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Introduction: The Arabian Gulf (Gulf) is a dynamic marine ecosystem in which
phytoplankton productivity, indicated by Chlorophyll-a (Chl-a), is strongly
affected by environmental and climatic variables. Understanding the
spatiotemporal variability of Chl-a and its driving environmental factors is
critical for assessing primary productivity and ecosystem dynamics of the Gulf.
Methods: This study investigated the long-term Chl-a variability and its dynamic
response to environmental variables in the Gulf using two decades (2003 to
2023) of Chl-a data from merged multi-sensor Ocean Colour Climate Change
Initiative. We adopted an integrated approach that includes climatology,
multivariate statistical analysis, interannual variability and trend analysis to
evaluate Chl-a variability and identify its dominant drivers.

Results: Seasonal climatology exhibited a marked winter bloom driven by
convective mixing and nutrient replenishment, followed by a summer decline
due to strong stratification. Box average analysis using correlogram and principal
component analysis for selected regions revealed distinct regional patterns, with
the northern and central Gulf showing higher variability. The results further
highlighted sea surface temperature (SST), sea surface salinity,
photosynthetically available radiation and wind speed as primary drivers of Chl-
a variability in the Gulf. The interannual variability of Chl-a peaks along the central
eastern Gulf in winter and central western Gulf during summer, highlighting
regional heterogeneity in phytoplankton dynamics. Long-term spatial trend
analysis of Chl-a, net primary productivity (NPP) and SST indicated overall
decreasing trend in Chl-a and NPP, particularly along the north and eastern
coasts of the Gulf; and warming SST in the northern and central Gulf.
Discussion: The results indicate the requirement of further research on the
complex interplay between physical and biogeochemical factors, and
anthropogenic influences on Chl-a distribution, which can help future
monitoring and predictive ecosystem models for the Gulf under changing
climate conditions.
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1 Introduction

Chlorophyll-a (Chl-a) is a crucial parameter in the marine
ecosystems which serves as a vital pigment and proxy in
photosynthetic organisms, particularly in phytoplankton. They can
be used to monitor the abundance and primary productivity in the
aquatic environments, making it an essential indicator of ecosystem
health and functions (McClain, 2009; Boyce et al., 2014; Al-Naimi et al,,
2017; Dunstan et al,, 2018; Kraemer et al., 2022). The advent of ocean
color remote sensing has revolutionized the ability to measure Chl-a,
providing unprecedented global coverage into its spatial and temporal
distributions. These observations offer valuable information on
phytoplankton dynamics, primary productivity, and overall health of
the ecosystem, contributing significantly to the study of climate change
impacts, oceanic biogeochemical processes, harmful algal blooms and
the effects of environmental stressors on marine ecosystems (Shah
et al.,, 2019; Lotliker et al., 2020; Shafeeque et al., 2021a;
Madhusoodhanan et al., 2025). Globally, understanding long-term
Chl-a variability is crucial for monitoring marine primary
productivity and assessing the impacts of climate change on ocean
ecosystems (Kashani et al., 2025). Several studies have examined long-
term changes in ocean color and phytoplankton dynamics across open
oceans and large marginal seas, revealing strong links to surface
temperature, winds, ocean stratification, and circulation shifts
(Piontkovski and Queste, 2016; Shafeeque et al., 2017; Vinaya
Kumari et al,, 2021; Chinta et al., 2024). However, the Arabian Gulf
(hereafter referred to as ‘Gulf, Figure la) remains one of the least
explored regions in this context, with the exception of a few number of
studies (Nezlin et al., 2010; Moradi and Kabiri, 2015; Moradi, 2020;
Moradi and Moradi, 2020; Al Shehhi and Kaya, 2021; Asgari and
Soleimany, 2023; Bordbar et al,, 2024; Yang et al., 2024), despite its
ecological sensitivity and extreme environmental conditions. This
study contributes to filling that gap by providing a holistic
assessment of Chl-a variability in the Gulf over more than two
decades, and the region-specific responses to environmental forcing.

The Gulf is one of the very important marine environments in
the world with unique features. It encompasses an area of
approximately 2,33,100 km?, stretching 1,000 km in length with a
width varying from 56 km at the Strait of Hormuz to 338 km at its
widest point. The distinctive features include its shallow average
depth of 36 m, with a maximum depth of 110 m in the Strait of
Hormuz, and its asymmetric bathymetry characterized by a deep
trough along the Iran coast and a shallow bank area (depth < 20 m)
in the southwestern region (Kampf and Sadrinasab, 2006). The Gulf
is not only a busy shipping route but also an economically crucial
region, renowned for its rich petroleum resources (Reynolds, 1993).
Its environmental characteristics are equally remarkable, featuring a
hot desert climate, intense evaporation rates which exceed the
combined freshwater input from precipitation and river
discharge, and extreme salinity levels (Al-Ansari et al, 2022;
Elobaid et al., 2022). These factors contribute to the predominant
oligotrophic nature of the Gulf, making it a unique ecosystem.
Gulfs climate is further influenced by various wind patterns,
including the northwesterly Shamal winds, northeasterly/ easterly
Nashi winds, and southeasterly/ southerly Kaus winds, all of which
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play significant roles in shaping sea surface dynamics (Rao et al.,
2001, Rao et al., 2003; Yu et al., 2016; Moradi and Moradi, 2020;
Aboobacker et al., 2021; Langodan et al., 2023). The general
circulation pattern is cyclonic, bounded by the Iranian coastal
current flowing northwestward along the northern side from the
Strait of Hormuz at speeds exceeding 10 cm/s, and a southeastward
current in the southern part. Interestingly, this current flows against
the prevailing northwesterly winds, primarily driven by the pressure
gradient force, adding another layer of complexity to the
oceanographic characteristics of the Gulf (Mussa et al., 2024).

The Gulf is also one of the most biologically and geologically
distinct marine environments in the world, making it an exceptional
region for studying Chl-a variability. Its unique characteristics,
including its semi-enclosed nature, extreme salinity levels, high-
temperature variations, and limited freshwater inflow, create a
natural laboratory for investigating marine ecosystem processes.
Despite its significance, studies on Chl-a within the Gulf are
relatively less than other regions of the world, highlighting the
need for more comprehensive research in this area. Previous studies
have demonstrated significant spatial and temporal variations in
Chl-a concentrations within the Gulf. For instance, Nezlin et al.
(2010) reported that Chl-a levels in the Gulf are significantly
influenced by local meteorological and oceanographic factors,
including vertical stratification, precipitation, and aeolian dust
transport. Moradi (2020) found that the Chl-a pattern was
heterogeneous in both time and spatial scale with a decreasing
trend, whereas SST pattern is more homogenous. More recent
studies have continued to shed light on the factors regulating
Chl-a distribution in the region. Bordbar et al. (2024) reported
that the SST and Chl-a are anti-correlated in the Gulf except in the
southern Gulf. Al-Thani et al. (2023) focused on the Exclusive
Economic Zone of Qatar, evaluating the physical parameters that
control Chl-a distribution and analyzed spatiotemporal variability.
Additionally, studies have utilized in-situ observations to analyze
Chl-a concentrations, discussing local seasonal variations and the
impact of anthropogenic activities on Chl-a levels in the Gulf (Al-
Yamani et al., 2006; Rajendran et al., 2022; Mussa et al., 2024).

Given the strategic importance as a global oil hub and its
proximity to densely populated coastal regions, a detailed
understanding of the patterns and drivers of Chl-a distribution is
essential in the Gulf for predicting and mitigating the impacts of
human activities on marine ecosystems. Despite its ecological and
economic importance, long-term studies on Chl-a dynamics in the
Gulf remain limited in both temporal and spatial scales. This study
addresses that gap by investigating the long-term spatiotemporal
variability of Chl-a in the Gulf over two decades (2003-2023) using
high-resolution satellite ocean color data from the Ocean Colour-
Climate Change Initiative (OC-CCI). The objective is to study the
distribution of Chl-a in the Gulf and its relationship with key
environmental drivers, including sea surface temperature (SST), sea
surface salinity (SAL), sea level anomaly (SLA), wind speed (WSP),
current speed (CSP), and photosynthetically available radiation
(PAR). The structure of this paper is organized as follows: the
current section 1 provides an introduction with a literature review,
background and objectives of the study, section 2 outlines the
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materials and methods employed in the study, section 3 presents
results and discussion and section 4 summarizes the key findings
and conclusions of the research.

2 Data and methodology
2.1 Data

The Chl-a data used in this study were obtained from OC-CCI
database, one of fourteen CCI projects by the European Space
Agency (https://www.oceancolour.org). This dataset provides
consistent, stable, long-term error-characterized and merged time
series of global ocean color data products from multi-sensor data
archives by integrating remote sensing reflectance (Rrs) values
using selected algorithms (Brewin et al, 2015; Sathyendranath
et al, 2019). The dataset features a fine spatial resolution of
0.04°x0.04°, enabling precise global mapping of Chl-a
concentration. For this study, monthly Chl-a composites (Version
6.0, Sathyendranath et al., 2023) specific to the Gulf were extracted,
utilizing the extensive temporal range of the dataset, which spans
from January 2003 to December 2023. This extended coverage
supports the analysis of both historical and recent trends with better
validation, offering valuable insights into the long-term dynamics
and recent changes in Chl-a concentrations in the region (Jackson
et al., 2022). Although the OC-CCI dataset spans from September
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1997 onward, we restricted our analysis to the post-2003 period due
to known quality issues in the earlier segment of the dataset. During
the initial phase (up to April 2002), SeaWiFS was the single
contributing sensor, resulting in a relatively sparse sampling
frequency and increased noise in the data, including isolated
anomalies and spikes (Sathyendranath et al, 2019). From mid-
2002 onward, the inclusion of additional sensors such as MODIS-
Aqua and MERIS led to a substantial improvement in temporal
coverage and data quality, with a manifold increase in the number
of observations per day. This multi-sensor merging enhances the
robustness of the product by minimizing gaps and random noise
while maintaining a stable long-term signal that is essential for
climate related studies. Moreover, previous studies on both the
Global Ocean and the Gulf have verified that OC-CCI products are
more consistent than other available ocean color satellite products
with proper validation of in-situ measurements (Belo Couto et al.,
20165 Al-Naimi et al., 2017; Moradi, 2021). Moreover, version 6.0 of
the OC-CCI uses blended chlorophyll algorithm, which improves
performance in Case-2 waters compared to earlier versions that
were mostly focused in open-ocean waters (Jackson et al., 2022).
The SST data of Operational SST and Ice Analysis (OSTIA)
with 0.05°x0.05° spatial resolution were obtained from the Marine
Data Store (MDS) of Copernicus Marine Environment Monitoring
Service (CMEMS). OSTIA data provide daily gap-free maps of
foundation SST and ice concentration using in-situ and satellite
data from both infrared and microwave radiometers (Good et al.,
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FIGURE 1

Study region (a) Bathymetry map of Arabian Gulf from Gridded Bathymetry Data (GEBCO) with selected boxes, Standard deviation of Chl-a for (b) Annual

Mean (c) Summer and (d) Winter.
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2020). The OSTIA system is run by the Met Office of the United
Kingdom and delivered by the French Institute for Ocean Science
(IFREMER). It uses satellite data provided by the Group for High
Resolution (GHRSST) project together with in-situ observations to
determine the SST (https://data.marine.copernicus.eu/product/
SST_GLO_SST_L4_REP_OBSERVATIONS_010_011).

Global analyzed sea surface salinity data were accessed from
CMEMS’ Multi Observation Global Ocean Sea Surface Salinity and
Sea Surface Density (https://data.marine.copernicus.eu/product/
MULTIOBS_GLO_PHY_S_SURFACE_MYNRT_015_013). This
product consists of daily global gap-free Level-4 (L4) analyses of
the SAL and sea surface density at 0.125°x0.125° of resolution,
obtained through a multivariate optimal interpolation algorithm
that combines sea surface salinity images from multiple satellite
sources as NASA’s Soil Moisture Active Passive (SMAP) and ESA’s
Soil Moisture Ocean Salinity (SMOS) satellites (Nardelli et al., 20165
Sammartino et al., 2022).

SLA, surface geostrophic northward sea water velocity and
surface geostrophic eastward sea water velocity data were
obtained from MDS-CMEMS (https://doi.org/10.48670/moi-
00148). The data are generated by the processing system
combining data from multi-satellite altimetry missions that
include all altimeter Copernicus missions (Sentinel-6A, Sentinel-
3A/B) and other collaborative or opportunity missions (e.g. Jason-3,
Saral/AltiKa, Cryosat-2, OSTM/Jason-2, Jason-1, Topex/Poseidon,
Envisat, GFO, ERS-1/2, Haiyang-2A/B). All normal geophysical and
environmental corrections have been applied to the data, including
sensor errors and tidal impacts, as well as dynamic atmospheric
correction. With a horizontal resolution of 0.125°x0.125°, the
dataset supports detailed spatial analyses of global sea level
changes. Additionally, it offers temporal resolutions ranging from
daily to monthly, providing continuous monitoring of sea level
anomalies from 1993 to the present. Total CSP was calculated using
northward and eastward velocity components.

The wind data used to estimate wind speed and direction were
sourced from the ERA5 reanalysis dataset, the fifth-generation
global climate and weather reanalysis produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF). ERA5
wind components at a height of 10m above the surface of the Earth
with spatial resolution 0.25°x0.25° were obtained from the Climate
Data Store of Copernicus Climate Change Service (Hersbach et al.,
2023; https://cds.climate.copernicus.eu). ERA5 provides extensive
temporal coverage from 1940 to the present, making it an invaluable
resource for climate and atmospheric research. As the successor to
the ERA-Interim reanalysis, ERA5 offers enhanced accuracy and
higher resolution of atmospheric variables. By blending model
outputs with a wide range of observational data, ERA5 delivers a
globally complete and consistent dataset. ERA5 also supports
multiple temporal resolutions, from hourly to monthly,
encompassing a broad spectrum of atmospheric, ocean-wave, and
land-surface variables, making it a comprehensive dataset for both
historical and real-time analysis.

PAR is defined as the quantum energy flux from the Sun from 0.4
pm to 0.7 pum that is absorbed, transferred and stored within
ecosystems. PAR data from SeaWiFS and Aqua-MODIS with spatial
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resolution of 0.04°x0.04° were achieved from NASA Goddard Space
Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing
Group (http://oceancolor.gsfc.nasa.gov). For ocean color
applications, PAR is a common input used in modeling marine
primary productivity. Net primary productivity (NPP) is a measure
of the rate at which phytoplankton convert carbon dioxide into
organic matter (Westberry et al., 2023). NPP data with spatial
resolution 0.083°x0.083° used in this study was computed from
satellite-derived Chl-a, SST and PAR data mostly from SeaWiFS,
MODIS and VIIRS satellites using the Vertically Generalized
Production Model (VGPM, Behrenfeld and Falkowski, 1997),
available at ocean productivity website (https://orca.science.
oregonstate.edu/1080.by.2160.monthly.hdf.vgpm.m.chl.m.sst.php).

2.2 Methods

The standard deviation (SD) of Chl-a in the Gulf provides
critical insights into the temporal and spatial fluctuations of
phytoplankton biomass. The results were presented across three
different temporal scales: annual mean, summer and winter. This
SD analysis aided in identifying regions of high Chl-q variability,
which could then be used to define study areas (0.5°x0.5° boxes) for
further investigation to understand the relationship between the
distribution of Chl-a and environmental factors. This analysis
aligns with previous studies on Chl-a variability in semi-enclosed
seas, where nutrient dynamics, physical forcing, and climatic
variability strongly regulate phytoplankton distributions (Gregg
and Casey, 2004; Behrenfeld et al., 2006). A high Chl-a SD value
implies regions where phytoplankton blooms are strongly
influenced by any of the seasonal shifts, such as winds,
stratification, and nutrient availability mostly from river
discharge. In contrast, regions with consistently low SD indicate
lower or stable Chl-a throughout the year, often found in deeper or
more oligotrophic waters. We have also performed spatial
correlation between Chl-a and major environmental variables to
confirm the selection of specific regions and thereby to investigate
the relationship between Chl-a and other environmental variables.
To calculate the spatial correlation, we used data from 2003-2023
and regridded all datasets to a common spatial resolution
of 0.04°%0.04°.

Time-series analysis of Chl-a was carried out for the selected
boxes on a monthly, seasonal and annual timescales along with a
trendline. We applied the modified Mann-Kendall trend test (Hamed
and Rao, 1998) to evaluate long-term trends in Chl-a concentration.
This method adjusts the variance of the Mann-Kendall statistic to
account for autocorrelation in the time series, providing a more
reliable assessment of trend significance. The trend calculated for
NPP data were normalized to the range of -1 to +1 to ensure
comparability with other variables, as this scaling transforms the
data to a dimensionless interval where -1 represents the minimum
observed value and +1 represents the maximum, preventing its larger
magnitude from biasing the analysis.

Empirical Orthogonal Function (EOF) analysis were performed
spatially and temporally in the Gulf domain (Longitude: 48-56°E;
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Latitude: 24-32°N) for the period 2003 to 2023. EOF is a robust
statistical method used to identify patterns and extract significant
features from complex datasets. The dominant spatial patterns of
variabilities are presented as different modes of EOF and the
temporal variability has shown as time series of principal
components. Here, the eigenvalue 4, corresponding to k™ EOF
gives a measure of the explained variance by ay, where k = 1,2,3,....,
p. The following Equations 1-3 are used to calculate the major terms
in this analysis. The complete theory of EOF analysis is available at
Hannachi (2004).
The explained variance is often presented in percentage as:

1004
Lllk

V)

b (1)

The k™ principal component is the projection of the anomaly
field X’ on to the k" EOF ag, ie.

o= X a (2)

P
() = D X'(t,5)ay(s) (3)
s=1

where t, s represent the temporal and spatial dimensions. The
leading EOFs were analyzed to reveal significant spatial patterns of
Chl-a distribution, while the corresponding principal components
provided insights into temporal changes. We removed the season
and trend from the data for this analysis.

Mutivariate analyses such as correlogram and Principal
Component Analysis (PCA) were also done to quantify the
relationship between Chl-a and other environmental variables by
identifying the key Chl-a patterns of spatial variability (Jackson,
1991; Jolliffe, 2002). These analyses were also aimed to reveal the
dominant factor for Chl-a variability at selected locations. Generally,
these are useful for reducing the dimensionality of large number of data
into a smaller number of orthogonal factors called Principal
Components (PCs). PCs represent the major part of the overall data
variance along with the correlation amongst the variables without
losing much information (Vega et al., 1998; Helena et al., 2000; Lins
et al,, 2018). In simple terms, these methods break the complex data
into a few main patterns, showing where the highest changes occur in
the Gulf and how they evolve over months and years. A two-tailed
student’s t-test was applied to assess whether the correlation coefficients
(r) between Chl-a and other environmental parameters were
statistically significant (Kreyszig, 1970). Interannual variability of
Chl-a and other associated variables was also analyzed by removing
the seasonal cycle from each variable.

3 Results and discussion

3.1 Monthly climatology of Chl-a, SST, SLA,
wind and surface currents

The monthly climatology spatial maps of Chl-a concentration
provide an overview of the spatiotemporal distribution of
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phytoplankton biomass in the Gulf in different months
(Supplementary Figure S1). Strong seasonal and spatial
discrepancy in the distribution of Chl-a was clearly observed in
the climatology map, with clear distinctions between coastal and
offshore waters. Elevated Chl-a values (>2 mg/m3) were
predominantly observed in coastal regions, particularly near the
north and northwestern coasts throughout the year. In contrast, the
eastern coasts and offshore regions of the Gulf exhibit lower Chl-a.
The map also revealed marked seasonal variability in Chl-a
concentration all over the Gulf. During winter (December-
March), higher Chl-a exhibited (>2 mg/m®) along the central
(Iran coast) and southeastern coast adjacent to the Strait of
Hormuz and moderate Chl-a values along north and western
coasts. During summer (June-September), nutrient availability in
the surface layer is limited due to the high SST (>35°C) and strong
stratification (Polikarpov et al., 2016). As a result, Chl-a
concentrations were generally lower (<2 mg/m’) during this
period. In contrast with the winter, higher Chl-a (~3 mg/m’) was
exhibited along the central (Saudi and Qatar coast) and
southwestern coasts (U.A.E.) of the Gulf during summer
(Supplementary Figure SI). The transitional periods of Spring
(April-May) and Autumn (October-November) months exhibit
moderate to lower Chl-a levels (~1 mg/m?), reflecting the gradual
shifts in environmental conditions. The observed patterns of
monthly climatology provide insights into the modulation of Chl-
a in the Gulf and its response to seasonal changes.

The monthly climatology maps of SST overlaid with winds
(Supplementary Figure S2) and SLA overlaid with surface currents
(Supplementary Figure S3) provide valuable insights into major
physical processes driving Chl-a variability in the Gulf. The SST
climatology maps reveal pronounced seasonal variability, with
temperature ranging from approximately 17°C in winter to 35°C
in summer. The superimposed wind vectors highlighted the role of
atmospheric forcing in modulating SST and, consequently, Chl-a
concentration. During winter, cooler SST (17-25°C) dominated the
Gulf waters, with the lowest SST observed in the northwestern
region maybe due to the enhanced vertical mixing. In contrast,
summer was characterized by extreme SST (29-35°C), with the
highest values observed in the southern and central Gulf
(Supplementary Figure S2). During this period, strong thermal
stratification limits vertical mixing, reducing the upward
transport of nutrients to the surface layer. The transitional
periods (spring and autumn) exhibited moderate SST (21-29°C),
reflecting the gradual warming in spring and cooling in autumn.
Wind patterns during these periods are less intense and more
variable and hence influence the mixing and nutrient dynamics.
These transitional seasons were marked by moderate Chl-a levels,
since these seasons are in between the winter bloom and summer
stratification phases.

The SLA climatology maps, overlaid with surface currents,
provided further insights into the circulation patterns and their
influence on nutrient transport and Chl-a distribution in the Gulf
(Supplementary Figure S3). SLA reflects changes in sea surface
height due to variations in SST, salinity, and wind forcing, while
surface currents play a critical role in redistributing nutrients and
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phytoplankton blooms. During winter, positive SLA (up to 10 cm)
were observed in the southern Gulf, indicating higher sea levels due
to cooler, denser water and wind-driven convergence (Al-Subhi and
Abdulla, 2021). In summer, SLA varies from 3-8 cm with the
presence of strong cyclonic eddies along central and southeastern
coasts. During the transitional periods (spring and autumn), SLA
ranges varied from -1 to 10 cm, reflecting the gradual transition
between winter and summer conditions. Surface currents during
these periods were weaker, with moderate flows regulating nutrient
distribution. The interaction between SLA and circulation patterns
during these seasons creates a dynamic environment for
phytoplankton, with moderate nutrient availability and
transitional Chl-a levels. The overall counterclockwise current
pattern plays a critical role in explaining the observed distribution
and transport of the algal blooms in the Gulf. The current enters the
Gulf through the Strait of Hormuz, flows northwestward along the
eastern Gulf, and then loops back southward along the western Gulf
before exiting through the Strait (Mussa et al., 2024). The
climatology analyses (Supplementary Figures S1-53) highlight the
overall distribution of Chl-a with unique oceanographic and
environmental characteristics of the Gulf, which strongly
influence Chl-a dynamics. The observed patterns in SST, winds,
SLA, and surface currents provide insights into the complex
relationship between physical processes and phytoplankton
dynamics. In order to select specific locations for further analyze
the spatiotemporal variability of Chl-a and its major environmental
drivers, we performed SD of Chl-a and spatial correlation between
Chl-a and major environmental variables.

3.2 Standard Deviation and Spatial
Correlation analysis

We analyzed the SD of monthly Chl-a concentrations to
identify regions with high seasonal or interannual fluctuations.
The annual mean SD Chl-a map represents the mean spatial
variability, providing the total variability of annual Chl-a
concentration during the study period (Figure 1b). Higher SD
was exhibited along the coastal areas, particularly in the northern
Gulf near the Shatt al-Arab is mainly attributed to the nutrient-rich
river discharge (Nezlin et al., 2010; Al-Naimi et al., 2017; Al-Thani
et al,, 2023). On the other hand, offshore regions experience
relatively lower SD, reflecting a more stable environment with less
pronounced productivity and seasonal changes. The summer SD
highlights spatial variations in Chl-a during warm months when the
Gulf experiences high SST and intensified stratification (Figure 1c).
Phytoplankton productivity during this period is often limited by
nutrient availability, as thermal stratification restricts the upward
transport of nutrients from deeper waters (Doney, 2006; Al-Thani
et al., 2023). However, localized high SD values in certain coastal
and shallow regions, particularly along northern Gulf indicate
wind-induced mixing, sediment resuspension, or nutrient input
from riverine sources. Mesoscale features such as eddies and
upwelling events may also contribute to localized Chl-a variability
during this period (Thoppil and Hogan, 2010a, Thoppil and Hogan,
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2010b). In contrast, the winter SD reveals Chl-a variability during
the cooler months (Figure 1d), a period typically associated with
enhanced vertical mixing and nutrient replenishment in the Gulf
(Al-Thani et al,, 2023). The presence of high SD values along the
southeastern coast towards the Strait of Hormuz in winter
suggested that phytoplankton biomass is highly responsive to
seasonal environmental changes, particularly nutrient availability
driven by convective mixing and wind-driven turbulence. Northern
coastal regions exhibited greater variability due to fluctuations in
salinity and nutrient influx influenced by freshwater discharge.
These high-variability zones provided insights for selecting
specific regions to further explore the relationships between Chl-a
and environmental drivers in the Gulf.

The spatial correlation between Chl-a and SST revealed a clear
regional gradient. There were moderate negative correlations along
the entire eastern and northern coasts, as well as offshore regions
(Figure 2). In contrast, moderate to strong positive correlations
were exhibited along western and southern coastal areas. This
spatial variation highlights how SST control on Chl-a is
regionally dependent within the Gulf. SAL demonstrated
moderate to strong positive correlations throughout the basin,
particularly in the northern half of the Gulf. However, some weak
negative correlations were also found near the southern and western
coasts. WSP displayed positive correlations in the eastern and
central Gulf, especially along the Iranian coasts. Conversely, weak
to moderate negative correlations were evident along the western
and southern coast. The correlation with SLA was generally weak or
no correlation across the Gulf, though some negative patches
appear in the eastern and northern coastal regions; whereas
positive patches along the western and southern coasts. Similar to
SLA, CSP also showed weak scattered positive and negative
correlations. Notably, the correlation between Chl-a and PAR was
strongly negative throughout most of the Gulf, while narrow
patches of moderate negative correlation was found along the
westren and southern coasts. Based on the SD map and spatial
correlation map, four representative zones (0.5°x0.5° boxes), with
consistently high SD and correlation values were selected for
further analyses.

3.3 Spatiotemporal variability of Chl-a:
time series analysis

The detailed analysis of long-term Chl-a over the four selected
regions in the Gulf provides more insights into spatial and temporal
variability, seasonal dynamics, and long-term trends. Even though
all the boxes displayed decreasing trend, each region exhibited
distinct characteristics both in spatial and temporal scales
(Figure 3). Box 1 (central-eastern Gulf, along Iran coast)
exhibited significant declining trend, with a total decrease of -
0.31 mg/m® and values ranging from 3.3 to 0.7 mg/m? throughout
the study period. Seasonal patterns were evident, with winter peaks
of 2.3 mg/m® and summer lows below <1 mg/m?®. Interestingly two
peaks during 2005-2006 and 2008-2009 were identified at this
region with the values of Chl-a >3 mg/m3 . Box 2 (northwestern
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Spatial correlation between chlorophyll-a (Chl-a) and sea level anomaly (SLA), sea surcace temperature (SST), salinity (SAL), wind speed (WSP),

current speed (CSP) and photosynthetically available radiation (PAR).

Gulf, Kuwait coast) was also experienced a significant decline with a
total reduction of -0.66 mg/m®. However, highest Chl-a variability
(from 8 to 1.5 mg/m®) was displayed at this region during the study
period. Winter peaks of 4.3 mg/m® reflect strong productivity, while
summer lows below 1.8 mg/m® pointed to seasonal
nutrient limitations.

Interestingly, unlike from boxes 1 and 2, the declining trend in
both Chl-a and seasonal peaks were weak for the remaining boxes (3
and 4); in which box 4 showed non-significant correlation. In
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contrast, winter dominance of higher Chl-a observed along the
eastern and northern Gulf (boxes land 2), seasonal shift in Chl-a
maximum from winter to summer were observed for boxes 3 and 4
(western and southern Gulf). Box 3 (central western coast of the Gulf,
along the Saudi Arabia) illustrated a decreasing trend, with Chl-a
values vary from 3.8 mg/m” to 1.3 mg/m® and net variability of -0.18
mg/m®. Summer peaks reach up to 3 mg/m®, while winter lows
remain above 1.6 mg/m?®. Finally, Box 4 (Southern Gulf, UAE coast)
showed a decrease in Chl-a concentration, ranging from 4.5 to 1.4
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FIGURE 3

Time series plot of Chl-a for selected regions (boxes 1— 4) during 2003— 2023. Monthly (red), winter (blue), summer (dashed blue), yearly (black) and
trend (dashed black) Chlorophyll-a varability are represented with different lines and colors. The shaded area shows standared deviation.

mg/m® and a total decrease of -0.1 mg/m’. Summer peaks were
reached up to 4 mg/m®, while average winter Chl-a showed <2 mg/
m®. In summary, time series analysis reveals an overall decreasing
trend with clear regional contrasts in both seasonal and long-term
Chl-a. The eastern and northern coasts (boxes 1 and 2) show severe
decline and winter dominants, while western and southern coasts
(boxes 3 and 4) exhibited comparatively moderate/ weak waning in
Chl-a with summer peaks. The overall decreasing Chl-a trend in the
time series analysis is also consistent with recent studies (Moradi,
2020; Yang et al., 2024). The seasonal dominance patterns along the
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eastern and western regions of the Gulf are shaped by the interaction
of physical and regional factors. Winter dominance is primarily
driven by nutrient mixing and favorable temperature, while
summer dominance is linked to sustained nutrient inputs and
higher light availability in coastal regions (Moradi and Kabiri,
2015). These findings underscore the importance of localized
environmental controls, which are further examined in the
following sections.

The time series analysis of Chl-a reveals discrete peaks and
declines across various boxes in the Gulf, corresponding to different
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periods. Previous studies confirmed the indirect influence of large-
scale climatic oscillations such as El Nino-Southern Oscillation
(ENSO), Indian Ocean Dipole (IOD), Atlantic Multi-decadal
Oscillation (AMO) and North Atlantic Oscillation (NAO) on
phytoplankton dynamics in the Gulf through changes in SST,
winds, mixing, nutrient supply, and precipitation patterns (Nezlin
et al., 2007; Nezlin et al., 2010, Al Senafi, 2022; Hamdeno et al.,
2022). Notably, box 1 exhibits significant peaks during 2008 to
2009, highlight the influence of episodic algal blooms or extreme
weather events, which suggest further investigation to understand
their ecological impacts (Richlen et al., 2010). Nezlin et al. (2010)
observed that the bloom occurrence in 2008 was associated with
variability in NAO phases. Al Senafi (2022) showed that ENSO,
IOD and AMO significantly influence the SST and circulation,
thereby affecting marine productivity in the Gulf. Moreover, recent
work has also highlighted the impact of marine heatwaves on Chl-a,
and ENSO/ IOD variability in the region (Hamdeno et al., 2022;
Shaltout and Eladawy, 2024). Long-term warming trends further
amplify these dynamics, contributing to stronger stratification and
reduced nutrient replenishment (Roxy et al., 2016; Al Senafi, 2022).
Opverall, while this study does not directly focus on extreme events,
past literatures indicate that climate oscillations can modulate Chl-a
variability in the Gulf through indirect pathways, emphasizing the
importance of future targeted analyses of ecosystem responses to
these events.

We applied Correlogram, PCA and EOF analyses to explore
how Chl-a varies over space and time and to identify dominant
patterns deriving this variability in the Gulf. Correlogram and PCA
helps to quantify the relationship between Chl-a and environmental
factors and identify the most influencing environmental drivers.
EOF, in turn, decomposes the Chl-a dataset into spatial modes that
capture the most significant variance, while the corresponding time
series (principal components) extracts temporal evolution
associated with these modes. Together, these approaches allow us
to distinguish large-scale, recurring patterns such as seasonal cycles,
localized or interannual variations, making the complex dynamics
of Chl-a easier to interpret. The insights from these analyses are
detailed in the following two subsections.

3.4 Statistical multivariate analyses:
correlogram and PCA

Correlogram and PCA were performed by including PAR as
another forcing factor along with the variables used in the previous
analysis as causative factors for Chl-a modulation. The correlation
analysis of Chl-a with SLA, SST, SAL, WSP, CSP, and PAR
(Figure 4) across four spatial boxes (Figure 1) in the Gulf revealed
complex, region-specific relationships, highlighting strong spatial
differences in the environmental drivers of phytoplankton
dynamics. All variables showed significant relationship with Chl-a
except CSP in box 1. Here, a negative correlation between SST and
Chl-a was evident, with a strong correlation (r= -0.50), which may
suppress phytoplankton growth due to high SST. A notable positive
correlation between Chl-a and WSP (0.46) emphasized the role of
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wind-driven mixing in enhancing nutrient availability, which
supports phytoplankton growth. A moderate positive correlation
with SAL (0.42) suggested that higher salinity waters in this box
may coincide with nutrient-rich conditions, potentially influenced
by regional circulation patterns or saline water influxes. Further, the
strong negative correlation between Chl-a and PAR (-0.60)
underscored the influence of photoinhibition in this region, where
excessive light exposure inhibits phytoplankton productivity
(Behrenfeld et al., 2001).

In box 2, Chl-a exhibited a very weak non-significant negative
and positive correlation with SLA (-0.13), WSP (-0.03), and CSP
(0.02) respectively (Figure 4). So, these variables have a limited role in
nutrient dynamics and phytoplankton growth in this region. A weak
negative correlation with SST (-0.26) highlighted the minimal impact
of thermal stratification in reducing phytoplankton productivity.
Notably, the negative correlation with PAR (-0.41) indicated severe
photoinhibition similar to previous location (box 1), where high light
levels hinder photosynthesis, particularly in nutrient-limited
conditions (Behrenfeld et al., 2001; Falkowski and Raven, 2013). In
box 3, all variables had a significant correlation with Chl-a. SLA, SST
and PAR exhibited weak to strong positive correlation with Chl-a (r =
0.13, 0.79 and 0.60) respectively, which indicated their roles in
promoting phytoplankton growth. However, the strong negative
correlation with SAL (-0.50) suggested that lower salinity
conditions, possibly caused by freshwater inputs, may limit
phytoplankton productivity by increasing stratification. A strong
negative correlation with WSP (-0.58) may lead to the disruption
of phytoplankton stability in the water column due to excessive wind-
driven mixing, thence diluting localized Chl-a concentrations.
Whereas, a strong positive correlation with PAR supports
photosynthesis in this region with high light availability. Finally,
box 4 revealed a very strong positive correlation between Chl-a and
SST (0.85), indicating that seasonal warming supports phytoplankton
growth in this area, likely by enhancing nutrient cycling and biological
processes. A moderate negative correlation with WSP (-0.52) implied
that wind-induced turbulence may dilute phytoplankton
concentrations. Interestingly, PAR showed strongest positive
correlation (0.72), suggesting that in this region, light availability
supports photosynthesis without significant photoinhibition.

While correlation analysis identifies pairwise relationships,
PCA provides a broader multivariate perspective by revealing
dominant environmental regimes that drive Chl-a variability. We
considered the first two dominant principal components (PCI and
PC2), which explain most of the variance (>60%) in Chl-a and
highlight the strongest environmental controls in the Gulf. The key
insights obtained from the PCA (Figure 5) are as follows. The
analysis showed that high SST and PAR were associated with
opposite phases and lower Chl-a for boxes 1 and 2. This
indicated that enhanced surface warming and photoinhibition
reduce phytoplankton growth in these regions. For instance, the
dominant drivers in box 1 include a negative relationship of Chl-a
with SST and PAR and a positive influence of wind (WSP). Here,
enhanced Chl-a was promoted by strong wind-induced upwelling
with relatively cooler surface conditions (Al-Yamani et al., 2020;
Ismail and Al Shehhi, 2022). Similarly, in box 2, the negative
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correlations with SST and PAR, combined with the positive
contributions from salinity (SAL) and WSP, underscore a regime
where upwelling and nutrient enrichment through river discharge
play critical roles in driving Chl-a variability (Ershadifar et al., 20205
Ismail and Al Shehhi, 2022). Similar to the correlogram analysis, the
PCA also indicated a shift in environmental drivers in boxes 3 and 4
(Figure 5). In these regions, SST, SAL and WSP emerge as major
drivers, pointing to a stratification-dominated regime where
thermal conditions and elevated water levels enhance
phytoplankton productivity. Here, PAR also exhibits a positive
influence, implying that ample light in conjunction with warmer,
more stratified waters supports augmented phytoplankton biomass.
Furthermore, the negative associations with SAL and WSP in these
boxes indicate that lower salinity and reduced wind mixing favor
phytoplankton bloom formation, likely by minimizing dilution and
promoting water column stability.

The correlogram and PCA analyses further highlights the
complex and regionally variable relationship between Chl-a and
environmental parameters in the Gulf. The results further confirm
the crucial interplay of physical and biological factors governing
phytoplankton productivity in this ecologically and economically
vital region. It underlines the importance of analyzing the spatial
heterogeneity of major environmental drivers when studying
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marine ecosystems. The distinct correlation patterns across the
four selected boxes indicated that local environmental conditions
such as hydrodynamics, light and nutrient availability, or
temperature gradients significantly influence the relationships
between Chl-a and the selected variables. SST, SAL, WSP and
PAR emerge as key factors influencing nutrient dynamics and
phytoplankton productivity, with varying impacts across different
regions. SST often showed a significant correlation with Chl-a,
though the direction (positive or negative) varies across boxes,
reflecting potential regional influences of temperature on
phytoplankton dynamics. While SST is a strong positive driver
for the regions along the southern and western Gulf (boxes 3 and 4),
it negatively impacts Chl-a in the eastern and northern regions
(boxes 1 and 2). The weak or moderate positive correlation of SLA
and SAL with Chl-g, indicating that changes in sea level anomaly
and salinity slightly influence nutrient availability or vertical
mixing. PAR generally exhibits moderate or strong positive
(negative) correlations with Chl-a in western and southern
(eastern and northern) boxes, suggesting light availability may
(not) be the primary limiting factor in these regions. The
consistent negative correlations with PAR, particularly in boxes 1
and 2, highlight the persistent role of photoinhibition in limiting
phytoplankton growth under high light conditions, a well-
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on the first two PCA (PC 1 and PC 2) which cover more than 60% of the variance.

documented phenomenon common in shallow or clear waters with
high solar insolation (Behrenfeld et al., 2001). Additionally,
correlation between current speed and Chl-a were weaker in most
boxes, indicating less direct influence. Beyond the pairwise
relationship from correlogram analysis, PCA further confirmed
and highlights how multiple factors interact to form distinct
environmental regimes and complements the findings by
decomposing the variance in Chl-a into key multivariate
components. It also demonstrates that while individual
parameters have distinct pairwise correlations with Chl-g, their
combined effects vary regionally. These findings are essential for
refining ecological models and developing effective management
strategies in the Gulf, particularly in the context of ongoing
environmental changes (Al-Yamani et al, 2020). The overall
results of the correlogram and PCA are summarized in Table 1.
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3.5 Dominant spatiotemporal patterns of
Chl-a: EOF analysis

EOF decomposition was applied to Chl-a in the Gulf to identify
the primary modes of variability and their potential driving
mechanisms. The results exhibited four dominant modes: each
captures distinct patterns of variability and contributes to
understand the Chl-a dynamics in the region (Figure 6). The first
mode of EOF accounted for 47% of the total variance, making it the
dominant pattern of Chl-a variability. The spatial plot indicated a
homogeneous distribution across the Gulf, with stronger variability
observed along the northern and eastern coastal regions,
particularly near the strait of Hormuz and along the Iran coast
(Figure 6a). The corresponding temporal series showed sharp peaks
during 2008-2009 (Figure 6b), indicating the influence of extreme
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climate anomalies apart from episodic algal bloom events (Chinta
et al, 2024). These climatic events impact the Indian Ocean
monsoon system and oceanic productivity in adjacent regions,
including the Gulf (Al-Yamani et al, 2004; Shafeeque et al,
2021a; Seelanki et al, 2022). Other contributing processes may
include seasonal upwelling, mesoscale eddies and anthropogenic
nutrient inputs, which enhance nutrient availability and drive Chl-a
fluctuations (Kdmpf and Sadrinasab, 2006; Thoppil and Hogan,
2010a; Ismail and Al Shehhi, 2022). The second EOF mode
explained 35% of the variance and is characterized by a localized
pattern, with strong positive loadings near the northern Gulf,
particularly along the Kuwait and Iraq coasts (Figure 6a).
Temporal evolution suggested a distinct seasonal cycle, indicating
that this mode is strongly influenced by regional hydrodynamic
processes. A key driver of this pattern is likely the river discharges,
especially from the Shatt al-Arab river, which injects freshwater and
nutrients into the Gulf, stimulating phytoplankton blooms
(Abaychi et al., 1988; Sheppard et al,, 2010). Additionally, wind-
driven circulation and coastal currents play a role in shaping this
variability by modulating nutrient transport and stratification
dynamics (Mussa et al., 2024).

The third EOF mode captured 10% of the variance, which
highlights Chl-a variability mainly along the central and
southeastern Gulf. The time series indicates interannual
variability, possibly linked to fluctuations in wind-driven mixing
and atmospheric dust deposition (Nezlin et al., 2010; Asgari and
Soleimany, 2023). The interplay between wind mixing and nutrient
availability appears to be a key factor in driving this mode. The
fourth EOF mode accounts for 8% of the variance and exhibits a
more localized pattern along the northwest (Kuwait coast) and near
to the Strait of Hormuz (north U.A.E. coast) of the Gulf. The
associated time series suggests short-term fluctuations (Figure 6b),
indicating that this mode is influenced by regional oceanographic
processes rather than long-term climatic patterns. Additionally,
extreme weather events, such as dust storms and cyclones, may
contribute to the observed variability by altering light penetration
and nutrient fluxes (Nezlin et al., 2010; Jish Prakash et al., 2015;
Madhusoodhanan et al., 2024). Overall, the EOF results reveal that
Chl-a dynamics in the Gulf are not uniformly driven by seasonal
processes, but controlled by a combination of large-scale climatic
influences, regional hydrodynamic processes, and localized
oceanographic phenomena. These modes offer valuable baselines
for long-term monitoring and ecosystem forecasting. The
dominance of the first two Modes (82%) highlights the

10.3389/fmars.2025.1619821

predominant role of climatic and seasonal forcing, whereas the
other modes capture more localized and transient processes. This
analysis strengthens the importance of understanding multiple
scales of variability to improve predictions of phytoplankton
dynamics and ecosystem responses in this ecologically and
economically significant region.

3.6 Interannual variability in Chl-a and
dominant environmental variables

The interannual variability of Chl-a in the Gulf was briefly
revealed in the time series (section 3.3) and EOF analyses (section
3.5), which indicated that Chl-a concentrations have undergone
significant fluctuations during the study period. Based on the
correlogram and PCA results presented in Table 1, we selected
two regions (boxes 1 and 3) representing the eastern and western
coasts of the Gulf to further explore interannual changes in Chl-a
along with dominant environmental factors (SST, SAL, SLA, WSP
and PAR). The time series of these variables are plotted for the
period 2003 to 2023 (Figure 7). Moreover, a lag correlation analysis
for these boxes was also done and presented as supplementary
figures (Supplementary Figures S4, S5). Prolonged high values of
Chl-a concentration were recorded in box 1 (along the Iran Coast)
from 2006 to 2009 (Figure 7a). The years 2008 and 2009 showed the
highest Chl-a anomaly (1.5 mg/m®), indicating an intense
phytoplankton bloom; conversely, the lowest Chl-a occurred in
2010, 2013 and 2020, indicating a period of markedly reduced
biological productivity. The central-eastern coast of the Gulf,
particularly along the Iran coast is characterized by frequent
upwelling events that significantly influence Chl-a variability
(Ismail and Al Shehhi, 2022). Upwelling brings nutrient-rich deep
waters to the surface, supporting phytoplankton blooms and
leading to higher Chl-a concentration (Moradi and Kabiri, 2015;
Shafeeque et al., 2021b). The period of lower Chl-a could be
attributed to weaker winds and higher SST, limiting vertical
mixing and reducing nutrient availability. Recent studies have
highlighted the increasing frequency of marine heatwaves over
this region, which can disrupt upwelling and reduce
phytoplankton productivity (Chaidez et al., 2017; Hamdeno et al.,
2022; Kashkooli et al., 2022; Shaltout and Eladawy, 2024). Salinity in
this region is influenced by the influx of nutrient-rich waters from
upwelling and the exchange with the Indian Ocean through the
Strait of Hormuz (Lorenz et al.,, 2020; Ghaemi et al., 2021). Earlier

TABLE 1 Summary of the correlogram and PCA analyses results showing relationship of environmental parameters with Chl-a.

Box SLA SST SAL

1 -0.22 -0.50 +0.42
2 -0.13 -0.26 +0.27
3 +0.13 +0.79 -0.50
4 -0.04 +0.85 -0.35

WSP

CSP PAR Key drivers
+0.46 -0.04 -0.60 SLA, SST, SAL, WSP, PAR
-0.03 -0.02 -0.41 SST, SAL, PAR
-0.58 -0.19 +0.60 SST, SAL, WSP, PAR
-0.52 +0.07 +0.72 SST, SAL, WSP, PAR

Correlation coefficient (r) with ‘+” and ‘-’ signs indicate positive or negative correlation; bolded r values indicate significant correlation (p-value <0.05). Key drivers were chosen if the relationship

was significant and r> 0.2.
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EOF analysis: (a) Spatial maps for first four dominant modes (b) Time series for first four principal components.

studies have emphasized the role of salinity gradients in shaping
phytoplankton communities in upwelling zones (Wabnitz et al.,
2018; Ben-Hasan and Christensen, 2019; Alnafissa et al., 2021). The
lag correlation analysis for box 1 highlights the temporal shifts in
the relationship between Chl-a and environmental parameters,
reflecting the influence of seasonal progression, mixing processes,
and hydrodynamic conditions. SST exhibited strong negative
correlation (-0.62) at lag +1 month, consistent with nutrient
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depletion during periods of sustained warming (Supplementary
Figure S4). SAL exhibited positive correlations (+0.45) peaking at
lag +1 month. Wind speed showed maximum correlation (+0.46) at
a lag 0, highlighting the direct impact of wind-driven nutrient
entrainment on Chl-a production. CSP had moderate positive
correlations at long negative lags (+0.30 at -6 months). PAR
displayed strong negative correlations near lag 0 (-0.60), likely
reflecting that the immediate impact of irradiance on Chl-a.
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FIGURE 7

Interannual variability of chlorophyll-a (Chl-a), sea level anomaly (SLA), sea surcace temperature (SST), salinity (SAL), wind speed (WSP), current speed
(CSP) and photosynthetically available radiation (PAR) from 2003-2023 for (a) box 1 and (b) box 3.

Overall, these results underscore that Chl-a variability in box 1 is
shaped by cumulative warming and light availability months in
advance, coupled with immediate influences of wind-driven mixing
and dynamic changes in salinity and current regimes.

Unlike box 1, peak Chl-a values in box 3 (Saudi Coast) mostly
occurred during summer months, with highest Chl-a (3.9 mg/m?)
was recorded in August 2017 (Figure 7b). The seasonal peak during
summer is associated with intensified thermal stratification, coupled
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with wind-driven mixing that redistributes nutrients in the upper
water column (Reynolds, 1993; Doney, 2006). The year 2017
marked the highest Chl-a concentration, potentially influenced by
anomalous weather conditions, including stronger than usual
Shamal winds and regional upwelling events (Al Senafi and Anis,
2020). The dominance of SST as the key driver was evident, as this
region follows a summer Chl-a peak rather than a winter peak
(Figure 7b). Salinity in this region is normally high due to limited
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freshwater input and high evaporation rates. However, localized
reductions in salinity can enhance nutrient availability and support
phytoplankton growth (Lattemann and Hopner, 2008). Recent
research has highlighted the role of salinity gradients in shaping
phytoplankton communities (Al-Thani et al., 2023). In box 3, SST
showed its highest correlation (+0.79) with Chl-a without any lag
(Supplementary Figure S5). However, at a lag of -6 months, the
same correlation also existed with opposite direction (-0.79).
Salinity peaked at a lag of -1 to -2 months, exhibiting a strong
negative correlation of -0.72. Wind speed and CSP presented their
maximum correlations (-0.58 and -0.19, respectively) with 0 lags.
PAR displayed a high positive correlation (+0.76) at a lag of -2
months. Despite a lag or lead of a few months, box 3 also revealed
more or less similar correlation pattern to the results of
correlogram analysis.

The interannual patterns across the two selected regions
highlight the disparity in the role of environmental drivers in
Chl-a variability. A key distinction between the regions was the
seasonality of peak Chl-a concentration. Box 1 exhibited winter-
dominated Chl-a peaks, reflecting SST-driven mixing and enhanced
nutrient supply during colder months. Box 3 followed a summer
peak, suggesting a different nutrient cycling mechanism, possibly
linked to temperature-induced stratification dynamics. These
findings align with prior sections and studies also indicated that
winter blooms in the Gulf are primarily regulated by nutrient
enrichment via convective mixing and riverine input, while
summer productivity in the western Gulf is influenced by local
wind-driven upwelling and water column stability (Wiggert et al.,
2005; Thoppil and Hogan, 2010a, 2010b). While interannual
variability is controlled by oceanographic and atmospheric
forcing, potential impacts of climate change and human activities
cannot be ignored. Warming trends in the Gulf intensify
stratification, reduce nutrient replenishment, and shifting
phytoplankton community structures (Al-Yamani et al,, 2004;
Wabnitz et al., 2018). Major climatic events have influenced
productivity, reinforcing the role of global climate variability in
regional ocean dynamics (Doney, 2006; Park et al., 2018; Shafeeque
et al., 2021b; Hamdeno et al., 2022; Kashani et al., 2025). The lag
correlation analysis of Chl-a with environmental variables further
revealed complex distinct temporal patterns shaped by seasonal
dynamics, hydrodynamic conditions, and mixing processes.
Overall, these patterns demonstrate that Chl-a dynamics in the
Gulf are governed by a combination of cumulative seasonal
warming and light availability, modulated by lagged effects of
mixing, circulation, and salinity changes which need to be further
explored in the future work. The varying timing and magnitude of
these relationships across boxes further confirmed the spatial
heterogeneity of phytoplankton responses to environmental
forcing in this highly dynamic marine ecosystem. In addition to
the seasonal and interannual variability of Chl-a with contributions
from environmental factors, we analyzed the spatial trends of NPP
along with Chl-a and SST to enhance our findings in the
following section.
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3.7 Long-term spatial trend in Chl-a, NPP
and SST

A two-decade (2003~ 2023) cumulative spatial trend for Chl-a,
NPP and SST in the Gulf was calculated and presented in Figure 8.
The result showed an overall decrease in Chl-a and NPP trend
(Figure 8a) in the Gulf, with small patches of increasing trend along
the coasts of western and southern Gulf. Whereas SST showed a
warming trend in the northern and central Gulf. The declining
trend in Chl-a and NPP is due to the high SST and stratification,
which limit nutrient availability in the surface layer (Polikarpov
etal., 2016; Al-Shehhi et al., 2021). The oligotrophic nature of these
regions makes them particularly sensitive to changes in
environmental conditions, such as reduced vertical mixing and
nutrient upwelling (Reynolds, 1993; Thoppil and Hogan, 2010a).
The declining Chl-a trend was also aligned with the observed
decreasing trend in NPP (Figure 8b). This decline is likely driven
by the combined effects of warming SST, reduced nutrient
availability, and increased stratification (Reynolds, 1993;
Behrenfeld et al., 2006; Polikarpov et al., 2016). Recent studies
have also linked these trends to the intensification of climate change
impacts, such as more frequent marine heatwaves and reduced
oxygen levels (Chaidez et al., 2017; Wabnitz et al., 2018; Shaltout
and Eladawy, 2024). Continued warming and increasing frequency
of marine heatwaves may further weaken offshore productivity,
with potential implications for carbon cycling and ecosystem
resilience (Wabnitz et al., 2018; Kashkooli et al., 2022).

The observed long-term trends in Chl-a, NPP and SST have
significant implications for the marine ecosystem of the Gulf.
Coastal regions with decreasing Chl-a and NPP trend could
negatively impact pelagic species and commercial fisheries that
rely on open-water resources (Mieszkowska et al., 2009; Gamito
etal., 2015; Wabnitz et al., 2018). High SST and stratification reduce
vertical mixing and nutrient supply to the surface layer (Chaidez
etal,, 2017). The Gulf experiences a more pronounced SST shift due
to its shallow depths and limited water circulation, which result in
faster and more intense heating. The SST trend across the Gulf
exhibited significant escalation over the past two decades which
leads to extensive implications. The escalating SST levels, ranging
from 0.5°C in the Strait of Hormuz to 1.5°C in the Northern Gulf,
underscore the severity of this thermal shift (Figure 8c). The central
Gulf also experienced a ~0.5°C SST increase during the past two
decades. These changes are pronounced in the Gulf as observed in
the previous sections, where dominant environmental factors vary
regionally. Human activities, such as coastal development,
desalination and oil exploration also impact the marine
ecosystem. Desalination is the primary source of freshwater in the
region, discharges highly saline and chemically altered brine back
into the coastal waters. This can alter the salinity and nutrient
dynamics and eventually enhance Chl-a and NPP in the coastal
areas (Peterson et al., 2003; Purnama et al., 2003; Lattemann and
Hopner, 2008). In parallel, large-scale coastal development, land
reclamation, industrial expansion, dredging activities, overfishing,
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Spatial map of cumulative trend during 2003-2023 for ) (a) Chlorophyll-a and (b) Net primary productivity (normalized to -1 to +1) and (c) Sea

Surface Temperature (SST).

and other population-driven stressors have reshaped nearshore
habitats of the Gulf and modified circulation patterns, further
impacting water quality and primary productivity (Burt, 2014;
Naser, 2014; Al-Thani et al., 2023). Further, these activities can
also lead to eutrophication and harmful algal blooms, which may
disrupt ecosystem balance (Glibert et al., 2014; Madhusoodhanan
etal, 2025). Understanding such dynamics is crucial for sustainable
marine management, particularly in light of rapid coastal
development and climate-driven changes. The ecological impacts
of rising SST in the Gulf are manifold. Elevated SST can disrupt
marine ecosystems, leading to coral bleaching, changes in species
distribution, and alterations in food webs (Riegl et al, 2011;
Cavalcante et al., 2016; Harrison et al., 2017). This, in turn, can
have cascading effects on biodiversity and fisheries productivity,
threatening the livelihoods of communities reliant on marine
resources. Moreover, the socioeconomic consequences of
escalating SST in the Gulf are significant. Fisheries, tourism, and
other industries dependent on the marine environment may suffer
due to declining fish stocks, damaged coral reefs, and reduced
attractiveness of coastal destinations. The cumulative impacts of the
anthropogenic pressures add to the natural variability driven by
climate and oceanographic factors, making it difficult to separate
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human-induced signals from natural ones. Nonetheless, integrating
such drivers into the interpretation of Chl-a trends is essential for a
more holistic understanding of ecosystem changes in this semi-
enclosed and heavily developed marine basin.

3.8 Uncertainties in satellite-derived Chl-a
and the use of OC-CCI data

Global satellite-derived surface Chl-a data have become an
essential tool for studying ecosystem and biogeochemical
processes. However, the potential offered by these data sets can be
fulfilled only if their uncertainties are quantified, and indeed, this
assessment is considered an integral part of any ocean color mission
(McClain et al., 2004; Meélin, 2009). Even though the ocean color
datasets have been extensively validated, certain limitations remain,
particularly in optically complex Case-2 waters such as the Gulf
waters. Shallow depth, high turbidity, and elevated concentration of
optically active substances can reduce algorithm accuracy and lead
to greater uncertainties in nearshore Chl-a retrievals. The lack of
long-term in-situ measurements further limits validation at finer
spatial and temporal scales. The global distribution of random
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uncertainty in satellite-derived Chl-a varies significantly by region,
with higher values typically observed in coastal and turbid waters
due to challenges in atmospheric correction and the separating
water-leaving radiance from atmospheric signals. While the general
global patterns of Chl-a are relatively consistent across different
satellite products, regional uncertainty differences remain
substantial, highlighting the need for region-specific approaches
to uncertainty assessment.

Nevertheless, global ocean color products, including the OC-
CCI dataset used in this study, have been undergoing continuous
improvements in merging techniques, atmospheric correction, and
algorithm refinements (Sathyendranath et al., 2019). The OC-CCI
dataset, in particular, has been shown in both global and Gulf-
specific studies to provide consistent and reliable estimates,
outperforming earlier satellite products in terms of stability and
cross-sensor consistency (Belo Couto et al., 2016; Al-Naimi et al.,
2017; Moradi, 2021). Uncertainty in OC-CCI Chl-a data arises from
factors such as sensor noise, optical classification limits, differences
in atmospheric correction and algorithm performance across
various water types and missions, and spatiotemporal scale
mismatches (Mélin et al., 2016; Brewin et al., 2017; IOCCG,
2019). To address this, OC-CCI provides per-pixel uncertainty
estimates based on an improved optical classification scheme and
blending algorithms. The development of a new, improved optical
classification scheme based on a larger dataset of satellite-derived
spectra, and the use of class membership to assess the performance
of multiple algorithms within each water class and to blend
algorithms have further enhanced the assignment of uncertainties,
and improved the quality of the final product, especially for Chl-a
(Jackson et al., 2022). These developments make OC-CCI a robust
resource for long-term Chl-a studies, while the acknowledged
limitations highlight the need for complementary in-situ
observations and tailored regional algorithms. Moreover, the use
of latest version (Version 6.0) in this study also ensures
improvements to the algorithm blending and error correction to
provide more reliable results.

4 Conclusions

In this study, we conducted a comprehensive analysis of the
spatiotemporal variability of Chl-a, regional patterns with causative
environmental factors and long-term trends in the Gulf using OC-
CCI Chl-a data and other environmental variables for the period
2003 to 2023. We followed an integrated approach using
climatology, statistical multivariate, interannual and trend
analyses to assess the variability and identify the dominant
drivers of Chl-a variability. Our analyses revealed strong seasonal
and interannual modulation, with a marked Chl-a peak in winter,
followed by a minimum during summer, and low to moderate levels
during the transitional months. Chl-a was higher all along the coast
compared with offshore waters, particularly along the eastern
coastal waters. The results also showed winter-driven blooms in
the northern and eastern Gulf and summer-driven productivity in
the western Gulf. This seasonal and regional variability highlighted
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the substantial role of environmental factors on Chl-a. The PCA
and correlogram analysis further verified these findings,
highlighting strong relationships between Chl-a and key
environmental parameters, particularly SST, SAL, PAR and wind
speed, with regional distinctions. The analysis of long-term spatial
trend between Chl-a, NPP and SST indicated an overall decreasing
trend in Chl-a and NPP, specifically along the north and eastern
coasts of the Gulf; and warming SST in the northern and central
Gulf. The interannual variability and lag correlations revealed
consistent patterns between Chl-a concentration and key
environmental drivers, often marked by moderate to strong
correlation coefficients with a lead or lag of a few months. These
temporal shifts suggest that the response of phytoplankton biomass
to environmental forcing is not always immediate but rather
influenced by delayed or cumulative effects across seasonal to
interannual timescales. Given the ecological and economic
significance of the Gulf, these results have important implications
for fisheries management, climate adaptation strategies, and
ecosystem resilience assessments. Future studies should integrate
high-resolution biophysical models with in-situ and satellite
measurements to better capture the subsurface processes and
predict the impacts of environmental changes on the marine food
web. Long-term monitoring and predictive modeling will be
essential for the sustainable management of the Gulfs marine

resources under changing climate conditions.
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