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Estuaries in the Gulf, especially Lake Pontchartrain Estuary in southeastern
Louisiana, USA, are experiencing significant changes due to climate change and
coastal restoration efforts. Lake Pontchartrain Estuary receives nutrient-rich
Mississippi River water through a controlled diversion called Bonnet Carré
Spillway (BCS), which has been associated with toxic cyanobacterial blooms
(cyanoHABs). This study examines the seasonal factors influencing cyanoHABs in
the Lake Pontchartrain Estuary when the BCS is closed, addressing gaps in the
understanding of HABs related to other physical drivers. Field samples collected in
2021, during the closure of the spillway, revealed significant evidence of seasonal
variations in cyanoHAB formation. Results indicate that water leakage from the
spillway and tributary discharge are critical for supporting cyanoHABs during the
summer months. Moreover, nitrogen-fixing cyanobacteria, such as nitrogen-fixing
Dolichospermum and Cylindrospermum, were more abundant following strong
winds from significant weather events, including cold fronts and hurricanes, which
can resuspend phosphorus that is bound to sediment. This research improves our
understanding of the physical factors that drive the formation of cyanoHABs, the
prevalence of different species, and the production of toxins in the Lake
Pontchartrain Estuary. The insights gained from this study are essential for
environmental managers to develop effective, long-term monitoring strategies
for harmful algal blooms.
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1 Introduction

Harmful algal blooms (HABs) are increasing globally and are
expected to become a more frequent phenomenon as human and
climatic disturbances result in greater nutrient enrichment
(Anderson et al., 2009; Gobbler, 2020). Several groups of
phytoplankton can cause HABs; however, three of the most
frequently documented groups known to produce toxins are
cyanobacteria, dinoflagellates, and diatoms (Hallegraeft, 2003).
The diatom genus Pseudo-nitzschia spp. and various genera of
dinoflagellates, such as Heterocapsa spp. and Prorocentrum spp.,
are known to cause blooms that can pose public health risks in
saltwater ecosystems (Tas and Yilmaz, 2015; Sarkar, 2018).
Cyanobacteria, while playing a crucial role in nutrient cycling and
atmospheric oxygen production in all aquatic ecosystems, are
particularly abundant and problematic in nutrient-rich, warm
freshwater lakes, reservoirs, and estuaries (Paerl and Huisman,
2009; Paerl and Paul, 2012; Preece et al., 2017). Harmful
cyanobacterial blooms (cyanoHABs) are composed of these
naturally occurring phototrophic prokaryotes with the ability to
produce secondary metabolites called cyanotoxins that can cause
potential harm to animals, plants, and human health (Pearson et al.,
2010). Eutrophication, caused by watershed development,
urbanization, and intensified agricultural activities, along with the
effects of climate change, is expected to worsen, leading to an
increase in the frequency and spread of cyanoHABs (Paerl and
Huisman, 2009; Visser et al., 2016; Preece et al.,, 2017). During
severe weather events, the mixing and resuspension of sediments in
shallow aquatic systems intensifies. High flow conditions can
quickly reduce residence time and physically flush out harmful
blooms, while also introducing external nutrients such as nitrogen
(N), phosphorus (P), and silicon (Si) into shallow estuarine systems.
During storms, cyanobacterial blooms may be temporarily
suppressed due to high turbidity and low light conditions.
However, once the storms subside and calm, warm water
conditions return, these cyanobacterial blooms can reemerge
(Johnk et al.,, 2008; Carey et al., 2012; Paerl et al., 2016).

Human activities have significantly impacted river systems
through changes in land use, river diversion operations, and flood
control measures. In the past decade, the southeastern United States
has seen an increase in both the number and frequency of HABs,
particularly in coastal waters and estuaries along the Gulf. This
increase is attributed to significant changes in both natural and
human-induced processes that contribute to greater eutrophication
in the region (Anderson et al.,, 2021). Louisiana, in particular, is at the
forefront of these blooms, as the estuarine waters adjacent to the
Mississippi River receive numerous nutrient inputs from natural
processes and large-scale efforts to slow or reverse wetland losses,
focusing on the construction of river diversions (Bargu et al., 2019;
Turner et al,, 2019). River diversions can introduce large volumes of
nutrients and rapidly decrease salinities, creating optimal conditions
for cyanobacteria growth. Increased instances of toxic and noxious
freshwater cyanobacteria have been observed in Louisiana estuaries,
especially during the spring and summer months (Ren et al., 2009;
Garcia et al,, 2010; Bargu et al,, 2011; Riekenberg et al., 2015).
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Lac des Allemands in Barataria Bay has experienced alternating
blooms of Microcystis spp. and nitrogen-fixing Dolichospermum
spp., driven by nutrient-rich waters from surface runoff (Ren et al.,
2008, 2009; Garcia et al., 2010). Additionally, the Breton Sound
Estuary is directly influenced by Mississippi River water through the
Caernarvon Diversion. Dolichospermum, Microcystis, and
Cylindrospermum have been documented in the Breton Sound
Estuary during the summer when water residence time and
temperatures are elevated (Riekenberg et al., 2015). The Lake
Pontchartrain Estuary, located in the southeastern part of the
state, has also experienced frequent cyanoHABs over the past two
decades, largely due to episodic large nutrient inputs from a flood
control river diversion known as the Bonnet Carré Spillway (BCS).
However, the formation of these blooms has proven difficult to
predict and seems to be dependent on both the timing and duration
of the BCS openings (Mize and Demcheck, 2009; White et al., 2009;
Bargu et al.,, 2011; Roy and White, 2012; Roy et al.,, 2016). When the
BCS is opened later in the year, there is an increased probability of
bloom formation after the spillway closes due to sustained warm
temperatures (Bargu et al., 2023; Snow et al., 2023).

In addition to the sudden influx of nutrients into estuaries
caused by human-made river diversions, nutrient levels are also
affected by ongoing tidal and freshwater inputs from tributaries, as
well as occasional natural weather events such as heavy rainfall,
hurricanes, and cold fronts (Saksa and Xu, 2006; Wu and Xu, 2007;
McCorquodale et al., 2009; Hiatt et al., 2019). These various sources
can contribute to the development of cyanoHABs. Our current
understanding of baseline conditions in these estuaries is limited.
This study aims to enhance our knowledge of baseline conditions
when the BCS is closed and to identify seasonal variability that may
promote or hinder the development of cyanoHABs in the Lake
Pontchartrain Estuary. The findings will provide significant insights
that can be applied to analogous ecosystems.

2 Materials and methods
2.1 Study site and field sampling

Lake Pontchartrain Estuary is an oligohaline system in
southeastern Louisiana, spanning approximately 1,630 km? with
an average depth ranging from 3.6 to 4.2 m. The region experiences
an average annual air temperature of 19°C to 20°C, with July
peaking at 30.5°C and January averaging 11.6°C (U.S. Geological
Survey, 2005). Annual rainfall is high, ranging from 140 to 160
centimeters (cm). This microtidal system experiences diurnal tides
with a range of approximately 0.16 m (NOAA, 2024). The estuary’s
average salinity is 3.5 and decreases with increased freshwater input
from northern tributary rivers, such as the Tangipahoa, Tchefuncte,
Tickfaw, Amite, and Bogue Falaya, as well as from the Mississippi
River and Lake Maurepas through Pass Manchac (U.S. Geological
Survey, 2005). Increases in salinity happen due to low freshwater
flow and salt intrusion caused by high tides and storm surges from
the Gulf through Lake Borgne (U.S. Geological Survey, 1998;
McCorquodale et al., 2009; Figure 1).

frontiersin.org


https://doi.org/10.3389/fmars.2025.1618353
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Hammond et al.

10.3389/fmars.2025.1618353

Tributary Tributary A
Disch Discharge N
03 \ ischarge
: LP2
«7 LP3 LP4 )
303 1 Tk LP1 LPS
M e Lake Pontchartrain
aurepas i
£ 202 el =
2 302 4 1
= . Tidal Influence
= LP10
e \
30.1 9 Mississippi Lp7 " Lp9 il Ot’l:‘.‘“s “ \
River P()' - - * e.mn 1rpo.
o *
30.0 Lte:k%ge frotm New Canal Lake
o g Station Borgne
Carré Spillway g
299 T T T T T
-90.6 -90.4 -90.2 -90.0 —89.8 -89.6
Longitude

FIGURE 1

Map of 2021 field collection sites along the Lake Pontchartrain Estuary in southeastern Louisiana.

From February to December 2021, monthly water samples were
collected from 14 stations across the Lake Pontchartrain Estuary.
While previous studies focused on field data from a transect (LP6-
LP13) extending from the BCS, our study sampled this transect and
additional regions impacted by freshwater discharge (LP1-LP5) and
saltwater intrusion (LP14). We measured temperature, pH, salinity,
and dissolved oxygen using a YSI 556 MPS and assessed water
clarity using the Secchi disk depth. Triplicate water samples were
collected from each station, and each sample was analyzed for total
suspended solids (TSS), nutrients (SRP, NO,, NH,, SiO,),
chlorophyll a (chl a), phycocyanin pigments, microcystin toxins,
signature phytoplankton pigment composition, and microscopic
identification of dominant species, with samples kept on ice in the
dark during transport back to the laboratory.

2.2 Discharge and residence time

Tidal prism flushing time (7) of Lake Pontchartrain Estuary was
calculated using a simple tidal prism model of a well-mixed estuary
with complete tidal exchange (Monsen et al., 2002; Sheldon and
Alber, 2006), shown in Equation 1:

_ Vip
Vi +0.5(Qpw)
where V;p is the volume of Lake Pontchartrain Estuary (6 km?)
and Qpyy is the sum of the tributary discharge and leakage from the
BCS (m® s7'). The volume of the tidal prism, Vrp (m?), is the
product of the tidal range, TR (m), and the area of Lake
Pontchartrain Estuary, A;p (m2), (Equation 2).

VTP = ALPTR
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Equation 1 was adjusted to account for the lunar day by
introducing a correction factor, 7, defined as the ratio of the lunar
day to the solar day. This resulted in the following equation for
estimating tidal prism flushing time (Equation 3):

Vip v
Vip +0.5(Qpw)Y

For freshwater input, tributary discharge and leakage from the

BCS were used. Daily mean tributary discharge values were
obtained from the USGS stream gages for the four primary
tributaries entering Lake Pontchartrain Estuary (Hodson et al,
2023; U. S. Geological Survey, 2024): the Tchefuncte River (USGS
gage #7375000), the Tickfaw River (7376000), the Tangipahoa River
(7375500), and the Amite River (7378500), as summarized in
Table 1. Discrepancies in discharge between upstream and
downstream drainage basins were addressed using correction
factors derived by Roblin (2008) and van den Huevel (2010), also
shown in Table 1. Missing data from the Tchefuncte River were
replaced with 12-year monthly means corresponding to months
with gaps (January 2021 to May 2021). The impact is minimal due
to the Tchefuncte River contributing between 1% and 3% of the flow
from January to May, on average.

The leakage discharge from the BCS was estimated using the
broad-crested spillway equation (Chow, 1959), which has been
previously applied in leakage estimates of the BCS
(McCorquodale et al., 2009). The total leakage discharge was
calculated based on the fraction of the spillway above the crest
where leakage occurs (i.e., through wooden timbers), the width of
the spillway crest, the discharge coefficient, and the water level
above the spillway crest. Water level measurements were obtained
from the Mississippi River at Bonnet Carre gauge (01280) (USACE,
2024) and were converted to mean lower low water (MLLW). The
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TABLE 1 USGS river gage stations with mean discharge [m® s™] of historical data. .

Correction factor [-]

Mean yearly discharge (m®s™)

River name USGS gage location USGS gage number
Amite ‘ Denham, LA 7378500
Tchefunte ‘ Folsom, LA 7375000
Tangipahoa ‘ Robert, LA 7375500
Tickfaw Holden, LA 7376000

84 141
9 2.02
42 1.29
29 2.72

Correction factors [-] were calculated by Roblin (2008) and van den Huevel (2010) to represent the difference between upstream and downstream drainage basins.

equation for determining leakage and the calculation of the
discharge coefficient can be found in the Supplementary
Materials S1.

Tidal elevation data (MLLW) for 2021 were obtained from the
National Oceanic and Atmospheric Administration (NOAA) Service
Station at New Canal Station (8761927) (NOAA, 2024). To remove
short-term meteorological influences, the tidal elevation data were
processed using a sixth-order low-pass Butterworth filter with a four-
cycles-per-day cutoff frequency (Parker, 2007). Monthly mean tidal
ranges were calculated using the Manual of Tide Observations
protocol (U.S. C&GS, 1965), which involved determining the
difference between the monthly mean high and low values of mean
lower low water (MLLW) elevation measurements.

Additional environmental data on precipitation were obtained
from the NOAA National Centers for Environmental Information
Database using station NCDC72235 at New Orleans Lakefront
Airport. Meteorological data on wind speed were obtained from
NOAA Tides and Currents at the New Canal Station (8761927)
(NOAA, 2024).

2.3 Chemical and biological analysis

Water samples were collected in acid-washed bottles and
analyzed for nutrients and total suspended solids (TSS). Dissolved
inorganic nutrients were assessed using an automated discrete
analyzer (AQIL; SEAL Analytical). In the lab, 40 mL of each
sample was vacuum-filtered through 0.7 um glass microfiber filter
(GF/F, Whatman) membrane filters, and the filtrates were used for
nitrogen (N), phosphorus (P), and silicon (Si) analysis. Ammonium
nitrogen (NH,-N) was measured via EPA Method 350.1, and nitrate
plus nitrite (NOx) was measured using Method 353.2 (USEPA,
1993). The sum of NH,-N and NOx-N represents the dissolved
inorganic nitrogen (DIN) pool. Dissolved inorganic phosphorus
(DIP) was assessed with Method 365.1, whereas dissolved silicon
(DSi) was analyzed using an O.I. Analytical Flow Solutions IV
Autoanalyzer using National Environmental Methods Index
(NEMI) Method 4500-SiO2. The TSS was quantified by filtering
water through pre-ashed, preweighted GF/F filters, drying it at
105°C, and reweighing it (USEPA, 1979, Method No. 160.2).

Biological samples were processed the same day as collection in a
dimly lit environment, and multiple parameters were assessed at all
stations. For phytoplankton biomass, 50 mL of subsurface water
samples was filtered through 25-mm GF/F filters to measure
extracted chlorophyll a (chl a). The filters were extracted for 24 h in
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90% acetone at —20°C and analyzed using a Turner 10 AU fluorometer
(Parsons et al.,, 1984). Phycocyanin and chlorophyll raw fluorescence
units (RFUs) were measured with the Turner CyanoFluor.
Phycocyanin RFU values were converted to concentrations (ug L")
using a standard curve from phycocyanin in a phosphate buffer. The
ratio of phycocyanin to chlorophyll helps estimate the prominence of
cyanobacteria in a mixed algal population. If phycocyanin exceeds
chlorophyll, it suggests that cyanobacteria are dominant, indicating a
potential bloom (Turner Designs, 2022, CyanoFlour Handheld
Indicator User Guide).

Water samples were also analyzed for intracellular and
extracellular forms of the cyanobacterial toxin, microcystin. 100-
200 mL of samples was filtered through GF/F filters. Intracellular
microcystin (IM) was measured from the material on the filters,
whereas the remaining water was used for extracellular microcystin
(EM) analysis. Both samples were stored at —20°C prior to
extraction. Extraction was performed using a modified protocol
from Garcia et al. (2010), which involved a solution of methanol,
water, and acetic acid. 5 mL of extraction solution was added to the
filter and vortexed for 1 min. This mixture was then sonicated for
2 min in an ice bath and centrifuged at 3,000 rpm for 10 min to
remove debris. The supernatant was filtered through a 0.2-um
syringe filter with an SFCA membrane filter. The remaining pellet
was resuspended with an additional 5 mL of extraction solution,
and the process was repeated. Toxin concentrations in collected
water samples were determined using commercially available highly
sensitive enzyme-linked immunosorbent assay (ELISA) Kkits
(Microcystin-ADDA ELISA, Abraxis LLC) with a detection limit
of 0.01 pg L™". Samples were analyzed according to the protocol
provided in the kits, and the absorbance was measured at 450 nm
using a microplate ELISA photometer.

Bulk phytoplankton groups were identified using signature
pigment ratios. Samples were vacuum filtered through 25-mm
GF/F filters and stored at —20°C in foil-covered 15-mL tubes.
Diagnostic pigments were analyzed using high-performance
liquid chromatography (HPLC), following the method established
by Pinckney et al. (1998) at the HPLC Photopigment Analysis
Facility at the University of South Carolina.

The following accessory pigments were analyzed as indicators of the
signature pigment groups: chlorophyll cs, chlorophyll ¢; c,, peridinin,
19'-butanoyloxyfucoxanthin, fucoxanthin, 19’-hexanoyloxyfucoxanthin,
9'-cis-neoxanthin, prasinoxanthin, violaxanthin, myxoxanthophyll,
diadinoxanthin, antheraxanthin, alloxanthin, monadoxanthin,
diatoxanthin, lutein, zeaxanthin, gyroxanthin, canthaxanthin, carotenal
(internal standard), bacteriochlorophyll a, chlorophyll b, crocoxanthin,
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chlorophyll a-allomer, divinyl chlorophyll a, chlorophyll a’, echinenone,
o carotene, and 3 carotene. The phytoplankton community
composition based on the diagnostic pigment ratio by specific
functional groups was calculated using the formula below from Wang
etal. (2015), where ZDP is the sum of the weighted concentrations of all
diagnostic pigments, which was used to find the overall contribution by
group of the phytoplankton characteristic of this region and their
associated accessory pigments.

> DP = 1.41Fuco + 1.41Per + 0.60 Allo + 0.35 But-fuco
+ 1.27 Hex-fuco + 1.01Chl + 0.86 Zea

Functional groups were chosen based on phytoplankton groups
that tend to dominate coastal waters of the Gulf (Chakraborty and
Lohrenz, 2015). The functional groups included are haptophytes
(19'-hexanoyloxyfucoxanthin, Hex-fuco), chlorophytes
(chlorophyll b), cryptophytes (alloxanthin (Allo)+ o carotene),
cyanobacteria (zeaxanthin, Zea), diatoms (fucoxanthin (Fuco) +
diatoxanthin + diadinoxanthin), and dinoflagellates (peridinin, Per)
(Pinckney et al, 1997; Liu et al,, 2019). Additionally, 100 mL of
water samples was preserved in 2% glutaraldehyde for microscopy
to identify the dominant species of phytoplankton using an inverted
microscope, the Axio Observer Al (Zeiss, Axiovert 135).

2.4 Statistical analysis

The data were analyzed using R (Version 4.5.1). ANOVAs assessed
seasonal and spatial variations in environmental conditions (e.g.
salinity, DO, pH, and nutrients) and cyanobacteria biomass
(phycocyanin) and toxins. To identify specific differences between
groups, post-hoc tests were conducted, along with a correlation test to
determine potential relationships between variables. A multivariate
regression was also performed to explore relationships between
environmental predictors and cyanobacteria biomass. The ANOVAs
and regressions were assessed for possible interaction between variables.

3 Results

3.1 Hydrologic and meteorological
influences

In 2021, the increase in nutrient levels in Lake Pontchartrain
Estuary, despite no openings of the Bonnet Carré Spillway, was
mainly attributed to the influx of nutrients from watershed tributary
discharge. This influx was primarily driven by precipitation runoft
and leakage from the BCS, with the impact being notably seasonal
(Figure 2). Precipitation in 2021 varied throughout the year,
generally peaking in the spring. A notable spike later occurred
due to Hurricane Ida, a Category 4 hurricane that struck Louisiana
in September. The total rainfall for the year reached 204 cm, with
the highest monthly precipitation recorded at 14 cm in March. The
total annual discharge volume from northern tributaries and Lake
Maurepas into the Lake Pontchartrain Estuary was 2.54 x 10'* m?,
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FIGURE 2

(A) Mean daily total tributary discharge (m® s7) into Lake
Pontchartrain Estuary and precipitation (cm) during January—
December 2021. (B) Leakage (m® s™%) from the Bonnet Carré
Spillway (BCS) into Lake Pontchartrain Estuary in 2021.

resulting in an average daily discharge of 221 m® s™". The highest
total discharge occurred in mid-April, following the high
precipitation in March, while the lowest discharge was observed
in November (Figure 2). The total volume of water discharged from
Lake Maurepas during the year was 20 times greater (2.4 x 10'> m®)
than that from the northern shore of the estuary (1.2 x 10" m?).
Discharge from the northern tributaries peaked in September after
Hurricane Ida, whereas Lake Maurepas experienced peak discharge
in the spring when precipitation levels were highest (Figure 2).

Leakage or discharge from the BCS typically occurs during the
winter and spring months when the Mississippi River reaches its
highest flood stage (Huang et al., 2020). In 2021, although the BCS
remained closed, leakage occurred from March to April due to
flooding from the low bay sills and through the timber slats in the
spillway (Figure 2). Leakage from the BCS peaked at a rate of
407.3 m* s recorded on April 17, 2021, and had a mean leakage
rate of 186.6 m® s~

While average water levels in the Lake Pontchartrain Estuary
remained relatively stable due to microtidal forces, they were
affected by weather conditions throughout the study period. The
lowest water levels were observed during the winter months, with
the minimum recorded level at —0.33 m in January. Conversely, the
highest water level was 1.84 m, recorded in late August during the
passage of Hurricane Ida. Generally, average water levels were
highest in the fall and lowest in the winter (Figure 3). The
average wind speed was 5.78 m s~ over the year, with peak gusts
reaching 43.54 and 39.85 m s~ during Hurricane Ida at the end of
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FIGURE 3

(A) Wind speed (m s7%) for Lake Pontchartrain Estuary during 2021. (B) Water height (meters) with a mean lower low water (MLLW) datum at New

Canal Station located along Lake Pontchartrain, LA.

August (Figure 3). Wind direction varied daily but mostly blew
toward the southwestern part of the estuary.

The tidal prism flushing time (Equation 3) ranged from 22 to 42
days. Tidal prism flushing time was lower during spring and
summer and higher during fall and winter but remained relatively
constant throughout the year. It is important to note that the
calculation of tidal prism flushing time does not include the
effects of wind, which can be an additional factor influencing
water transport in Lake Pontchartrain Estuary (Li et al, 2018).
Accordingly, relatively high discharge and leakage during the spring
months (Figure 2) led to decreased flushing times (Figure 4), with
leakage reducing tidal prism flushing time by 1.3-4.0%. Likewise,
elevated discharges due to increased precipitation owing to
Hurricane Ida in August 2021 induced the minimum value of
flushing time observed (Figure 4).

3.2 Environmental conditions

In 2021, the environmental conditions in Lake Pontchartrain
Estuary varied both seasonally and across different monitoring
stations. The seasons are categorized as winter (December,
January, February), spring (March, April, May), summer (June,
July, August), and fall (September, October, November).
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Water temperatures exhibited significant differences among the
seasons (p< 0.05), with substantial variations in temperatures between
each season (p< 0.05). During summer, water temperatures ranged
from 25.1°C to 32.3°C, whereas in winter, they ranged from 7.66°C to

Tidal prism flushing time (days)

% &
% % %, S

%
FIGURE 4

Tidal prism flushing time (in days) within the Lake Pontchartrain
Estuary during 2021 when the Bonnet Carré Spillway remained
closed, but leakage from the spillway was observed.
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20.5°C. Spring temperatures fluctuated between 18.2°C and 26.4°C,
and fall temperatures ranged from 16.9°C to 25.8°C (Figure 5A).

Salinity varied significantly between seasons (p< 0.01) and
across different locations (p< 0.01). There were notable
differences in salinity between summer months and all other
seasons (p<0.05). During the summer, salinity levels were low
(0.63 + 0.56) due to increased rainfall and runoff, whereas winter
salinity reached a peak of 1.54 + 1.13, influenced by lower
precipitation and runoff. The highest salinity was observed at the
easternmost station (LP14), affected by coastal waters, and the
lowest at stations impacted by continuous freshwater discharge
from tributaries in the north (LP1-LP4) (Figure 5B). The maximum
salinity recorded was 5.62 at station LP14 in December, whereas the
minimum was 0.04 at station LP1 in April.

Like salinity, pH can be influenced by various factors, but it is
primarily affected by biological processes. During phytoplankton
blooms, pH levels increase due to enhanced photosynthesis.
Significant differences in pH were observed across seasons (p<
0.05), but not between different stations (p > 0.05). Specifically, a
notable difference in pH was observed between winter and all other
seasons (p< 0.05). Lower pH values were recorded during the winter
months (7.24 + 0.22), whereas higher pH levels were noted in the
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summer (8.28 + 0.54) and fall (7.91 + 0.51) (Figure 5C). Similarly,
dissolved oxygen (DO) levels also varied significantly across seasons
(p< 0.05) but not among stations (p > 0.05). The lowest recorded
DO level was 4.79 mg L7, which occurred in late August.
Throughout the year, DO levels remained above 2 mg L%,
indicating that hypoxia was not measured in the estuary
during 2021.

There was high variability in TSS across seasons (p< 0.05), but
no significant variation was observed across stations (p > 0.05).
However, a significant interaction was found between the two
variables (p< 0.05). Summer showed a significant difference in
TSS compared with fall and spring (p<0.05). The highest TSS
level recorded was 143 mg L' at station LP6 in September,
following Hurricane Ida. Similarly, Secchi disk depth exhibited a
significant seasonal difference (p< 0.051) and also showed
significant variation across stations (p< 0.05). The interaction
between stations across seasons was significant (p< 0.05). There
was a significant difference in Secchi disk depth between the fall and
summer months (p< 0.05), and notably, a strong significant
difference was observed between LP14 and LP1 (p< 0.05).
Stations closer to freshwater inflow, whether from leakage or
tributary discharge, exhibited smaller Secchi disk depths due to
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(A) Temperature (°C), (B) salinity, (C) pH, and (D) Secchi disk depth (cm) and total suspended solids (mg/L) of water samples collected from Lake

Pontchartrain Estuary in 2021.
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increased water mixing, whereas stations farther from tributary
influx exhibited higher Secchi disk depths (Figure 5D).

Nutrient concentrations showed both seasonal and spatial
variation, demonstrating a consistent trend throughout the
estuary (Figure 6). The concentration of SRP varied significantly
with both season (p< 0.05) and location (p< 0.05); however, the
combined interaction of these factors was not significantly different
(p > 0.05). The highest recorded SRP level, which was 7.88 uM,
occurred at station LP6 at the entrance to the BCS in September
following Hurricane Ida. There was a notable difference in SRP
levels between winter and summer months (p< 0.05). The highest
average SRP levels were observed in the summer months (1.38 +
0.75 uM), whereas the lowest levels were recorded during the winter
months (0.91 + 0.37 uM) (Figure 6A).

NOx levels varied seasonally and across different stations (p<
0.05), and there was a strong interaction between these two

10.3389/fmars.2025.1618353

variables. A significant difference in NOx concentrations was
observed during the fall months compared with other seasons.
The highest levels of NOx, averaging 19.87 + 8.08 uM, were
recorded in the fall following Hurricane Ida, whereas the lowest
levels, averaging 4.31 + 3.38 UM, were detected during the summer;
this decrease may be attributed to biological uptake (Figure 6B). The
highest concentration of NOx, which reached 64 uM, was measured
at station LP6 in March, coinciding with peak leakage from the BCS.
NH, concentrations exhibited significant seasonal variations (p<
0.05), but no notable differences were found between different
sampling stations (p > 0.05). A marked difference was observed in
the summer months compared with other seasons. Throughout the
year, NH, concentrations remained below 10 uM, except in July,
when levels ranged from 15.76 to 47.93 uM (Figure 6C).

Silica (Si0,) concentrations also displayed significant seasonal
variability (p< 0.05), whereas no significant differences were
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Average concentrations of (A) soluble reactive phosphorus (SRP uM), (B) nitrate (NO, uM), (C) ammonium (NH4 uM), and (D) silica (SiO, uM) in water
samples collected from the subsurface of the Lake Pontchartrain Estuary in 2021.
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detected across different stations (p > 0.05). Generally, silica levels
were highest during the winter months with pronounced decreases
noted in August and November (Figure 6D).

The N:P ratio varied significantly across different seasons (p<
0.05) but showed no significant variation across stations (p > 0.05).
A significant difference was observed between fall and summer; the
N:P ratios were lowest during summer, at 3.7:1, indicating nitrogen
limitation caused by biological uptake or a lack of external nitrogen
input due to low discharge levels. In contrast, the N:P ratios were
highest in the fall months at 21:1, suggesting phosphorus limitation
as a result of increased nitrogen input into the system from
freshwater discharge following Hurricane Ida (Figures 2, 6). Silica
exhibited similar patterns, peaking in spring due to the influx of
river water from the spillway leakage and in fall because of the influx
of freshwater from tributaries after the hurricane (Figure 6).

3.3 Phytoplankton biomass and community
composition

Temperature, nutrient availability, and turbidity all influence
seasonal trends in phytoplankton biomass. Phytoplankton biomass
ranged from 1.09 to 396 ug chl a L™, peaking in the summer and
fall, whereas the lowest levels were observed in winter and spring
(p< 0.0001) (Figure 7). Significant differences in biomass were also
noted among different sampling stations (p< 0.05), with the highest
levels recorded at station LP11 in August and September.

Diatoms, cryptophytes, and cyanobacteria primarily dominated
the phytoplankton community throughout all seasons (Figure 8A).
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Despite being fewer in number, diatoms accounted for over 25% of
the total biomass due to their larger size. Microscopic examination
revealed that the dominant diatom species included Skeletonema,
Melosira, and Thalassiosira. Cryptophytes represented 15% to 25%
of the community, featuring species such as Proteomonas and
Cryptomonas. During the warmer months, cyanobacteria made
up 25% to 30% of the community, with their higher abundance
attributed to their smaller size. Early in the year and early summer,
Microcystis was common, whereas in late summer and fall,
Dolichospermum became more predominant, although smaller
amounts of Microcystis were still present. Diatoms and
cyanobacteria exhibit an inverse relationship within the
community. During the winter and spring months, when diatoms
made up a larger part of the community, the amount of
cyanobacteria was low. Conversely, in the summer and early fall,
an increase in cyanobacteria was accompanied by a decrease in
diatom presence (Figure 8B).

3.4 Cyanobacteria biomass and toxicity

Cyanobacteria blooms (defined as PC RFU: CHL RFU > 1) were
observed throughout the estuary, with varying levels of biomass
(Figure 9). During winter, lower biomass was observed, reaching
only 18.8 + 6.7 ug PC L™ in February. In contrast, higher biomass
and corresponding toxin levels were recorded in the summer,
peaking at 963 + 630 pg PC L' in August (Figure 9). The
concentrations of microcystin toxins varied by season (p< 0.01)
and among different sampling stations (p< 0.0001). Additionally,
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Extracted chl a (ug L™) in samples collected from Lake Pontchartrain Estuary in 2021 corresponding to seasons: Winter (December, January,
February), Spring (March, April, May), Summer (June, July, August), and Fall (September, October, November).
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(A) The proportion of taxonomic groups making up the phytoplankton community across winter, spring, summer, and fall of 2021. Functional groups
include diatoms, chlorophytes, cryptophytes, cyanobacteria, dinoflagellates, and haptophytes. (B) Monthly proportion of the community for diatoms
and cyanobacteria taxonomic groups across Lake Pontchartrain Estuary in 2021.

the correlation between cyanobacteria biomass and toxin levels
(whether intracellular or extracellular) was not significant (p >
0.05), indicating the complex relationships between biomass and
toxin production.

The central region of the estuary (stations LP8 to LP11)
exhibited the highest concentrations of cyanobacteria biomass
during late summer and fall (ranging from 211 to 2,762 ug
PC L™"). Additional blooms were recorded in November (340 +
112 ug PCL™") and December (236 + 207 pg PC L™") at station LP6.
Stations influenced by northern tributary discharge (LP2 to LP5)
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reported higher levels of biomass and toxin compared with the Lake
Maurepas-influenced station LP1. Notably, stations farther from the
tributary inflow showed greater biomass during the
summer (Figure 9).

There was a significant difference between intracellular
microcystin and extracellular microcystin (p< 0.05). Intracellular
microcystin (IM) was detected alongside cyanobacteria and
generally stayed below the EPA threshold of 8 ug L™', except in
November at station LP6, where levels ranged from 37.8 to
47.1 ug L™". Higher IM levels were also observed in December at
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Phycocyanin: chlorophyll ratio (RFU) and microcystin toxin concentrations (ug L™ for stations. The dotted line at 1 represents the threshold for

cyanobacteria to become dominant.

LP6, with measurements ranging from 1.88 to 2.493 ug L7
Meanwhile, extracellular microcystin (EM) levels peaked in the
fall, averaging 0.0069 + 0.0155 pg L' (Figure 9). A significant
difference in toxin levels was observed between the spring and
summer months (p< 0.05), with summer levels being higher than
those in spring (Figure 9).
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3.5 Relationships between physical—
chemical conditions and CyanoHAB
formation

There was a clear connection between the presence of
cyanoHABs and the environmental conditions influenced by
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hydrological inputs in the estuary. The predictor variables showed
no collinearity; however, the multivariate linear regression analysis
untangled the relationships between the response variable
(cyanobacteria biomass) and the environmental predictor
variables. An interaction model was generated, which
demonstrated no significant interactions between the predictor
variables. Overall, cyanobacteria biomass varied significantly
during the summer months (p< 0.01) and at locations with
minimal tributary influence (e.g., LP14, p< 0.01).

A positive relationship was observed between temperature and
cyanobacteria biomass, indicating that higher temperatures
corresponded to increased cyanobacterial biomass (Figure 10A). In
contrast, as salinity increased, cyanobacteria biomass significantly
decreased, especially at stations influenced by tides (Figure 10B).
There was a notable and significant difference in phytoplankton
community (PC) during the summer months linked to salinity
(p< 0.05).

Additionally, a significant negative relationship was found between
biomass and NOx; when NO, levels were low, cyanobacteria biomass
was high and dominated by nitrogen-fixing species (Figure 10C, p<
0.05). There was no significant difference in SRP levels (Figure 10D),

10.3389/fmars.2025.1618353

which indicates that NOx is the primary nutrient controlling
cyanobacteria biomass. Cyanobacteria biomass was low when silica
levels were high in the system (Figure 10E, p< 0.05), highlighting the
complex nutrient dynamics that govern phytoplankton community
succession. During these times, diatoms were the dominant species in
the water.

While no significant relationship was established between
biomass and Secchi disk depth (Figure 10F), it was generally
noted that lower Secchi disk depths were associated with lower
biomass, suggesting potential light limitations in the water column.

Hydrological changes prior to bloom had a strong influence on
environmental conditions. The speed of water flow affects residence
time, which in turn impacts the formation and growth of blooms.
When overall surface water discharge into the estuary was high,
biomass levels tended to be low (Figure 10G). This suggests that
high rates and volumes of water inflow can alter nutrient and light
availability, thereby impacting cyanobacteria growth. Additionally,
there was no significant difference in cyanobacteria biomass in
response to wind speed (Figure 10H).

There was no significant correlation between toxin concentrations
and environmental conditions. A negative trend was observed between
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Linear regressions for the response variable (cyanobacteria biomass—phycocyanin), and predictor variables ran in the model include (A) temperature (°C),
(B) salinity, (C) NO,, (D) SRP, (E) Silica (SiO,), (F) Secchi disk depth (cm), (G) discharge (m®s7), and (H) wind speed (m/s).
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toxin concentration and silica levels (p< 0.10), corresponding to the
higher presence of cyanobacteria biomass in summer and early fall and
their absence in spring, where diatoms outcompete under high silica
conditions. A negative correlation was observed between cyanobacteria
biomass and the N:P ratio (p< 0.05), but no significant link was found
between microcystin toxin levels and the N:P ratio (p > 0.05). Nitrogen
was identified as the main nutrient influencing the differences observed
between spring and summer in terms of the N:P ratio. A similar
spring-summer distinction was observed in toxin levels and their
interaction with NOx (p< 0.05), whereas no significant relationship was
found with SRP (p > 0.05).

4 Discussion

CyanoHABs pose a serious threat to various freshwater and
estuarine ecosystems, impacting the health of both humans and
animals (Sukenik et al., 2015; Paerl, 2018; Zhang et al., 2022). There
is concern that the more commonly occurring spillway openings in
the Lake Pontchartrain Estuary (six openings between 2011 and
2020) due to alterations in seasonal patterns may foster more
frequent blooms in the estuary, which can adversely affect water
resources for fisheries and human health (Bargu et al., 2023).

Our study aimed to enhance our understanding of baseline
conditions when human-managed flood-control structures are not
in operation and to identify the seasonal physical factors that may
either contribute to or help mitigate the formation of cyanoHABs in
large, shallow, oligohaline estuaries, such as the Lake Pontchartrain
Estuary. The results indicated that tributary discharge and spillway
leakage provided sufficient nutrients during the non-BCS opening
year in the Lake Pontchartrain Estuary to support summer
cyanoHAB growth, contrary to previous assumptions that identified
the spillway as the primary nutrient source for these blooms (Snow
et al., 2023).

Earlier research has emphasized the unpredictable nature of
cyanoHAB occurrences in Lake Pontchartrain Estuary and shown
how the timing and duration of BCS operations can affect
cyanobacterial bloom development (White et al., 2009; Bargu
et al., 2011; Roy et al,, 2013; Bargu et al., 2023; Snow et al., 2023).
Seasonality is also a significant factor in determining which
phytoplankton assemblages dominate in these highly variable and
impacted systems (Bargu et al., 2011). High turbidity and low light
availability limit phytoplankton growth while the diversion is open,
despite the nutrient-rich conditions. When BCS opens in the spring,
diatoms and chlorophytes can frequently dominate spring blooms
in the estuary, whereas cyanobacteria typically dominate
phytoplankton communities during summer (Bargu et al., 2011).
When the spillway opens early in the year (as experienced in 2016,
with a January opening that lasted only briefly), a cyanobacterial
bloom either does not occur or develops later in the season (Sapkota
et al., 2023). Conversely, keeping the spillway open during summer,
as documented in 2019, creates more favorable conditions for
cyanobacterial growth after BCS closes compared with other
phytoplankton species. Factors contributing to this included
higher levels of bioavailable nutrients, warmer surface water
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temperatures, and lower turbidity (Bargu et al., 2023; Snow et al,,
2023). In our study, seasonal fluctuations in N:P ratios and changes
in silica levels offered insights into the dominance of key
phytoplankton groups, particularly diatoms and cyanobacteria.
We observed a shift from Microcystis in late spring and early
summer to Dolichospermum in July and August. Nitrogen
concentrations were low in July and August, likely promoting
nitrogen-fixing Dolichospermum. Additionally, low silica from
reduced summer discharge rates and earlier silica uptake by
diatoms, combined with higher temperatures, suppressed diatom
dominance and allowed cyanobacteria biomass to increase.

During the summer and fall of 2021, we observed high levels of
cyanobacteria biomass and toxins in the Lake Pontchartrain
Estuary. At times, these levels exceeded those recorded in
previous years when the BCS was operational (Bargu et al., 2019,
2023). The earlier openings of the spillway resulted in a significant
influx of nutrients; however, the rapid flow of water during this time
limited the growth of cyanobacteria during the opening. In non-
open years, productivity is driven by seasonal tributary discharges
and spillway leakage, which are much less impactful compared with
spillway input. During these times, bloom formation becomes
seasonal, responding to precipitation-driven discharge. Previous
research and our findings emphasize that seasonal environmental
changes, especially hydrologic variability, significantly influence the
development of cyanoHABs (Snow et al., 2023).

In 2021, Louisiana recorded its third-highest rainfall, which
significantly increased cyanobacterial biomass and toxin production
during the summer months due to the excess nutrients delivered by
high discharge levels. For instance, the elevated discharge from Lake
Maurepas resulted in lower cyanobacterial biomass at LP1, as the
increased water flow physically removed them and created less
favorable light conditions for growth. Conversely, despite lower
flow rates, northern tributaries provided sufficient nutrients to
support extensive and toxic blooms at stations LP2 to LP4 during
late summer. Notably, higher biomass levels were observed further
away from the mouths of the tributaries, where reduced water
velocities contributed to more favorable conditions for
cyanobacterial growth (Figures 1, 9).

Like the northern tributaries, the leakage from the spillway
provides essential nutrients that support cyanoHABs during the
summer months (Figures 2, 9; Snow et al, 2023). This leakage
typically occurs for several weeks in the spring or early summer
when the water level in the river exceeds the height of the spillway.
While typical leakage rates are less than 300 m* s™', they can
significantly increase during extended periods of river flooding
(Huang et al., 2020). Notably, in 2021, leakage rates surpassed 300
m® 57! between April 10th and April 18th. Increased toxin
production was observed at stations closer to the spillway inflow,
whereas those farther away exhibited reduced toxin levels. For
instance, station LP6, which is nearest to the spillway, experienced
two primary bloom cycles, whereas station LP12, the farthest from
the spillway, did not encounter any blooms throughout the year.
Additionally, the leakage from the BCS has a slower flow rate
compared with tributary discharge and possesses a longer
residence time. This study demonstrates that even in years when
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the spillway remains closed, the leakage still provides sufficient
nutrients to promote the growth of cyanoHABs, especially during
periods of elevated temperatures.

The seasonal variability of environmental conditions greatly
affects when and where cyanobacteria bloom. Cyanobacteria thrive
in water temperatures above 25°C, which gives them an advantage
in warmer conditions (Johnk et al., 2008). This study found that as
temperatures increased, the biomass of cyanobacteria also
increased. With warm temperatures continuing into the fall
months (averaging 21.1 + 3.29°C), higher levels of cyanobacteria
biomass persisted through November and December (Figure 9).
Salinity negatively affects cyanobacteria growth by impacting cell
development, the integrity of the plasma membrane, and the
photosynthetic process (Kononen and Nommann, 1992;
Moisander et al., 2002; Sinha et al., 2017). Additionally, tidal
influences can impact nutrient availability in the water system,
leading to decreased phosphorus and nitrate levels, which in turn
suppress the growth of cyanobacteria (Morse et al., 2014). In this
study, the site most affected by tides (LP14) did not experience any
cyanobacteria bloom throughout the year (Figure 9). The
production of cyanotoxins is not solely linked to changes in
environmental conditions; it involves a complex interplay of
various factors that warrants further detailed investigation.

Louisiana is most vulnerable to hurricanes during the late summer
months, specifically from August through October. Large-scale
disturbances, such as hurricanes, cause multiple changes, including
alterations in nutrient and light availability due to increased water
column mixing and sediment resuspension. Physical disruptions (e.g.,
mixing and physical transport) from forces such as wind and
discharge may occur immediately; however, it is challenging to
directly link these processes to cyanobacteria bloom formation due
to a lagged response (Wang et al., 2025). Previous studies have shown
that increased nutrient loading caused by wind-induced sediment
resuspension can stimulate HABs and worsen eutrophication (Zhu
et al,, 2014; Paerl, 2018). In August 2021, Hurricane Ida produced
high-energy winds that resuspended sediments, leading to an increase
in bioavailable phosphorus in late summer (Figure 6). However, this
also caused a short-term decrease in light availability, as shown by
reduced Secchi depth, which limited algal growth during the
hurricane. Conditions in early fall, following the hurricane,
improved for nitrogen-fixing Dolichospermum blooms due to calmer
waters, higher phosphorus levels resulting from resuspension,
increased nitrogen from high discharge, and warmer temperatures.
Previous research also noted the dominance of nitrogen-fixing
cyanobacteria in late summer (Bargu et al,, 2011). This suggests that
hurricanes can strongly influence the composition of cyanobacterial
harmful algal blooms by changing the nutrient pool’s stoichiometry.
In this case, the hurricane released P from sediments, which has been
shown to be a source of bioavailable P (Roy et al, 2017; White
et al,, 2019).

The changes in temperature and precipitation patterns caused
by climate change will significantly affect the prevalence and
distribution of cyanoHABs in the Lake Pontchartrain Estuary and
estuaries worldwide. Research conducted in 2012, the year when the
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TABLE 2 N:P ratio (nitrogen to phosphorus), residence time (days),
summer temperature (°C), and precipitation (cm) in the Lake
Pontchartrain Estuary for the years 2012 and 2021.

Year 2012 2021

N:P ratio 0.03:1 30:1

Residence time/tidal flushing time (days) = 28 to 51 days 22 to 42 days

Average summer temperature °C 23°C 30°C

Total precipitation (cm) 173 cm 204 cm

BCS was also closed, showed trends that differed from those
observed in 2021. In 2012, although cyanobacteria were present,
their toxicity and biomass levels were lower than those recorded in
2021 (Smith, 2014; this study). In 2012, lower discharge rates from
surrounding tributaries, resulting from low precipitation, created
nitrogen-limited conditions throughout the year (N:P< 16:1)
(Table 2). This condition favored nitrogen-fixing species when
phosphorus was available. In contrast, the high discharge rates in
2021 resulted in conditions where nitrogen was more readily
available, promoting proliferation and increased frequency of
cyanoHABs (N:P > 16:1) (Table 2). Furthermore, the higher
temperatures and increased precipitation in 2021 compared with
2012 contributed to the growth of cyanoHABs by altering residence
time and discharge rates, ultimately affecting nutrient availability
(Table 2). As global temperatures continue to rise and wet years
become more frequent, there is an increased likelihood that
cyanoHABs will exhibit higher biomass and toxicity in the future,
even during years when human-made operations do not introduce
excessive nutrient inputs.

5 Conclusion

This study offers valuable insights into the formation of
cyanoHABs, particularly in situations where physical processes
result in seasonal changes in nutrient availability and subsequent
biological responses. The occurrence of cyanoHABs varies
significantly with the seasons: N-fixing cyanobacteria blooms can
be triggered by hurricanes in the fall due to increased runoff and
phosphorus release from sediment resuspension. Spring watershed
discharge promotes the growth of other types of blooms, such as
diatoms, during the spring. CyanoHABs can thrive and become
more frequent and toxic in summer months as temperatures rise
and precipitation increases. This pattern highlights the ongoing
need for resource managers to monitor cyanoHABs, even when
human-controlled river inputs are removed, due to potential public
health risks.
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