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Air–sea CO₂ fluxes in tropical coastal zones are strongly influenced by ENSO

variability, but in situ measurements in the Eastern Tropical Pacific remain scarce.

We assessed seasonal CO₂ dynamics around Gorgona Island (Panama Bight,

Colombian Pacific) under La Niña 2021–2022. From November 2021 to July

2022, we conducted monthly sampling at seven stations spanning the Guapi

River plume to the open ocean, measuring physical (SST, SSS, thermocline

depth), chemical (TA, DIC, pH, carbonate system parameters), and biological

(chlorophyll-a) variables, and estimating net CO₂ fluxes (FCO₂) with the Liss and

Merlivat (1986) parameterization and atmospheric CO₂ from NOAA. La Niña

featured a cool-water anomaly (−0.78 °C), enhanced precipitation (+59%) and

river discharge (+44%) relative to multi-year means. The nine-month mean CO₂

flux was near neutral (−0.01049 ± 0.00014 mol C m⁻²) but strongly seasonal: six

post-upwelling months showed slightly positive fluxes (0.00929 ± 0.000147 mol

Cm⁻²) associated with high precipitation (746.4 ± 214.7 mm), warmer SST (27.5 ±

0.4 °C), elevated pCO₂w (567 ± 97.5 μatm) and lower pH (7.869 ± 0.040),

whereas three upwelling months showed slightly negative fluxes (−0.00119 ±

0.00010 mol C m⁻²) with reduced precipitation (165.8 ± 82.4 mm), cooler SST

(26.5 ± 0.2 °C), lower pCO₂w (461 ± 92.8 μatm) and higher pH (7.968 ± 0.048). La

Niña amplified pCO₂w variability (316–839 μatm) via vertical Ekman pumping,

horizontal transport (Zonal Ekman Transport, tides), and freshwater inputs, while

a persistent thermocline (10–40.1 m) restricted deep CO₂-rich waters from
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reaching the surface. Biological uptake further modulated outgassing, as

evidenced by chlorophyll-a and DDIC dynamics. Overall, CO₂ fluxes were

relatively low compared with other tropical estuarine and oceanic sources.

These results underscore the need for sustained in situ observations in

estuarine–ocean systems to refine predictive models of CO₂ fluxes under

ENSO conditions.
KEYWORDS

ENSO, CO2 Flux, Gorgona, Panama Bight, Eastern Tropical Pacific, estuarine systems,
seasonal variability
1 Introduction

Oceanic carbon fluxes have become a central focus in marine

biogeochemistry and are increasingly studied for their potential in

carbon sequestration (Lal, 2024; Gerrard, 2023; Santos et al., 2022).

The oceans absorb around 31% of CO2 emissions from fossil fuels

(Friedlingstein et al., 2023; Parv et al., 2023). However, not all parts

of the ocean have the same absorption capacity, with the poles

acting as sinks and tropical areas considered sources of CO2 to the

atmosphere (Legge et al., 2015; Yilmaz et al., 2022; Swesi et al.,

2023). The largest carbon sinks are found in the Arctic and polar

waters, with fluxes between -3.8 mol C m-2 yr-1 and -4.4 mol C m-2

yr-1-1 (Olafsson et al., 2021), due to carbon “drawdown” from high

primary productivity, deep convective mixing, water heat loss and

strong seasonal winds (Olafsson et al., 2021). On the other hand,

coastal zones, which only contain 7-8% of the ocean’s surface area,

are nutrient-rich and account for 25% of global primary production

(Smith and Hollibaugh, 1993), which allows them to be more

effective than the open ocean in retaining the atmospheric CO2

(Andersson, 2005). However, some coastal tropical areas are

sources (Kryzhova and Semkin, 2023) and others are sinks

(Roobaert et al., 2021; Watanabe et al., 2024), depending on

many factors, which are seldom explored (Chen and Borges,

2009; Borges and Abril, 2011; Cai et al., 2011; Kahl, 2018;

Rosentreter et al., 2023; Roobaert et al., 2025). Similarly, in

tropical areas, CO2 flux can vary between source or sink

depending on atmospheric and oceanographic conditions in

space, which also change during different seasons of the year,

with the net flux further influenced by complex biogeochemical

processes (Monteiro et al., 2022; Swesi et al., 2023).

Among the global drivers of carbon flux, biological processes

predominantly influence equatorial and subpolar zones, while sea

surface temperature (SST) and salinity (SSS) play a fundamental

role in subtropical areas (Roobaert et al., 2021). Additionally, the

direction and magnitude of flux in each location depend on

atmospheric processes such as wind stress and ENSO events

(Ford et al., 2022). La Niña event in particular has a significant

effect on the direction and magnitude of CO2 flux, as it increases

coastal upwelling and Ekman pumping (Amos and Castelao, 2022),
02
enabling outgassing events (facilitating carbon flux to the

atmosphere) of around 1 billion tons of carbon (CO2) per year,

where deep waters rich in dissolved inorganic carbon (DIC) rise to

the surface. This contrasts with the inherent capacity of coastal

upwelling regions to act as significant carbon sinks through the

biological pump they promote (Lanson et al., 2009). Moreover,

rainfall during La Niña events tends to be more intense (Chung and

Power, 2014), shifting coastal systems from upwelling to post-

upwelling (river-dominated ocean margin; Dai et al., 2022).

Thus, the ENSO-driven oscillations between cold (La Niña) and

warm periods (El Niño) in the Tropical Pacific involve massive

redistributions of heat content in the surface ocean (Amos and

Castelao, 2022), thereby altering the net carbon flux. Despite this,

few studies focus on what happens in the Eastern Tropical Pacific

and specifically in the Panama Bight (e.g., Kao and Yu, 2009;

Corredor-Acosta et al., 2020; Torres et al., 2023). Recent findings

in the Colombian Caribbean indicated that ENSO events are the

most important influence over marine biogeochemistry as increased

upwelling anomalies bring up water’s rich in DIC (Ricaurte-Villota

et al., 2025). Therefore, the question arises as to whether the same

patterns and drivers apply in the Colombian Pacific as those

observed for the Caribbean area.

Latitudinal trends reveal distinct patterns in whether coastal

zones act as sources or sink of CO2. In low latitudes, coastal zones

are expected to release CO2 due to physical processes such as high

sea temperature (average SST above 26 °C) and relatively low

salinity (25.7–32 units), which cause higher partial pressures of

CO2 in water (pCO2w) compared to the atmosphere (Borges et al.,

2005; Cai, 2011). However, whether low latitudes emit CO2 depends

on the drivers in each coastal zone (Dai et al., 2013), and this is why

the fine balance between the promoters of pCO2w and those that

help to reduce it must be studied locally. For example, in upwelling

zones (high DIC and pCO2w), phytoplankton blooms can capture

large amounts of CO2, reducing DIC excesses and resulting in

exceptionally low pCO2w values, thereby altering the direction of

net carbon flux to negative values (Li et al., 2022). According to

Strutton et al. (2008), the equatorial Pacific would be a much larger

carbon emitter if not for photosynthetic processes, which convert a

billion tons of DIC/CO2 into living organisms.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1633653
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gutiérrez Duque et al. 10.3389/fmars.2025.1633653
One of the main issues in the Pacific Ocean regarding the net

CO2 flux is the discrepancy between models and in situ air-sea CO2

observations (Polavarapu et al., 2018; Rastogi et al., 2021). This is

due to the limited amount of data, particularly in the coastal zones

of the Pacific, and specifically in the Panama Bight, which includes

the Pacific coast of Colombia and Panama (Herrera Carmona et al.,

2022). The uncertainty in predictions stems from the fact that there

are many complex atmospheric and oceanographic variables—

physical (e.g., wind; Takahashi et al., 2002; Kim et al., 2019),

chemical (i.e., Total Alkalinity-TA and Dissolved Inorganic

Carbon- DIC), and biological (biological uptake, remineralization;

Takahashi et al., 1997) that cause significant spatial and temporal

variations in pCO2w at different scales (DeGrandpre et al., 1998),

and consequently, in the magnitude and direction of the net flux.

Moreover, the lack of technical, technological, infrastructural, and

financial resources in Latin American countries makes it

challenging to quantify pCO2w values and the magnitude of the

flux, particularly in the coastal zone, where multiple drivers

converge in time and space (Roobaert et al., 2024).

According to Dai et al. (2022), calculating pCO2w and CO2 flux

in tropical coastal margins dominated by rivers and deltas is

particularly complex. The dissolved inorganic carbon (DIC),

dissolved organic carbon (DOC; 49.5% of DOC export is by rivers

concentrated in the tropics, 23.5°S to 23.5°N; Fabre et al., 2020),

particulate organic matter (POM), dissolve organic matter (DOM),

and nutrients (NO3 and PO4; Li et al., 2020) are mainly contributed

by rivers. These contributions promote phytoplankton growth (a

CO2 sink) and the consequent remineralization of dead particulate

organic matter (a CO2 source), where the resultant flux is the

product of all these interactions. In a system with predominant

river inputs, the fresher waters of the river plume gradually mix with

oceanic waters both horizontally and vertically (Gan et al., 2009),

creating an estuarine ecosystem, like the one found in the Colombian

Pacific around Gorgona Island. In consequence, Dai et al. (2022)
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suggest that the air-sea CO2 flux is determined by the sum of DIC

inputs and outputs at the coast-ocean boundary over time, net

ecological productivity (gross primary production – ecosystem

respiration), and net ecological calcification (Andersson and

Gledhill, 2013; Courtney and Andersson, 2019). However, systems

dominated by river inputs can transition to predominantly oceanic

inputs depending on the water volume it receives from the open sea,

for example, during coastal upwelling events (Ekman Pumping -

WEK) and horizontal transport (Zonal Ekman Transport – ZET)

when cold, CO2- and DIC-rich subsurface ocean water emerges (Hu

et al., 2015; Weber et al., 2021), or through surface water movement

by ocean currents toward the coast and tides. Changes from a river to

oceanic coastal regimes and vice versa alter the direction and

intensity of the CO2 flux and should be explored further according

to Dai et al. (2022). This is the reason why this study focuses on the

Gorgona’s continental island, located 55 km from the continent but

strongly influenced by many rivers, upwelling events and sustained

primary productivity (Corredor-Acosta et al., 2020).

The Gorgona Island (2° 55’ 45” – 3° 00’ 55” N; 78° 09’ – 78° 14’

30” W; Figure 1) is located on the continental margin of the

Colombian Pacific Basin (CPB) in the Panama Bight region, and

is part of the largest Marine Natural National Park in the

Colombian Pacific (Guzmán et al., 2023; UAESPNN, 2005). The

island is characterized by a wide and shallow continental shelf to the

east (less than 100 m deep; Figure 1) and a deep slope a few

kilometers to the west, with canyons and submarine mountains

according to Murcia and Giraldo (2007; Figure 1B).

Precipitation on Gorgona Island follows a bi-seasonal pattern

(periods of less and more rain), with an annual total rainfall up to

~6000 mm (Blanco, 2012). At seasonal scale, we performed a multi-

year analysis of precipitation on the Gorgona Island (2006-2021,

data source IDEAM) which indicated low relative rainfall from

January to April (Figure 2), when the northern trade winds

dominate and the wind field of the Chocó Jet is weak. In contrast,
FIGURE 1

The study area is the Colombian Pacific Ocean (Tropical Eastern Pacific). (A) Location of the Colombian Pacific, as part of the Panama Bight. (B) The
polygon representing the protected area of the Gorgona National Natural Park is shown, along with its proximity to the coastline and the main
continental watersheds that discharge their waters into the area (marked in blue): Patıá River, Sanquianga River, Tapaje River, Iscuandé River, Guapi
River, and Timbiquı ́ River. (C) The colored points show the seven stations where discrete water samples were collected from November 2021 to July
2022 along the coast-ocean gradient; Guapi River in red (RG), South Guapi in blue (GS), North Guapi in yellow (GN), South Reef in pink (AS), North
Reef in green (AN), South Ocean in orange (OS), and North Ocean in black (ON). The underwater topography lines are represented in meters.
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the period with higher precipitation conditions were found from

May to December (not shown), when the southern trade winds

dominate and the Chocó Jet winds are stronger (September to

October). Figure 2 shows extreme precipitation during the 2021–

2022 sampling year, with monthly rainfall exceeding 700 mm for

several months. Only four months recorded precipitation below the

multiannual average (Figure 2B). The precipitation regime on

Gorgona Island is primarily governed by the latitudinal migration

of the Intertropical Convergence Zone (ITCZ), which provides the

context for understanding the atypical precipitation observed.

According to Schneider et al. (2014), this pattern dictates that the

relative driest period occurs in January and February, when the

ITCZ is at its southernmost position (2°N) near the study area (2°

55’ – 3° 00’). Then, from March to May, it moves to the north,

occupying a latitudinal range between 2 and 7°N. Conversely, the

wettest period is expected between June and July as the ITCZ moves

north (reaching 8 to 10°N). Finally, between September and

December, the ITCZ returns to its southernmost position.

In the study area, the northeastern trade winds dominate

between December and March, generating the Panama Jet, which

causes a strong upwelling extending from north to south in the

Panama Bight (Rodrıǵuez-Rubio et al., 2003; Corredor-Acosta et al.,

2020; Crawford et al., 2023). Similarly, in the second half of the year,

the Chocó Jet occurs (Rodrıǵuez-Rubio et al., 2003; Crawford et al.,

2023), which travels from west to east until it collides with the

continent. The Chocó Jet is strongest in November and weakest

between February and March, so the heavy rainfall from November
Frontiers in Marine Science 04
to December on Gorgona Island is attributed to this climatic

phenomenon (Crawford et al., 2023). The intense rain creates a

layer of brackish water on the surface, up to 2 meters thick (Gassen

et al., 2024), which reduces salinity on the Colombian Pacific coast,

and river runoff from the Guapi river and deltaic complex into the

sea increases. The Guapi River characterized by a sea water

temperature of 26.34 °C at 10 meters (Palacios Moreno and Pinto

Tovar, 1992), had an average NBS pH of 7.3 between 2018 and

2021, and salinity (PSU) between 0 and 0.25 at 1-meter depth

(INVEMAR, 2019, 2020, 2022).

The island is influenced to the east by several rivers and deltas

from the mainland, and on the oceanic side (west) by oceanic

currents from the Northern Hemisphere, such as the California and

Northern Equatorial currents, and from the Southern Hemisphere,

by the Peru and Humboldt currents (Diaz, 2001; Willett et al., 2006;

Fiedler and Lavıń, 2017). The hydrodynamic pattern around the

island is dominated by ocean currents and numerous mesoscale

eddies, both cyclonic and anticyclonic occurring throughout the

year. The direction and intensity of those geostrophic field and

mesoscale eddies around Gorgona are determined by wind stress,

the Panama Jet, the Chocó Jet, and the position of the Intertropical

Convergence Zone (Rodrıǵuez-Rubio et al., 2003; Dıáz Guevara

et al., 2008; Corredor-Acosta et al., 2011; Lorenzoni et al., 2011).

Specifically, the Panama cyclonic current (Amaya, 2024) is fed from

the south by a branch of the Peru current, forming the so-called

Colombia current (Stevenson, 1970; Corredor-Acosta et al., 2011),

which flows from south to north along the Colombian coast. The
FIGURE 2

Time scale comparison of precipitation and streamflow (Rıó Guapi) in the study area. (A) Multiannual total precipitation as monthly averages (2006-
2021). The black horizontal line marks the historic (2006-2021) annual mean total precipitation (605 mm) for the “Isla Gorgona station”. Standard
deviation is illustrated on each month’s data. (B) Average monthly total precipitation for the sampled year (November 2021 to July 2022). Black
horizontal line marks the historic annual mean (2006-2021). Standard deviation is illustrated on each month’s data. (C) Multiannual total streamflow
as monthly averages (2006-2021) from the “57025020 Isla Gorgona” IDEAM station. Black horizontal line marks the historic (2006-2021) annual
mean discharge (103 m-³ s-1). (D) Average total monthly streamflow for the sampling year (November 2021 to July 2022) at the “53047010 Rıó
Guapi” station of IDEAM. Black horizontal line marks the historic (2006-2021) annual mean discharge (103 m-³ s-1). Months below the multiannual
records are shown in blue, and above in orange.
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surface water masses flows through the area of Gorgona National

Natural Park in a northeastward direction, with a velocity ranging

between 0.2 and 0.9 m s-1 (Diaz, 2001). During La Niña, the North

Equatorial Countercurrent (warm water with high salinity) flowing

from west to east (Torres et al., 2023) loses it prevalence around 3°

N, while the Peru Current, flowing in a northeastward direction,

brings cold water from the South Pacific to the Colombian coast.

Therefore, the sampling carried out in this present study (2021-

2022) corresponds to a period of relatively cold water (La Niña; ONI

-1.0; McLean et al., 2024) contrasting with what happens during El

Niño events. Also, at more local scale, the oceanographic circulation

is affected by semidiurnal tides (two highs and two lows) oscillating

between -40 cm and 5 m per day (Tide-Forecast.com, map of tide

stations in Colombia 2021-2022).

According to Restrepo and Kjerfve (2004) and Blanco (2012),

La Niña events significantly influences river discharge in the

Colombian Pacific due to increased precipitation and,

consequently, water flow especially during the sampled year

(Figure 2). The Colombian Pacific watershed covers an area of

76,852 km² and consists of more than 200 rivers, which a total

discharge of ~9,000 m³ s-1 and 96 million tons of sediment per year

(Dıáz, 2008). The Gorgona National Natural Park is in front of the

Patıá-Sanquianga delta complex, the largest in the country, which

contributes approximately 23% of the total freshwater discharged

into the Colombian Pacific (2,045 m³ s-1; Dıáz, 2008). The delta

complex is made up of the Patıá-Sanquianga rivers, which discharge

1,300 m³ s-1, the Guapi River at 357 m³ s-1, the Iscuandé River at 213

m³ s-1, and the Tapaje River at 175 m³ s-1 (Restrepo and Kjerfvel,

2004; Dıáz, 2008; Figure 1). The Patıá-Sanquianga delta, covering

an area of 23,000 km², contributes freshwater, nutrients, and

organic and inorganic material (both particulate and dissolved)

from the western Andes mountains to the Pacific Ocean (Restrepo

and Kjerfve, 2004; Giraldo et al., 2011). The Guapi River multi-year

average monthly flow (station “53047010 IDEAM”) was 103 m³ s-1

from 2000 to 2021. However, during La Niña event (2021-2022), the

stream flow exceeded the multi-year monthly average, with a

maximum value in November 2021, exceeding the average by

over 77% (182 m³ s-1), with a minimum in February 2022 being

also 2% above the multi-year monthly mean (105 m³ s-1; Figure 2).

On average, the flow exceeded expectations, except for July 2022

when it was 14% below the multi-year average (89 m³ s-1).

In this context, this study aims to: (1) evaluate the net CO2 flux in

the Panama Bight to address a gap in the current knowledge of the

region, as no similar studies have been addressed it in the coastal zone

of the Colombian Pacific; and (2) review the predictions made by the

models proposed by Wong et al. (2022) and Dai et al. (2022),

assessing their accuracy and applicability in the context of this

study. To do so, we estimate the seasonal direction and intensity of

the CO2 flux under the effects of La Niña conditions (2021-2022),

characterized by intense precipitation and river discharge promoting

an estuarine system. Lastly, we discuss the potential drivers

explaining the dynamics of the pCO2w and CO2 flux variability.
Frontiers in Marine Science 05
2 Methods

2.1 Sampling design

Seven stations were sampled and used to estimate CO2 fluxes

and carbonate system chemistry in Gorgona National Natural Park

from the coast to the open ocean. The closest station to the coast

was “Rıó Guapi - RG”, located approximately 25 km from Guapi-

Nariño, Colombia, and the furthest was “North Ocean - ON”,

approximately 60 km from the coastline. The stations were

distributed along two parallel transects separated by five

kilometers, with GPS-WGS84 coordinates. The southern transect

was formed by “South Guapi - GS”, “South Reef - AS”, and “South

Ocean - OS”, while the northern transect was formed by “North

Guapi - GN”, “North Reef - AN”, and “North Ocean - ON”

(Figure 1). Monitoring began in November 2021 and extended

until July 2022 (nine months), with monthly sampling during the

first week of each month. In addition, the “Rıó Guapi” station was

added in January 2022 to characterize its influence.
2.2 Measurements

On site, salinity, temperature, pH millivolts (total protons),

percent oxygen, and depth were measured using a Hanna

multiparameter sounder (previously calibrated), a CTD-Castaway,

and a YSI equipment (accurate to ±2% of reading or ±0.01 PSU,

whichever is greater; ± 0.15 °C; ± 0.02 pH/± 0.5 mV; and ranging

from 0.00 to 30.00 ppm (mg/L) with an accuracy of ±0.25% of

full range.

Discrete water samples were collected at seven stations (GS, GN,

AS, AN, OS, ON, and RG; Figure 1) using a 5 L Niskin bottle at

depths between 1.8 and 3 meters. The water collected on site was

not murky, sampling sites were right after the river plume limit (35

km away from the continent). Seawater samples were stored in 250

mL borosilicate bottles and preserved with 50 μL of a saturated

mercuric chloride (HgCl2) solution for later TA analysis in the

laboratory, following recommended best practices (Best Practice

Guide for Ocean CO2 Measurements, SOP 2, SOP-specified

concentration range of 0.02-0.05%). Additionally, DIC samples

were taken in 50 mL dark bottles (silicone seal), leaving no

headspace; and wrapping the cap in parafilm paper. All samples

were packed in a Styrofoam refrigerator and sent by plane to our

new lab in Bogotá (Javeriana University) in less than four hours

from the Pacific region. Then, the samples were kept without

exposing them to light and maintaining temperature conditions

below 15 °C in the laboratory. TA was measured within two weeks,

as well as other parameters such as pH. Regarding DIC samples,

those were kept in our lab for two months after the sampling was

finished and then sent to the Autonomous University of Baja

California in Mexico. They were processed in a maximum of one

week after arrival in the UABC.
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In the laboratory, total alkalinity (TA) measurements were

performed on seawater samples following a standardized protocol

(SOP 3b of the open-cell titration method; Dickson et al., 2007)

using the GOA-ON titration kit. For titrant, Dickson Lab reference

HCl solutions were used (Batch A17: 0.100362 ± 0.000009 mol kg-1;

Batch A24: 0.099922 ± 0.000005 mol kg-1), buffered with 0.6 M

NaCl to match seawater ionic strength. A 50 g sample (~50 g or mL,

± 0.0001 mL) was weighed into a jacketed titration cell (maintained

at ~25 °C via a circulating water bath) and titrated. The analytical

balance used (Ohaus Pioneer AX225D, ± 0.0001 g) yielded a

reproducibility of ±0.001 g for 50 g samples, corresponding to a

coefficient of variation<0.003%, well within the precision

requirements for TA analysis (0.01 g). The titration involved two

stages: first, the addition of a small amount of acid (0.2 mL) with a

HandyStep® Touch S, first by adding to drop the pH to ~3.5

(~0.2100 mV) and waiting 5 minutes to allow for degassing, and

second, titration resumed in 0.05 mL steps until a pH close to 3.0

was reached (~0.2300 mV), with pH and temperature

measurements taken at each step. Data, including sample volume,

titrant volumes (to pH 3.5 and 3.0), salinity, final temperature, and

voltage per addition was compiled in an Excel spreadsheet program,

which employed a non-linear least squares regression to calculate

total alkalinity (Dickson et al., 2007). Approximately 50% of surface

samples (n = 31) were analyzed in triplicate. Only triplicate sets with

a maximal variation of ±5 μmol kg-1 TA were retained (± 9 mmol kg-

1, Batch #182: 2230.91 ± 0.71 μmol kg-1; Batch # 202: 2215.13 ± 0.57

μmol kg-1; all data set available at NOAA; https://doi.org/10.25921/

gfan-3e30).

Dissolved Inorganic Carbon (DIC) was measured at UABC

(Mexico) using the UIC C-CM5014 instrument, following the

coulometric methodology described by Johnson et al. (1987) and

Dickson et al. (2007). Measurements were performed with high

precision and accuracy, ensuring that the difference in DIC from the

reference values of the standards did not exceed 3 mmol kg-1 (error

of 0.1%). The Dickson Certified Reference Material (CRM) was

prepared at the Institute of Oceanography, University of California,

San Diego (USA). The substandards and analyzed samples were

carried out in parallel at the Oceanographic Research Institute of

the Autonomous University of Baja California (Mexico). For a more

comprehens ive DIC measurement methodology , see

Supplementary Table 1.

Similarly, quality “flags” (scale 1 to 5) were reviewed and

assigned to the TA and DIC data (equipment accuracy and

potential errors in the field or laboratory). Outliers (n=6) were

removed from the matrix; this was done by reviewing multiple

graphical relationships between temperature, salinity, TA, and DIC.

The Liss and Merlivat (1986) equation allowed for the

calculation of the flux magnitude for each of the nine months and

seasons in Gorgona. The estimated CO2 flux in Gorgona was

compared with the IPACOA, OOI, NOAA, and SOCAT databases.

The CO2 fluxes (FCO2 direction, magnitude, and variability)

were calculated following the equation proposed by Liss and

Merlivat (1986):

FCO2 = k� K 0 � (DpCO2)(mmol · m2 · year−1)
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Where, the constant k is the gas transfer coefficient of CO2 as a

function of wind (U10) at 10 meters above sea level (Wanninkhof,

2014), expressed as:

k = 0:251(
Sc
660

)0:5(U10)
2

K′ is the solubility of CO2 and is a function of temperature and

salinity (Weiss, 1974); Sc is the Schmidt number and depends on

temperature; DpCO2 is the difference between the partial pressure of

carbon dioxide (pCO2) in the surface seawater (pCO2w) and the

pCO2 of the atmosphere (pCO2A). DpCO2 determines the direction

of the flux, with positive FCO2 indicating CO2 moving from the sea

to the atmosphere, and negative indicating movement from the

atmosphere to the sea. The magnitude of the gas exchange is

controlled not only by DpCO2 but also by the gas transfer rate

between the two media, which in turn varies with wind speed.

The hourly wind speed from the seven sampling sites - U10 (m s-

1) was extracted from: https://earth.nullschool.net/, taking the 24-

hour wind average of the sampling day. For months with sampling

of all stations on two consecutive days (adverse weather conditions

in two months), 48-hour wind values were averaged. The wind

average was also calculated and compared using only the exact

sampling hours at each station and by averaging the wind over a

month, finding no significant changes in the flow results compared

to the daily/monthly wind average (which was finally used).

Since the atmosphere is a well-mixed fluid, the pCO2A values for

the flow calculation were extracted from NOAA/GML https://

gml.noaa.gov/ccgg/trends/data.html (NOAA 2021, 2022), which

come from the Mauna Loa climate station, Hawaii, file “Mauna

Loa CO2 monthly mean data.” The pCO2A data for the sampling

months (Nov 2021 to Jul 2022) were extracted.

The pCO2w was calculated from TA, DIC, salinity, and

temperature data resolving the carbonate system equation in

seawater using the CO2SYS v3.0 software (Pierrot et al., 2021). In

the carbonate system equation solution, the following constants

were used: (i) Dissociation constants for K1 and K2 from Millero

(2010) for waters ranging from 0 to 40, given that the study area the

salinities variation are between 27.03 to 31.29, (ii) KHSO4

dissociation constant from Dickson (1990), (iii) KHF from Perez

and Fraga (2003), (iv) Total pH scale (mol-kg SW), (v) [B]T value

from Lee et al. (2010), and (vi) EOS-80 standard. The pCO2w was

estimated with an error of ±1.79 concerning the determined fluxes

(mmol C m² day-1). Out of 66 flux data points, six were flagged as

possible outliers (flags three onward). The CO2SYS was also used

with DIC and TA pairs to estimate the Revelle factor, omega

aragonite (WAR), HCO3, and CO3. Lastly, the pH in total scale

was derived through the CO2SYS using the same specific settings

and found to be less variable than in situ measurements, displaying

a smaller error. We performed a full uncertainty propagation

analysis, which yielded the following average errors: pHT (±

0.022), pCO2W (± 30.17 μatm), total alkalinity (TA: ± 9 μmol kg-

1), dissolved inorganic carbon (DIC: ± 3 μmol kg-1), salinity (± 0.20

PSU), and temperature (± 0.08 °C). These values fall within

acceptable ranges for carbonate system studies and support the

reliability of our calculated FCO2 values at Gorgona.
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Daily images of Chl-a were downloaded from the Ocean Colour

Climate Change Initiative (OC-CCI; version 3.1) for the studied

period. The OC–CCI is a merged Level 3 product with a spatial

resolution of 4 km, available at http://www.oceancolour.org/. The

OC-CCI Chl-a dataset is retrieved by combining the observational

data from the MERIS (MEdium spectral Resolution Imaging

Spectrometer) sensor of the European Space Agency, the SeaWiFS

(Sea-viewing Wide-Field-of-view Sensor) and MODIS-Aqua

(Moderate-resolution Imaging Spectroradiometer-Aqua) sensors

from the National Aeronautics and Space Administration

(NASA-USA), and the VIIRS (Visible and Infrared Imaging

Radiometer Suite) from the National Oceanic and Atmospheric

Administration (NOAA-USA). The remote sensing reflectance data

derived from the sensors were merged by band-shifting and bias-

correcting the MERIS, MODIS, and VIIRS data to match the

SeaWiFS data. Due to the complexity of the study region, version

3.1 of the OC-CCI product was selected as it improves the

performance of the ocean color data in coastal Case-2 waters

compared to earlier versions that primarily focus on open ocean

waters. Finally, total monthly Chl-a values were obtaining by

averaging the Chl-a of the seven sampling stations, resulting in a

relative total Chl-a concentration for the entire sampling region.
2.3 Statistical analyses

The analysis began with a Shapiro-Wilk test, which indicated

that the flux magnitude data does not follow a normal distribution

(S-W, P = 0.01877, W = 0.95, n = 60), repeating this for pCO2w and

DpCO2 components, respectively (S-W, p = 0.147 and 0.134, W =

0.97 and 0.96, n = 60 and 60), indicating that the variables

associated with flux do not follow a normal distribution either.

Hence, the Box-Cox methodology was applied to transform FCO2

data into a normal distribution. Furthermore, a Welch F test in the

case of unequal variances was applied to all the variables of interest

(FCO2, pCO2w, DpCO2, SST, SSS, TA, DIC, and Chl-a) which

showed that these different data groups have equal variance (W-

F, F = 2.512E-4, df = 200.3, p = 1.855E-304). Moreover, a t-test

(parametric) was used to analyze differences between the two flux

periods: Upwelling (January to March of 2022) and Post-upwelling

(November to December of 2021 and April to July of 2022). We

used a One-way ANOVA to compare different flux magnitudes

across the nine months, and then an a posteriori t-test. Additionally,

a Spearman linear correlation was run to explore relationships

between pCO2w and SST, SSS, TA, DIC, and Chl-a.

Normalizations to observe the pCO2w sensitivity were

conducted as follows: we used the maximum values for salinity

and temperature (32.06 units and 28.1 °C, respectively) setting the

maximum value for salinity first, as a constant, while leaving the

TA, DIC, and temperature values corresponding to each data point

to evaluate the effect of salinity over the pCO2w, repeating the same

process but substituting the temperature for the recorded

maximum, and leaving salinity as measured (CO2SYS). Then, we

recalculated the pCO2w and plot the difference between the pCO2w
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with in situ salinity against the recalculated pCO2w that uses the

maximum recorded salinity. 49 μatm higher, in average, was the

pCO2w difference by using max salinity effect. Regarding a

normalization with maximum temperature, the same procedure

was followed where the maximum recorded temperature was

constant, and the remaining variables used the corresponding

values, revealing an average pCO2w difference of 31 μatm higher

than with the observed temperatures (Supplementary Figure 1) in

the CO2SYS (Lewis andWallace, 1998). Thus, it is clear that salinity

has a larger influence (relative percentage) than temperature

regarding the pCO2w variability observed throughout the year. To

complement these normalizations, we assessed the uncertainty

associated with pCO2w by incorporating the potential error of

±30.17 matm into our flux calculations, recalculating them and

comparing them to the original estimates.

In addition, to define climatic-oceanographic periods, a

Principal Component Analysis (PCA) was performed using the

latest version of R Studio software. The PCA used the following

variables: month, season, SST, SSS, pCO2w, pHT, DIC, Chl-a, to

review if there are spatio-temporal FCO2 groups. Furthermore, to

clearly separate both seasons we used several atmospheric/climatic

variables, such as total monthly precipitation (mm), average sea

surface temperature (SST), average pH (total), average surface water

partial CO2 pressure (pCO2w), and average CO2 fluxes (mmol m-2

d-1).
2.4 Zonal Ekman Transport and Ekman
pumping

The Zonal Ekman Transport (ZET) was obtained following the

methodology of Bakun and Nelson (1991) by using weekly wind

data obtained from the CCMP product (https://www.remss.com/

measurements/ccmp/). For the calculation, we follow the equation:

ZET =
1

rwf
t

where rw is the density of seawater, which is assumed constant

at 1025 kg m−3; f is the Coriolis parameter and t is the wind stress

for the studied area.

The wind stress (t) was computed from the weekly wind fields

as follows:

t = raCd V10j jV10

where Cd = 0.0015 is the drag coefficient, ra = 1.2 kg m−3 is the

mean air density, and V10 is the wind speed at 10 m above the sea

surface. The wind stress curl was estimated using the zonal and

meridional components of the weekly wind stress:

(m�t)z =
∂ ty
∂ x

−
∂ tx
∂ y

This procedure was performed for each grid point of the wind

field by applying the centered finite difference algorithm, and the

Ekman pumping velocity was estimated as follows:
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WEK =
(m�t)z

f rw
+

btx
f 2rw

where tx is the zonal wind stress component, b = (2Wcosj/R) is
the latitudinal variability of the Coriolis parameter (f = 2Wsenj), R
= 6,371,000 m is the radius of the earth and rw = 1025 kg m−3 is the

mean water density. This methodology has been previously used on

the Northeast Tropical Pacific (Kessler, 2006) and Panama Bight

region (Devis-Morales et al., 2008; Corredor-Acosta et al., 2020).

Previous studies have indicated an interplay between the Ekman

transport due to alongshore winds and Ekman pumping due to

offshore wind stress curl playing an important role due to their

relative contributions for upwelling/downwelling dynamics. For

instance, in the northern Chilean upwelling system, the vertical

transport induced by coastal divergence (ZET) represented the 60%

of the annual total upwelling, however, the Ekman pumping also

displayed an important contribution of 40%, indicating that the

largest differences between these mechanisms occur at spatial scale.

That is, coastal ZET predominated in areas with low orography and

headlands, whereas WEK was higher in regions with high orography

and the presence of embayments (Bravo et al., 2016). Similar findings

were observed in three typical upwelling systems of the South China

Sea, showing temporal and spatial differences, highlighting regions

where WEK had the same intensity as ZET, even doubling the

amount of upwelling predicted solely considering the coastal

divergence (Wang et al., 2013). Those physical mechanisms and

their coupling are important to be explored because the physical

transfer of water properties and nutrients from the deep to the

surface ocean is strongly related to the vertical supply, which also

involves important effects on primary productivity, changes in the

water column mixing/stratification and associated water masses, as

well as, in the local chemical processes (e.g., Williams and Follows,

2003; Pasquero et al., 2005). According to this, we assess both

mechanisms (ZET and WEK) in this study, in order to relate its

contributions to the maintenance of biological production (in terms

of Chl-a) and key changes of the carbonate system.
2.5 Mix model

To identify potential processes (physical mixing and biological)

and explain the variability observed in carbonate system parameters

(e.g., pCO2w, DIC, TA, and O2), we employed a three-endmember

mixing model following established methodologies in

oceanographic studies that developed the analysis of sea water

from mixing triangles without assumption of isopycnic mixing

(Tomczak, 1981; Paulmier et al., 2011; Kahl et al., 2018). This

approach identifies water endmembers, in order to describe the

thermohaline variability due to mixing, using conservative tracers

(salinity and potential temperature) to construct a mixing triangle.

The contribution of the water masses considered (Mk,i) to a given

sample ‘i’ can be calculated by solving the followings determined

system of three linear equations:

1 =  S  MK ,i
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Si = S  MK ,i ·   Sk

  qi =  S  MK ,i ·   qk

Where k is the water mass endmembers (1,2 and 3) and ‘i’ is the

sample number (from 1 to 60). Sk and qk are the thermohaline

characteristics of the k-water mass endmember (Tomczak, 1981).

Finally, it computes expected conservative values due to physical

mixing processes (DICmix, TAmix, and O2mix) for the non-

conservative variables measured in situ (DIC, TA, and O2). DICmix is

defined as the fraction of dissolved inorganic carbon whose variability

(R² from the regression DICmix vs. DIC) can predominantly be

attributed to physical mixing. The complementary variability (1 –

R²) is then attributed to biogeochemical processes, isolated through

residual analysis (e.g., DDIC = observed DIC – DIC by mixing) and

quadrant plots of DDIC vs. DO2, where quadrants indicate net

production (positive DDIC, positive DO2), photosynthesis (negative

DDIC, positiveDO2) ammonification (negative DDIC, negative DO2) or

respiration/remineralization (positive DDIC, negative DO2) (Paulmier

et al., 2011; Kahl et al., 2018).

Initially, we constructed T-S diagrams from the full

spatiotemporal dataset (13 months, 7 stations, 0–80 m depth) to

define three endmembers representing distinct sources of variability

and mixing in the area. The river endmember (1; river-influenced)

exhibited low salinity (26.81), TA (1750 μmol kg-1), and DIC (1763

μmol kg-1), with high temperature (27.94 °C) and O2 (174 μmol kg-

1). The transitional endmember (2) showed intermediate values:

salinity (33.06), TA (2138 μmol kg-1), DIC (1867 μmol kg-1),

temperature (27.28 °C), and O2 (123 μmol kg-1). Finally, the

oceanic endmember (3; oceanic influenced) featured high salinity

(35.38), TA (1999 μmol kg-1), and DIC (1989 μmol kg-1), with low

temperature (14.26 °C) and O2 (40 μmol kg-1; Preciado et al., in

Progress). All three water endmembers incorporate signals from

multiple upstream sources, reflecting the complex dynamics of this

estuarine system. For instance, the oceanic (3) endmember

exhibited influence from at least four diverse origins, including

Antarctic Intermediate Water signals (Kawabe and Fujio, 2010); the

intermediate endmember (2) blends subsurface and riverine inputs;

and the river endmember (1) primarily mixes freshwater with

marine waters, potentially including remote eddy-transported

surface waters and local coastal currents. We could not directly

measure riverine carbonate parameters due to differences in

instrumentation and chemistry, river itself even showed tidal

intrusion of seawater from below during high tides, further

complicating pure freshwater end-member isolation. Instead,

riverine influence is inferred through its dilution effects on

salinity and biogeochemistry, following a similar approach to

Huang et al. (2022) and Sun et al. (2023).

Once the mixing fractions are applied to compute expected

DICmix values under conservative mixing assumptions. Deviations

from these expected values then highlighted non-conservative

processes affecting DIC, which is a key objective of our

biogeochemical analysis. DIC, TA, and O2 are used as

complementary information for the characterization of the
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endmembers, enabling us to perform the mixing model analysis and

determine the sources of variability (physical-mixing or

biogeochemical processes) for the non-conservative variables DIC,

TA, and O2. This approach aligns with standard practices in

estuarine and oceanic studies, where salinity and TA are often

normalized or used to account for dilution and mixing effects before

assessing non-conservative variables like DIC (Cai & Wang, 1998;

Oliveira et al., 2017; Courtney et al., 2021). For instance, while TA

behaves conservatively in many open-ocean settings and correlates

linearly with salinity (Millero et al., 1998; Jiang et al., 2014), the T-S

framework was chosen due to its effectiveness in capturing

thermohaline distinctions in Pacific Colombian dynamic estuarine

system, influenced by high rainfall and runoff. In addition, to

validate the implication of the biological removal in pCO
2
w

concentration, we used a complementary approach, such as DDIC
together with cumulative monthly in situ Chl-a data to explain CO2

consumption. These results (biological/temperature implications)

were also validated by an analysis to calculate if physical or

biological factors are implicated in the pCO2w concentrations

found around Gorgona island, following the methodology

described by Takahashi et al. (2002), for more detail on the

equations used see Supplementary Table 2.
3 Results

The PCA (Figure 3) revealed two distinct seasonal clusters: an

upwelling period (January–March) and a post-upwelling period

(May–July, November–December) distributed across the space.
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Together, PC1 (45.5%) and PC2 (28.2%) explained 73.7% of the

total variability. The biplane shows that post-upwelling months

were characterized by warmer, CO2-enriched surface waters,

whereas upwelling months reflected cooler, saltier, DIC-rich

conditions and elevated pHT. Chlorophyll-a displayed an

intermediate position, reflecting its role across both seasons. No

spatial separation among sampling sites was detected, implying that

despite local variability, temporal changes through upwelling and

post-upwelling dynamics (e.g. rainfall and stratification) were the

main driver of environmental variability around Gorgona Island.

The two seasonal periods were verified through the

atmospheric/climatic variables showing significant differences

between upwelling and post-upwelling. That is, total monthly

precipitation (M-W, Z = 2.203, p = 0.027, n Post-upwelling = 6

months, n Upwelling = 3), average sea surface temperature (SST; M-

W, Z = 2.2132, p = 0.0268, n Post-upwelling = 6, n Upwelling = 3),

average pH (total; M-W, Z = 2.2039, p = 0.027532, n Post-upwelling

= 6, n Upwelling = 3), average surface water partial CO2 pressure

(pCO2w; M-W, Z = 2.1947, p = 0.028186, n Post-upwelling = 6, n

Upwelling = 3) and average CO2 fluxes (mmol m-2 d-1; M-W, Z =

2.0045, p = 0.071429, n Post-upwelling = 6, n Upwelling = 3).

Specifically, during post-upwelling we found significantly higher: (I)

Monthly average precipitation (746 ± 214 vs 165 ± 82 mm) due to

the increased influence of the ITCZ and a moderate La Niña year;

(II) Average sea surface temperature (27.5 ± 0.4 °C vs. 26.5 ± 0.2 °

C); and (III) Average pCO2w and CO2 Fluxes (567 ± 64 matm vs. 450

± 55 matm, and 0.2 ± 0.09 mmol CO2 m
-2 d-1 vs. 0.1 ± 0.06 mmol

CO2 m
-2 d-1, respectively). Contrasting, in upwelling, we found a

higher significant total pH mean (7.8697 vs 7.9686, respectively).
FIGURE 3

PCA test for stations and months considering the physicochemical variables SST, SSS, pCO2, pH, DIC, and Chl-a. Note the grouping in the left
quadrants for the months of February and March (upwelling, blue rectangle), from the upper right quadrant, May, June, and July (rainier season;
post-upwelling, orange rectangle), highlighting the two contrasting seasons. The x axes explain the main variability 45.5% and the second axis y
28.1%. The colors represent the different sites and their corresponding sampling months.
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3.1 Air–sea CO2 exchange

During the moderate 2021–2022 La Niña event, surface waters

around Gorgona displayed a near-neutral net CO2 flux (0.0105 ±

0.0001 mol C m-2) over the nine sampled months, with a bimodal

pattern driven by upwelling and post-upwelling wet season

(Figure 4). Throughout the upwelling season, cooler, saltier waters

reached the surface (shallow thermocline), coinciding with the

observed low pCO2w values (below atmospheric levels, mean

pCO2A = 461 ± 92.8 matm and negative DpCO2, see Figures 4A–

E), resulting in near-zero to weakly negative FCO2 (February–

March, Figure 4F). This is additionally in line with elevated DIC

and TA (Figures 4G, H). In contrast, during the post-upwelling

period, the fluxes were slightly positive (0.0093 ± 0.0001 mol C m-2)

with an average pCO2w of 567 ± 97.5 matm (Figure 4D). Similarly,

monthly fluxes also differed significantly between periods (Welch

test, F = 2.5 × 10-4, p< 1 × 10-300; n = 9), peaking in June (2.5 mmol

C m-2 month-1) and reaching a minimum in March (–0.1 mmol C

m-2 month-1). Therefore, markedly higher fluxes were observed

during the post-upwelling compared to the upwelling season when

including the seven stations sampled per month (t = 4.91, critical t =

2.00, p = 7.8 × 10-6; n = 21 vs. 39; Figure 4F).

Comparably, the average pCO2w trend (Figure 4D) during the

upwelling season evidences surface pCO2w hovering moderately

above atmospheric values in January (near 513 μatm Figure 4D;

atmospheric reference value ~418 μatm, horizontal black line), but

dips towards/just below atmospheric level by March (minimum

average 397 μatm). Correspondingly, a post-upwelling spike in

pCO2w increases values up to ~700 μatm in May, around 1.7

times higher than atmospheric values, which drives a large

positive DpCO2 and outgassing (Figure 4E). Thereafter, pCO2w

slightly decreases until July, but remains well above atmospheric

values (~580 – 590 μatm).

The DpCO2 values in eight of the nine months were above the

atmospheric pCO2A - (between 50 and 260 micro atmospheres).

However, during the upwelling season, there is a reduction in

pCO2w, causing it to be less saturated than the pCO2 of the

surrounding atmosphere. Thus, March evidenced less pCO2 in

the water than in the air (negative DpCO2, Figure 4E) which is

reflected with near-zero/negative FCO2 (Figure 4F). Transition to

the post-upwelling (higher rain and streamflow season; April-July)

was also evident through the progressive increment in CO2 peaking

during May (DpCO2 ≳ +250 μatm; more pCO2 in the ocean than in

the surrounding air) and then stabilizing, as reflected in the average

CO2 flux (Figure 4F).
3.2 Physical oceanographic conditions of
sea surface temperature and salinity

The coolest temperatures were recorded during upwelling

(~26–26.5 °C). Rapid warming of the surface water was observed

in April (~28 °C) lasting until July (>27 °C). The shown warming is

concurrent with the sharp rise in pCO2w (Figures 4A, D). Average

salinity was< 31 during the nine months, meanwhile, the highest
Frontiers in Marine Science 10
salinity was recorded during upwelling (31.2 in March). From April

to July (post-upwelling months) a steady drop in salinity was

measured, coinciding with the peak of precipitation/river

discharge (Figure 2). Hence, markedly brackish water was

observed (low-alkalinity via dilution), related to pCO2w increase

(Figures 4B, D, H).
3.3 Key parameters of the carbonate
system: total alkalinity, pHT, and dissolved
inorganic carbon

The highest pHT was measured in March (8.01), chemically

consistent with reduced pCO2w values and less riverine/

precipitation influence (Figure 4I). Then, pHT began to decline

during April and May (recorded a minimum of 7.81 in May) and

stabilized after during June and July. Meanwhile, DIC start

increasing between November and January (~1,700–1750 μmol

kg-1) reaching its highest values in April (1,815 μmol kg-1) and

May (~1800 μmol kg-1). After, there was a general decrease from

May onward (~1,790–1,650 μmol kg-1 by July; Figure 4G).

The dominant DIC species, bicarbonate (HCO3
-), remained

relatively stable from November to February (~1,550–1,600 μmol/

kg, Figure 4J) then increased sharply from March–April (~1,720

μmol/kg) in line with the highest DIC/TA values. Thereafter,

HCO3
- decreased gradually during the post-upwelling season

(May–July) mirroring the reduction in DIC/TA.

Carbonate ion (CO3
2-) values showed a clearer seasonal signal.

They peaked during the upwelling months (January–March: ~170

and 180 μmol/kg, Figure 4K) in agreement with higher pHT and

WAR (Figures 4I, L). Afterwards, CO3
2- concentrations decreased

during the post-upwelling period, sharply decreasing in April to

~150 μmol/kg, then rebounding slightly during May to ~170 μmol/

kg, and finally steadily decreasing to its minimum values from June

to July (114–118 μmol/kg) coinciding with lower pHT, elevated

Revelle Factor, and reduced WAR.
3.4 Biological proxy signals

Monthly accumulated Chl-a (sum of seven stations) was

relatively high during the sampling period (~16–19 mg m-³,

Figure 4M), with average Chl-a of 1.09 – 2.77 mg m-³ per

sampled site (see Supplementary Figure 2). A marked increase

from February to March was observed (16 – 19.4 mg m-³).

Afterwards, Chl-a values remain high during May (17.2 mg m-³)

until July with ~18 mg m-³ (Figure 4).
3.5 Key chemistry parameters of oceanic
chemistry: Revelle Factor and omega
aragonite

The Revelle Factor (RF, Figure 4N) and W-aragonite (WAR)

displayed an inverse relationship. The lowest RF values (9.9)
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FIGURE 4

Monthly cycle of: (A) Average sea surface temperature (SST). (B) Average sea surface salinity (SSS). (C) Average thermocline depth (meters). (D)
Average pCO2W with average pCO2A mark (418 μatm) indicated with a black horizontal line. (E) Average DpCO2 with zero delta mark indicated with a
black horizontal line. (F) Average FCO2 with zero magnitude mark indicated with a black horizontal line. (G) Average Dissolved Inorganic Carbon
(DIC). (H) Average Total Alkalinity (TA). (I) Average pH in total scale. (J) Average bicarbonate (HCO3). (K) Average carbonate (CO32-). (L) Average
Saturation state of aragonite (WAR). (M) Accumulated Chlorophyll concentration (Chl-a). (N) Average Revelle Factor. (O) Boxplot comparing FCO2
values between upwelling (January, February, March) and post-upwelling (November, December, April, May, June, July) evidencing statistical
differences (T test, T = 4,908, Tc = 2.001, p = 7.80E-6, N = 21 vs 39, respectively). Monthly measurements around Gorgona near the surface (≤ 3 m),
standard error is illustrated as a black vertical line on each data point. Note that W AR data starts above 1.2, indicating possible but suboptimal
calcification throughout the sampled period.
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occurred in March, coinciding with weakened or even collapsed

stratification (Figure 4C), when WAR reached its peak (2.8). In

contrast, RF increased during the post-upwelling season, rising

from April and reaching ≥12 by July, concurrent with the lowest

WAR values (1.9), indicating suboptimal conditions for calcification.

As expected, WAR was inversely proportional to pHT (Figures 4I, L),

while RF varied inversely with SST.
3.6 Seasonal drivers of the carbonate
system variability

Seasonal variability in dissolved inorganic carbon (DIC), its

mixing component (DICmix), and related drivers highlighted the

coupled influence of physical circulation and biological activity

(Figure 5). During the upwelling season, lower DDIC values

coincided with reduced pCO2w and CO2 fluxes, whereas in the

post-upwelling season both DIC and pCO2w increased together

with intensified Ekman transport and pumping (Figures 5B–D).

Regional chlorophyll-a distributions also followed these seasonal

shifts, with peaks during February–March and again in May–

July (Figure 5C).

Complementary evidence from a temperature–salinity (T–S)

diagram (Figure 6A) underscored the role of mixing in shaping

carbonate chemistry. Mixing calculations indicated that up to ~79%

of the observed DIC could be explained by conservative mixing

of three endmembers, while the residual ~19% reflected

non-conservative processes (Figure 6B). The correlation

between DDIC and DO2 (Figure 6C) suggested that aerobic
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remineralization and nitrification were the dominant biological

drivers of this residual variability. Physical processes dominated

DIC variability, as indicated by the strong correlation between

DICmix and DIC (R² = 0.79, Figure 6B). In contrast, respiration

explained a smaller but measurable fraction of the variance

(DDIC–DO2, R² = 0.19; Figure 6C). Together, these results

highlight that both physical and biological controls on DIC

ultimately influenced its relationship with pCO2w, consistent with

the significant negative correlation observed between the two

variables (Q = –0.71, p< 0.001, n = 60; Figures 4D, G).
4 Discussion

4.1 DIC dynamics

The physical mixing of the water mass contributes significantly

to explaining the DIC values in the system (Figure 6A) as validated

by the relationship between DICmix and DIC (Figure 6B; ~78% of

variability) and the seasonal variability of WEK and ZET

(Figures 5C, D). Therefore, DIC increased from November to

May (Figure 5A) and then decreased from June to July. During

La Niña 2021-2022, estuarine dynamics were strongly modulated by

horizontal and vertical exchanges between marine and freshwater

sources. High-frequency tides (up to 4 per day, with amplitudes of 5

m; Cauca tide table 2021–2022) mixed riverine and oceanic waters,

while mesoscale eddies and Ekman-Zonal transport introduced

deep offshore waters into the system (Corredor-Acosta et al.,

2020; Figures 5C, D). Wind speed and direction generate local
FIGURE 5

Temporal variability of DIC, DICmix, DeltaDIC and accumulated in situ Chl-a values in (A). Monthly average values of wind and pCO2w of the in situ
sampling stations in (B). For comparison and higher resolution analysis, weekly data of regional satellite Chl-a data from the OC-CCI product
(https://www.oceancolour.org/) was coupled with weekly Ekman pumping (WEK in C) and Zonal Ekman Transport values (ZET in D). Weekly wind fields
for the above calculations were obtained from the CCMP Wind Vector Analysis Product (https://www.remss.com/measurements/ccmp/). Note that the
left-panels consider the in situ sampling period between Nov/2021 to Jul/2022, while the right-panels consider a full year of variability including months
before, during (black rectangular box), and after the sampling period (Sept/2021 to Sept/2022). Transparent blue rectangle indicates the upwelling period
from January to March 2022.
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FIGURE 6

Temperature-salinity (T-S) diagram (A). Data points color-coded by dissolved inorganic carbon (DIC) concentration (mmol kg-1). The points represent
observed oceanographic sampled depths throughout the year. The numbered labels (1-3) denote the end members of distinct water masses, with
their respective salinity (S), potential temperature (T), and DIC values. The solid red lines connecting these end members outline the considered
mixing triangles. Positive regression between DICmix and DIC (B). Physical process explains 78.8% of the DIC measured (DICmix). The remaining
percentage is explained by biogeochemical processes (19%). DDIC (biological processes) and DO2 (μmol/kg) relationship (C; explaining 19%), where
sampling points were mainly distributed within quadrants I and III (as shown in Kahl, 2018), suggesting aerobic remineralization and nitrification,
respectively.
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coastal currents, with north-south surface flow above the

thermocline and south-north flow in subsurface waters (in situ

observations); and upwelling and subsidence cycles (downwelling;

Figures 5C, D) producing three water masses with different

densities along the vertical profile (up to 80 m; see Figure 6A).

Peaks in DIC between January and March coincided with

intensified WEK and ZET which enhanced vertical injection of

CO2 and TA rich subsurface waters, when freshwater dilution and

stratification was weaker (lower relative rain and precipitation;

Figures 2B, D). Even so, elevation of DIC values could also be

due to a gradual increase of bicarbonate and carbonate in the system

(Figures 4J, K), when acidic sub-superficial waters (WAR values

sometimes below 1.5, Preciado A., unpublished data) could dissolve

the reef structure, bringing the increased DIC signal to the surface.

From April to July, the relative decrease in DIC reflected dilution by

enhanced river discharge and weaker zonal inputs. The residual

variability (~19%) was linked to respiration and remineralization, as

evidenced by the correlation between DDIC and DO2 where DIC

increased but O2 decreased (Figure 6C; O2 levels reached 60 μmol/

kg) and pCO2w values were elevated. However, this respiration

hypothesis requires further studies in the study site, to understand

its contribution in DIC variability.
4.2 Seasonal FCO2 variability

The seasonal variability of FCO2 in Gorgona during the study

period resulted from the system shifting from post-upwelling,

dominated by southerly trade winds, higher precipitation and

river dominated system to upwelling, dominated by northern

winds, less precipitation, and lower river discharge, and then back

to post-upwelling season. During post-upwelling, a slight positive

increase in FCO2 is related to the extensive plume of water from

coastal rivers (Figure 2) originating from a 44% increase in river

flow during the study period (e.g., the Guapi River with 103 m³ s-1;

Figure 2D), this plume extended for more than 60 km from the

coast (as observed by floating logs on the field), forming a large

estuary with an average salinity of 29.51 units (SD ± 1.56). Thus,

following the definitions of Dai et al. (2013) and McKee et al.

(2004), our study area can be classified as a system dominated by

riverine inputs. During the post-upwelling season, pCO2W values

were relatively high (Figure 4D), ranging from 378 to 839 matm
(average 567 matm), peaking in May, in line with high SST

(Figure 4A), and DpCO2 ranging from 47 matm to 418 matm. Our

results agree with Ricaurte-Villota et al. (2025), where rivers via

remineralization could explain the high pCO2w values during

moderate La Niña years (see Figure 6C). But also, the increased

freshwater discharge could also diminish CO2 fluxes,

simultaneously, under La Niña (Reimer et al., 2013; Ricaurte-

Villota et al., 2025), via nutrient excess and phytoplankton bloom.

During upwelling season, the average water temperature decreased

to 26.53 °C, but the average salinity remained below 30, confirming

the rivers influence on surface waters. Likewise, the pCO2W was

relatively lower, ranging from 316 to 626 matm (average 461 ± 92

matm), with minimum values in March, coinciding with the lowest
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surface temperature (26.11 °C) and highest salinity (28.39). During

this period, FCO2 reached negative or near neutral values (between

0.3 and -0.1 mmol m-2 d-1), with similarly low DpCO2 values,

ranging from –101 matm to 93 matm. Despite theory indicating that

upwelling during a moderate La Niña should increase the CO2 flux

to the atmosphere (Kim et al., 2017), this was not observed in our

study site. Similar dynamics i.e., low or negative net fluxes despite

upwelling have been reported in tropical estuarine systems where

upwelled DIC is rapidly consumed by phytoplankton blooms which

counterbalance the physical delivery of dissolved carbon (e.g.,

Vargas et al., 2007; Bouillon, 2011; Giraldo et al., 2011). Monthly

patterns and flux directions were preserved when calculated using

the propagated pCO2w error, including the neutral/slight sink

observed in March, with only December and June showing

greater variability. Net flux differences over the nine-month

period remained negligible (original net flux = 0.0105 mol C m-2,

positive error net flux = 0.0133 mol C m-2, negative error net flux =

0.0077 mol C m-2) indicating a net total difference of ±0.0028 mol C

m-2, confirming the robustness of our results.
4.3 Temporal pCO2W variability and key
associated variables: salinity, temperature,
dissolved inorganic carbon and DO2

The temporal variability of pCO2W was shaped by the combined

effects of salinity, temperature, DIC, and DO2 variables were

correlated with pCO2W values. Salinity showed the strongest and

most significant correlation with pCO2w (Q = –0.96; p = 1.77E–36, n

= 60) reflecting the strong influence of river discharge and

freshwater dilution, particularly during post-upwelling months,

which differs from many oceanic regions where temperature is

typically the main driver of FCO2 variability (Séférian et al., 2013).

Ekman-driven processes contributed to FCO2 variability by vertical

mixing processes (upwelling, downwelling; Figure 5C) that reduce

salinity up to 40-60m, modifying the depth of the mixed layer over

time. Sea surface temperatures recorded at the study site were

relatively high (26.1–28.1 °C), as foreseen at equatorial latitudes,

due to maximum solar insolation (Saraswat, 2011). On the other

hand, sea surface temperature also correlated positively with pCO2w

(Spearman Q = 0.42313, p = 0.0007, n = 61; Figure 4A), in line with

previous findings by Zhai et al. (2005), who reported higher pCO2w

values during warmer seasons. During the post-upwelling, the

increase in SST from April to June aligned with increases in

pCO2W, DpCO2, and FCO2. As a result, the observed trend is

consistent with the thermodynamic relationships between

temperature and CO2 solubility (Johnson et al., 2010), even

though sea surface temperature alone did not fully explain the

FCO2 variability. Furthermore, we assessed the relative influence of

salinity and temperature to pCO2W by performing a sensitivity test

which fixed one of the variables (salinity or temperature) while

allowing the other to vary in the CO2SYS, recalculating pCO2w.

This approach allowed us to isolate the individual effect of each

parameter (see Supplementary Figure 1). Results showed that

salinity explained a larger proportion of the variance –
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particularly in June and July when riverine CO2 inputs were

strongest, supporting the findings of Ricaurte-Villota et al. (2025)

who also observed that river influence on salinity in the Colombian

Caribbean exerts a greater control on pCO2w than temperature. The

lower salinity observed in June (post-upwelling) was associated with

higher pCO2w values, consistent with dilution by freshwater input

and potential organic and inorganic matter increase from riverine

mangrove sources (Palacios Peñaranda et al., 2019). The observed

negative relationship between DIC and pCO2W reflects the seasonal

interplay of physical and biological processes at Gorgona. During

upwelling, physical mixing and water mass advection introduced

CO2-rich subsurface waters, but biological drawdown suppressed

pCO2w provided by the sea and rivers. On the contrary, during the

post-upwelling phase, the DIC increases and then decreases, due to

the antagonistic relationship between the mixture (ZET, WEK;

Figure 5) that, like respiration processes (oxygen reduction;

Figure 6), provide pCO2w (and DIC), and the photosynthetic

activity, which consumes it or the excess of fresh water that

dilutes the DIC (Figure 4).

Overall, the patterns in Figure 6 suggest that physical mixing

and dilution were the primary controls of DIC variability, consistent

with estuarine systems where hydrodynamic forcing often

dominates carbon system fluctuations (Clark et al., 2022).

Nevertheless, biological processes such as respiration and

photosynthesis clearly modulated the signal, producing seasonal

configurations of DIC–pCO2W values that reflect the co-occurrence

of both physical and biogeochemical drivers. Similar interactions

have been reported in estuarine environments by Ahad et al. (2008)

and Quiñones-Rivera et al. (2022), where strong physical control is

complemented by meaningful, localized biological contributions. As

anticipated, pH’s relationship to pCO2w was inverse (Peng et al.,

2013; Hans-Rolf and Fritz, 2023; Ramaekers et al., 2023), and direct

with WAR (See Figure 4I), which is similar to the relationship

described by Feely et al. (2009), in our case also in agreement

with the highest salinity values. In addition, high pHT values during

March were coupled with consumption of CO2 by phytoplankton

(lowered pCO2w), and higher buffer capacity in the system (high

TA; Figure 4), which is similar to cases reported by Cai et al. (2011)

and Macdonald et al. (2009) in coastal and estuarine systems (low

SSS), despite relatively high DIC values. This condition favors coral

reef or marine organisms’ calcification, although the WAR remained

below 3, suggesting thermodynamically possible, yet suboptimal

conditions (Ries et al., 2009). On the other hand, pHT decreased

during post-upwelling, to its minimum values (May; 7.81), as did

TA (~1800 μmol kg-1, Refer to Figure 4H), when the pCO2w was at

its maximum, thereby lowering the WAR below 2.
4.4 Biological processes

The apparent suppression of CO2 fluxes under upwelling

conditions contradicted expectations from classical upwelling

theory (e.g., Kim et al., 2017), which generally predicts enhanced

CO2 outgassing as deeper, carbon-rich waters reach the surface.

Instead, rapid phytoplankton uptake offset the physical inputs
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(rivers, subsurface water, advection, atmosphere, and other

sources). Evidence for this mechanism comes from strongly

negative DDIC values in February and March (Figure 6D),

indicating intense CO2 consumption, and from the inverse

relationship between surface pCO2w and cumulative Chl-a

concentrations (Figures 4D, M; Figure 5A). This agrees with the

findings of Corredor-Acosta et al. (2020) who reported peak

productivity around Gorgona during March, based on multi-

annual satellite observations. Both their long-term satellite

information and our average and accumulated Chl-a data

(Figure 4M) confirm that the coastal waters near Gorgona sustain

relatively high phytoplankton biomass throughout the year, with

average concentrations exceeding 2.45 mg m-3 in both seasons,

and accumulated values surpassing 16 mg m-3 (Figure 4M;

Supplementary Figure 2).

According to Corredor-Acosta et al. (2020) the sustained Chl-a

signal on the Colombian Pacific coast is modulated by rising waters

along the Panama Bight during the upwelling season and river

discharges (see also Rodrıǵuez-Rubio et al., 2003; Devis-Morales

et al., 2008; Giraldo et al., 2008; 2008; 2011). Therefore, the

productivity observed in Gorgona is attributed to the constant

input of nutrients (Giraldo et al., 2011), coming from both,

subsurface waters and the nearby Patı ́a–Sanquianga deltaic

complex (~50 km), which contributes total suspended solids (23.2

mg L-1), nitrates (33.55 μg L-1), and phosphates (<2 μg L-1; Giraldo

et al., 2011). These inputs, according to INVEMAR (2019–2022)

result in high Chl-a concentrations near the coast (~0.9 mg m-3)

compared to areas farther from the island (~0.3 mg m-3).

Additionally, the coastal phytoplankton around Gorgona is

dominated by large diatoms and dinoflagellates which support a

zooplankton biomass up to seven times greater (89 g/100 m³) than

the regional average for the Colombian Pacific (12 g/100 m³; Murcia

Riaño and Giraldo López, 2007; Giraldo et al., 2011). Therefore,

zooplankton also facilitates carbon export through marine snow,

contributing to remineralization in the water column and up

approximately 90–100 m depth (Alldredge, 1984; Vargas et al.,

2007) which further aids in pCO2w modulation at the surface

(WEK, Figure 5C). The persistence of such high productivity

effectively modulates surface pCO2w by enhancing phytoplanktonic

CO2 uptake, thereby reducing the magnitude of air-sea fluxes.

Without this sustained biological activity, surface waters around

Gorgona would likely accumulate greater CO2 excesses and display

substantially higher efflux to the atmosphere during La Niña years.
4.5 Potential drivers for low CO2 flux

The near-neutral to slightly positive CO2 fluxes observed

around Gorgona can be understood as the outcome of several

interacting climatic–oceanographic processes. As shown, the

system displays marked seasonal variability, yet overall fluxes

remained low to neutral compared with other tropical Pacific or

estuarine sites. Three main drivers appear to regulate this behavior:

wind-driven exchange, vertical stratification, and the buffering

capacity of surface waters.
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Wind speeds during the study period were consistently low

(mean<5 m s-1; range: 2.1–6.4 m s-1; Figure 5), which limited the

efficiency of gas transfer. Since air–sea CO2 fluxes are jointly

governed by wind speed and the air–sea CO2 partial pressure

gradient (DpCO2), the absence of high-wind events (>10 m s-1;

Prytherch et al., 2010) meant that surface–atmosphere exchange

remained weak throughout most of the year. Even when DpCO2

values were favorable for outgassing, limited wind-driven

turbulence constrained fluxes to the atmosphere.

Vertical stratification further reinforced this suppression. The

water column at Gorgona remained strongly stratified for most of

the year, with the thermocline–halocline–pycnocline complex

typically lying between 11 and 40 m depth (Figure 4C). This

effectively isolated subsurface CO2-enriched waters from the

surface, preventing their sustained transfer into the mixed layer.

Only in March, during the shoaling of the thermocline (to ~11 m),

did subsurface waters briefly reach the surface, temporarily

breaking stratification. Yet even under these conditions, fluxes

remained near-neutral rather than shifting strongly positive.

This apparent contradiction can be explained by the buffering

capacity of surface waters. Revelle Factor (RF) values were lowest

during upwelling (January–March; Figure 4N), indicating a high

resistance of surface waters to changes in pCO2W despite inputs of

dissolved inorganic carbon (DIC) from below. As a result, increases in

subsurface DIC did not translate into proportional rises in surface

pCO2W, thus preventing strong efflux. By contrast, RF increased during

the post-upwelling period (May–July; Figure 4N), when surface waters

became more sensitive to DIC changes. Nevertheless, stratification was

then strongest, reducing the vertical supply of CO2-rich subsurface

waters and limiting fluxes.

Taken together, these mechanisms explain why Gorgona

exhibited suppressed CO2 efflux during both upwelling and post-

upwelling conditions. Wind limitation constrained the physical

transfer of CO2, stratification acted as a barrier separating sources

from the surface, and buffering capacity modulated the extent to

which subsurface DIC inputs could alter surface pCO2W. This

combination is consistent with earlier findings in the Colombian

Caribbean (Reimer et al., 2013; Ricaurte-Villota et al., 2025), where

La Niña–driven stratification similarly reduced CO2 outgassing. At

Gorgona, therefore, the interplay of seasonal stratification and

surface carbonate chemistry set the stage for fluxes that remained

near-neutral, even under physical conditions that would normally

favor enhanced CO2 release.
4.6 Gorgona’s CO2 fluxes in the context of
global and regional estimates

To enable comparison of our nine-month flux record with

annual estimates reported in literature, we estimated the three

missing post-upwelling months (August to October 2020) in

order to derive a potential annual flux. This approximation was

based on our in situmeasurements from six post-upwelling months

that correspond to the rainy (wetter) season, a period which also

encompasses the missing months. From these six months, we
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calculated a mean monthly flux of 0.00024 ± 0.0001 mol C m².

Using this value, we estimated the flux for the three missing months

(0.0007 mol C m²; net positive flux) and added it to the nine-month

total (0.01049 ± 0.000148 mol C m²) yielding a potential annual flux

of 0.0112 ± 0.00015 mol C m² yr-1. Interpolation of missing FCO2

data has been applied previously (e.g., Kahl, 2018). Nevertheless, we

emphasize that the estimated three-month flux is a hypothetical

approximation intended only for comparison purposes, and should

be validated with additional in situ measurements.

This approach revealed a neutral to weakly positive net air-sea

CO2 flux at Gorgona Island (FCO2 = 0.0112 ± 0.00015 mol C m-2

yr-1; ~0.031 mmol C m-2 d-1) being an order of magnitude lower

than those reported by Dai et al. (2022) for non-ENSO years (0.8–

1.0 mol C m-2 yr-1), and close to the lower limit of the global range

reported by Wong et al. (2022) for surface ocean carbon fluxes (0–

1.5 mol C m-2 yr-1); highlighting potential regional divergence from

global modeling outputs (Table 1).

The Gorgona fluxes were also markedly lower than those

observed in other tropical and coastal systems. For instance, at

similar equatorial latitudes (~3°N), Jersild et al. (2017) and

Landschützer et al. (2022) reported fluxes exceeding 0.3 ± 0.1 mol

C m-2 yr-1 during moderate La Niña conditions. Pacific Ocean

continental shelves exhibit values between 0.2 and 0.35 mol C m-2

yr-1 (Jersild et al., 2017; Vaittinada Ayar et al., 2022), while the

North Pacific shelf, even under non-ENSO conditions, registers

around 0.043 mol C m-2 yr-1 (Reimer et al., 2013). These regional

differences suggest that local environmental controls strongly limit

the air-sea CO2 exchange in the Eastern Tropical Pacific,

particularly near Gorgona. Consistent with this interpretation,

Ricaurte-Villota et al. (2025) documented similarly low to near-

neutral fluxes in the Colombian Caribbean under La Niña

conditions, attributing them to high rainfall, enhanced

stratification, and strong biological uptake. These drivers mirror

those identified in our study, reinforcing the idea that La Niña

exerts a suppressive effect on CO2 release in this region.

Comparable mechanisms have also been described in Arctic

continental shelves, where freshwater inputs from rivers and ice

melts (together with seasonal ice coverage) enhanced stratification,

restricting gas exchange and contributing to low or near-neutral

fluxes (Else et al., 2013; Miller et al., 2019; Mu et al., 2020).

Furthermore, comparison with other tropical systems reinforces

our findings. Similar low or near-neutral fluxes have been reported

in Costa Rica’s Gulf of Nicoya (Pfeil et al., 2013) and other areas of

the Eastern Tropical Pacific (Laurelle et al., 2013).

Estuarine systems by contrast, tend to show higher fluxes and

yearly variability (Chen et al., 2013). For example, the Matla estuary in

India exhibits high annual fluxes of 2.3 mol C m-2 yr-1 (Akhand et al.,

2016) over 10 times greater than the estimated CO2 flux around

Gorgona, and the Patos Lagoon in Brazil ranges from -13.9 to 19.7 mol

Cm-2 yr-1 attributed to changes in freshwater input and phytoplankton

activity (Albuquerque et al., 2022). Meanwhile Asian tropical estuaries

average around 8.1 mol C m-2 yr-1 (Chen et al., 2013) which are also

substantially higher than our estimated yearly fluxes. However,

comparable near-neutral fluxes were reported in the Arafura and

Red Seas under similar La Niña conditions (Hydes et al., 2012).
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Although global models (e.g., Dai et al., 2022) and some regional

studies do not explicitly separate ENSO phases, this distinction is

essential for accurately characterizing flux dynamics in equatorial

regions such as Gorgona. Prior literature indicates that La Niña

conditions can reduce FCO2 by 0.2–0.4 mol C m-2 yr-1 in the Pacific

region, compared to El Niño or neutral years, aligning with the low

values observed in this study (Chavez et al., 1999; Landschützer

et al., 2016; McKinley et al., 2020; Park et al., 2010).

Our findings challenge the assumption that upwelling-

dominated systems and estuarine environment are high CO2
Frontiers in Marine Science 17
emitters, especially under La Niña conditions. Since in our

tropical coastal area FCO2 is sensitive to atmospheric conditions

(wind velocity, precipitation, solar radiation), freshwater

discharge, physical dynamic (vertical-horizontal water

movement), vertical stratification, upwelling events, carbonate

chemistry and biological uptake. Future research should

incorporate higher-resolution temporal data, uncertainty

analyses in DpCO2, and ENSO-phase-specific studies (and

neutral/non-ENSO years) to improve carbon flux estimates in

this and similar tropical estuarine systems.
TABLE 1 CO2 fluxes between air and sea in different geographic areas.

Location Long. Lat. Continent CO2 Flux (mol C m-2 yr-1) ENSO state Reference

Southeast Asia 115°E 2.2°S AS 0.86 ± 17 Moderate Niño Laurelle et al. (2013)

Northern Australia 125°E 8.9°S OC 0.11 ± 15.7 Moderate Niño Laurelle et al. (2013)

Caribbean Sea 75°W 14.5°N SA 0.66 ± 4.5 Moderate Niño Laurelle et al. (2013)

Tropical Ocean
90°E –

90°W
20°S –

20°N
NA/SA 2.4 ± 0.05 Moderate Niño Laurelle et al. (2013)

Matla Estuary 88°E 20°N AS 2.3 + 0.5 Strong Niño Akhand et al. (2016)

Patos Lagoon 52.5°W 6°N SA -13.9 – 19.7 Moderate Niña Albuquerque et al. (2022)

Omani coast 59°E 20°N AS -0.9 ± 0.03 Strong Niña Millero et al. (1998)

South China Sea
(North)

116°E 22°N AS 0.86 ± 0.04 Weak Niño Zhai et al. (2005)

South China Sea
(North)

116°E 22°N AS 0.4 ± 0.2 Weak Niña Li et al. (2022b)

Eastern Equatorial
Pacific Ocean

90°W -
165°E

5°N -
10°S

NA/SA - OC 2 ± 1 Weak Niña Cosca et al. (2003)

Equatorial Pacific
Ocean

270°E 3°N SA 0.20 ± 0.02 Moderate Niña Vaittinada Ayar et al. (2022)

Red Sea 42.8°E 13.4°N AS/AF 0.01 ± 0.001 Moderate Niña Hydes et al. (2012)

Gulf of Nicoya -84.9°W 9.6°N CA -0.02 ± 0.001 NA
Palacios Moreno and Pinto Tovar

(1992) (SOCAT)

Arafura Sea 136.3°E -9.9°S OC -0.01 ± 0.001 Moderate Niña Hydes et al. (2012)

Amazon River plume -52.5°W 6°N SA -12.78 ± 0.02 Weak Niña Kortzinger (2003)

Equatorial Pacific 125°W 3°N SA 0.3 ± 0.1 Moderate Niña Landschützer et al. (2022)

Equatorial Pacific 125°W 3°N SA 1.5 ± 0.03 Strong Niño Cosca et al. (2003)

Tropical Eastern
Pacific

-81°W 4.7°N SA -0.05 ± 0.01 NA Laurelle et al. (2013)

Subarctic Pacific 145°E 50°N AN 0.7 ± 0.5 Moderate Niño Wang et al. (2018)

North Pacific Shelf 118°W 28°N NA 0.35 ± 0.07 Weak Niña Jersild et al. (2017)

North Pacific Shelf 117°W 31°N NA 0.043 ± 0.01 NA Reimer et al. (2013)

Colombian Atlantic 77°W 10°N SA 0.25 ± 0.05 Weak Niña Vaittinada Ayar et al. (2022)

Caribbean Coast 74°W 11°N SA 0.02 ± 0.01 Moderate Niña Ricaurte-Villota et al. (2025)

Equatorial Pacific
Coast

78°W 3°N SA 0.0112 ± 0.0001 Moderate Niña This study (2021-2022)
It is important to note the flux difference when comparing systems at low latitudes, even during ENSO years. The similarity of the flux in the Colombian Pacific with tropical systems in the
western Pacific Ocean is observed, even if they are located in Asia or Oceania. The abbreviations for continents are: AS, Asia; OC, Oceania; SA, South America; NA, North America; AF, Africa;
CA, Central America; AN, Antarctica; EN, El Niño and LN, La Niña. The ENSO state is based on the ONI index from NOAA. Note that the value for this study is the predicted yearly flux for
easier literature comparison.
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4.7 Methodological considerations and
recommendations

Our study did not include measurements of d¹³C-DIC, which
limits our ability to trace the biogeochemical sources and

transformations of dissolved inorganic carbon. This isotopic

parameter is a powerful tool for distinguishing between marine,

terrestrial, and anthropogenic carbon inputs, and for assessing the

extent of biological activity and remineralization. Its absence

constrains our interpretation of carbon cycling dynamics,

particularly under varying ENSO conditions. We suggest that

future sampling campaigns incorporate d¹³C-DIC analysis to

enhance source attribution and improve the mechanistic

understanding of CO2 flux variability in coastal upwelling

systems. Additionally, we did not directly measure nutrients,

which limits our ability to consider them in the CO2SYS

calculations, specifically those which are proton acceptors (e.g.

phosphates, silicates, ammonia), which can have effects on the

computation of certain carbonate system parameters under high

nutrient loads. We recommend that future sampling efforts

incorporate nutrient measurements for improved flux and

carbonate system calculations.

It is important to consider methodological differences when

comparing with other studies. Although references such as Feely

et al. (2004, 2006) and Hydes et al. (2012) offer context, disparities

in sampling protocols, spatial resolution, and ecosystem type limit

the scope of direct comparison. Finally, we recommend a long-term

monitoring program taking water samples to estimate in the lab the

couple DIC/TA, this will allow to compare the CO2 flux variability

between ENSO events and neutral conditions. An inexpensive

discrete sampling based on our experience for Gorgona National

Park could be to take water samples for 2–4 contrasting months.
5 Conclusions

The estimated air-sea CO2 flux at Gorgona Island (near 3°N in

the Eastern Equatorial Pacific) was close to neutral (0.0104 mol C

m-2) during the nine sampled months under La Niña conditions.

Gorgona displayed a bimodal regime: (I) a predominantly post-

upwelling system for six months, characterized by slightly positive

to near-neutral fluxes, augmented river discharge and rainfall,

elevated sea surface temperatures (>27.4 °C), and high pCO2W

(567 matm in average); and (II) three months of upwelling, with

neutral or weakly negative fluxes (–0.1 ± 0.07 g C m-2 day-1),

associated with CO2 rich subsurface waters (nutrient rich) and

phytoplankton uptake (minimum values of DeltaDIC aligned with

the Chl-a maximum).

Although subsurface waters and coastal rivers deliver CO2 to

the surface, the intense and persistent stratification from low TA/

DIC freshwater (high Revelle factor values; stratification starting at

10 to 45 m), reinforced by warmer surface waters, and freshwater

downwelling, effectively limits CO2 venting to the atmosphere. The

estimated air-sea CO2 flux at Gorgona Island aligns with global

estimates proposed by Wong et al. (2022). Still is lower than those
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predicted by the model of Dai et al. (2022), suggesting the influence

of local biogeochemical processes. In summary, under La Niña

conditions, characterized by rainfall and river runoff (mean SSS =

29.5 ± 1.5) the combined effects of low wind speeds (<5 m s-1),

vertical stratification, and the biological activity appear to explain

the net neutral balance in the air-sea CO2 flux in this region. This

study highlights the importance of integrating local physical and

biological coastal processes (hydrography) when estimating region-

specific CO2 fluxes (in both magnitude and direction); additionally,

long temporal in situ measurements under ENSO events such as El

Niño and Neutral conditions are needed to compare with La Niña

FCO2 findings.

Nevertheless, the overall trend of low fluxes during La Niña, as

shown across tropical estuaries and coastal systems, supports the

hypothesis that this event suppresses CO2 efflux through enhanced

freshwater delivery and weakened ocean-atmosphere coupling.

However, the hypothesis of high positive fluxes during El Niño or

neutral years, when rainfall and upwelling are reduced at Gorgona,

needs further investigation through seasonal and interannual

monitoring campaigns including physical and biogeochemical variables.
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