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The Southern Ocean (SO) is a critical driver of global wave dynamics, generating
long-period swells that propagate vast distances and significantly impact far
distant coastal regions, including the Indian coastal regions. Climate change has
intensified westerly winds and altered storm tracks in the Southern Hemisphere,
resulting in higher wave heights and longer periods, which in turn increase the
risk to coastal regions. However, the remote and harsh environment in the SO
has historically limited in-situ wave observations, hindering a comprehensive
understanding of the wave characteristics in the region. To bridge this gap, the
Indian National Centre for Ocean Information Services (INCOIS) launched the
Indian Ocean Wave Drifter (IOWD) program in 2021 under the Deep Ocean
Mission to address the in-situ data gap in the Southern Indian Ocean. Through
the deployment of GPS-enabled directional wave spectra drifters, the program
has enabled near-real-time observations of wave characteristics across the SO.
This article highlights the early outcomes of the IOWD program, including wave
model validation, Stokes drift estimation, and swell tracking. The study
emphasizes the importance of sustained in-situ observations from remote
oceans for improving wave forecasting, enhancing coastal preparedness, and
advancing scientific understanding of wave—current interactions and climate
variability in the Indian Ocean region.

KEYWORDS

directional wave spectra drifter, southern ocean, ocean surface waves, deep ocean
mission, indian ocean wave drifter program

1 Introduction

The Southern Ocean (SO) plays a pivotal role in global ocean dynamics and climate
regulation due to its persistent strong winds, powerful currents, and extreme waves.
Bounded by the Antarctic ice sheet to the south and major landmasses to the north, the SO
features the planet’s longest uninterrupted fetch, resulting in the generation of the largest
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and complex wave conditions anywhere on Earth. These waves,
often exceeding 10 m in significant height, propagate across the
ocean basins as long-period swells and act as global energy
transporters (Babanin et al., 2019).

These swell systems have far-reaching impacts, far beyond their
point of origin (Remya et al, 2016). The North Indian Ocean
(NIO), particularly the southwest coast of India, is notably affected
by SO-generated swells. Coastal flooding and freak wave incidents
have been consistently linked with these remote swell events
(Remya et al., 2012; Nayak et al, 2013; Sabique et al., 2012;
Ramakrishnan et al., 2022). A growing body of literature
demonstrated this relationship, including the arrival of Atlantic
swells on the Indian coast (Samiksha et al., 2012) and the linkage
between SO storms and Kallakadal-type flash flooding events along
the Indian coast (Remya et al, 2016). Other studies (Majumder
et al,, 2022; Ramakrishnan et al., 2018) have highlighted the role of
SO swells in coastal erosion and the formation of freak waves, which
cause severe risks to marine operations and coastal infrastructure.

Climate change has further intensified the influence of SO on
global wave patterns. Observations and model studies (Semedo
et al,, 2012; Hemer et al., 2013) have shown statistically significant
increases in significant wave height and wave periods. The
intensification and poleward migration of westerly wind belts and
storm tracks drive these changes. This results in a global increase in
the annual mean wave period, affecting over ~30% of the global
Ocean and changes wave propagation directionality (Hemer et al.,
2013). Another study by Bhaskaran et al. (2014) based on satellite
measurements highlighted that the SO belt, between 40°S - 55°S,
experiences the highest variability due to climate change. These
trends have profound implications for the Indian Ocean basin,
exacerbating nonlinear interactions between wind sea and swell,
increasing swell surges and freak waves, and amplifying the risks of
extreme wave events.

Despite its global importance, SO remains the most under-
observed region of the global Ocean. The extreme sea states, remote
location and harsh environmental conditions (colloquially referred
to as the ‘Roaring Forties’ and ‘Furious Fifties) pose significant
challenges to sustained in situ observations. Satellite altimeters,
although valuable, provide only limited data (mainly significant
wave height) and lack the directional or spectral information
necessary to understand the complexity of swell generation and
propagation. Moored buoys are both logistically impractical and
financially unsustainable in the harsh SO environments, which
highlights the importance of wave drifters as a viable alternative
for in-situ observations.

Wave drifters have already proven their utility in different ocean
basins. Veras Guimaraes et al. (2018) demonstrated that low-cost
drifting buoys could capture wave—current interactions in macro-
tidal coastal environments. Hisaki (2021) validated drifting-buoy
data against moored GPS buoys and ERA5 reanalysis near Japan,
demonstrating that drifters provided more accurate wave heights in
regions with strong currents. Houghton et al. (2021) further showed
that a network of free-drifting Spotter buoys significantly enhanced
wave forecast skill, reducing forecast errors and improving swell
event detection. Holphe et al. (2025) compared wave displacements
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from a moored and a drifting Spotter buoy during an accidental
voyage in the Indian Ocean, further demonstrating the robustness
of drifting buoy measurements. More recently, Wu et al. (2025)
used drifting buoys in the Kuroshio Extension to reveal how
background currents modulate surface wave characteristics, while
Cavaleri et al. (2025) highlighted the potential of small drifting
buoys to resolve fine-scale processes such as wave steepness,
breaking, and dissipation. Collectively, these studies demonstrate
the versatility and reliability of drifting buoys for acquiring high-
quality wave data in challenging ocean environments.

Building upon this global evidence, and to address the data
scarcity in the Southern Indian Ocean (SIO), the Indian National
Centre for Ocean Information Services (INCOIS), under the
Ministry of Earth Sciences (MoES, Govt. of India), initiated the
Indian Ocean Wave Drifter IOWD) program in 2021 under its
flagship Deep Ocean Mission (DOM). The primary objectives of the
IOWD program are to (i) obtain in-situ wave spectra information
from the SIO, (ii) reduce observational gaps that limit wave model
accuracy in the IO, and (iii) provide datasets to improve both
scientific understanding of wave climate variability and operational
forecasting. The program employs GPS-based Directional Wave
Spectra Drifters (DWSD), developed by the Lagrangian Drifter
Laboratory (LDL) at Scripps Institution of Oceanography. The
deployment of DWSDs represents a major step forward in
addressing the observational gap in SIO and enhancing our
understanding of wave dynamics. The IOWD program not only
supports scientific advancement and operational forecasting, which
are aimed at as the immediate priorities, but also contributes
directly to several of the United Nations Sustainable Development
Goals (SDGs). It addresses the SDG13 (Climate action) by
providing critical data for monitoring and modelling climate
induced changes in the ocean; SDG14 (life below water) by
supporting ocean health and ecosystem resilience through better
wave and current forecasting; and SDG 9 (industry innovation and
infrastructure) through the deployment of cutting-edge
observational technologies and infrastructure in extreme
marine environments.

This article introduces the IOWD program, describes the
technical specifications of the DWSDs, outlines the multi-phase
implementation strategy, and presents key early applications. These
include wave model validation, swell tracking, and Stokes drift
estimation, all of which demonstrate the potential of sustained in-
situ wave observation in the SO and Indian Ocean region.

2 DWSD technical overview

The Directional Wave Spectra Drifter (DWSD) is a compact,
free-drifting, Lagrangian platform designed by the Lagrangian
Drifter Laboratory (LDL) at the Scripps Institution of
Oceanography (Postacchini et al., 2015; Centurioni, 2017;
Centurioni et al., 2017). These compact, cost-effective drifters can
transmit real-time, high resolution directional wave spectra and
ancillary data from remote and other inaccessible ocean regions.
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The DWSD, which weighs 12 kg, consists of a 0.39 m diameter
spherical hull that houses a GPS receiver, batteries, data acquisition
electronics, and an Iridium satellite modem (Figure 1). It is powered
by replaceable alkaline or lithium batteries, offering extended
mission durations, depending on the sampling duration and
environmental conditions. The GPS sensor in the DWSD records
3D velocity time series (zonal and meridional), at a sampling rate of
2 Hz for 17 minutes every hour. The power spectral density, co-
spectra and quadrature-spectra parameters are derived with the
Fourier transforms of the correlation functions of each pair of the
velocity time-series, giving the first five independent Fourier
coefficients (a0, al, a2, bl, b2) and thus the wave spectra for each
hourly sea state. The drifter transmits data in real-time via the
Iridium satellite system, including Significant wave height (Hs),
Mean wave period (Tm), Mean wave direction (Mdir), Peak wave
period (Tp), Peak wave direction (Pdir) and wave spectra.
Metadata, such as timestamp, location, battery voltage, sea level
pressure, and sea surface temperature, is also included in the data
stream. Using two-way communication via Iridium, the sampling
strategy can be reconfigured, allowing adaptive observation
strategies in response to evolving ocean conditions.

To ensure the accuracy and reliability of the drifter data, a
comprehensive quality control procedure was implemented. Data
from the initial test phase was excluded to remove potential
anomalies and inconsistencies. Outliers were identified and
eliminated based on a threshold of five times the standard
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deviation to preserve data integrity. Additionally, any data points
with zero and stuck values were discarded. The geographic positions
of the drifters were verified to ensure they fell within the designated
oceanic domain. This multi-step quality control process ensured
that only high-quality, consistent data were retained for subsequent
analysis (Figure 2).

3 Indian Ocean Wave Drifter program

The IOWD program was initiated in 2021 under DOM by
MOoES, Govt. of India, aimed at exploring and harnessing the vast
potential of the depths of the Ocean through a mission-mode
approach. It focuses on six key themes: development of
technologies for deep-sea mining and underwater robotics, ocean
climate change advisory services, sustainable use of marine bio-
resources, deep ocean survey and exploration, extraction of energy
and freshwater from the Ocean, and establishing an advanced
marine station for ocean biology. INCOIS is leading the
development of climate change advisory services, and the drifter
program is a part of this vertical. The program was started under the
DOM in 2021. IOWD is envisaged as a continuous program, with
30 drifter deployments planned every year. The implementation so
far has been carried out in multiple phases, leveraging the cruise
opportunities to optimize the spatial coverage and data return. The
continuing IOWD program can fill the critical gap in obtaining
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observed wave spectra from the SO, providing essential insights into
the changing wave dynamics and climate perspective of this remote
and challenging region.

The initial phase involved the deployment of 4 DWSD during
the Southern Ocean Expedition by the National Centre for Polar
and Ocean Research (NCPOR) in 2021, onboard MV Vasily
Golovnin, targeting the high swell regions of the Southern Indian
Ocean (SIO). These deployments provided valuable insights into
early mission planning, system endurance and real-time telemetry.
Subsequent deployments occurred in 2023 and 2024, expanding the
geographic scope and increasing the number of drifters. A fleet of 30
drifters was deployed from RV Roger Revelle (20 numbers) and
ORV Sagar Nidhi (10 numbers), covering the SIO and tropical
Indian Ocean basins, respectively. These deployments were
carefully planned to enable long period swell tracking from the
SIO into the tropical oceans.

In addition to targeting swell propagating tracks, the program
also focuses on deployments in areas influenced by mesoscale
eddies and strong boundary currents to examine the wave-current
interactions. During the 2024-2025 Antarctic expedition, 3 drifters
were deployed in the marginal ice zones to study the wave-
ice interactions.

Figure 3 shows along-track Hs values of the drifters from first,
second and third phase deployments. It is evident from the figures
that the drifters are effectively covering the remote areas and
transmitting the data for a long period. The longest continuous
dataset lasted 292 days, with most drifters functioning for more
than six months—highlighting their significance in remote wave
observations. Real-time data reception and remote configurability
allowed the research team to optimize sampling schedules and
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adapt to evolving weather and wave conditions. The cumulative
data return has established a high resolution, multi-season
observational archive that supports not only basic research and
validation, but also operational oceanography.

4 A few key applications of the IOWD
program

In the following section, we highlight a few key applications of
the IOWD program, using the DWSD data from the first phase
deployment. These examples demonstrate the value of the program
and its impact on advancing wave research. Although all drifters
were initially deployed in the SIO, one drifter (drifter 4) drifted into
the Atlantic Ocean, while the remaining three continued to operate
within the SIO. The drifter tracks are shown in Figure 4A. Figure 4B
presents the along-track time evolution of energy density recorded
by the drifters. Notably, drifter 3 has provided a long data series
spanning around 6 months until July 2021.

4.1 Wave model validation

INCOIS runs a suite of wave models for various applications,
including wave forecasting, climate service development, and wave
research in the I0. The WAVEWATCH III model has been used for
both global and regional wave forecasting applications. Until the
initiation of the IOWD program, model studies relied on satellite
altimeter-derived significant wave height (H;) for the validation of
SO waves. Since the initiation of the drifter program, model results

frontiersin.org
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Wave drifter tracks of first, second and third phase deployment in the Indian Ocean; color represents significant wave height (m) along the tracks.

have now been validated using drifter wave parameters. Figure 5
shows the time series comparison of modeled wave parameters with
drifter observations for a representative drifter, demonstrating good
agreement across all parameters. Tm exhibits a slight negative bias,
whereas Hs shows good agreement, even at the highest wave heights
(>10 m), proving the reliability of the model predictions in the
southernmost latitudes. The observed mean wave direction (M,;,)
was mostly within the range of 225° - 315° and the model-
predicted values followed the same pattern. Table 1 presents the
model error statistics for the comparison, illustrating the good
agreement between the model and drifter observations in the
southern latitudes. From Table 1, it can be seen that the scatter
index values are less than 0.25 for H;, T, and T, for all drifters,
while M;, shows higher errors compared to the other parameters.

At times, the drifter was located within storm-affected regions,
where it measured high-energy spectra that were subsequently used
for model validation. Figure 6 shows two such examples involving
Drifter 2 and Drifter 3. In the first case, Drifter 2 was in a region of
strong storm-induced winds and recorded a peak energy density of
approximately 320 m*/Hz. Although the model captured the overall
spectral shape, it was unable to reproduce the peak of spectral
energy density observed at 03 UTC on 14 June. However, the model
did simulate peak spectral energy density of ~160 m?*/Hz at 12 UTC
on the same day.

In the second case, Drifter 3 was in a storm region on 28 July
2021. Like the first case, the model failed to reproduce the observed
peak spectral energy density (~170 m*/Hz) at 06 UTC, although it
closely matched the observed spectra at 21 UTC on the same day.
The errors in simulating storm-induced wave fields are largely
attributed to inaccuracies in forecast wind inputs, as well as
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inadequacies in the parameterization schemes used in the model
(Raj et al., 2023).

A potential solution to address these uncertainties is the
assimilation of observational data. As seen in Figure 6, the
drifters effectively captured the highest energy levels during storm
conditions, and assimilating such data can substantially improve
wave forecasts. Increasing the number of drifter deployments in the
SIO will enhance opportunities to capture such events and
contribute to more accurate forecasting of wave fields and swell
propagation in the region.

4.2 Tracking of the SO swells

One of the main objectives of the drifter program was the
utilization of data for tracking and the study of the SO swells. The
SO swells are controlling the NIO wave characteristics and have a
significant impact on the Indian coastal areas. The changing
patterns of swells due to climate change can have a significant
impact on Indian coastal regions in terms of flooding and coastal
erosion. Since there are no swell fields available from satellite
altimeters/synthetic aperture radar directly, SO swell validation is
unattainable. We have used a constant threshold frequency
criterion (0.1 Hz) and made the sea and swell separation both
from model and drifter. The validation of separated wave fields is
shown in Figure 7. As seen in Figure 3, Drifter 2 tracks fall within a
high wave height and swell-dominated regime and are therefore
chosen as a representative track for the validation. The swell wave
fields show close agreement with the drifter data, even during
periods of high swell wave heights, whereas the swell wave period

frontiersin.org
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(A) Wave drifter tracks of initial deployment in the SO (B) Wave energy density along the drifter tracks.

is overestimated, indicating an energy shift towards the lower-
frequency part of the spectrum in the wave model (Figure 7).
Wind sea heights and periods were in good agreement with the
observations. Table 2 provides the error statistics of the model for
the three drifters. The scatter index of the heights and periods of
wind sea and swell is well below 0.3, indicating better performance
of the forecast model in the SIO. Ocean current data were not
included in the present wave model simulations, and this omission
may have introduced biases, particularly in the South Indian Ocean,
where strong currents are common. Future work will address wave-
current interactions in the Indian Ocean using drifter observations.
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4.3 DWSD derived stokes drift and model
comparison

During its periodic motion, a particle floating at the free surface
of a water wave experiences a net drift velocity in the direction of
wave propagation, known as the Stokes drift (Stokes, 1847). Ocean
surface waves mainly contribute to turbulent kinetic energy and
turbulent mixing throughout the mixed layer through Stokes drift
and wave breaking. The Stokes drift is considered as an important
parameter in the ocean-wave coupled model for representing the
Langmuir effect. Additionally, Stokes drift is considered as an
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important parameter in the particle tracking model. It also plays a
significant role in wave-induced turbulent mixing within climate
system models (Fan et al., 2023). In the first few meters below the
surface, Stokes drift influences the motion of drifters with shallow
drogue and drifter observations allow the calculation of Stokes drift
and the methodology is as follows.

If the one-dimensional variance spectra is used, the Stokes drift
can be computed as (Kenyon, 1969):

167°
4

82

[[7 Bwtry &F=ar )

u(z)=

TABLE 1 Model error statistics for the drifter wave data comparison.

where g is gravity and z is the water depth, negative downward, f
is the frequency, E,,,, one dimensional wave spectrum.

Using Equation 1, Stokes drift has been computed from the
drifter data for three drifters and is shown in Figure 8. The analysis
shows maximum Stokes drift values near the surface, decreasing
with depth, consistent with theoretical expectations. The WW3
model also provides surface Stokes drift. Therefore, the computed
surface Stokes drift from the drifters is used to validate the WW3
model-derived Stokes drift (Figure 9). The model shows good
agreement with the drifter data, with a slight negative bias along
all three drifter tracks, demonstrating the reliability of the model-

. Root mean Correlation .
Parameters Mean bias o Scatter index
square error coefficient

H, (m) 0.19 0.47 0.89 0.15

T, (s) 1.10 231 0.49 0.21
Drifter 1

T, (s) -0.64 0.90 0.82 0.11

My, (deg) -5.93 35.65 0.73 0.64

H, (m) 0.40 0.65 0.93 0.16

T, (s) 0.78 1.92 0.58 0.17
Drifter 2

T, (s) -0.64 0.79 0.88 0.09

My, (deg) 0.09 20.96 0.77 0.70

H, (m) 0.47 0.72 0.92 0.19

T, (s) 1.19 231 0.47 0.20
Drifter 3

T, (s) -0.59 0.79 0.86 0.09

My, (deg) 1.42 27.73 0.74 0.72
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derived surface Stokes drift. This validation builds confidence in
using the model data for coupling applications and as input for
particle tracking models.

5 Real-time applications and future
research directions

The Indian Ocean Wave Drifter (IOWD) program has already
demonstrated substantial potential for integration into real-time
operational forecasting systems and long-term climate monitoring.
One of the immediate applications of the DWSD has been the real-
time validation of daily forecasts. Figure 10 illustrates one example
of real-time validation of the INCOIS wave forecast using drifter
data from a remote location, as displayed on the website www.
incois.gov.in. The availability of near-real-time wave data has
enabled operational forecast centers to assess model performance
under varying sea conditions. This validation enables the credibility
of wave forecast products disseminated to end users. Another near-
future operational application is the assimilation of DWSD data in
operational models.

Frontiers in Marine Science

The IOWD dataset also supports the development of improved
warning systems for swell-induced coastal hazards. By capturing the
spectral and directional characteristics of incoming swell waves, the
drifters provide key inputs for inferring regional-scale wave
forecasts. This contributes to early warnings for Kallakkadal-type
events and other forms of coastal flooding. The real-time
transmission of data from remote ocean regions fills a critical
observation gap that previously limited the accuracy of
such warnings.

Looking ahead, the IOWD data archive is expected to serve as a
reference dataset for evaluating long-term trends in wave energy
and spectral characteristics. This is particularly relevant for
understanding the influence of climate change on the SO wave
climate and its teleconnections to the Indian Ocean. Future
deployments will include targeted campaigns in polar and tropical
zones, enabling studies of wave-ice interactions, mixed wave-
current regimes, and air-sea exchange processes. Furthermore,
there is significant scope for coupling DWSD observations with
other oceanographic datasets, such as those from Argo floats,
gliders, satellite altimetry, eddy covariance sensors etc. This multi-
platform synergy will enable comprehensive assessments of wave-
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current interactions, upper ocean mixing, and momentum transfer.

The drifters also hold promises to improve Stokes drift estimates,

which are essential for applications ranging from marine pollution

tracking to search-and-rescue operations.

TABLE 2 Model error statistics for the drifter wave data comparison.

6 Summary and way forward

The Indian Ocean Wave Drifter (IOWD) program is an
important initiative for addressing a long-standing gap in in-situ

Name Parameters Mean bias Scatter index
Swell H 0.21 0.65 0.77 0.28
Wind wave H; -0.03 0.35 0.88 0.13
Drifter 1
Swell T, 0.90 1.05 0.71 0.09
Wind wave T, -0.09 0.31 0.74 0.05
Swell H 0.37 0.71 091 0.23
Wind wave H; 0.14 0.36 0.90 0.11
Drifter 2
Swell T, 0.83 0.97 0.73 0.08
Wind wave T, 0.01 0.27 0.72 0.04
Swell H 0.46 0.74 0.89 0.29
Wind wave H; 0.15 0.37 0.89 0.13
Drifter 3
Swell T, 0.92 1.09 0.61 0.09
Wind wave T, -0.02 0.29 0.74 0.04
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observations across the Indian ocean, particularly in areas where in-
situ mooring deployments are not feasible. The Southern Ocean
(SO), a region critical to global wave generation and climate
regulation, remains especially under sampled due to its
remoteness and harsh conditions. The IOWD program, launched
in 2021, under the Deep Ocean Mission (DOM) of MoES, aims to
overcome these challenges by deploying GPS-based Directional
Wave Spectra Drifters (DWSD), capable of transmitting wave
spectra, sea level pressure and sea surface temperature from
remote areas, in near-real time.

The program has already enabled several high-impact
applications including validation of wave forecast models, data
assimilation, tracking of long-period swells, estimation of Stokes
drift, etc. The availability of wave spectra observations from remote
and data-scarce regions will significantly advance our
understanding of swell propagation in the IO, its role in coastal
flooding, and the dynamics of wave-current interaction.

Despite its successes, the IOWD program also faces several
operational challenges. A notable percentage of deployed drifters
have been affected with vandalism, beaching, and premature death
limiting their effective life span and data continuity. Even though
37% of the 64 DWSD worked more than 250 days. Retrieval and
redeployment operations are resource intensive and logistically
demanding. Additionally, consistent access to ideal deployment
tracks in the SO regions remains a major constraint, often hindering
the deployment of drifters in key swell-generating zones. These
challenges underscore the need for robust deployment planning and
international collaboration, including coordinated ship time and
shared observation strategies.

The broader implications of the IOWD program are substantial.
By improving wave forecast accuracy in one of the most dynamic
wave-generating regions, the program directly contributes to
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marine safety, the protection of coastal infrastructure, and
enhanced disaster preparedness. Accurate wave predictions
support early warnings for swell surges and extreme wave events,
reducing risks to maritime operations and vulnerable coastal
communities. The real-time and long-term drifter observations
also provide crucial inputs for global climate models, helping
refine projections of sea level rise and wave climate under
changing atmospheric conditions. In this way, the IOWD
program supports more informed and actionable climate
adaptation policies.

From a strategic perspective, the IOWD program reflects
commitment of India to the United Nations Decade of Ocean
Science and aligns with Sustainable Development Goals (SDG 9, 13
and 14). Through sustained operation and expansion, the program
is expected to generate significant new research, particularly in wave
dynamics of the Indian Ocean, and foster technological and
scientific innovation in ocean observing systems. The program
will continue under the framework of DOM, with plans to
procure additional wave drifters yearly for deployment across
various parts of the Indian Ocean—particularly in key under-
sampled regions. With continued support and collaboration, the
IOWD program is poised to become a flagship contribution from
India to the global ocean observing community, advancing wave
forecasting, climate research and coastal resilience for years
to come.
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