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Franciscana dolphins are small odontocetes that produce narrow-band high-
frequency echolocation clicks. Autonomous acoustic monitoring and field
survey acoustic sampling were used to record franciscana dolphins in Ilha
Grande Bay, Brazil. Clicking sequences were automatically detected and
analyzed, and then manually classified into different types; acoustic parameters
from individual clicks were extracted. A total of 12505 clicks were detected, 152
clicking sequences were analyzed, of which 43 were click trains and 109 were click
packets. Considering all clicks, they occurred from 88.7 kHz to 250 kHz, with a
mean peak frequency of 132.4 + 6.8 kHz. Click trains were longer than click
packets, with larger inter-click intervals and mean peak frequencies of 123.6 + 16.4
kHz and 119.9 + 15.0 kHz, respectively. Franciscana dolphins emitted different
types of clicking sequences. The use of patterned clicks by franciscana dolphins
may be an important communication feature at very high frequencies.

KEYWORDS

narrow-band high-frequency, echolocation clicks, cetacean, bioacustic, Ilha
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Introduction

Franciscana dolphins (Pontoporia blainvillei) are small odontocetes that inhabit coastal
areas (Secchi et al, 2021). This species is listed as “vulnerable” on the IUCN Red List
(Zerbini et al.,, 2017) and as critically endangered in the Red Book of Brazilian Threatened
Fauna (ICMBio, 2018). The acoustic behavior of this species has only recently been
systematically investigated. Like all odontocetes, franciscana dolphins produce pulsed
signals commonly known as echolocation clicks. However, they fall within a category of
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clicks known as narrow-band high-frequency (NBHF) clicks
(Melcon et al,, 2012), produced by a few species (Morisaka and
Connor, 2007). Studies show that they can also produce burst-
pulses and whistles (Cremer et al., 2017; Tellechea and Norbis,
2014), but the high frequency nature of franciscana dolphin acoustic
signals poses a technological challenge. Sampling rates below 192
kHz miss most of their signal frequency range (Cremer et al., 2017),
which peaks above 120 kHz (Melcon et al., 2012; Barcellos and
Santos, 2021). Autonomous acoustic monitoring with sufficiently
high sample rates has enabled the recording of franciscana dolphin
groups in different areas, providing new insights into their acoustic
behavior (Barcellos and Santos, 2021; Paitach et al.,, 2021). This
study aimed to describe the characteristics of the echolocation clicks
produced by franciscana dolphins in Ilha Grande Bay, as well as the
emission patterns of these acoustic signals, which were recorded
using multiple techniques with sampling rates higher than 288 kHz.

Methods
Study area

Ilha Grande Bay (22°50°-23°20’S, 44°00°-44°45"W;
Supplementary Figure 1) represents the northwest limit of the
Laje dos Santos-Ilha Grande Important Marine Mammal Area
(IMMA), which is an area with records of more than 30 cetacean
species (IUCN-MMPATF, 2023). Most of the Ilha Grande Bay area
was previously considered a hiatus in the occurrence of franciscana
dolphins, but recent research has consistently demonstrated the
presence of the species in the region (Lailson-Brito et al., 2020).
Currently, this area can be considered part of one of four
Franciscana Management Areas (FMA) in Brazil: FMA IIa, which
comprises the population that occurs from the southern Rio de
Janeiro to the northern Sdo Paulo coastal areas (Cunha et al., 2014).

Acoustic recordings

Data recording was conducted between November 2023 and
November 2024 (Supplementary Figure 1). One approach involved
short deployments of an autonomous acoustic recorders model
DSG-ST (0.05-30 kHz, mean sensitivity of 200.0 dB/V re 1 pPa),
recording at a 288 kHz sampling rate and a gain of 33 dB. The
equipment was deployed from small boats and placed
approximately 4 m below the surface, where it remained for 24
hours. No visual observations occurred during deployments. Three
recording sessions of this type occurred, providing 72h of sampling
time. It is important to note that the distinct characteristics of the
detected signals confirm that they originate from the target species.
The franciscana dolphin is the only narrow-band high-frequency
species in the study area (Lailson-Brito et al., 2020).

The other approach involved manual recording during field
surveys using a digital recorder model SMBat-FS, operating at a
sampling rate of 500 kHz and a gain of 12 dB, coupled to a
hydrophone model HTI-99-UHF (0.002-200 kHz, mean
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sensitivity of -173.0 dB/V re 1 uPa). The hydrophone was placed
at approximately 4 m below the surface and recording started
alongside visual observation after franciscana dolphins were
sighted. Six recording sessions of this type were conducted,
providing a total of one hour of sampling time. During the
recordings, animals visible on the surface were observed from the
boat and video recordings were taken from aerial footage to help us
monitor the animals’ movements. Group size varied from three to
twelve individuals during these sampling surveys, with only one
group comprising both adults and calves.

Analyses

All recordings went through a high-pass filter to reduce the
influence of background noise below 70 kHz. Then, the clicking rate
was estimated through a MatLab (MathWorks Inc.) custom-written
click detector based on the scripts available at Zimmer (2011). Only
clicks with a Signal-to-Noise Ratio (SNR) above 10 dB were
detected, and only detected clicks were considered for
further analysis.

Recordings with detected clicks were manually observed
through the Raven Pro 1.6 software (Cornell Lab of Ornithology,
2023), where Spectrograms were generated with a 1024 Hann
window, 50% overlap and a time frame of 0.5s. Clicking
sequences were considered as a group of clicks recognizable as
being emitted with a visible time interval between them, which
could either be variable or appear to follow a specific pattern. They
were manually selected to investigate temporal patterns. Only
sequences where all clicks were detected and the first and last
clicks were clearly distinguished were considered. Sequences that
overlapped other sequences or sounds were excluded.

Nine acoustic parameters were extracted from each sequence.
From the detection output, we calculated duration (time from the
end of the last click minus the time of the beginning of the first
click), number of clicks, mean interclick interval (ICI - calculated as
the mean time difference between the beginning times of each click
in the sequence), minimum ICI in the sequence (the minimum time
difference between the beginning times of clicks in the sequence)
and maximum ICI in the sequence (the maximum time difference
between the beginning times of clicks in the sequence). From the
Raven software, the following variables were extracted considering
the entire sequence: minimum and maximum frequency (these
parameters were quantified because the click packages differed and
were visually measured in the spectrogram), center and peak
frequency (both obtained through the automatic measurement
tool in the software).

Clicking sequences were classified into two major categories:
click trains (Figure la) and click packets (Figures 1b-d), based on
the method used for rough-toothed dolphins (Rankin et al., 2015)
and adapted for franciscana dolphins. Click trains were sequences
in which an indefinite number of clicks occurred with an apparently
longer ICI that could vary throughout the sequence. Click packets
were sequences containing from two to 20 individual clicks bundled
closely together with short ICIs that varied from 2.21 to 35.15 ms,
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FIGURE 1

50% overlap, and a 2s window.

Examples of clicking sequences produced by franciscana dolphins in Ilha Grande Bay, southeastern Brazil. (a) click trains, (b) patterned click packet
“2c”, (c) patterned click packet "4c+1", (d) variable click packet, (e) burst-pulsed sounds. Spectrograms were generated with a 1024-Hann window,

02
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showing an interval between them on the spectrogram. Many click
packets appeared to exhibit repetitive time patterns, with the same
number of clicks and a consistent organization of time intervals
between them. So, additionally, click packets were also classified
into smaller categories (Figures 1B-D): variable packets (VPackets),
in which no clear time pattern could be visually distinguishable and
the measured ICI varied within the sequence; and patterned packets
(PPackets), in which the individual clicks occurred in a visually
distinguishable time pattern, similar to what is known for sperm
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whale codas (Watkins and Schevill, 1977). All PPackets then had
their pattern annotated as a combination of the number of clicks
with repeated time intervals. For example, packets with four clicks
in which three were grouped together and the third had a longer
interval were classified as “3c+1”. However, packets with four clicks
in which the ICI remained regular throughout the sequence were
classified as “4¢”.

Individual click parameters were also measured from the
highest energy clicks of the analyzed clicking sequences, but only
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if there were no distortions in the oscillogram or spectrogram
caused by echoes or surface and bottom reflections. Since only
one hydrophone was available, it was not possible to ensure that
only on-axis clicks were selected. However, steps were taken to
minimize the effect of off-axis recording. The selected clicks were
extracted from the detection output in MatLab, transformed into
short sound clips and had their spectral characteristics analyzed
with a 512-point FFT on a Hannning window around the peak of
the click envelope, which we obtained through a Hilbert
transformation of each signal (Zimmer, 2011). Only recordings
with the highest sampling rate (500 kHz) were used for these
analyses; therefore, the frequency resolution of this step was 0.98
kHz. We extracted peak frequency (center frequency of the band
with the highest amplitude of the spectrum), 10 dB bandwidth (the
frequency bandwidth 10 dB below the peak frequency), and click
duration (measured as the 95% of the energy of the click envelope);
these measurements were made through the MatLab custom
written scripts based on the routines available from Zimmer
(2011) and calculations from Madsen and Wahlberg (2007). From
the spectrogram in Raven, we measured the visible minimum and
maximum frequencies.

Burst-pulsed sounds, defined as trains of pulses with very short
intervals between clicks (Au and Hastings, 2008; Figure 1E), were
observed and counted, but most of them overlapped with clicking
sequences or had lower energy. Burst-pulses were analyzed in the
Raven software if they were not overlapped with other sounds and
had an SNR higher than 10 dB. The following parameters were
extracted: peak frequency, center frequency, visible minimum and
maximum frequency, and duration.

10.3389/fmars.2025.1641888

The data did not exhibit a normal distribution (Shapiro-Wilk
test, p<0.05). The Mann-Whitney U Test was applied to compare
acoustic parameters between trains and packets, as well as between
variable and patterned click packets. The significance level was set at
p < 0.01. A principal components analysis based on correlations
(PCA) was employed to explore the variation of clicking sequences
beyond our visual classification, using the variables: duration,
number of clicks, meanICI and peak frequency. These four were
chosen since they were the most influential variables. The two
components with eigenvalues that cumulatively accounted for more
than 70% were considered responsible for most of the data variation
and were chosen to represent the signal distributions and grouping.
Variables with a correlation higher than 0.5 (either positive or
negative) were considered to be driving variation within
each component.

Results
Sound emissions

A total of 12,505 clicks were detected. Estimating clicking rate
from detections, clicking emission varied from 8 to 955 clicks/min,
with an average of 264 clicks/min. A total of 152 clicking sequences
were analyzed, of which 43 were click trains and 109 were click
packets. There were 28 bursts-pulses in the recordings, of which 17
were analyzed. Acoustic parameters are given in Table 1.

Click trains had more clicks (MW, Nirins=43, Npackets=109,
U=61.0, p<0.01) and longer durations than click packets (MW,

TABLE 1 Mean + standard deviation (median; minimum — maximum values) of click emission categories produced by franciscana dolphins in Ilha

Grande Bay, southeastern Brazil.

Parameters Click Trains (h=43) Click Packets (n=109)

All packet types (n=109)

Burst-pulses
(n=17)

VPackets (n=25) PPackets (n=84)

Duration (ms)

2767.9 + 2353.5
(2193.4; 198.4 - 10777.8)

37.7 £23.5
(28.0; 10.5 - 109.1)

72.8 +£22.7
(74.9; 22.6 - 109.1)

27.3+9.5
(25.1; 10.5 - 54.4)

399.9 +491.4
(192.1; 48.7 - 1773.0)

Number of
Clicks

meanICI (ms)

minICI (ms)

81.9 +76.2
(67.0; 6.0 - 437.0)

3929 +19.75
(40.27; 9.04 - 116.62)

13.40 + 12.00
(7.43; 1.66 — 43.80)

5.0+ 4.0
(3.0; 2.0 - 20.0)

12.59 + 6.99
(12.06; 4.22 - 26.07)

11.81 + 6.99
(10.21; 2.21 - 25.31)

10.8 £ 4.5
(12.0; 4.0 - 20.0)

8.28 + 4.32
(6.90; 4.23 - 21.72)

5.67 + 4.44
(3.85; 2.21 - 19.08)

34+13
(3.0; 2.0 - 8.0)

13.88 + 5.80
(13.39; 4.63 - 26.07)

13.64 + 6.57
(13.28; 2.36 — 25.31)

maxICI (ms)

346.19 + 501.51
(136.52; 14.61 — 2786.69)

15.65 + 5.87
(15.36; 5.36 - 35.13)

15.04 + 7.57
(12.20; 5.52 - 35.13)

15.84 + 5.30
(15.98; 5.36 — 27.51)

MinF (kHz)

MaxF (kHz)

CenterF (kHz)

104.3 + 10.6
(101.2; 83.4 - 127.8)

206.8 + 51.3
(250.0; 143.8 - 250.0)

1272 £ 15.6
(134.8; 102.9 - 160.6)

100.3 +7.0
(99.9; 77.0 - 116.2)

2009 + 48.7
(221.4; 118.0 - 250.0)

1235 + 129
(128.4; 97.3 - 140.6)

96.3 + 6.8
(97.6; 77.0 - 113.7)

198.3 + 50.3
(217.3; 121.5 - 250.0)

121.9 £ 13.2
(126.9; 97.3 - 135.7)

101.5 + 6.6
(100.8; 90.1 - 116.2)

2015 + 485
(224.6; 118.0 - 250.0)

124.0 £ 12.8
(129.1; 99.8 - 140.6)

97.0 £10.8
(96.2; 81.5 - 120.7)

139.1 % 10.0
(143.1; 116.0 - 148.8)

1169 + 12.3
(121.1; 91.1 - 132.3)

PeakF (kHz)

123.6 + 16.4
(132.8; 99.3 - 140.1)

119.9 £ 15.0
(125.0; 93.9 - 139.6)

120.3 + 14.3
(125.0; 93.9 - 135.7)

1199 £ 153
(125.2; 93.9 - 139.6)

114.3 £ 16.7
(116.2; 82.7 - 134.8)
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Nirains=43, Npackets=109, U=143.0, p<0.01). They also showed larger
mean ICI (MW, Niqins=43, Npackets=109, U=299.0, p<0.01) and
higher central frequency (MW, Nirains=43, Npackets=109, U=1624.0,
p<0.01) (Supplementary Figure 2). The PCA provided further
insight into how clicking sequences tend to group and
corroborated our visual classification (Figure 2). The cumulative
sum of eigenvalues from Factors 1 and 2 explained 80.4% of data
variation, in which factor 1 was influenced mostly by duration,
number of clicks and meanICI and factor 2 was influenced by the
peak frequency. Click trains presented more variation in all
parameters, while click packets varied very little within temporal
characteristics and showed great variation in peak frequency.

Click packets

VPackets presented four to twenty clicks in a packet, while
PPackets had two to seven clicks, with six patterns occurring more
than three times. Temporal structure appeared to be the most
important feature in differentiating groups. VPackets had more
clicks (MW, Nyp=25, Npp=84, U=97.5, p<0.01) and were longer
than PPackets (MW, Nyp=25, Npp=84, U=114.5, p<0.01), they also
showed shorter mean ICI (MW, Nyp=25, Npp=84, U=433.0,
p<0.01) and lower minimum frequency (MW, Nyp=25, Npp=84,
U=617.0, p<0.01) (Supplementary Figure 3). Other frequency
parameters do not vary significantly, as shown in Table 1. The

10.3389/fmars.2025.1641888

four more common patterns were: 2¢ (n=30), 2c+1 (n=15), 3¢
(n=11) and 3c+1 (n=11). Among variable packets, packets with
twelve to fifteen clicks were the most common, occurring three to
four times each.

Both types commonly occurred in sequence, mixed, or with
repetition. There were several occasions in which sequences
overlapped (e.g., a high SNR 3c pattern right above a weak
variable longer pattern), which made it difficult to register the
possibility of patterned sequences. However, the most common
patterns could usually be seen together.

Individual click parameters

Clicks occurred from 88.7 kHz and 250 kHz, with a mean peak
frequency of 132.4 + 6.8 kHz. When comparing clicks from trains
and packets, some parameters varied between them (Table 2;
Supplementary Figure 4), but peak and maximum frequencies
remained consistent.

Discussion

Franciscana dolphins from Ilha Grande Bay showed a varied
range of NBHF clicking sequences, providing further evidence that
this species does not employ echolocation sparingly in favor of
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Principal components analysis of clicking sequences produced by franciscana dolphins, Pontoporia blainvillei, in Ilha Grande Bay, southeastern Brazil.
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TABLE 2 Mean + standard deviation (median; minimum — maximum values) of clicks from two types of emission produced by franciscana dolphins in

Itha Grande Bay, southeastern Brazil.

Parameters Click Trains (n=55)

Click Packets (n=34)

Mann-Whitney U results

812+78

Durati *
uration (us) (78.2; 49.4 - 168.6)

132772

PeakF (kH
eakF (kHz) (135.7; 1133 - 139.6)

68.2 £ 18.9

U=611.0, p<0.01
(63.5; 40.3 - 107.1)

132.0 £ 6.3

U=782.5, p=0.20
(135.2; 115.2 - 138.7)

122 £ 6.2

3dB Bandwidth (kHz) (12.7; 1.9 - 28.3)

274 + 8.6

10dB B idth (kHz) *
0dB Bandwidth (kHz) (303; 68 - 40.0)

152 £ 56

U=690.0, p=0.04
(14.6; 49 - 29.3) P

354 + 84

U=512.0, p<0.01
(35.1; 18.5 - 56.6) P

1094 £ 7.8 100.3 £ 7.0

MinF (kHz) * U=486.5, p<0.01
(107.6; 97.6 — 128.2) (99.9; 77.0 - 116.2)
223.0 £ 36.1 200.9 +48.7

MaxF (kHz) U=61.0, p<0.01

(242.6; 142.3 - 250.0)

(221.4; 118.0 - 250.0)

Parameters with a * indicate significant differences between types, as determined by the Mann-Whitney U Test.

passive listening, as previously suggested (Tellechea et al, 2017).
However, other signal types were absent or rare. Although Cremer
et al. (2017) recorded whistles by captured franciscana dolphins, no
whistles were recorded in the present study, indicating that this
species doesn’t commonly use tonal signals in communication. While
burst-pulses occurred in this study, they were rare. This was also
observed in Babitonga Bay, where burst-pulsed were recorded during
franciscana dolphin capture for tagging (Cremer et al., 2017).

The frequency range observed in this study corroborated that a
288 kHz sampling rate is useful for registering species occurrence
through passive acoustic monitoring, but higher sampling rates are
necessary to characterize franciscana dolphins’ sound emissions.
On the Brazilian south coast, franciscana dolphin clicks registered
with a CPOD occurred from 117 to 139 kHz at Babitonga Bay, and
from 121 to 136 kHz at Itaperuba Beach (Paitach et al., 2021). On
the northern coast of Sao Paulo State, their clicks were recorded at a
sampling rate of 288 kHz and occurred from 83.9 to 144 kHz, with a
mean peak frequency of 104.1 kHz (Barcellos and Santos, 2021). In
contrast, two studies in Argentina investigated franciscana dolphin
clicks with higher sampling rates. In the Northeast Patagonia, their
echolocation clicks were recorded at a 500 kHz sampling rate,
reaching frequencies up to 250 kHz, with a mean peak frequency of
139 kHz (Melcon et al.,, 2012). Further up north in the Claromeco
region, where a 576 kHz sampling rate was used, the mean peak
frequency was 134.4 kHz (Giardino et al., 2024). Interestingly, while
the whole frequency range of franciscana dolphins from Ilha
Grande Bay appears to be similar to those from Argentina, the
peak frequency observed here is lower than in the two Argentinian
locations. Additionally, it is important to note that the differences
observed in relation to other populations may be attributed to
behavioral contexts, environmental noise characteristics, or other
factors that influence click characteristics.

A significant finding from this study is the occurrence of
different types of clicking sequences, which seem to influence the

Frontiers in Marine Science

acoustic parameters of these different click types. Giardino et al.
(2024) also described clicking bouts of varied duration and
frequency in rehabilitating young individuals and wild groups of
franciscana dolphins; they show spectrograms where these bouts
appear to be similar to our click packets. The most famous example
of patterned click emission is sperm whale codas (Watkins and
Schevill, 1977), which are known to contain individual and group
identification cues (Gero et al., 2016; Rendell and Whitehead, 2003).
Our findings, therefore, indicate that, in addition to producing
NBHEF clicks, franciscana dolphins may have clicking patterns for
communication purposes.

Recording on-axis pulsed sounds is a common challenge in
odontocete acoustic studies (Madsen and Wahlberg, 2007), with the
distortion of off-axis signals being well documented (Au et al., 2012;
Branstetter et al, 2012). The swimming behavior of franciscana
dolphins adds to this challenge. Field observations and drone
footage taken during surveys show they commonly move their
heads from one side to the other or up and down, while swimming
in a seemingly straight direction. This, coupled with the use of a
single hydrophone, limited our capacity to isolate on-axis clicks.
Our methods sought to diminish off-axis variations, and it remains
important to describe different sound types and their emission
patterns under varied conditions, since free-ranging animals are not
always ideally positioned on-axis with their conspecifics. Other
NBHF clicking species have been previously characterized with
single hydrophones (Reyes Reyes et al., 2015), including other
franciscana dolphin populations (Melcon et al., 2012; Barcellos
and Santos, 2021; Giardino et al., 2024).

Our findings reinforce the use of NBHF clicks as the main sound
emission of franciscana dolphins and confirm that these signals reach
frequencies higher than 250 kHz. The use of patterned clicking by
franciscana dolphins may be an important feature of communication
at very high frequencies, and understanding this acoustic behavior is
a vital step towards enhancing our ability to monitor the species and,
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consequently, directing effective conservation efforts. Also, we
recommend that further studies focus on acoustic signals associated
with behavioral contexts and environmental adaptations to enhance
our understanding of the functions of NBHF clicks.
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