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Introduction: The Arabian Gulf (Gulf) is a dynamic marine ecosystem in which

phytoplankton productivity, indicated by Chlorophyll-a (Chl-a), is strongly

affected by environmental and climatic variables. Understanding the

spatiotemporal variability of Chl-a and its driving environmental factors is

critical for assessing primary productivity and ecosystem dynamics of the Gulf.

Methods: This study investigated the long-term Chl-a variability and its dynamic

response to environmental variables in the Gulf using two decades (2003 to

2023) of Chl-a data from merged multi-sensor Ocean Colour Climate Change

Initiative. We adopted an integrated approach that includes climatology,

multivariate statistical analysis, interannual variability and trend analysis to

evaluate Chl-a variability and identify its dominant drivers.

Results: Seasonal climatology exhibited a marked winter bloom driven by

convective mixing and nutrient replenishment, followed by a summer decline

due to strong stratification. Box average analysis using correlogram and principal

component analysis for selected regions revealed distinct regional patterns, with

the northern and central Gulf showing higher variability. The results further

highl ighted sea surface temperature (SST) , sea surface sal in i ty ,

photosynthetically available radiation and wind speed as primary drivers of Chl-

a variability in the Gulf. The interannual variability of Chl-a peaks along the central

eastern Gulf in winter and central western Gulf during summer, highlighting

regional heterogeneity in phytoplankton dynamics. Long-term spatial trend

analysis of Chl-a, net primary productivity (NPP) and SST indicated overall

decreasing trend in Chl-a and NPP, particularly along the north and eastern

coasts of the Gulf; and warming SST in the northern and central Gulf.

Discussion: The results indicate the requirement of further research on the

complex interplay between physical and biogeochemical factors, and

anthropogenic influences on Chl-a distribution, which can help future

monitoring and predictive ecosystem models for the Gulf under changing

climate conditions.
KEYWORDS
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ecosystem, multivariate analysis, SST
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1 Introduction

Chlorophyll-a (Chl-a) is a crucial parameter in the marine

ecosystems which serves as a vital pigment and proxy in

photosynthetic organisms, particularly in phytoplankton. They can

be used to monitor the abundance and primary productivity in the

aquatic environments, making it an essential indicator of ecosystem

health and functions (McClain, 2009; Boyce et al., 2014; Al-Naimi et al.,

2017; Dunstan et al., 2018; Kraemer et al., 2022). The advent of ocean

color remote sensing has revolutionized the ability to measure Chl-a,

providing unprecedented global coverage into its spatial and temporal

distributions. These observations offer valuable information on

phytoplankton dynamics, primary productivity, and overall health of

the ecosystem, contributing significantly to the study of climate change

impacts, oceanic biogeochemical processes, harmful algal blooms and

the effects of environmental stressors on marine ecosystems (Shah

et al., 2019; Lotliker et al., 2020; Shafeeque et al., 2021a;

Madhusoodhanan et al., 2025). Globally, understanding long-term

Chl-a variability is crucial for monitoring marine primary

productivity and assessing the impacts of climate change on ocean

ecosystems (Kashani et al., 2025). Several studies have examined long-

term changes in ocean color and phytoplankton dynamics across open

oceans and large marginal seas, revealing strong links to surface

temperature, winds, ocean stratification, and circulation shifts

(Piontkovski and Queste, 2016; Shafeeque et al., 2017; Vinaya

Kumari et al., 2021; Chinta et al., 2024). However, the Arabian Gulf

(hereafter referred to as ‘Gulf’, Figure 1a) remains one of the least

explored regions in this context, with the exception of a few number of

studies (Nezlin et al., 2010; Moradi and Kabiri, 2015; Moradi, 2020;

Moradi and Moradi, 2020; Al Shehhi and Kaya, 2021; Asgari and

Soleimany, 2023; Bordbar et al., 2024; Yang et al., 2024), despite its

ecological sensitivity and extreme environmental conditions. This

study contributes to filling that gap by providing a holistic

assessment of Chl-a variability in the Gulf over more than two

decades, and the region-specific responses to environmental forcing.

The Gulf is one of the very important marine environments in

the world with unique features. It encompasses an area of

approximately 2,33,100 km2, stretching 1,000 km in length with a

width varying from 56 km at the Strait of Hormuz to 338 km at its

widest point. The distinctive features include its shallow average

depth of 36 m, with a maximum depth of 110 m in the Strait of

Hormuz, and its asymmetric bathymetry characterized by a deep

trough along the Iran coast and a shallow bank area (depth < 20 m)

in the southwestern region (Kämpf and Sadrinasab, 2006). The Gulf

is not only a busy shipping route but also an economically crucial

region, renowned for its rich petroleum resources (Reynolds, 1993).

Its environmental characteristics are equally remarkable, featuring a

hot desert climate, intense evaporation rates which exceed the

combined freshwater input from precipitation and river

discharge, and extreme salinity levels (Al-Ansari et al., 2022;

Elobaid et al., 2022). These factors contribute to the predominant

oligotrophic nature of the Gulf, making it a unique ecosystem.

Gulf’s climate is further influenced by various wind patterns,

including the northwesterly Shamal winds, northeasterly/ easterly

Nashi winds, and southeasterly/ southerly Kaus winds, all of which
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play significant roles in shaping sea surface dynamics (Rao et al.,

2001, Rao et al., 2003; Yu et al., 2016; Moradi and Moradi, 2020;

Aboobacker et al., 2021; Langodan et al., 2023). The general

circulation pattern is cyclonic, bounded by the Iranian coastal

current flowing northwestward along the northern side from the

Strait of Hormuz at speeds exceeding 10 cm/s, and a southeastward

current in the southern part. Interestingly, this current flows against

the prevailing northwesterly winds, primarily driven by the pressure

gradient force, adding another layer of complexity to the

oceanographic characteristics of the Gulf (Mussa et al., 2024).

The Gulf is also one of the most biologically and geologically

distinct marine environments in the world, making it an exceptional

region for studying Chl-a variability. Its unique characteristics,

including its semi-enclosed nature, extreme salinity levels, high-

temperature variations, and limited freshwater inflow, create a

natural laboratory for investigating marine ecosystem processes.

Despite its significance, studies on Chl-a within the Gulf are

relatively less than other regions of the world, highlighting the

need for more comprehensive research in this area. Previous studies

have demonstrated significant spatial and temporal variations in

Chl-a concentrations within the Gulf. For instance, Nezlin et al.

(2010) reported that Chl-a levels in the Gulf are significantly

influenced by local meteorological and oceanographic factors,

including vertical stratification, precipitation, and aeolian dust

transport. Moradi (2020) found that the Chl-a pattern was

heterogeneous in both time and spatial scale with a decreasing

trend, whereas SST pattern is more homogenous. More recent

studies have continued to shed light on the factors regulating

Chl-a distribution in the region. Bordbar et al. (2024) reported

that the SST and Chl-a are anti-correlated in the Gulf except in the

southern Gulf. Al-Thani et al. (2023) focused on the Exclusive

Economic Zone of Qatar, evaluating the physical parameters that

control Chl-a distribution and analyzed spatiotemporal variability.

Additionally, studies have utilized in-situ observations to analyze

Chl-a concentrations, discussing local seasonal variations and the

impact of anthropogenic activities on Chl-a levels in the Gulf (Al-

Yamani et al., 2006; Rajendran et al., 2022; Mussa et al., 2024).

Given the strategic importance as a global oil hub and its

proximity to densely populated coastal regions, a detailed

understanding of the patterns and drivers of Chl-a distribution is

essential in the Gulf for predicting and mitigating the impacts of

human activities on marine ecosystems. Despite its ecological and

economic importance, long-term studies on Chl-a dynamics in the

Gulf remain limited in both temporal and spatial scales. This study

addresses that gap by investigating the long-term spatiotemporal

variability of Chl-a in the Gulf over two decades (2003–2023) using

high-resolution satellite ocean color data from the Ocean Colour-

Climate Change Initiative (OC-CCI). The objective is to study the

distribution of Chl-a in the Gulf and its relationship with key

environmental drivers, including sea surface temperature (SST), sea

surface salinity (SAL), sea level anomaly (SLA), wind speed (WSP),

current speed (CSP), and photosynthetically available radiation

(PAR). The structure of this paper is organized as follows: the

current section 1 provides an introduction with a literature review,

background and objectives of the study, section 2 outlines the
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materials and methods employed in the study, section 3 presents

results and discussion and section 4 summarizes the key findings

and conclusions of the research.
2 Data and methodology

2.1 Data

The Chl-a data used in this study were obtained from OC-CCI

database, one of fourteen CCI projects by the European Space

Agency (https://www.oceancolour.org). This dataset provides

consistent, stable, long-term error-characterized and merged time

series of global ocean color data products from multi-sensor data

archives by integrating remote sensing reflectance (Rrs) values

using selected algorithms (Brewin et al., 2015; Sathyendranath

et al., 2019). The dataset features a fine spatial resolution of

0.04°×0.04°, enabling precise global mapping of Chl-a

concentration. For this study, monthly Chl-a composites (Version

6.0, Sathyendranath et al., 2023) specific to the Gulf were extracted,

utilizing the extensive temporal range of the dataset, which spans

from January 2003 to December 2023. This extended coverage

supports the analysis of both historical and recent trends with better

validation, offering valuable insights into the long-term dynamics

and recent changes in Chl-a concentrations in the region (Jackson

et al., 2022). Although the OC-CCI dataset spans from September
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1997 onward, we restricted our analysis to the post-2003 period due

to known quality issues in the earlier segment of the dataset. During

the initial phase (up to April 2002), SeaWiFS was the single

contributing sensor, resulting in a relatively sparse sampling

frequency and increased noise in the data, including isolated

anomalies and spikes (Sathyendranath et al., 2019). From mid-

2002 onward, the inclusion of additional sensors such as MODIS-

Aqua and MERIS led to a substantial improvement in temporal

coverage and data quality, with a manifold increase in the number

of observations per day. This multi-sensor merging enhances the

robustness of the product by minimizing gaps and random noise

while maintaining a stable long-term signal that is essential for

climate related studies. Moreover, previous studies on both the

Global Ocean and the Gulf have verified that OC-CCI products are

more consistent than other available ocean color satellite products

with proper validation of in-situ measurements (Belo Couto et al.,

2016; Al-Naimi et al., 2017; Moradi, 2021). Moreover, version 6.0 of

the OC-CCI uses blended chlorophyll algorithm, which improves

performance in Case-2 waters compared to earlier versions that

were mostly focused in open-ocean waters (Jackson et al., 2022).

The SST data of Operational SST and Ice Analysis (OSTIA)

with 0.05°×0.05° spatial resolution were obtained from the Marine

Data Store (MDS) of Copernicus Marine Environment Monitoring

Service (CMEMS). OSTIA data provide daily gap-free maps of

foundation SST and ice concentration using in-situ and satellite

data from both infrared and microwave radiometers (Good et al.,
FIGURE 1

Study region (a) Bathymetry map of Arabian Gulf from Gridded Bathymetry Data (GEBCO) with selected boxes, Standard deviation of Chl-a for (b) Annual
Mean (c) Summer and (d) Winter.
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2020). The OSTIA system is run by the Met Office of the United

Kingdom and delivered by the French Institute for Ocean Science

(IFREMER). It uses satellite data provided by the Group for High

Resolution (GHRSST) project together with in-situ observations to

determine the SST (https://data.marine.copernicus.eu/product/

SST_GLO_SST_L4_REP_OBSERVATIONS_010_011).

Global analyzed sea surface salinity data were accessed from

CMEMS’ Multi Observation Global Ocean Sea Surface Salinity and

Sea Surface Density (https://data.marine.copernicus.eu/product/

MULTIOBS_GLO_PHY_S_SURFACE_MYNRT_015_013). This

product consists of daily global gap-free Level-4 (L4) analyses of

the SAL and sea surface density at 0.125°×0.125° of resolution,

obtained through a multivariate optimal interpolation algorithm

that combines sea surface salinity images from multiple satellite

sources as NASA’s Soil Moisture Active Passive (SMAP) and ESA’s

Soil Moisture Ocean Salinity (SMOS) satellites (Nardelli et al., 2016;

Sammartino et al., 2022).

SLA, surface geostrophic northward sea water velocity and

surface geostrophic eastward sea water velocity data were

obtained from MDS-CMEMS (https://doi.org/10.48670/moi-

00148). The data are generated by the processing system

combining data from multi-satellite altimetry missions that

include all altimeter Copernicus missions (Sentinel-6A, Sentinel-

3A/B) and other collaborative or opportunity missions (e.g. Jason-3,

Saral/AltiKa, Cryosat-2, OSTM/Jason-2, Jason-1, Topex/Poseidon,

Envisat, GFO, ERS-1/2, Haiyang-2A/B). All normal geophysical and

environmental corrections have been applied to the data, including

sensor errors and tidal impacts, as well as dynamic atmospheric

correction. With a horizontal resolution of 0.125°×0.125°, the

dataset supports detailed spatial analyses of global sea level

changes. Additionally, it offers temporal resolutions ranging from

daily to monthly, providing continuous monitoring of sea level

anomalies from 1993 to the present. Total CSP was calculated using

northward and eastward velocity components.

The wind data used to estimate wind speed and direction were

sourced from the ERA5 reanalysis dataset, the fifth-generation

global climate and weather reanalysis produced by the European

Centre for Medium-Range Weather Forecasts (ECMWF). ERA5

wind components at a height of 10m above the surface of the Earth

with spatial resolution 0.25°×0.25° were obtained from the Climate

Data Store of Copernicus Climate Change Service (Hersbach et al.,

2023; https://cds.climate.copernicus.eu). ERA5 provides extensive

temporal coverage from 1940 to the present, making it an invaluable

resource for climate and atmospheric research. As the successor to

the ERA-Interim reanalysis, ERA5 offers enhanced accuracy and

higher resolution of atmospheric variables. By blending model

outputs with a wide range of observational data, ERA5 delivers a

globally complete and consistent dataset. ERA5 also supports

multiple temporal resolutions, from hourly to monthly,

encompassing a broad spectrum of atmospheric, ocean-wave, and

land-surface variables, making it a comprehensive dataset for both

historical and real-time analysis.

PAR is defined as the quantum energy flux from the Sun from 0.4

μm to 0.7 μm that is absorbed, transferred and stored within

ecosystems. PAR data from SeaWiFS and Aqua-MODIS with spatial
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resolution of 0.04°×0.04° were achieved from NASA Goddard Space

Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing

Group (http://oceancolor.gsfc.nasa.gov). For ocean color

applications, PAR is a common input used in modeling marine

primary productivity. Net primary productivity (NPP) is a measure

of the rate at which phytoplankton convert carbon dioxide into

organic matter (Westberry et al., 2023). NPP data with spatial

resolution 0.083°×0.083° used in this study was computed from

satellite-derived Chl-a, SST and PAR data mostly from SeaWiFS,

MODIS and VIIRS satellites using the Vertically Generalized

Production Model (VGPM, Behrenfeld and Falkowski, 1997),

available at ocean productivity website (https://orca.science.

oregonstate.edu/1080.by.2160.monthly.hdf.vgpm.m.chl.m.sst.php).
2.2 Methods

The standard deviation (SD) of Chl-a in the Gulf provides

critical insights into the temporal and spatial fluctuations of

phytoplankton biomass. The results were presented across three

different temporal scales: annual mean, summer and winter. This

SD analysis aided in identifying regions of high Chl-a variability,

which could then be used to define study areas (0.5o×0.5o boxes) for

further investigation to understand the relationship between the

distribution of Chl-a and environmental factors. This analysis

aligns with previous studies on Chl-a variability in semi-enclosed

seas, where nutrient dynamics, physical forcing, and climatic

variability strongly regulate phytoplankton distributions (Gregg

and Casey, 2004; Behrenfeld et al., 2006). A high Chl-a SD value

implies regions where phytoplankton blooms are strongly

influenced by any of the seasonal shifts, such as winds,

stratification, and nutrient availability mostly from river

discharge. In contrast, regions with consistently low SD indicate

lower or stable Chl-a throughout the year, often found in deeper or

more oligotrophic waters. We have also performed spatial

correlation between Chl-a and major environmental variables to

confirm the selection of specific regions and thereby to investigate

the relationship between Chl-a and other environmental variables.

To calculate the spatial correlation, we used data from 2003–2023

and regridded all datasets to a common spatial resolution

of 0.04°×0.04°.

Time-series analysis of Chl-a was carried out for the selected

boxes on a monthly, seasonal and annual timescales along with a

trendline. We applied the modified Mann-Kendall trend test (Hamed

and Rao, 1998) to evaluate long-term trends in Chl-a concentration.

This method adjusts the variance of the Mann-Kendall statistic to

account for autocorrelation in the time series, providing a more

reliable assessment of trend significance. The trend calculated for

NPP data were normalized to the range of –1 to +1 to ensure

comparability with other variables, as this scaling transforms the

data to a dimensionless interval where –1 represents the minimum

observed value and +1 represents the maximum, preventing its larger

magnitude from biasing the analysis.

Empirical Orthogonal Function (EOF) analysis were performed

spatially and temporally in the Gulf domain (Longitude: 48–56oE;
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Latitude: 24–32oN) for the period 2003 to 2023. EOF is a robust

statistical method used to identify patterns and extract significant

features from complex datasets. The dominant spatial patterns of

variabilities are presented as different modes of EOF and the

temporal variability has shown as time series of principal

components. Here, the eigenvalue lk corresponding to kth EOF

gives a measure of the explained variance by ak, where k = 1,2,3,….,

p. The following Equations 1-3 are used to calculate the major terms

in this analysis. The complete theory of EOF analysis is available at

Hannachi (2004).

The explained variance is often presented in percentage as:

100lk
op

k=1lk
% (1)

The kth principal component is the projection of the anomaly

field X′ on to the kth EOF ak, i.e.:

ck =  X0 ak (2)

ck(t) =  o
p

s=1
X0(t, s)ak(s) (3)

where t, s represent the temporal and spatial dimensions. The

leading EOFs were analyzed to reveal significant spatial patterns of

Chl-a distribution, while the corresponding principal components

provided insights into temporal changes. We removed the season

and trend from the data for this analysis.

Mutivariate analyses such as correlogram and Principal

Component Analysis (PCA) were also done to quantify the

relationship between Chl-a and other environmental variables by

identifying the key Chl-a patterns of spatial variability (Jackson,

1991; Jolliffe, 2002). These analyses were also aimed to reveal the

dominant factor for Chl-a variability at selected locations. Generally,

these are useful for reducing the dimensionality of large number of data

into a smaller number of orthogonal factors called Principal

Components (PCs). PCs represent the major part of the overall data

variance along with the correlation amongst the variables without

losing much information (Vega et al., 1998; Helena et al., 2000; Lins

et al., 2018). In simple terms, these methods break the complex data

into a few main patterns, showing where the highest changes occur in

the Gulf and how they evolve over months and years. A two-tailed

student’s t-test was applied to assess whether the correlation coefficients

(r) between Chl-a and other environmental parameters were

statistically significant (Kreyszig, 1970). Interannual variability of

Chl-a and other associated variables was also analyzed by removing

the seasonal cycle from each variable.
3 Results and discussion

3.1 Monthly climatology of Chl-a, SST, SLA,
wind and surface currents

The monthly climatology spatial maps of Chl-a concentration

provide an overview of the spatiotemporal distribution of
Frontiers in Marine Science 05
phytoplankton biomass in the Gulf in different months

(Supplementary Figure S1). Strong seasonal and spatial

discrepancy in the distribution of Chl-a was clearly observed in

the climatology map, with clear distinctions between coastal and

offshore waters. Elevated Chl-a values (>2 mg/m3) were

predominantly observed in coastal regions, particularly near the

north and northwestern coasts throughout the year. In contrast, the

eastern coasts and offshore regions of the Gulf exhibit lower Chl-a.

The map also revealed marked seasonal variability in Chl-a

concentration all over the Gulf. During winter (December–

March), higher Chl-a exhibited (>2 mg/m3) along the central

(Iran coast) and southeastern coast adjacent to the Strait of

Hormuz and moderate Chl-a values along north and western

coasts. During summer (June–September), nutrient availability in

the surface layer is limited due to the high SST (>35°C) and strong

stratification (Polikarpov et al., 2016). As a result, Chl-a

concentrations were generally lower (<2 mg/m3) during this

period. In contrast with the winter, higher Chl-a (~3 mg/m3) was

exhibited along the central (Saudi and Qatar coast) and

southwestern coasts (U.A.E.) of the Gulf during summer

(Supplementary Figure S1). The transitional periods of Spring

(April–May) and Autumn (October–November) months exhibit

moderate to lower Chl-a levels (~1 mg/m3), reflecting the gradual

shifts in environmental conditions. The observed patterns of

monthly climatology provide insights into the modulation of Chl-

a in the Gulf and its response to seasonal changes.

The monthly climatology maps of SST overlaid with winds

(Supplementary Figure S2) and SLA overlaid with surface currents

(Supplementary Figure S3) provide valuable insights into major

physical processes driving Chl-a variability in the Gulf. The SST

climatology maps reveal pronounced seasonal variability, with

temperature ranging from approximately 17°C in winter to 35°C

in summer. The superimposed wind vectors highlighted the role of

atmospheric forcing in modulating SST and, consequently, Chl-a

concentration. During winter, cooler SST (17–25°C) dominated the

Gulf waters, with the lowest SST observed in the northwestern

region maybe due to the enhanced vertical mixing. In contrast,

summer was characterized by extreme SST (29–35°C), with the

highest values observed in the southern and central Gulf

(Supplementary Figure S2). During this period, strong thermal

stratification limits vertical mixing, reducing the upward

transport of nutrients to the surface layer. The transitional

periods (spring and autumn) exhibited moderate SST (21–29°C),

reflecting the gradual warming in spring and cooling in autumn.

Wind patterns during these periods are less intense and more

variable and hence influence the mixing and nutrient dynamics.

These transitional seasons were marked by moderate Chl-a levels,

since these seasons are in between the winter bloom and summer

stratification phases.

The SLA climatology maps, overlaid with surface currents,

provided further insights into the circulation patterns and their

influence on nutrient transport and Chl-a distribution in the Gulf

(Supplementary Figure S3). SLA reflects changes in sea surface

height due to variations in SST, salinity, and wind forcing, while

surface currents play a critical role in redistributing nutrients and
frontiersin.org
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phytoplankton blooms. During winter, positive SLA (up to 10 cm)

were observed in the southern Gulf, indicating higher sea levels due

to cooler, denser water and wind-driven convergence (Al-Subhi and

Abdulla, 2021). In summer, SLA varies from 3–8 cm with the

presence of strong cyclonic eddies along central and southeastern

coasts. During the transitional periods (spring and autumn), SLA

ranges varied from –1 to 10 cm, reflecting the gradual transition

between winter and summer conditions. Surface currents during

these periods were weaker, with moderate flows regulating nutrient

distribution. The interaction between SLA and circulation patterns

during these seasons creates a dynamic environment for

phytoplankton, with moderate nutrient availability and

transitional Chl-a levels. The overall counterclockwise current

pattern plays a critical role in explaining the observed distribution

and transport of the algal blooms in the Gulf. The current enters the

Gulf through the Strait of Hormuz, flows northwestward along the

eastern Gulf, and then loops back southward along the western Gulf

before exiting through the Strait (Mussa et al., 2024). The

climatology analyses (Supplementary Figures S1–S3) highlight the

overall distribution of Chl-a with unique oceanographic and

environmental characteristics of the Gulf, which strongly

influence Chl-a dynamics. The observed patterns in SST, winds,

SLA, and surface currents provide insights into the complex

relationship between physical processes and phytoplankton

dynamics. In order to select specific locations for further analyze

the spatiotemporal variability of Chl-a and its major environmental

drivers, we performed SD of Chl-a and spatial correlation between

Chl-a and major environmental variables.
3.2 Standard Deviation and Spatial
Correlation analysis

We analyzed the SD of monthly Chl-a concentrations to

identify regions with high seasonal or interannual fluctuations.

The annual mean SD Chl-a map represents the mean spatial

variability, providing the total variability of annual Chl-a

concentration during the study period (Figure 1b). Higher SD

was exhibited along the coastal areas, particularly in the northern

Gulf near the Shatt al-Arab is mainly attributed to the nutrient-rich

river discharge (Nezlin et al., 2010; Al-Naimi et al., 2017; Al-Thani

et al., 2023). On the other hand, offshore regions experience

relatively lower SD, reflecting a more stable environment with less

pronounced productivity and seasonal changes. The summer SD

highlights spatial variations in Chl-a during warmmonths when the

Gulf experiences high SST and intensified stratification (Figure 1c).

Phytoplankton productivity during this period is often limited by

nutrient availability, as thermal stratification restricts the upward

transport of nutrients from deeper waters (Doney, 2006; Al-Thani

et al., 2023). However, localized high SD values in certain coastal

and shallow regions, particularly along northern Gulf indicate

wind-induced mixing, sediment resuspension, or nutrient input

from riverine sources. Mesoscale features such as eddies and

upwelling events may also contribute to localized Chl-a variability

during this period (Thoppil and Hogan, 2010a, Thoppil and Hogan,
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2010b). In contrast, the winter SD reveals Chl-a variability during

the cooler months (Figure 1d), a period typically associated with

enhanced vertical mixing and nutrient replenishment in the Gulf

(Al-Thani et al., 2023). The presence of high SD values along the

southeastern coast towards the Strait of Hormuz in winter

suggested that phytoplankton biomass is highly responsive to

seasonal environmental changes, particularly nutrient availability

driven by convective mixing and wind-driven turbulence. Northern

coastal regions exhibited greater variability due to fluctuations in

salinity and nutrient influx influenced by freshwater discharge.

These high-variability zones provided insights for selecting

specific regions to further explore the relationships between Chl-a

and environmental drivers in the Gulf.

The spatial correlation between Chl-a and SST revealed a clear

regional gradient. There were moderate negative correlations along

the entire eastern and northern coasts, as well as offshore regions

(Figure 2). In contrast, moderate to strong positive correlations

were exhibited along western and southern coastal areas. This

spatial variation highlights how SST control on Chl-a is

regionally dependent within the Gulf. SAL demonstrated

moderate to strong positive correlations throughout the basin,

particularly in the northern half of the Gulf. However, some weak

negative correlations were also found near the southern and western

coasts. WSP displayed positive correlations in the eastern and

central Gulf, especially along the Iranian coasts. Conversely, weak

to moderate negative correlations were evident along the western

and southern coast. The correlation with SLA was generally weak or

no correlation across the Gulf, though some negative patches

appear in the eastern and northern coastal regions; whereas

positive patches along the western and southern coasts. Similar to

SLA, CSP also showed weak scattered positive and negative

correlations. Notably, the correlation between Chl-a and PAR was

strongly negative throughout most of the Gulf, while narrow

patches of moderate negative correlation was found along the

westren and southern coasts. Based on the SD map and spatial

correlation map, four representative zones (0.5o×0.5o boxes), with

consistently high SD and correlation values were selected for

further analyses.
3.3 Spatiotemporal variability of Chl-a:
time series analysis

The detailed analysis of long-term Chl-a over the four selected

regions in the Gulf provides more insights into spatial and temporal

variability, seasonal dynamics, and long-term trends. Even though

all the boxes displayed decreasing trend, each region exhibited

distinct characteristics both in spatial and temporal scales

(Figure 3). Box 1 (central-eastern Gulf, along Iran coast)

exhibited significant declining trend, with a total decrease of –

0.31 mg/m³ and values ranging from 3.3 to 0.7 mg/m³ throughout

the study period. Seasonal patterns were evident, with winter peaks

of 2.3 mg/m³ and summer lows below <1 mg/m³. Interestingly two

peaks during 2005–2006 and 2008–2009 were identified at this

region with the values of Chl-a >3 mg/m3. Box 2 (northwestern
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Gulf, Kuwait coast) was also experienced a significant decline with a

total reduction of –0.66 mg/m³. However, highest Chl-a variability

(from 8 to 1.5 mg/m³) was displayed at this region during the study

period. Winter peaks of 4.3 mg/m³ reflect strong productivity, while

summer lows below 1.8 mg/m³ pointed to seasonal

nutrient limitations.

Interestingly, unlike from boxes 1 and 2, the declining trend in

both Chl-a and seasonal peaks were weak for the remaining boxes (3

and 4); in which box 4 showed non-significant correlation. In
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contrast, winter dominance of higher Chl-a observed along the

eastern and northern Gulf (boxes 1and 2), seasonal shift in Chl-a

maximum from winter to summer were observed for boxes 3 and 4

(western and southern Gulf). Box 3 (central western coast of the Gulf,

along the Saudi Arabia) illustrated a decreasing trend, with Chl-a

values vary from 3.8 mg/m³ to 1.3 mg/m³ and net variability of –0.18

mg/m³. Summer peaks reach up to 3 mg/m³, while winter lows

remain above 1.6 mg/m³. Finally, Box 4 (Southern Gulf, UAE coast)

showed a decrease in Chl-a concentration, ranging from 4.5 to 1.4
FIGURE 2

Spatial correlation between chlorophyll-a (Chl-a) and sea level anomaly (SLA), sea surcace temperature (SST), salinity (SAL), wind speed (WSP),
current speed (CSP) and photosynthetically available radiation (PAR).
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mg/m³ and a total decrease of –0.1 mg/m³. Summer peaks were

reached up to 4 mg/m³, while average winter Chl-a showed <2 mg/

m³. In summary, time series analysis reveals an overall decreasing

trend with clear regional contrasts in both seasonal and long-term

Chl-a. The eastern and northern coasts (boxes 1 and 2) show severe

decline and winter dominants, while western and southern coasts

(boxes 3 and 4) exhibited comparatively moderate/ weak waning in

Chl-a with summer peaks. The overall decreasing Chl-a trend in the

time series analysis is also consistent with recent studies (Moradi,

2020; Yang et al., 2024). The seasonal dominance patterns along the
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eastern and western regions of the Gulf are shaped by the interaction

of physical and regional factors. Winter dominance is primarily

driven by nutrient mixing and favorable temperature, while

summer dominance is linked to sustained nutrient inputs and

higher light availability in coastal regions (Moradi and Kabiri,

2015). These findings underscore the importance of localized

environmental controls, which are further examined in the

following sections.

The time series analysis of Chl-a reveals discrete peaks and

declines across various boxes in the Gulf, corresponding to different
FIGURE 3

Time series plot of Chl-a for selected regions (boxes 1– 4) during 2003– 2023. Monthly (red), winter (blue), summer (dashed blue), yearly (black) and
trend (dashed black) Chlorophyll-a varability are represented with different lines and colors. The shaded area shows standared deviation.
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periods. Previous studies confirmed the indirect influence of large-

scale climatic oscillations such as El Niño-Southern Oscillation

(ENSO), Indian Ocean Dipole (IOD), Atlantic Multi-decadal

Oscillation (AMO) and North Atlantic Oscillation (NAO) on

phytoplankton dynamics in the Gulf through changes in SST,

winds, mixing, nutrient supply, and precipitation patterns (Nezlin

et al., 2007; Nezlin et al., 2010, Al Senafi, 2022; Hamdeno et al.,

2022). Notably, box 1 exhibits significant peaks during 2008 to

2009, highlight the influence of episodic algal blooms or extreme

weather events, which suggest further investigation to understand

their ecological impacts (Richlen et al., 2010). Nezlin et al. (2010)

observed that the bloom occurrence in 2008 was associated with

variability in NAO phases. Al Senafi (2022) showed that ENSO,

IOD and AMO significantly influence the SST and circulation,

thereby affecting marine productivity in the Gulf. Moreover, recent

work has also highlighted the impact of marine heatwaves on Chl-a,

and ENSO/ IOD variability in the region (Hamdeno et al., 2022;

Shaltout and Eladawy, 2024). Long-term warming trends further

amplify these dynamics, contributing to stronger stratification and

reduced nutrient replenishment (Roxy et al., 2016; Al Senafi, 2022).

Overall, while this study does not directly focus on extreme events,

past literatures indicate that climate oscillations can modulate Chl-a

variability in the Gulf through indirect pathways, emphasizing the

importance of future targeted analyses of ecosystem responses to

these events.

We applied Correlogram, PCA and EOF analyses to explore

how Chl-a varies over space and time and to identify dominant

patterns deriving this variability in the Gulf. Correlogram and PCA

helps to quantify the relationship between Chl-a and environmental

factors and identify the most influencing environmental drivers.

EOF, in turn, decomposes the Chl-a dataset into spatial modes that

capture the most significant variance, while the corresponding time

series (principal components) extracts temporal evolution

associated with these modes. Together, these approaches allow us

to distinguish large-scale, recurring patterns such as seasonal cycles,

localized or interannual variations, making the complex dynamics

of Chl-a easier to interpret. The insights from these analyses are

detailed in the following two subsections.
3.4 Statistical multivariate analyses:
correlogram and PCA

Correlogram and PCA were performed by including PAR as

another forcing factor along with the variables used in the previous

analysis as causative factors for Chl-a modulation. The correlation

analysis of Chl-a with SLA, SST, SAL, WSP, CSP, and PAR

(Figure 4) across four spatial boxes (Figure 1) in the Gulf revealed

complex, region-specific relationships, highlighting strong spatial

differences in the environmental drivers of phytoplankton

dynamics. All variables showed significant relationship with Chl-a

except CSP in box 1. Here, a negative correlation between SST and

Chl-a was evident, with a strong correlation (r= –0.50), which may

suppress phytoplankton growth due to high SST. A notable positive

correlation between Chl-a and WSP (0.46) emphasized the role of
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wind-driven mixing in enhancing nutrient availability, which

supports phytoplankton growth. A moderate positive correlation

with SAL (0.42) suggested that higher salinity waters in this box

may coincide with nutrient-rich conditions, potentially influenced

by regional circulation patterns or saline water influxes. Further, the

strong negative correlation between Chl-a and PAR (–0.60)

underscored the influence of photoinhibition in this region, where

excessive light exposure inhibits phytoplankton productivity

(Behrenfeld et al., 2001).

In box 2, Chl-a exhibited a very weak non-significant negative

and positive correlation with SLA (–0.13), WSP (–0.03), and CSP

(0.02) respectively (Figure 4). So, these variables have a limited role in

nutrient dynamics and phytoplankton growth in this region. A weak

negative correlation with SST (–0.26) highlighted the minimal impact

of thermal stratification in reducing phytoplankton productivity.

Notably, the negative correlation with PAR (–0.41) indicated severe

photoinhibition similar to previous location (box 1), where high light

levels hinder photosynthesis, particularly in nutrient-limited

conditions (Behrenfeld et al., 2001; Falkowski and Raven, 2013). In

box 3, all variables had a significant correlation with Chl-a. SLA, SST

and PAR exhibited weak to strong positive correlation with Chl-a (r =

0.13, 0.79 and 0.60) respectively, which indicated their roles in

promoting phytoplankton growth. However, the strong negative

correlation with SAL (–0.50) suggested that lower salinity

conditions, possibly caused by freshwater inputs, may limit

phytoplankton productivity by increasing stratification. A strong

negative correlation with WSP (–0.58) may lead to the disruption

of phytoplankton stability in the water column due to excessive wind-

driven mixing, thence diluting localized Chl-a concentrations.

Whereas, a strong positive correlation with PAR supports

photosynthesis in this region with high light availability. Finally,

box 4 revealed a very strong positive correlation between Chl-a and

SST (0.85), indicating that seasonal warming supports phytoplankton

growth in this area, likely by enhancing nutrient cycling and biological

processes. A moderate negative correlation with WSP (–0.52) implied

that wind-induced turbulence may dilute phytoplankton

concentrations. Interestingly, PAR showed strongest positive

correlation (0.72), suggesting that in this region, light availability

supports photosynthesis without significant photoinhibition.

While correlation analysis identifies pairwise relationships,

PCA provides a broader multivariate perspective by revealing

dominant environmental regimes that drive Chl-a variability. We

considered the first two dominant principal components (PC1 and

PC2), which explain most of the variance (>60%) in Chl-a and

highlight the strongest environmental controls in the Gulf. The key

insights obtained from the PCA (Figure 5) are as follows. The

analysis showed that high SST and PAR were associated with

opposite phases and lower Chl-a for boxes 1 and 2. This

indicated that enhanced surface warming and photoinhibition

reduce phytoplankton growth in these regions. For instance, the

dominant drivers in box 1 include a negative relationship of Chl-a

with SST and PAR and a positive influence of wind (WSP). Here,

enhanced Chl-a was promoted by strong wind-induced upwelling

with relatively cooler surface conditions (Al-Yamani et al., 2020;

Ismail and Al Shehhi, 2022). Similarly, in box 2, the negative
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correlations with SST and PAR, combined with the positive

contributions from salinity (SAL) and WSP, underscore a regime

where upwelling and nutrient enrichment through river discharge

play critical roles in driving Chl-a variability (Ershadifar et al., 2020;

Ismail and Al Shehhi, 2022). Similar to the correlogram analysis, the

PCA also indicated a shift in environmental drivers in boxes 3 and 4

(Figure 5). In these regions, SST, SAL and WSP emerge as major

drivers, pointing to a stratification‐dominated regime where

thermal conditions and elevated water levels enhance

phytoplankton productivity. Here, PAR also exhibits a positive

influence, implying that ample light in conjunction with warmer,

more stratified waters supports augmented phytoplankton biomass.

Furthermore, the negative associations with SAL and WSP in these

boxes indicate that lower salinity and reduced wind mixing favor

phytoplankton bloom formation, likely by minimizing dilution and

promoting water column stability.

The correlogram and PCA analyses further highlights the

complex and regionally variable relationship between Chl-a and

environmental parameters in the Gulf. The results further confirm

the crucial interplay of physical and biological factors governing

phytoplankton productivity in this ecologically and economically

vital region. It underlines the importance of analyzing the spatial

heterogeneity of major environmental drivers when studying
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marine ecosystems. The distinct correlation patterns across the

four selected boxes indicated that local environmental conditions

such as hydrodynamics, light and nutrient availability, or

temperature gradients significantly influence the relationships

between Chl-a and the selected variables. SST, SAL, WSP and

PAR emerge as key factors influencing nutrient dynamics and

phytoplankton productivity, with varying impacts across different

regions. SST often showed a significant correlation with Chl-a,

though the direction (positive or negative) varies across boxes,

reflecting potential regional influences of temperature on

phytoplankton dynamics. While SST is a strong positive driver

for the regions along the southern and western Gulf (boxes 3 and 4),

it negatively impacts Chl-a in the eastern and northern regions

(boxes 1 and 2). The weak or moderate positive correlation of SLA

and SAL with Chl-a, indicating that changes in sea level anomaly

and salinity slightly influence nutrient availability or vertical

mixing. PAR generally exhibits moderate or strong positive

(negative) correlations with Chl-a in western and southern

(eastern and northern) boxes, suggesting light availability may

(not) be the primary limiting factor in these regions. The

consistent negative correlations with PAR, particularly in boxes 1

and 2, highlight the persistent role of photoinhibition in limiting

phytoplankton growth under high light conditions, a well-
FIGURE 4

Correlogram between chlorophyll-a (Chl-a), sea level anomaly (SLA), sea surcace temperature (SST), salinity (SAL), wind speed (WSP), current speed
(CSP) and photosynthetically available radiation (PAR) for selected regions (boxes 1– 4). The variables show significant correlations with Chl-a are
presented in green colour.
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documented phenomenon common in shallow or clear waters with

high solar insolation (Behrenfeld et al., 2001). Additionally,

correlation between current speed and Chl-a were weaker in most

boxes, indicating less direct influence. Beyond the pairwise

relationship from correlogram analysis, PCA further confirmed

and highlights how multiple factors interact to form distinct

environmental regimes and complements the findings by

decomposing the variance in Chl-a into key multivariate

components. It also demonstrates that while individual

parameters have distinct pairwise correlations with Chl-a, their

combined effects vary regionally. These findings are essential for

refining ecological models and developing effective management

strategies in the Gulf, particularly in the context of ongoing

environmental changes (Al-Yamani et al., 2020). The overall

results of the correlogram and PCA are summarized in Table 1.
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3.5 Dominant spatiotemporal patterns of
Chl-a: EOF analysis

EOF decomposition was applied to Chl-a in the Gulf to identify

the primary modes of variability and their potential driving

mechanisms. The results exhibited four dominant modes: each

captures distinct patterns of variability and contributes to

understand the Chl-a dynamics in the region (Figure 6). The first

mode of EOF accounted for 47% of the total variance, making it the

dominant pattern of Chl-a variability. The spatial plot indicated a

homogeneous distribution across the Gulf, with stronger variability

observed along the northern and eastern coastal regions,

particularly near the strait of Hormuz and along the Iran coast

(Figure 6a). The corresponding temporal series showed sharp peaks

during 2008–2009 (Figure 6b), indicating the influence of extreme
FIGURE 5

Principal component analysis (PCA) biplots for chlorophyll-a and the environmental parameters for selected regions (boxes 1– 4). The figure is based
on the first two PCA (PC 1 and PC 2) which cover more than 60% of the variance.
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climate anomalies apart from episodic algal bloom events (Chinta

et al., 2024). These climatic events impact the Indian Ocean

monsoon system and oceanic productivity in adjacent regions,

including the Gulf (Al-Yamani et al., 2004; Shafeeque et al.,

2021a; Seelanki et al., 2022). Other contributing processes may

include seasonal upwelling, mesoscale eddies and anthropogenic

nutrient inputs, which enhance nutrient availability and drive Chl-a

fluctuations (Kämpf and Sadrinasab, 2006; Thoppil and Hogan,

2010a; Ismail and Al Shehhi, 2022). The second EOF mode

explained 35% of the variance and is characterized by a localized

pattern, with strong positive loadings near the northern Gulf,

particularly along the Kuwait and Iraq coasts (Figure 6a).

Temporal evolution suggested a distinct seasonal cycle, indicating

that this mode is strongly influenced by regional hydrodynamic

processes. A key driver of this pattern is likely the river discharges,

especially from the Shatt al-Arab river, which injects freshwater and

nutrients into the Gulf, stimulating phytoplankton blooms

(Abaychi et al., 1988; Sheppard et al., 2010). Additionally, wind-

driven circulation and coastal currents play a role in shaping this

variability by modulating nutrient transport and stratification

dynamics (Mussa et al., 2024).

The third EOF mode captured 10% of the variance, which

highlights Chl-a variability mainly along the central and

southeastern Gulf. The time series indicates interannual

variability, possibly linked to fluctuations in wind-driven mixing

and atmospheric dust deposition (Nezlin et al., 2010; Asgari and

Soleimany, 2023). The interplay between wind mixing and nutrient

availability appears to be a key factor in driving this mode. The

fourth EOF mode accounts for 8% of the variance and exhibits a

more localized pattern along the northwest (Kuwait coast) and near

to the Strait of Hormuz (north U.A.E. coast) of the Gulf. The

associated time series suggests short-term fluctuations (Figure 6b),

indicating that this mode is influenced by regional oceanographic

processes rather than long-term climatic patterns. Additionally,

extreme weather events, such as dust storms and cyclones, may

contribute to the observed variability by altering light penetration

and nutrient fluxes (Nezlin et al., 2010; Jish Prakash et al., 2015;

Madhusoodhanan et al., 2024). Overall, the EOF results reveal that

Chl-a dynamics in the Gulf are not uniformly driven by seasonal

processes, but controlled by a combination of large-scale climatic

influences, regional hydrodynamic processes, and localized

oceanographic phenomena. These modes offer valuable baselines

for long-term monitoring and ecosystem forecasting. The

dominance of the first two Modes (82%) highlights the
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predominant role of climatic and seasonal forcing, whereas the

other modes capture more localized and transient processes. This

analysis strengthens the importance of understanding multiple

scales of variability to improve predictions of phytoplankton

dynamics and ecosystem responses in this ecologically and

economically significant region.
3.6 Interannual variability in Chl-a and
dominant environmental variables

The interannual variability of Chl-a in the Gulf was briefly

revealed in the time series (section 3.3) and EOF analyses (section

3.5), which indicated that Chl-a concentrations have undergone

significant fluctuations during the study period. Based on the

correlogram and PCA results presented in Table 1, we selected

two regions (boxes 1 and 3) representing the eastern and western

coasts of the Gulf to further explore interannual changes in Chl-a

along with dominant environmental factors (SST, SAL, SLA, WSP

and PAR). The time series of these variables are plotted for the

period 2003 to 2023 (Figure 7). Moreover, a lag correlation analysis

for these boxes was also done and presented as supplementary

figures (Supplementary Figures S4, S5). Prolonged high values of

Chl-a concentration were recorded in box 1 (along the Iran Coast)

from 2006 to 2009 (Figure 7a). The years 2008 and 2009 showed the

highest Chl-a anomaly (1.5 mg/m³), indicating an intense

phytoplankton bloom; conversely, the lowest Chl-a occurred in

2010, 2013 and 2020, indicating a period of markedly reduced

biological productivity. The central-eastern coast of the Gulf,

particularly along the Iran coast is characterized by frequent

upwelling events that significantly influence Chl-a variability

(Ismail and Al Shehhi, 2022). Upwelling brings nutrient-rich deep

waters to the surface, supporting phytoplankton blooms and

leading to higher Chl-a concentration (Moradi and Kabiri, 2015;

Shafeeque et al., 2021b). The period of lower Chl-a could be

attributed to weaker winds and higher SST, limiting vertical

mixing and reducing nutrient availability. Recent studies have

highlighted the increasing frequency of marine heatwaves over

this region, which can disrupt upwell ing and reduce

phytoplankton productivity (Chaidez et al., 2017; Hamdeno et al.,

2022; Kashkooli et al., 2022; Shaltout and Eladawy, 2024). Salinity in

this region is influenced by the influx of nutrient-rich waters from

upwelling and the exchange with the Indian Ocean through the

Strait of Hormuz (Lorenz et al., 2020; Ghaemi et al., 2021). Earlier
TABLE 1 Summary of the correlogram and PCA analyses results showing relationship of environmental parameters with Chl-a.

Box SLA SST SAL WSP CSP PAR Key drivers

1 –0.22 –0.50 +0.42 +0.46 –0.04 –0.60 SLA, SST, SAL, WSP, PAR

2 –0.13 –0.26 +0.27 –0.03 –0.02 –0.41 SST, SAL, PAR

3 +0.13 +0.79 –0.50 –0.58 –0.19 +0.60 SST, SAL, WSP, PAR

4 –0.04 +0.85 –0.35 –0.52 +0.07 +0.72 SST, SAL, WSP, PAR
Correlation coefficient (r) with ‘+’ and ‘–’ signs indicate positive or negative correlation; bolded r values indicate significant correlation (p-value <0.05). Key drivers were chosen if the relationship
was significant and r≥ 0.2.
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studies have emphasized the role of salinity gradients in shaping

phytoplankton communities in upwelling zones (Wabnitz et al.,

2018; Ben-Hasan and Christensen, 2019; Alnafissa et al., 2021). The

lag correlation analysis for box 1 highlights the temporal shifts in

the relationship between Chl-a and environmental parameters,

reflecting the influence of seasonal progression, mixing processes,

and hydrodynamic conditions. SST exhibited strong negative

correlation (–0.62) at lag +1 month, consistent with nutrient
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depletion during periods of sustained warming (Supplementary

Figure S4). SAL exhibited positive correlations (+0.45) peaking at

lag +1 month. Wind speed showed maximum correlation (+0.46) at

a lag 0, highlighting the direct impact of wind-driven nutrient

entrainment on Chl-a production. CSP had moderate positive

correlations at long negative lags (+0.30 at –6 months). PAR

displayed strong negative correlations near lag 0 (–0.60), likely

reflecting that the immediate impact of irradiance on Chl-a.
FIGURE 6

EOF analysis: (a) Spatial maps for first four dominant modes (b) Time series for first four principal components.
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Overall, these results underscore that Chl-a variability in box 1 is

shaped by cumulative warming and light availability months in

advance, coupled with immediate influences of wind-driven mixing

and dynamic changes in salinity and current regimes.

Unlike box 1, peak Chl-a values in box 3 (Saudi Coast) mostly

occurred during summer months, with highest Chl-a (3.9 mg/m³)

was recorded in August 2017 (Figure 7b). The seasonal peak during

summer is associated with intensified thermal stratification, coupled
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with wind-driven mixing that redistributes nutrients in the upper

water column (Reynolds, 1993; Doney, 2006). The year 2017

marked the highest Chl-a concentration, potentially influenced by

anomalous weather conditions, including stronger than usual

Shamal winds and regional upwelling events (Al Senafi and Anis,

2020). The dominance of SST as the key driver was evident, as this

region follows a summer Chl-a peak rather than a winter peak

(Figure 7b). Salinity in this region is normally high due to limited
FIGURE 7

Interannual variability of chlorophyll-a (Chl-a), sea level anomaly (SLA), sea surcace temperature (SST), salinity (SAL), wind speed (WSP), current speed
(CSP) and photosynthetically available radiation (PAR) from 2003–2023 for (a) box 1 and (b) box 3.
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freshwater input and high evaporation rates. However, localized

reductions in salinity can enhance nutrient availability and support

phytoplankton growth (Lattemann and Höpner, 2008). Recent

research has highlighted the role of salinity gradients in shaping

phytoplankton communities (Al-Thani et al., 2023). In box 3, SST

showed its highest correlation (+0.79) with Chl-a without any lag

(Supplementary Figure S5). However, at a lag of –6 months, the

same correlation also existed with opposite direction (–0.79).

Salinity peaked at a lag of –1 to –2 months, exhibiting a strong

negative correlation of –0.72. Wind speed and CSP presented their

maximum correlations (–0.58 and –0.19, respectively) with 0 lags.

PAR displayed a high positive correlation (+0.76) at a lag of –2

months. Despite a lag or lead of a few months, box 3 also revealed

more or less similar correlation pattern to the results of

correlogram analysis.

The interannual patterns across the two selected regions

highlight the disparity in the role of environmental drivers in

Chl-a variability. A key distinction between the regions was the

seasonality of peak Chl-a concentration. Box 1 exhibited winter-

dominated Chl-a peaks, reflecting SST-driven mixing and enhanced

nutrient supply during colder months. Box 3 followed a summer

peak, suggesting a different nutrient cycling mechanism, possibly

linked to temperature-induced stratification dynamics. These

findings align with prior sections and studies also indicated that

winter blooms in the Gulf are primarily regulated by nutrient

enrichment via convective mixing and riverine input, while

summer productivity in the western Gulf is influenced by local

wind-driven upwelling and water column stability (Wiggert et al.,

2005; Thoppil and Hogan, 2010a, 2010b). While interannual

variability is controlled by oceanographic and atmospheric

forcing, potential impacts of climate change and human activities

cannot be ignored. Warming trends in the Gulf intensify

stratification, reduce nutrient replenishment, and shifting

phytoplankton community structures (Al-Yamani et al., 2004;

Wabnitz et al., 2018). Major climatic events have influenced

productivity, reinforcing the role of global climate variability in

regional ocean dynamics (Doney, 2006; Park et al., 2018; Shafeeque

et al., 2021b; Hamdeno et al., 2022; Kashani et al., 2025). The lag

correlation analysis of Chl-a with environmental variables further

revealed complex distinct temporal patterns shaped by seasonal

dynamics, hydrodynamic conditions, and mixing processes.

Overall, these patterns demonstrate that Chl-a dynamics in the

Gulf are governed by a combination of cumulative seasonal

warming and light availability, modulated by lagged effects of

mixing, circulation, and salinity changes which need to be further

explored in the future work. The varying timing and magnitude of

these relationships across boxes further confirmed the spatial

heterogeneity of phytoplankton responses to environmental

forcing in this highly dynamic marine ecosystem. In addition to

the seasonal and interannual variability of Chl-a with contributions

from environmental factors, we analyzed the spatial trends of NPP

along with Chl-a and SST to enhance our findings in the

following section.
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3.7 Long-term spatial trend in Chl-a, NPP
and SST

A two-decade (2003– 2023) cumulative spatial trend for Chl-a,

NPP and SST in the Gulf was calculated and presented in Figure 8.

The result showed an overall decrease in Chl-a and NPP trend

(Figure 8a) in the Gulf, with small patches of increasing trend along

the coasts of western and southern Gulf. Whereas SST showed a

warming trend in the northern and central Gulf. The declining

trend in Chl-a and NPP is due to the high SST and stratification,

which limit nutrient availability in the surface layer (Polikarpov

et al., 2016; Al-Shehhi et al., 2021). The oligotrophic nature of these

regions makes them particularly sensitive to changes in

environmental conditions, such as reduced vertical mixing and

nutrient upwelling (Reynolds, 1993; Thoppil and Hogan, 2010a).

The declining Chl-a trend was also aligned with the observed

decreasing trend in NPP (Figure 8b). This decline is likely driven

by the combined effects of warming SST, reduced nutrient

availability, and increased stratification (Reynolds, 1993;

Behrenfeld et al., 2006; Polikarpov et al., 2016). Recent studies

have also linked these trends to the intensification of climate change

impacts, such as more frequent marine heatwaves and reduced

oxygen levels (Chaidez et al., 2017; Wabnitz et al., 2018; Shaltout

and Eladawy, 2024). Continued warming and increasing frequency

of marine heatwaves may further weaken offshore productivity,

with potential implications for carbon cycling and ecosystem

resilience (Wabnitz et al., 2018; Kashkooli et al., 2022).

The observed long-term trends in Chl-a, NPP and SST have

significant implications for the marine ecosystem of the Gulf.

Coastal regions with decreasing Chl-a and NPP trend could

negatively impact pelagic species and commercial fisheries that

rely on open-water resources (Mieszkowska et al., 2009; Gamito

et al., 2015; Wabnitz et al., 2018). High SST and stratification reduce

vertical mixing and nutrient supply to the surface layer (Chaidez

et al., 2017). The Gulf experiences a more pronounced SST shift due

to its shallow depths and limited water circulation, which result in

faster and more intense heating. The SST trend across the Gulf

exhibited significant escalation over the past two decades which

leads to extensive implications. The escalating SST levels, ranging

from 0.5°C in the Strait of Hormuz to 1.5°C in the Northern Gulf,

underscore the severity of this thermal shift (Figure 8c). The central

Gulf also experienced a ~0.5oC SST increase during the past two

decades. These changes are pronounced in the Gulf as observed in

the previous sections, where dominant environmental factors vary

regionally. Human activities, such as coastal development,

desalination and oil exploration also impact the marine

ecosystem. Desalination is the primary source of freshwater in the

region, discharges highly saline and chemically altered brine back

into the coastal waters. This can alter the salinity and nutrient

dynamics and eventually enhance Chl-a and NPP in the coastal

areas (Peterson et al., 2003; Purnama et al., 2003; Lattemann and

Höpner, 2008). In parallel, large-scale coastal development, land

reclamation, industrial expansion, dredging activities, overfishing,
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and other population-driven stressors have reshaped nearshore

habitats of the Gulf and modified circulation patterns, further

impacting water quality and primary productivity (Burt, 2014;

Naser, 2014; Al-Thani et al., 2023). Further, these activities can

also lead to eutrophication and harmful algal blooms, which may

disrupt ecosystem balance (Glibert et al., 2014; Madhusoodhanan

et al., 2025). Understanding such dynamics is crucial for sustainable

marine management, particularly in light of rapid coastal

development and climate-driven changes. The ecological impacts

of rising SST in the Gulf are manifold. Elevated SST can disrupt

marine ecosystems, leading to coral bleaching, changes in species

distribution, and alterations in food webs (Riegl et al., 2011;

Cavalcante et al., 2016; Harrison et al., 2017). This, in turn, can

have cascading effects on biodiversity and fisheries productivity,

threatening the livelihoods of communities reliant on marine

resources. Moreover, the socioeconomic consequences of

escalating SST in the Gulf are significant. Fisheries, tourism, and

other industries dependent on the marine environment may suffer

due to declining fish stocks, damaged coral reefs, and reduced

attractiveness of coastal destinations. The cumulative impacts of the

anthropogenic pressures add to the natural variability driven by

climate and oceanographic factors, making it difficult to separate
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human-induced signals from natural ones. Nonetheless, integrating

such drivers into the interpretation of Chl-a trends is essential for a

more holistic understanding of ecosystem changes in this semi-

enclosed and heavily developed marine basin.
3.8 Uncertainties in satellite-derived Chl-a
and the use of OC-CCI data

Global satellite-derived surface Chl-a data have become an

essential tool for studying ecosystem and biogeochemical

processes. However, the potential offered by these data sets can be

fulfilled only if their uncertainties are quantified, and indeed, this

assessment is considered an integral part of any ocean color mission

(McClain et al., 2004; Mélin, 2009). Even though the ocean color

datasets have been extensively validated, certain limitations remain,

particularly in optically complex Case-2 waters such as the Gulf

waters. Shallow depth, high turbidity, and elevated concentration of

optically active substances can reduce algorithm accuracy and lead

to greater uncertainties in nearshore Chl-a retrievals. The lack of

long-term in-situ measurements further limits validation at finer

spatial and temporal scales. The global distribution of random
FIGURE 8

Spatial map of cumulative trend during 2003–2023 for ) (a) Chlorophyll-a and (b) Net primary productivity (normalized to –1 to +1) and (c) Sea
Surface Temperature (SST).
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uncertainty in satellite-derived Chl-a varies significantly by region,

with higher values typically observed in coastal and turbid waters

due to challenges in atmospheric correction and the separating

water-leaving radiance from atmospheric signals. While the general

global patterns of Chl-a are relatively consistent across different

satellite products, regional uncertainty differences remain

substantial, highlighting the need for region-specific approaches

to uncertainty assessment.

Nevertheless, global ocean color products, including the OC-

CCI dataset used in this study, have been undergoing continuous

improvements in merging techniques, atmospheric correction, and

algorithm refinements (Sathyendranath et al., 2019). The OC-CCI

dataset, in particular, has been shown in both global and Gulf-

specific studies to provide consistent and reliable estimates,

outperforming earlier satellite products in terms of stability and

cross-sensor consistency (Belo Couto et al., 2016; Al-Naimi et al.,

2017; Moradi, 2021). Uncertainty in OC-CCI Chl-a data arises from

factors such as sensor noise, optical classification limits, differences

in atmospheric correction and algorithm performance across

various water types and missions, and spatiotemporal scale

mismatches (Mélin et al., 2016; Brewin et al., 2017; IOCCG,

2019). To address this, OC-CCI provides per-pixel uncertainty

estimates based on an improved optical classification scheme and

blending algorithms. The development of a new, improved optical

classification scheme based on a larger dataset of satellite-derived

spectra, and the use of class membership to assess the performance

of multiple algorithms within each water class and to blend

algorithms have further enhanced the assignment of uncertainties,

and improved the quality of the final product, especially for Chl-a

(Jackson et al., 2022). These developments make OC-CCI a robust

resource for long-term Chl-a studies, while the acknowledged

limitations highlight the need for complementary in-situ

observations and tailored regional algorithms. Moreover, the use

of latest version (Version 6.0) in this study also ensures

improvements to the algorithm blending and error correction to

provide more reliable results.
4 Conclusions

In this study, we conducted a comprehensive analysis of the

spatiotemporal variability of Chl-a, regional patterns with causative

environmental factors and long-term trends in the Gulf using OC-

CCI Chl-a data and other environmental variables for the period

2003 to 2023. We followed an integrated approach using

climatology, statistical multivariate, interannual and trend

analyses to assess the variability and identify the dominant

drivers of Chl-a variability. Our analyses revealed strong seasonal

and interannual modulation, with a marked Chl-a peak in winter,

followed by a minimum during summer, and low to moderate levels

during the transitional months. Chl-a was higher all along the coast

compared with offshore waters, particularly along the eastern

coastal waters. The results also showed winter-driven blooms in

the northern and eastern Gulf and summer-driven productivity in

the western Gulf. This seasonal and regional variability highlighted
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the substantial role of environmental factors on Chl-a. The PCA

and correlogram analysis further verified these findings,

highlighting strong relationships between Chl-a and key

environmental parameters, particularly SST, SAL, PAR and wind

speed, with regional distinctions. The analysis of long-term spatial

trend between Chl-a, NPP and SST indicated an overall decreasing

trend in Chl-a and NPP, specifically along the north and eastern

coasts of the Gulf; and warming SST in the northern and central

Gulf. The interannual variability and lag correlations revealed

consistent patterns between Chl-a concentration and key

environmental drivers, often marked by moderate to strong

correlation coefficients with a lead or lag of a few months. These

temporal shifts suggest that the response of phytoplankton biomass

to environmental forcing is not always immediate but rather

influenced by delayed or cumulative effects across seasonal to

interannual timescales. Given the ecological and economic

significance of the Gulf, these results have important implications

for fisheries management, climate adaptation strategies, and

ecosystem resilience assessments. Future studies should integrate

high-resolution biophysical models with in-situ and satellite

measurements to better capture the subsurface processes and

predict the impacts of environmental changes on the marine food

web. Long-term monitoring and predictive modeling will be

essential for the sustainable management of the Gulf’s marine

resources under changing climate conditions.
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