foundation, this study aims to achieve the

following three specific research objectives: (1) to construct an

integrated analytical framework from the perspective of shipping

operational efficiency, systematically examining the mechanisms

through which shipping efficiency affects marine petroleum

pollution, thereby addressing the lack of holistic framework-based

analysis in existing research; (2) to empirically test the actual impact

of shipping efficiency on land-based marine petroleum pollutant

emissions using panel data from 11 coastal regions in China

covering the period 2010–2022, providing quantitative evidence

for pollution control; and (3) to focus on analyzing the moderating

roles of port specialization and environmental regulation in the

relationship between shipping efficiency and marine petroleum

pollution, identifying key external conditions that influence

emission reduction effectiveness and enriching the theoretical

understanding of pollution mitigation mechanisms.
2 Literature review

2.1 Related research on the impact of
transportation infrastructure on
environmental pollution

The relationship between transportation infrastructure and

environmental pollution has been the subject of extensive

academic inquiry. Makarova et al. (2020) highlight the negative

environmental impacts of urban motorization, particularly noise

pollution and vehicle emissions, and emphasize the critical role of

transportation infrastructure and management systems in

regulating traffic flow and mitigating environmental effects.

Research indicates that optimizing infrastructure in key corridors

can effectively enhance traffic efficiency and alleviate environmental

pressure. Xie et al. (2016)demonstrate that transportation

infrastructure exerts significant direct negative effects on the

urban environment and generates adverse spatial spillover effects

on surrounding areas. Similarly, Y. Guo et al. (2020) point out a

nonlinear relationship between transportation investment and air

quality, identifying vehicle density as a key moderating variable: in

areas with low vehicle density, transportation investment improves

air quality, whereas in high-density areas, it may lead to
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environmental degradation. The differentiated environmental

impacts of various transportation modes have also received

considerable scholarly attention. Erdogan (2020), using data from

OECD countries, finds that rail investment helps mitigate

environmental pollution, while investment in road and air

transport significantly exacerbates carbon emissions. Liu Y. et al.

(2022), in testing the Environmental Kuznets Curve (EKC)

hypothesis, also concludes that rail investment suppresses

environmental degradation. Likewise, Wang et al. (2023) further

confirm that investments in different types of transportation

infrastructure have markedly divergent environmental impacts:

rail investment contributes to emissions reduction, whereas road

and air investments tend to worsen pollution. Focusing on

developing countries, Dzator et al. (2021) report that both air and

rail infrastructure contribute to increased carbon emissions,

particularly in nations where the energy structure has not yet

transitioned toward greener sources; in such contexts, rail

infrastructure may even intensify the relationship between per

capita GDP and carbon emissions. Meanwhile, Acheampong et al.

(2022), employing a system GMM approach, reveal an inverted U-

shaped relationship between rail and freight infrastructure

investment and carbon emissions, suggesting that moderate

investment can achieve emissions reduction, whereas excessive

investment may have counterproductive effects. Wang and Wang

(2023) constructed a maritime supply chain model comprising

ports, shipping companies, and freight forwarders under the

background of green maritime transportation, focusing on the

impact of green investment in transportation infrastructure and

vertical alliances on the mitigation of shipping pollution. The study

finds that the construction of green transportation infrastructure,

when combined with coordinated governance across upstream and

downstream enterprises, can significantly reduce shipping

emissions. Furthermore, some studies have explored the indirect

pathways through which transportation infrastructure affects the

environment. For instance, Sun C. et al. (2019) show that road

infrastructure can lower pollution intensity and enhance urban

green development by fostering green technological innovation and

promoting regional integration. Sun D. et al. (2019) find that rail

transit offers a significantly greater marginal benefit for improving

air quality compared to road improvements, although its

construction phase may introduce short-term negative

environmental impacts.

It is worth noting that Lo Storto and Evangelista (2023) is

among the few studies that examine the relationship between

transport infrastructure efficiency and environmental outcomes.

This study employs Data Envelopment Analysis (DEA) to assess

the efficiency of road and rail infrastructure and constructs an

environmental impact index based on greenhouse gas emissions

and major air pollutants. The findings reveal that few countries can

simultaneously enhance the operational efficiency of transport

infrastructure while reducing its environmental impacts.

Moreover, the study highlights that in most countries,

policymakers often struggle to clearly distinguish between the

objectives of improving efficiency and reducing pollution when

formulating policies.
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2.2 Related research on petroleum
pollution

As one of the core variables in this study, petroleum pollution

has long attracted widespread academic attention due to its

significant negative environmental impacts. Current research on

petroleum pollution mainly focuses on its sources, environmental

impact mechanisms, and governance strategies. From the

perspective of pollution sources, petroleum pollution primarily

stems from human activities, with substantial leakage and

discharge risks occurring during oil exploration, extraction,

transportation, and refining processes (Sharma et al., 2024; Zhang

et al., 2019). In addition, municipal and industrial wastewater

discharges, surface runoff, and petrochemical operations in

coastal and inland areas are also recognized as major land-based

contributors to marine petroleum pollution (Hazaimeh and

Ahmed, 2021). According to the GESAMP report, over 80% of

marine pollution originates from land-based sources, with

petroleum pollution identified as one of the main pollutants. The

Global Program of Action for the Protection of the Marine

Environment from Land-based Activities (GPA) also lists

petroleum hydrocarbons among the nine major categories of

land-based pollutants. In terms of pollutant characteristics,

petroleum pollutants are chemically complex and include

substances such as crude oil, heavy fuel oils, and highly toxic light

fuel oils. Their main components are hydrocarbons, which exhibit

notable persistence and resistance to degradation, allowing them to

remain in sediments and ecosystems for extended periods (Blumer

and Sass, 1972). Furthermore, the petroleum refining and

petrochemical industries are significant sources of hazardous air

pollutants, including polycyclic aromatic hydrocarbons (PAHs),

heavy metals, and other volatile organic compounds (VOCs),

posing dual threats to atmospheric quality and public health

(Tavella et al., 2025). Numerous studies have further elucidated

the environmental impacts of petroleum pollution from both

regional and specific pollution perspectives. For example, Ejiba

et al. (2016), using the Niger Delta as a case study, highlighted

that oil spills and gas flaring are key drivers of local environmental

degradation. Although companies often attribute spills to sabotage,

aging infrastructure and management negligence are also critical

contributing factors. Ekpenyong and Udofia (2015), in their

assessment of water quality in oil-producing regions, found

significantly elevated concentrations of heavy metals such as lead

(Pb), cadmium (Cd), chromium (Cr), and nickel (Ni), with overall

water quality parameters falling well below acceptable standards—

indicating severe impacts on the aquatic environment. Habeebullah

et al. (2025) take the northwestern Arabian Gulf as a case study and

find that total petroleum hydrocarbon contamination in marine

sediments is severe, with concentrations in some samples exceeding

moderate pollution thresholds by several orders of magnitude,

thereby significantly heightening ecological risks. The study

indicates that even in designated marine protected areas,

petroleum-based pollutants may continue to pose a persistent

threat to ecosystem health. Petroleum pollution causes not only

physical ecological damage but also profound human health effects.
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Nriagu et al. (2016) found that exposure to petroleum pollution

induces physical health symptoms, functional impairments, and

significantly increases psychological burdens, including fear,

irritability, and emotional disorders. Buonocore et al. (2023), in

their assessment of emissions from the U.S. oil and gas industry,

emphasized that reducing such emissions can yield substantial

public health benefits in addition to mitigating climate change. At

the ecosystem level, petroleum pollution exerts destructive effects

on both terrestrial and marine life. Ozigis et al. (2020) reported that

oil spills alter the spectral reflectance of forest and grassland

vegetation, leading to marked declines in vegetation health.

Walker et al. (2006) found that in areas near oil and gas facilities,

lichen community diversity significantly decreased, and soil

concentrations of lead and nitrogen increased—early indicators of

soil ecosystem disturbance due to petroleum-related activities.

During transportation, petroleum spills likewise pose major

environmental risks. Jha and Dahiya (2022) underscored the high

toxicity and broad ecological destructiveness of petroleum spills,

which can impact a wide range of species, including fish, seabirds,

invertebrates, and phytoplankton. While land-based spills tend to

be localized events, they can still alter microbial community

structures. Marine oil spills, however, are subject to greater

uncertainties due to factors such as weather and currents, making

their prediction and management more challenging. Samsuria et al.

(2025) comprehensively reviewed the threats posed by petroleum

pollution in aquatic environments to human health, aquatic

ecosystems, and economic activities, noting that under the

combined effects of meteorological and hydrological factors,

petroleum pollutants are more prone to dispersion, persistent

retention, and enhanced toxicity—potentially resulting in long-

term environmental burdens in the absence of effective

monitoring and governance. Adeola et al. (2022), from the

perspective of developing countries, emphasized that although

petroleum development generates fiscal revenues, it also degrades

land, pollutes water resources, and undermines livelihoods. In

contexts of weak regulation and corporate malpractice, issues of

resource misallocation and environmental degradation are

particularly severe.
2.3 Research gap

The research gap in this study is mainly reflected in the

following three aspects, which form the basis for the

corresponding research objectives. First, although existing studies

have explored the relationship between shipping activities and

environmental pollution, they lack a unified analytical framework

from the perspective of shipping efficiency to systematically reveal

the mechanisms through which it affects marine petroleum

pollution. To fill this gap, this study proposes a comprehensive

theoretical framework that clarifies the pathways through which

shipping efficiency influences marine pollution, providing new

theoretical insights to the field. Second, the current literature

primarily focuses on the impact of shipping on air pollution,

while insufficient attention has been given to land-based marine
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petroleum pollution, a type of pollution that is more ecologically

sensitive and more challenging to manage, thus limiting the

applicability of related findings. To address this shortcoming, this

study uses empirical data to systematically evaluate the effect of

shipping efficiency on land-based marine petroleum pollutant

emissions, thereby broadening the scope and depth of

environmental pollution research. Finally, existing studies offer

limited exploration of the transmission channels through which

shipping efficiency contributes to marine petroleum emission

reduction and how external conditions moderate this process.

Therefore, this study identifies the key mechanisms at play and

places particular emphasis on empirically examining the

moderating effects of port specialization and environmental

regulation, aiming to deepen the theoretical understanding of

pathways for achieving pollution reduction.
3 Methodology and data

3.1 Econometric model

3.1.1 Benchmark regression model
To assess the impact of shipping efficiency on marine petroleum

pollution, this study employs models with individual fixed effects

(Equation 1), time fixed effects (Equation 2), and two-way fixed

effects (Equation 3). The model is specified as follows:

PETit = a + bSEit + dXit + mi + eit (1)

PETit = a + bSEit + dXit + nt + eit (2)

PETit = a + bSEit + dXit + mi + nt + eit (3)

In this model, for coastal province or city i and year t, PETit

represents the level of marine petroleum pollution in the respective

province or city, while SEit denotes shipping efficiency. Xit is a

vector of control variables, including marine economic

development, technological innovation, population size, and

industrial structure. mi represents province/city fixed effects,

which account for all time-invariant regional heterogeneity

factors, such as natural conditions and cultural background. nt
captures year fixed effects, controlling for the influence of

unobserved time-varying factors, such as economic growth and

policy adjustments. eit is the random error term.

3.1.2 Moderating effect model
To further examine the moderating effects of port specialization

(Equation 4) and government environmental regulation (Equation 5),

this study constructs the following moderating effect models:

PETit = a + bSEit + lPSIit + qSEit � PSIit + dXit + mi + nt + eit (4)

PETit = a + bSEit + lERit + qSEit � ERit + dXit + mi + nt + eit (5)

Where, PSIit denotes the port specialization index, and SEit �
PSIit is the interaction effect between shipping efficiency and the
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port specialization index. ERit represents the intensity of

environmental regulation, and SEit � ERit captures the interaction

effect between shipping efficiency and environmental regulation

intensity. The remaining variables are consistent with those in

(Equation 3).
3.2 Variable selection and data sources

3.2.1 Dependent variable
The dependent variable in this study is marine petroleum

pollution. With continuous population growth, accelerating

urbanization, and increasingly intensive industrial activities,

estuarine regions are facing escalating challenges of water

pollution (Niu et al., 2021). As critical transitional zones between

land and sea, estuaries have become primary pathways through

which land-based pollutants enter marine ecosystems, posing

significant threats to coastal and marine environments (Li et al.,

2023). In particular, the discharge of large volumes of organic

pollutants into water leads to rapid depletion of dissolved oxygen

during aerobic decomposition, thereby severely disrupting the

habitats of aquatic organisms (Lim et al., 2006). Notably, the

petrochemical industry, as a key pillar of China’s coastal

economy, entails considerable risks of organic pollutant emissions

throughout its production, processing, and transportation

processes, with petroleum-based pollutants being the most

prominent (Crain et al., 2009; Zhao et al., 2020). Considering

this, following Ji and Ding (2024); Liu et al. (2011) and Peng

(2015), this study adopts the volume of land-based marine

petroleum pollutant emissions in China’s coastal regions as the

indicator for marine petroleum pollution. The data are sourced

from The Bulletin of Marine Ecology and Environment Status

of China.

3.2.2 Independent variable
The independent variable is shipping efficiency. Shipping

efficiency refers to the ratio of inputs to outputs in waterway

transportation within port cities (including ports and shipping

companies), reflecting the overall level of resource allocation and

utilization (Wu and Wang, 2022). In recent years, driven by

national economic growth and supportive policies, China’s

shipping industry has experienced rapid development. Leveraging

advantages such as low cost, large transport capacity, and broad

coverage, the industry now handles approximately 90% of the

country’s import and export freight, playing a crucial role in

supporting foreign trade and contributing to national economic

and social development (Chen et al., 2024; Wang et al., 2025).

However, challenges related to resource waste and insufficient

output in resource allocation persist within the shipping sector

(Jian et al., 2022). Analyzing and enhancing shipping efficiency is

therefore essential not only for optimizing transportation resource

allocation and reducing operational costs but also for strengthening

China’s competitiveness and standing in global markets with

respect to resource utilization. To construct a sound indicator

system for measuring shipping efficiency, this study reviews
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relevant literature on efficiency evaluation in the port and

shipping sector. Table 1 summarizes commonly used input and

output variables in existing studies, providing a theoretical

foundation for the analysis.

At present, there is limited research on the measurement of

shipping efficiency. This study adopts the shipping efficiency

indicators proposed by Wu and Wang (2022). According to the

Solow growth model, the input factors driving economic growth

include capital and labor. In addition, a review of relevant literature

indicates that berth length and the number of berths is also

important input variables. Therefore, this study considers input

variables from three dimensions: infrastructure, capital investment,

and labor. Specifically, the number of berths, berth length, fixed

asset investment in waterway transportation, and the number of

employees in the water transport industry are selected as input

variables. For output variables, the study uses waterway cargo

throughput and waterway cargo turnover. Waterway cargo

throughput serves as an indicator of shipping operational

capacity, production scale, and efficiency, directly reflecting the

capabilities and competitiveness of the shipping industry (Ding

et al., 2025). Waterway cargo turnover captures both the volume of

transport and the transport distance, providing a comprehensive

measure of the production outcomes of waterway transportation

(Ma, 2021). All data used to calculate shipping efficiency are

sourced from the China Port Yearbook.

This study employs the DEA-Malmquist index method to

measure shipping efficiency across 11 coastal regions in China,

including Zhejiang, Tianjin, Shanghai, Shandong, Liaoning, Jiangsu,

Hebei, Hainan, Guangxi, Guangdong, and Fujian, from 2010 to

2022. The Malmquist index was originally proposed by Swedish

economist and statistician Malmquist, and Caves et al. (1982)

subsequently applied it to assess changes in productivity. Later

(Charnes et al., 1997), integrated the index with the DEA model,

leading to the development of the DEA-based Malmquist index

method (Lu and Wang, 2023).

Unlike the traditional DEA model, which can only conduct

static efficiency analysis, the DEA-Malmquist index method can

handle datasets with multiple inputs and outputs and enables

dynamic evaluation of productivity changes across different time

periods, thereby offering a more comprehensive perspective for

analyzing the sources of efficiency variation (Färe et al., 1997; Thrall,

2000; Nguyen et al., 2021; Zhang, 2021). The Malmquist

Productivity Index (MPI) consists of two core components:

“Catch-up” and “Frontier-shift”. The “Catch-up” component

reflects changes in the efficiency of decision-making units

(DMUs), indicating the extent to which a DMU has improved its

efficiency. In contrast, the “Frontier-shift” component captures

changes in the production frontier between two time periods,

representing technological progress or regression in the

environment (Eraqi et al., 2009; Manh, 2023; Nong and Ha, 2023).

The analytical procedure of this method is like that of the basic

DEAmodel. However, its distinct feature lies in the need to separate

data from period t and period t + 1. Specifically, for each DMUk(k =

1,…, n), it is necessary to consider its input-output combinations in

both periods, (xk, yk)
t and (xk, yk)

t+1, where xk ≥ 0, yk ≥ 0.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1645175
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ji et al. 10.3389/fmars.2025.1645175
According to the DEAmodel equations, the distance function of the

MPI is expressed as Et(xt+1k , yt+1k ). Accordingly, following (Nguyen

et al., 2021; Ben Mabrouk et al., 2022; Wang et al., 2022), the

formula for calculating the MPI of the k-th decision-making unit

from t to t + 1 is presented in Equation 6 and its equivalent form in

Equation 7:

MPI(xtk, y
t
k, x

t+1
k , yt+1k ) =

Et(xt+1k , yt+1k )
Et(xtk, y

t
k)

� Et+1(xt+1k , yt+1k )
Et+1(xtk, y

t
k)

� �1
2

  (6)

MPI(xtk, y
t
k, x

t+1
k , yt+1k )

=
Et+1(xt+1k , yt+1k )
Et(xtk, y

t
k)

� Et(xt+1k , yt+1k )
Et+1(xt+1k , yt+1k )

� Et(xtk, y
t
k)

Et+1(xtk, y
t
k)

� �1
2

(7)

When the MPI value equals 1, it indicates that the productivity

of the DMU remains stable between the two periods. If the MPI

value is greater than 1, it suggests that the DMU’s productivity has

improved during this period; conversely, if it is less than 1, it

indicates a decline in productivity.

3.2.3 Moderating variable
Considering the mechanisms that influence the relationship

between shipping efficiency and marine petroleum pollution, this

study selects two moderating variables, port specialization and

environmental regulation.

Port specialization is regarded as an effective approach to

mitigating intense competition among ports, and the

quantification of port specialization has become a key focus of

interest and in-depth research among port geography scholars
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(Zhang et al., 2021). Following the approach of (Zhang et al.,

2021) and (Zhou et al., 2023), this study employs the Port

Specialization Index (PSI) to measure the level of specialization of

ports across various provinces and municipalities in China. Given

that PSI demonstrates strong applicability and explanatory power

for cross-provincial comparisons of port specialization in coastal

China, it is adopted in this study as a moderating variable. The

calculation formulas for PSI are shown in Equations 8 and 9:

PSIi =
ni

ni − 1
�oni

j=1(tij −�t)
2   (8)

�t = o
ni
j=1tij
ni

(9)

PSIi represents the port specialization index for province i. tij
denotes the share of cargo type j in the total port cargo throughput

of province i, and ni refers to the total number of cargo types in

province i. The PSI ranges from 0 to 1, with higher values indicating

a greater degree of port specialization in the province. Data on port

throughput by cargo type are sourced from the China Port

Statistical Yearbook.

This study also incorporates environmental regulation as a

moderating variable in the model. Drawing on the approaches of

Yang et al. (2021) and Zeng et al. (2019), the study uses the total

investment in industrial pollution control as a proxy variable for the

intensity of environmental regulation. This indicator captures

capital expenditures directed toward the treatment of industrial

pollutants, including wastewater, waste gas, and solid waste.

Generally, larger investment amounts are associated with more
TABLE 1 Input and output variables used in prior research.

Papers Year Inputs Outputs Methods

Monteiro (2018) 2018
Land, labor, number of cranes, number of other
equipment, number of berths

Volume of cargo traffic in
million tons, number of vessels
handled

DEA Malmquist

Nguyen et al. (2019) 2019

Berth length, number of quay cranes, container yard
area, the number of industrial parks at port’s
hinterland area, the population of port’s hinterland
area

Container throughput, the
number of vessel call

DEA Malmquist, DEA-BBC,
DEA-CCR

Nguyen et al. (2021) 2021
Gross crane productivity, crane intensity, berth length,
berth depth

Calls, moves, elapsed time DEA Malmquist

Nikolaou and Dimitriou (2021) 2021 Infrastructure and equipment context of port terminals TEUs DEA-CCR

C.-N. Wang et al. (2021) 2021
Total assets, Owner’s equity, Liabilities, Operation
expenses

Revenue, net profit DEA Malmquist

Ben Mabrouk et al. (2022) 2022
Number of berths, the total number of gears, and the
total number of workers

Cargo throughput
DEA Malmquist, DEA-BBC,
DEA-CCR

C.-N. Wang et al. (2022) 2022 Terminal length, equipment, ship calls
Cargo throughput, container
throughput

DEA Malmquist

Yu et al. (2022) 2022 Number of berths, length of the wharf
Cargo throughput, container
throughput

DEA Malmquist, DEA-BBC

Nong (2023) 2023
Capital, operational expenses, labor, area, quay length,
and depth

Sales revenue and cargo
throughputs

DEA-BBC, DEA-CCR

Yen et al. (2023) 2023 Port cost Cargo throughput DEA-BBC, DEA-CCR
frontiersin.org

https://doi.org/10.3389/fmars.2025.1645175
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ji et al. 10.3389/fmars.2025.1645175
advanced pollution control equipment and technologies, thereby

enhancing the overall efficiency of industrial pollution mitigation

(Yang et al., 2021). Building on this, strengthening the intensity of

environmental regulation can improve the capacity to control

pollutant emissions, more effectively curtail the discharge of land-

based pollutants into the marine environment, and ultimately

improve environmental quality in coastal regions (Sun et al.,

2023). The relevant data are sourced from the China

Statistical Yearbook.

3.2.4 Control variables
This study incorporates four control variables. First, Gross

Ocean Product (GOP) refers to the total final output generated by

various marine economic activities in coastal regions during a given

period. It is calculated as the sum of the value added by the three

major categories of marine industries and provides a

comprehensive reflection of regional marine economic

development (Ji and Ding, 2024; Shao et al., 2021a). Following

(Shao et al., 2021b), this study employs per capita GOP as an

indicator of marine economic development, with data sourced from

the China Marine Statistical Yearbook. Second, technological

innovation is widely recognized as contributing to the mitigation

of ecological pressures on the marine environment (Ren and Ji,

2021), and patents serve as an important indicator of technological

innovation (Li et al., 2022). Accordingly, following (Liu et al., 2021),

this study adopts the number of marine research and development

institutions as the proxy variable for technological innovation, with

data also obtained from the China Marine Statistical Yearbook. In

addition, population size is measured by total year-end population,

with data drawn from the China Statistical Yearbook. Finally,

consistent with the approach of (Jiang and Li, 2021), this study

uses the proportion of the secondary industry’s value added to GDP

as a proxy variable for industrial structure. The sources and
Frontiers in Marine Science 07
definitions of all variables are presented in Table 2, and Table 3

are the descriptive statistics of the variables.
4 Empirical results and discussion

4.1 Shipping efficiency calculation results

Shipping efficiency in China’s coastal regions shows an overall

upward trend, while some provinces have experienced a decline in

efficiency, indicating notable regional disparities. As shown in

Table 4, the average shipping efficiency index in China’s coastal

regions from 2010 to 2021 was 1.046, indicating an average

improvement of 4.6% in shipping efficiency during this period

and demonstrating a steady upward trend. However, it is

noteworthy that some provinces, such as Liaoning, Shandong,

and Tianjin, experienced a decline in shipping efficiency. This

phenomenon may reflect certain shortcomings in these regions

regarding resource allocation, technological upgrading, or

management capabilities, which have hindered their ability to

adapt promptly to structural adjustments in shipping and

evolving market demands. Furthermore, the industrial structure

in these provinces remains heavily reliant on traditional heavy

industries, with a high proportion of high-pollution enterprises,

which may also constrain further improvements in shipping

efficiency. Overall, although most regions have seen steady gains

in shipping efficiency, regional disparities still warrant attention.
4.2 Baseline regression results

Improvements in shipping efficiency significantly reduce

marine petroleum pollution, with the results from the two-way
TABLE 2 Variables and data sources.

Variable Symbol Specification References Data source

Marine petroleum
pollution

PET The logarithm of land-based marine petroleum pollution (Ji and Ding, 2024)
China Marine Statistical
Yearbook

Shipping Efficiency SE DEA-Malmquist index method estimation (Wu and Wang, 2022)
China Port Statistical
Yearbook

Port Specialization
Index

PSI Estimation of the port specialization index (Zhang et al., 2021; Zhou et al., 2023)
China Port Statistical
Yearbook

Environmental
Regulation

ER
The logarithm of completed investment in industrial
pollution control

(Zeng et al., 2019; Yang et al., 2021)
China Statistical
Yearbook

Marine Economic
Development

PGOP The ratio of gross ocean product to total population (Shao et al., 2021b)
China Marine Statistical
Yearbook

Technological
Innovation

TECH
The logarithm of the number of marine research and
development institutions

(Liu et al., 2021)
China Marine Statistical
Yearbook

Population Size POP The logarithm of the total population (Li et al., 2019)
China Statistical
Yearbook

Industrial Structure IND The ratio value added of the secondary industry to GDP (Jiang and Li, 2021)
China Statistical
Yearbook
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fixed effects model proving to be the most robust. Specifically,

Table 5 presents the regression results on the impact of shipping

efficiency on marine petroleum pollution in coastal provinces.

Column (1) reports the results controlling only for provincial

fixed effects, Column (2) reports the results controlling only for

time fixed effects, and Column (3) reports the results of the two-way

fixed effects model controlling for both provincial and time fixed

effects. The findings indicate that improvements in shipping

efficiency significantly reduce marine petroleum pollution across

all models. We adopt the two-way fixed effects model as the baseline

model, as it effectively controls unobserved regional heterogeneity

and time trends, thereby reducing omitted variable bias. The

baseline regression results show that for every 0.01 increase in

shipping efficiency, marine petroleum pollution decreases by

approximately 0.01% on average, suggesting that improvements

in shipping efficiency play a significant role in enhancing the

marine environment.

We argue that the improvement of shipping efficiency, as a key

manifestation of the operational efficiency of transportation

infrastructure, can effectively mitigate land-based marine

petroleum pollution through two main channels: (1) enhancing

pollution prevention and control capacity via the optimization of

shipping facilities, and (2) promoting green industrial

transformation by reducing transportation costs.

First, the improvement of shipping facilities significantly

strengthens the system’s ability to control pollution sources,

thereby reducing the risk of petroleum pollutants entering the

ocean. With the cont inuous upgrading of waterway
Frontiers in Marine Science 08
transportation infrastructure, the environmental performance of

port operations has steadily improved (Hua et al., 2020). For

instance, intelligent centralized pollutant treatment systems help

reduce emissions during loading, unloading, and transportation

processes; meanwhile, automated monitoring and emergency

response systems enable the real-time detection of, and rapid

response to, unexpected pollution incidents, thereby effectively

curbing the spread of pollutants into the marine environment

(Yang et al., 2018; Durán et al., 2025).

Second, the improvement of shipping efficiency helps to lower

overall logistics costs and enhance the reliability of the

transportation system, which is particularly important for high-

end manufacturing and modern service industries that are highly

sensitive to cost control. As port and shipping systems operate more

efficiently, these low-pollution, high value-added industries are

increasingly drawn to port cities, gradually replacing traditionally

dominant, high-pollution sectors such as petroleum refining, heavy

chemical industries, and coal handling (Fan et al., 2021). This

industrial shift elevates the level of industrial development in port

areas and promotes the green transformation of regional

economies, thereby alleviating environmental pressures on coastal

ecosystems (Su et al., 2024).

In summary, improvements in shipping efficiency are reflected

not only in enhanced shipping facilities but also in reduced

transportation costs and industrial restructuring (Psaraftis and

Kontovas, 2013). The former strengthens pollution control

capacity and operational cleanliness, effectively reducing pollutant

emissions; the latter diminishes the dominance of high-pollution

industries, thereby constraining petroleum-related pollutant

emissions at the source. These two mechanisms complement each

other, making the enhancement of shipping efficiency an important

pathway for addressing land-based marine petroleum pollution.
4.3 Moderating effects results

Port specialization and environmental regulation both exert

negative moderating effects on the role of shipping efficiency in

reducing marine petroleum pollution. In other words, in regions

with lower levels of port specialization or relatively lenient

environmental regulation, improvements in shipping efficiency

have a more pronounced effect on pollution reduction, indicating

a certain degree of substitutability between the two. Specifically, as
TABLE 3 Descriptive statistics of variables.

Variable Obs. Mean Std. dev. Min Max

PET 143 3.008 2.499 -4.605 6.543

SE 143 1.083 0.262 0.310 2.200

PSI 143 0.218 0.185 0.003 0.769

ER 143 12.030 1.247 6.165 14.164

PGOP 143 1.390 1.031 0.126 4.194

TECH 143 2.536 0.585 1.099 3.689

POP 143 8.387 0.768 6.767 9.448

IND 143 0.407 0.084 0.190 0.528
TABLE 4 Shipping efficiency calculation results of coastal provinces and cities.

Region Shipping efficiency Ranking Region Shipping efficiency Ranking

Fujian 1.129 2 Liaoning 0.856 11

Guangdong 1.122 3 Shandong 0.997 9

Guangxi 1.148 1 Tianjin 0.915 10

Hainan 1.077 6 Zhejiang 1.049 7

Hebei 1.045 8 Shanghai 1.081 5

Jiangsu 1.091 4
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shown in Table 6, the regression results in column (2) indicate that

the interaction term SE � PSI has a regression coefficient of 6.323,

which is significantly positive at the 1% level. This suggests that port

specialization exerts a significant negative moderating effect on the

relationship between shipping efficiency and marine petroleum

pollution. Specifically, in coastal provinces with lower levels of

port specialization, improvements in shipping efficiency have a

more pronounced suppressive effect on marine petroleum

pollution. This finding indicates a certain degree of

“substitutability” between port specialization and shipping

efficiency in the context of pollution control.

Figure 1 further validates the above findings by illustrating the

moderating effect of port specialization on the relationship between

shipping efficiency and marine petroleum pollution. The results

show that when PSI is below approximately 0.3, the marginal effect

of EFFI on PET is significantly negative, indicating that in regions

with lower levels of port specialization, improvements in shipping

efficiency exert a stronger suppressive effect on pollution. This

suggests that in contexts where port functions are blurred and

operational processes are less standardized, enhancing efficiency

becomes a key means of improving environmental performance. In

contrast, when PSI exceeds 0.3, the marginal effect gradually

increases and becomes insignificant, implying that as port

specialization intensifies, the pollution reduction effect of shipping

efficiency is either substituted or diminished, thereby weakening the

moderating effect.

When the degree of port specialization is low, the division of

functions within the port is unclear, operational processes are not

well standardized, and there is a lack of effective collaboration and

pollution control mechanisms. Under such circumstances,

improving shipping efficiency becomes an important means of

mitigating environmental pollution, with a more pronounced

emission reduction effect. In contrast, when the degree of port

specialization is high, pollution sources are generally brought under

initial control through rational functional division and spatial

zoning, and the port itself tends to possess strong pollution

treatment capabilities. In this context, the additional emission

reduction benefits resulting from enhanced shipping efficiency

diminish, exhibit ing a trend where greater efficiency

improvements yield increasingly limited pollution reduction

effects. Overall, although port specialization and shipping

efficiency follow different pathways in pollution control, both

contribute positively to reducing marine petroleum pollution and

can, to some extent, serve as substitutes for each other.

Moreover, the results in column (4) show that the regression

coefficient of the interaction term SE � ER is 1.258, which is also

significant at the 1% level, further confirming that environmental

regulation exerts a negative moderating effect on the relationship

between shipping efficiency and marine petroleum pollution.

Specifically, in regions where environmental regulation is

relatively weak, with insufficient emission standards, regulatory

frameworks, and pollution control requirements, ports and

shipping enterprises generally face limited external policy

constraints. Under such conditions, their environmental
frontiers
TABLE 6 Moderating effects results.

Variable (1) (2) (3) (4)

SE
-0.876**
(0.435)

-2.468***
(0.525)

-1.000**
(0.426)

-15.520***
(3.437)

PSI
1.005
(2.960)

-6.757**
(3.295)

SE � PSI
6.323***
(1.503)

ER
0.152
(0.181)

-1.269***
(0.374)

SE � ER
1.258***
(0.296)

PGOP
-0.248
(0.502)

-0.413
(0.455)

-0.321
(0.451)

-0.298
(0.420)

TECH
0.010
(0.398)

1.466***
(0.376)

0.987**
(0.382)

1.612***
(0.385)

POP
3.588
(5.107)

-6.504
(4.750)

-2.061
(4.953)

-2.610
(4.621)

IND
-13.590
(8.476)

-10.540
(7.766)

-13.99*
(8.230)

-15.540**
(7.684)

Constant
-19.170
(40.124)

61.610
(38.220)

24.350
(39.687)

44.540
(37.314)

Year Fixed Effect Yes Yes Yes Yes

Province Fixed
Effect

Yes Yes Yes Yes

Observations 143 143 143 143
The values enclosed in parentheses represent standard errors. *, **, and *** denote significance
at the 10%, 5%, and 1% levels, respectively.
TABLE 5 Baseline regression results.

Variable (1) (2) (3)

SE
-0.854**
(0.399)

-1.081**
(0.453)

-1.023**
(0.425)

PGOP
-0.706*
(0.409)

-0.098
(0.361)

-0.300
(0.449)

TECH
0.777**
(0.345)

1.246***
(0.368)

0.959**
(0.380)

POP
-4.592
(4.044)

-0.002
(0.735)

-1.572
(4.912)

IND
-0.995
(3.707)

-7.369
(5.789)

-15.260*
(8.080)

Constant
41.860
(34.067)

5.146
(4.849)

22.720
(39.589)

Year Fixed Effect NO YES YES

Province Fixed
Effect

YES NO YES

Observations 143 143 143
The values enclosed in parentheses represent standard errors. *, **, and *** denote significance
at the 10%, 5%, and 1% levels, respectively.
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performance relies more heavily on improvements in internal

operational efficiency, making shipping efficiency a key

mechanism for driving pollution reduction.

Figure 2 provides a visual illustration of the moderating effect.

The results show that when the intensity of environmental

regulation is below 12, the marginal effect of EFFI on PET is

significantly negative, indicating that improvements in shipping

efficiency have a stronger pollution-reducing effect in regions with

weaker regulatory enforcement. In this phase, EFFI functions as a

“substitute mechanism” for policy regulation, indirectly achieving

pollution control objectives through enhanced operational

efficiency. However, as environmental regulation strengthens

(ER>12), the marginal effect gradually becomes insignificant,

suggesting that in regions with stricter regulation, the
Frontiers in Marine Science 10
independent emission-reduction effect of EFFI is weakened by

policy constraints, and the moderating effect tends to diminish.

Improvements in shipping efficiency are typical ly

accompanied by cost reductions, technological upgrades, and

streamlined processes. Although these changes are not primarily

aimed at environmental protection, they can effectively reduce

pollution in practice. In regions where external environmental

policies are relatively weak, enhanced shipping efficiency can

partially compensate for regulatory shortcomings and serve as an

alternative means of pollution control. Therefore, in areas with

less stringent environmental requirements, the pollution-

reducing impact of improved shipping efficiency becomes

more pronounced, demonstrating its greater environmental

potential.
FIGURE 1

Marginal effect of shipping efficiency on marine petroleum pollution at varying levels of port specialization.
FIGURE 2

Marginal effect of shipping efficiency on marine petroleum pollution at varying levels of environmental regulation.
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5 Conclusion

Based on panel data from 11 coastal regions in China spanning

the period from 2010 to 2022, this study investigates the impact of

shipping efficiency on marine petroleum pollution. The main

findings are as follows. First, overall, shipping efficiency in China’s

coastal regions has shown a steady upward trend, although some

provinces, such as Liaoning, Shandong, and Tianjin, still exhibit

declines in efficiency, indicating regional disparities in development.

Second, the baseline regression results reveal that shipping efficiency

has a significant negative impact on marine petroleum pollution,

suggesting that improvements in shipping efficiency contribute

substantially to mitigating marine petroleum pollution. Third, port

specialization and environmental regulation exhibit significant

negative moderating effects on the relationship between shipping

efficiency and marine petroleum pollution.

Based on the above findings, the following policy

recommendations are proposed. First, shipping efficiency in

provinces such as Liaoning, Shandong, and Tianjin remains

relatively low, primarily due to a narrow industrial structure,

outdated port facilities, and poor transport connectivity. It is

essential to accelerate the intelligent upgrading of shipping

infrastructure, promote the adoption of automated loading and

unloading systems and intelligent scheduling, and enhance

operational efficiency. In addition, coastal industries should be

guided toward higher value-added and lower-pollution sectors to

reduce dependence on traditional energy-intensive industries. Efforts

should also be made to improve the intermodal transport network by

promoting rail-waterway integration and developing a coordinated

and efficient port logistics system. Second, given that improvements

in shipping efficiency help reduce marine petroleum pollution,

coastal regions should expedite the development of green shipping

systems. This includes strengthening technological upgrades in port

operations, introducing energy-saving equipment and intelligent

management systems to reduce fuel consumption and leakage

risks during operations. Furthermore, standardized environmental

protection facilities, such as waste oil-water recovery systems, shore

power systems, and emergency response equipment, should be

installed to control pollution at its source. Third, management

strategies should be tailored to different levels of port

specialization. For ports with a lower degree of specialization,

priority should be given to pollution control through efficiency

improvements, emphasizing operational enhancements as the

primary emission reduction pathway. For highly specialized ports,

greater emphasis can be placed on functional division, pollutant-

specific management, and supporting facilities to improve the overall

level of environmental management and enhance the

systematization and precision of pollution control. Fourth, the

intensity of environmental regulation should be carefully

calibrated to avoid unintended negative consequences. In regions

with relatively weak regulatory foundations, local governments

should first be encouraged to reduce emissions through efficiency

improvements, and more stringent standards should be introduced

gradually as their capacity increases, following an efficiency-first,
Frontiers in Marine Science 11
policy-following approach. In regions with stronger regulatory

frameworks, greater emphasis should be placed on the synergy

between policy instruments and market mechanisms to prevent

cost pressures from discouraging local governments from investing

in environmental protection, thereby ensuring the sustainability and

effectiveness of regulatory policies.

This study has certain limitations, which provide opportunities

for further research. On the one hand, due to data availability

constraints, the study period is limited to 2022. Future research

could extend the time span as updated data become available,

allowing for a more comprehensive examination of the dynamic

relationship between shipping efficiency and environmental impact.

On the other hand, the current analysis is based primarily on

regional-level panel data and does not capture micro-level

differences at the port or firm level. Future studies may

incorporate more granular data (such as port-level or firm-level

data) to explore the heterogeneous effects of shipping efficiency on

environmental outcomes under different port types, transportation

routes, and operational characteristics.
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