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Marine heatwaves (MHWs) adversely impact Aotearoa New Zealand’s marine

ecosystems and pose challenges for resource management. In this study, we

evaluate forecast skill of monthly MHWs and sea surface temperature (SST)

anomalies using a multi-model ensemble (MME) comprised of nine general

circulation models and 206 members with a focus on Aotearoa New Zealand

for the first time. Over the hindcast period (1993–2016), the MME outperforms

individual models in forecasting SST anomalies around Aotearoa New Zealand,

based on its higher anomaly correlation coefficient (ACC) and lower root mean

square error (RMSE). The forecast skill of the MME varies seasonally, and is highest

for forecasts initialized between June and September and lowest from October

to December. Forecasts generally outperform persistence across all months and

lead times, except at certain lead times between September and December. The

background climate state also influences the MME skill, with higher accuracy

during El Niño for forecasts initialized from December to February and during La

Niña for certain lead times from March to August. Skill improves in spring under

neutral (normal) conditions. We also evaluate the MME’s skill in predicting MHW

events using a probabilistic framework. The MME retains skill up to two months

along Aotearoa New Zealand’s western coast and upper east North Island but has

negligible skill at four- and five-month lead times. Overall, these findings

highlight that MHW and SST can be forecasted with reliability, especially at one

and two months of lead time with important implications for marine

resource management.
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1 Introduction

Marine heatwaves (MHWs) are distinct and extended periods

of unusually warm water that have caused significant alterations in

marine ecosystems and the services they offer (e.g. fisheries and

aquaculture Hobday et al., 2016; Oliver et al., 2018, 2019; Smith

et al., 2021). These events have increased in frequency, duration,

and intensity over the past century (Oliver et al., 2018; Holbrook

et al., 2019). This pattern is expected to intensify with future climate

change (Behrens et al., 2022; Cornelissen et al., 2025), potentially

driving many marine species and ecosystems to the brink of their

thermal endurance (Oliver et al., 2019; Smale et al., 2019; Cheng

et al., 2025), including in the coastal zone (Thoral et al., 2022) where

a significant part of aquaculture occurs (Primavera, 2006).

Marine organisms, including commercially valuable species, are

highly sensitive to changes in ocean temperature, and therefore

MHWs have been associated with aquaculture loss globally (Smith

et al., 2021) and throughout Aoteroa New Zealand (Broekhuizen

et al., 2021; Rampal et al., 2023; Montie et al., 2024; Cook et al.,

2024; Cheng et al., 2025). Mussel aquaculture in the Pelorus Sound

is more productive under cooler sea surface temperature (SST)

(Zeldis et al., 2013), while higher sea surface temperature anomalies

(SSTA) tend to reduce mussel yields (Rampal et al., 2023). Farming

of Chinook salmon (Oncorynchus tshawytscha) has also suffered

with reduced productivity and higher mortality rates due to recent

MHWs (Cook et al., 2024). Knowledge of future SST conditions is

particularly important for Aoteroa New Zealand’s aquaculture

sector, which generated NZD$ 600 million in sales in 2018 and

has grown by an average of 7% annually since 2012. In addition, the

sector aims to increase its sales to NZD$ 3 billion by 2035 (Ministry

for Primary Industries, 2023). Thus, understanding and predicting

MHWs is therefore an important challenge for climate science and

marine resource management (Spillman et al., 2025).

Seasonal to sub-seasonal SST forecasts, generated using coupled

ocean-atmosphere general circulation models (GCMs), offer a

means to anticipate these events and provide early warnings

(Jacox et al., 2022; Stevens et al., 2022). The ocean-atmosphere

coupling between these models is essential for capturing large-scale

ocean-atmosphere variability and interactions, such as Western

Boundary Current variabilities (e.g. Santana et al., 2021), the

Indian Ocean Dipole and El Niño-Southern Oscillation (ENSO),

which are crucial for predictability at monthly to seasonal

timescales (Bi et al., 2013; Chaudhari et al., 2013; Johnson et al.,

2019; Wedd et al., 2022; Rampal et al., 2023; Hobeichi et al., 2024).

In addition, the skill of seasonal forecasts can vary with the

background climate state. For instance, de Burgh-Day et al.

(2022) found that SST anomaly forecast skill around Aotearoa

New Zealand depends on the season of initialization.

Additionally, Jacox et al. (2022) found that MHW forecast skill

depends on the season of initialization, and showed that global

MHW forecasts have a higher accuracy during active ENSO phases

(El Niño and La Niña).

Multi-model ensemble (MME) combines forecasts from

multiple independent GCMs and have been shown to outperform

single models in seasonal prediction by reducing systematic biases
Frontiers in Marine Science 02
and enhancing skill (Hagedorn et al., 2005; Fauchereau et al., 2022;

Jacox et al., 2022). This MME approach accounts for both initial

condition uncertainty and structural model uncertainty, leading to

more reliable probabilistic forecasts (Chaudhari et al., 2013;

MacLachlan et al., 2015a) and a better representation of

uncertainty in a seasonal forecast (Hagedorn et al., 2005;

Fauchereau et al., 2022). Previous evaluations of MHW forecasts

focused on Aotearoa New Zealand have often utilized ensembles

from single coupled models (e.g. de Burgh-Day et al., 2022), limiting

the assessment of model structural uncertainty.

In this study, we assess the forecast skill of a MME comprising

nine GCMs and 206 ensemble members in predicting SST

anomalies and MHWs around Aotearoa New Zealand, with lead

times of up to five months. Our analysis focuses on five key

aquaculture regions: Coromandel, Ōpōtiki Golden Bay, Pelorus

Sound (near entrance region), and Foveaux Strait (Figure 1). We

evaluate (i) deterministic forecast performance using anomaly

correlation coefficients (ACC) and root mean square error

(RMSE), and (ii) probabilistic MHW forecast skill using the

Symmetric Extremal Dependence Index (SEDI) (Ferro and

Stephenson, 2011; Jacox et al., 2022). In addition, we explore

seasonal variations in forecast skill, the influence of ENSO phases

(El Niño, La Niña, and Neutral), and spatial differences across

coastal regions.

This study builds on previous work by offering a regionally

focused evaluation with direct relevance to aquaculture operations

in Aotearoa New Zealand. It differs from Jacox et al. (2022) and de

Burgh-Day et al. (2022) by employing a larger ensemble of publicly

available models, stratifying forecast performance by ENSO phase,

and targeting specific aquaculture zones. While we acknowledge

that monthly temporal resolution and 0.25° spatial resolution are

not ideal for resolving fine-scale coastal variability, previous studies

have shown that low-resolution satellite SST products compare well

with in situ observations in Aotearoa New Zealand’s coastal waters

(e.g. Shears and Bowen, 2017; Chiswell and Grant, 2018; Montie

et al., 2024). Nevertheless, we also evaluate the MME SST forecast

against in situ data from two coastal stations: Leigh and Portbello

(Shears and Bowen, 2017; Cook et al., 2022) (Figure 1). Our findings

support the use of MME forecasts as a valuable early-warning tool

in regions with a relatively high connectivity with the nearby ocean

and/or as boundary input for higher-resolution regional models.
2 Methods

2.1 Observational datasets

We used the Optimum Interpolation Sea Surface Temperature

(OISST) v2.1 observational dataset produced by NOAA (Huang

et al., 2021). This product is available at 1/4° of spatial resolution

and at a daily frequency. OISST is treated as ground truth and is

used to evaluate the SST anomalies and MHW forecasts in this

study. OISST integrates observations from satellites, ships, buoys,

and Argo floats onto a grid, and accounts for platform variations

and sensor biases (Huang et al., 2021). Shears and Bowen (2017)
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compared OISST and in situ datasets from 1982 to 2016 in different

coastal regions of Aotearoa New Zealand, including estuarine

stations, and found high correlation coefficients (0.66–0.81). The

OISST data used in this study is subset around Aotearoa New

Zealand 30-50°S, and 161-181°W. This region is illustrated as a

black rectangle in Figure 1.

In addition to satellite-derived SST data, we evaluated the MME

forecast skill using in situ SST anomaly observations from two long-

term coastal monitoring stations: Leigh and Portobello (Shears and

Bowen, 2017; Cook et al., 2022). Leigh is located at the entrance of

Hauraki Gulf and is more exposed to offshore conditions, whereas

Portobello is situated within Otago Harbour, a narrow and shallow

estuarine system with limited oceanic exchange (Figure 1). We

anticipate that correlations between the MME and Portobello data

will be negatively impacted by the lack of estuarine representation

in GCMs. Daily SST in situ measurements have been collected at

9:00 AM at the sites since 1967 (Leigh) and 1953 (Portobello),

initially through manual sampling and, since the early 2000s, via

automated electronic sensors. For consistency with the model

output, the in situ data were aggregated to monthly means and

converted to anomalies by subtracting the monthly climatology

over the hindcast period. Linear de-trending was applied to all SST

anomaly observations and model outputs to reduce the effect of

temperature trends on model evaluation and MHW analysis (Smith

et al., 2025).

This study used the Niño 3.4 index to assess how MME forecast

skill varies across ENSO phases. El Niño months are defined as

those with sea surface temperature (SST) anomalies in the central

Pacific derived from a 5-month centred running mean exceeding

0.5°C, while La Niña months are defined as those with SST

anomalies below -0.5°C, all other months between –0.5, and 0.5°C
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are defined as neutral. These indices were obtained from NOAA

(https://psl.noaa.gov/data/correlation/nina34.anom.data, last access

on 7th of April 2025).
2.2 Multi-Model Ensemble

When assessing ensemble monthly forecasts, we evaluated the

hindcast period spanning from 1993 to 2016. The hindcast involves

running a GCM retrospectively using “true” initial conditions

typically derived from reanalysis data. In contrast, forecasts are

operational runs that utilize a slightly varied data assimilation

configuration, usually using a more limited amount of

observational data. Since the hindcast uses initial conditions from

reanalysis data, which incorporate more observations than

operational forecasts, it likely represents an upper bound on the

forecast skill. While the hindcast period (1993–2016) aligns with

Copernicus standards and previous studies (e.g. Jacox et al., 2022;

de Burgh-Day et al., 2022), we acknowledge that extending the

analysis to include operational forecasts post-2016 could offer

additional insights into model evolution and real-time

applicability. This will be explored in future work.

The monthly hindcast outputs are sourced from the Copernicus

Climate Data Store (CDS), established under the auspices of the

Copernicus Climate Change Service (C3S). The CDS collects

hindcast and forecast data generated by nine international

institutions, namely the European Centre for Medium-Range

Weather Forecas t s (ECMWF) , the Uni ted Kingdom

Meteorological Office (UKMO, UK), Météo-France (the French

Meteorological agency), The Deutscher Wetterdienst (DWD,

Germany), the Centro Euro-Mediterraneo sui Cambiamenti
FIGURE 1

Monthly mean Sea Surface Temperature (SST) anomaly in February 2016 (left panel) highlighting the study area around Aotearoa New Zealand (black
rectangle) and coastal regions (blue rectangles). Each SST grid point (blue circles in the right panels) mark the selected grid points used for multi-
model ensemble (MME) assessment near aquaculture regions in Coromandel and Ōpōtiki (top right), Golden Bay and Pelorus Sound (centre right),
and Foveaux Strait (bottom right). The green circles highlight Leigh (top right) and Portobello (bottom right) coastal stations with long-term in situ
measurements that were used for validation of the MME forecast.
frontiersin.org

https://psl.noaa.gov/data/correlation/nina34.anom.data
https://doi.org/10.3389/fmars.2025.1607806
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Santana et al. 10.3389/fmars.2025.1607806
Climatici (CMCC, Italy), the National Centers for Environmental

Prediction (NCEP, USA), the Japan Meteorological Agency (JMA,

Japan), and Environment and Climate Change Canada (ECCC)

which has two GCMs: ECCC-CanCM4i and ECCC-GEM5-NEMO.

Together, these GCMs constitute the multi-model ensemble

(MME). The period covering from 1993 to 2016 is considered

standard by C3S and it is used in several studies (e.g. Lledó et al.,

2020; Thornton et al., 2023).

The coarse resolution (1°) SST fields from all GCMs are

interpolated to the observational grid (0.25°), with land pixels as

defined in the observational dataset removed. Linear de-trending
Frontiers in Marine Science 04
was also applied to the individual members of each GCM. In total,

there are 206 ensemble members in the MME (across nine models).

A brief summary about the GCMs used in this study is presented

in Table 1.
2.3 Deterministic forecast validation

In this study, we evaluate the skill of SST anomaly forecasts in

nine GCMs during the hindcast period (1993-2016). The GCM

forecast are initialised around the 1st and the simulations are made

available around the 15th of each month. We downloaded the

forecasted SST data from one to five months of lead time. For

each GCM, we first compute a lead-time-dependent climatology of

SST across all ensemble members, spanning 1993–2016. SST

anomalies are then calculated relative to these climatologies for

each GCM member. The ensemble members for each GCM are

averaged to generate a deterministic prediction of SST anomalies

from each originating institution (e.g. ECMWF, Table 1).

Additionally, we compute a multi-model ensemble (MME) mean

by averaging all members of the deterministic forecasts from each

GCM following Jacox et al. (2022).

The skill of SST forecasts is evaluated using two metrics: the

anomaly correlation coefficient (ACC) and the root mean squared

error (RMSE). ACC and RMSE are defined as:

ACC = on
i=1(xi − x)(yi − y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − x)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − y)2
q ; (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(xi − yi)

2

r
; (2)

where observed (x) and predicted (y) SST anomalies are

compared at the same time and space (i=1,2,…,n) and against

averages (−) also applied in time and space, in the case of ACC

(Figure 2). In addition, we calculate the ACC (Equation 1) per
TABLE 1 Characteristics of the general circulation models (GCMs)
constituting the multi-model ensemble.

Originating
institution

General
circulation
model

Ensemble
size

Reference

ECMWF SEAS5 25
Johnson et al.

(2019)

UKMO GloSea6-GC3.2 28
MacLachlan
et al. (2015b)

Météo -France
Météo –France
System 8

25
Patterson et al.

(2025)

DWD GCFS 2.1 30
Deutscher

Wetterdienst
(2020)

CMCC CMCC-SPS3.5 40
Sanna et al.

(2017)

NCEP CFSv2 28
Saha et al.
(2014)

JMA JMA/MRI-CPS3 10
Hirahara et al.

(2023)

ECCC CanCM4i 10 Lin et al. (2020)

ECCC GEM5-NEMO 10 Lin (2020)
FIGURE 2

Anomaly correlation coefficient (ACC, left – larger values indicate more skill), and root mean square error (RMSE, right – smaller values indicate
more skill) of SST anomaly forecast over the Aotearoa New Zealand from 1993 to 2016. The black solid line represents the multi-model ensemble
(MME) mean, while coloured lines denote individual models. The red dashed line corresponds to a persistence forecast.
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month using spatial data (Figure 3). We use 1-month lead time

forecasts to calculate the spatial correlation with observations and

compare that with the ENSO index.

The RMSE (Equation 2) of model SST anomaly quantifies the

overall magnitude of forecast errors by measuring the average

deviation between predicted and observed SST values. The ACC

is a dimensionless metric ranging from -1 to 1 that evaluates the

agreement between forecasted and observed anomalies by

correlating their anomalies. Here, the ACC is computed across all

forecast initialization times and all spatial locations (latitudes and

longitudes), thus evaluating the temporal and spatial consistency of

the forecasts. The ACC is also computed as a function of season and

ENSO index.

The deterministic forecasts are also evaluated against a

persistence baseline. A persistence forecast uses observed SST

anomaly of the previous month (1st to the ∼30th) which is ∼15
days earlier compared to the same time as the forecasts are available.

In an operational setting, this is more realistic because the next ∼15
days future of observations are not available to compute the monthly

mean SST. For instance, a February MME forecast initialised on

January 1st is compared to a persistence forecast also generated on

January 1st using December’s (1st to the ∼30th) mean anomaly. The

persistence baseline used here assumes that SST anomalies remain

constant from the previous month, a method commonly used in

seasonal forecast benchmarking (e.g. Jacox et al., 2022).
2.4 MHW forecast evaluation

MHWs are defined as a period of warm ocean temperatures that

exceed the 90th percentile of local historical temperatures for that
Frontiers in Marine Science 05
specific time of the year for at least five days (Hobday et al., 2016).

In this work, we analyse monthly averages SST anomalies, therefore

we use an adapted version of the MHW definition which was

proposed by Jacox et al. (2022). They define MHWmonths as those

when SSTs exceed the 90th percentile for a given month based on a

climatology (e.g. 1993–2016 period). Due to the monthly resolution

of the forecast data, our MHW definition does not capture short-

duration events. This limitation is acknowledged and discussed

further in Section 4.

We evaluate month-mean forecasts of MHW events using both

the MME mean (deterministic approach) and a probabilistic

approach (Jacox et al., 2022). The deterministic approach uses the

MME mean and climatological 90th percentiles to define thresholds

that characterise MHW events. On the other hand, the probabilistic

method uses individual ensemble members and their specific 90th

percentiles. A binary forecast is derived for each member (0 = below

90th percentile, 1 = equal or above the 90th percentile) and the

probability of a MHW to occur is then calculated as the average of

these binary forecasts across all ensemble members of the multi-

model ensemble (206 members for the hindcast period).

The probabilistic MHW forecast fall anywhere between zero and

one, and an additional threshold (e.g. 0.2 or 20%) is needed (or

selected by individual decision-makers) to determine the presence or

not of a MHW event per forecasted grid point. The use of this

threshold allows for the binary re-classification of the probabilistic

forecast and for later evaluation. The probabilistic MHW differs from

the deterministic MHW forecast by providing the likelihood of

MHWevent to occur which assists decision-making by forecast users.

To evaluate the skill of MHW events produced by the MME

mean (deterministic) and the probabilistic MHW forecast, we use

the symmetric extremal dependency index (SEDI) (Ferro and
FIGURE 3

Multi-model ensemble (MME) mean sea surface temperature (SST) anomaly correlation coefficient (ACC) per month and per lead time (month). The
ACC is calculated between anomaly SST from OISST and the MME mean. Bold numbers represent ACC larger in the MME mean compared to the
persistence ACC. Non-bold numbers represent the opposite.
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Stephenson, 2011). The SEDI is defined as:

SEDI =
log   F − log  H − log   (1 − F) + log   (1 − H)
log   F + log  H + log   (1 − F) + log   (1 − H)

(3)

where F is the false alarm rate (ratio of false positives to total

observed non-events) and H is the hit rate (ratio of true positives to total

observed events). H = TP/(TP+FN) in which TP represents the total of

true positives and FN the total of false negatives given a selected

probability threshold (e.g. 0.2). F = FP/(FP+TN), FP is the total of

false positives and TN represents the total of true negatives (Ferro and

Stephenson, 2011). We calculate the SEDI (Equation 3) for different

probability thresholds: 0.05, 0.1, 0.2, and 0.3 (not shown), to determine

MHWevents and evaluate the probabilisticMHW forecast. SEDI scores

range from -1 (no skill) to 1 (perfect skill), and scores above (below) zero

indicate forecasts that are better (worse) than random chance.
3 Results

3.1 General SST anomaly forecast
evaluation

Statistical evaluation of the multi-model ensemble (MME)

mean demonstrates consistently higher skill in forecasting SST

anomalies around Aotearoa New Zealand in comparison with

that of any individual coupled model (Figure 2). Over the 1993–

2016 period, the MME mean ACC is greater than any individual

GCM mean at lead times of one to five months. This result aligns

with the well-established rationale that combining models tends to

improve seasonal forecast skill by averaging out individual model

errors (Hagedorn et al., 2005). We also find that the persistence

forecast of SST anomalies (observation from the previous month) is

worse than that of any single GCM at lead times beyond one month.

The MME root mean square error (RMSE) increases with lead

time, indicating growing forecast uncertainty (right panel in
Frontiers in Marine Science 06
Figure 2). However, the MME consistently achieves lower RMSE

values compared to any individual GCM, with errors starting

around 0.50°C at one-month lead time and rising to

approximately 0.55°C at five-month lead time. A RMSE of ∼0.5°C
is comparable to regional reanalyses SST errors (e.g. Santana et al.,

2020, 2023). The persistence forecast exhibits the highest RMSE,

exceeding 0.70°C at longer lead times. Overall, these results

demonstrate the advantage of multi-model ensembles in SST

forecasting, yielding improved correlation and reduced error

compared to individual models and persistence forecasts.

The decomposition of the ACC as a function of initialisation

month shows that there is strong seasonality in forecasting skill

(Figure 3). In general, the MME is more skillful than the persistence

forecast across most months and lead times (bold numbers in

Figure 3). The ACC of the MME mean tends to be greatest for

forecast initialized between June to September, when ACCs are

greater than 0.6 for lead time of one month and greater than 0.4 for

lead times between one and three months. From October to

December, the MME mean skill decreases for lead times greater

than one month and is outperformed by a persistence forecast.

February SST anomalies are the hardest to predict. Forecasts

initialised in September (5-month lead time) and January (1-

month lead time) have the lowest ACCs for the period analysed.

This lower ACC for February also occurs for forecasts initialised

between October and December. Forecast skill, however, with lead

time longer than a month, starts to improve again from January

onwards, when the ACC exceeds 0.4 in February.
3.2 Influence of ENSO on forecast skill

The ACC demonstrates interannual variability that is, at times,

aligned with phases of ENSO. Periods of elevated ENSO magnitude,

particularly during strong El Niño (e.g. 1997–1998, 2015–2016) and
FIGURE 4

Time series of monthly anomaly correlation coefficient (ACC; left axis, black and grey lines) at one-month lead time from the multi-model ensemble
(MME; black) and individual GCMs (grey lines), along with a five-month moving average of MME ACC (cyan line). The orange line shows the monthly
ENSO index (Niño 3.4 region, right axis), with red and blue horizontal lines indicating the ±0.5 thresholds for El Niño and La Niña events, respectively.
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La Niña events (1999 and 2008), coincide with enhanced forecast

skill (Figure 4). During these phases, the ACC frequently surpasses

0.6, indicating a more reliable predictive capability. This suggests

that ENSO conditions provide predictable large-scale signals.

Conversely, during neutral ENSO conditions (e.g. 228 2003-

2004), the forecast skill markedly decreases and the ACC reaches

values below 0.2 in a few events.

The seasonal dependency and the influence of different ENSO

phases on forecast skill (measured by ACC) are shown in Figure 5.

The top-left panel demonstrates forecast skill for the whole period

as parameter of comparison. As seen in Figure 3, forecasts

initialized during austral winter (JJA) and autumn (MAM) exhibit

the highest ACC values, especially at shorter lead times (1–2

months), reaching values as high as 0.68. Conversely, forecasts

initialized in austral spring (SON) have notably lower ACC,

frequently approaching zero at longer lead times.

When skill is stratified by ENSO phase, distinct patterns

emerge. During El Niño conditions, ACC values are enhanced for
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forecasts initialized in austral summer (DJF), when the ACC

reaches values above 0.5 at 1- and 3-month lead times. In

contrast, during La Niña conditions, the forecast skill (ACC

values) tend to be larger during the austral winter (JJA). The

ACC reaches the largest values (0.75) with one-month lead time

and 0.70 with three-month lead time in JJA. This reflects a robust

influence of La Niña in driving more predictable SST anomalies

from winter towards spring. During neutral ENSO conditions,

forecast skill is generally diminished in summer and winter but it

has the highest ACC values in spring (SON) from one- to three-

months lead time.
3.3 Forecast validation against in situ
observations

The comparison between satellite-derived SST (OISST) and

long-term in situ records provides an important baseline for
FIGURE 5

ACC of the Multi-model ensemble (MME) mean per season and ENSO index. El Niño or La Niña events occur with above or below 0.5 threshold,
respectively. A neutral phase occurs with ENSO index between ±0.5. The ACC is calculated between anomaly SST from OISST and the MME using
three months of data to increase sample size.
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evaluating the reliability of the MME forecasts at coastal sites. The

correlation coefficient between OISST and in situ data from 1993 to

2016 was 0.89 at Leigh and 0.63 at Portobello, values that are

consistent with those reported previously by Shears and Bowen

(2017) (0.81 and 0.69, respectively). Building on this baseline, we

next assess how well the MME forecasts capture SST anomalies

compared directly with in situ records.

Time series comparisons between MME forecasts, OISST, and

in situ SST anomalies highlight the strengths and limitations of the

ensemble forecast at coastal sites (Figure 6). At Leigh, the MME

closely tracks observed variability, often reproducing both the peaks

and troughs in the observed SST anomalies. This consistency is

reflected in high correlations with both OISST (ACC = 0.51) and in

situ observations (ACC = 0.53). It is worth noting that despite the

high correlation between in situ and satellite data, some large events

were not present in both datasets simultaneously. For instance, the
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large SST anomaly in January 1998 is present in the OISST data but

it was not captured by the in situ measurements which showed a

large peak in January 1999 instead (Figure 6).

At Portobello, the MME agreement with in situ data is much

weaker (ACC = 0.16), even though the correlation with OISST is

moderate (ACC = 0.47). This discrepancy indicates that while the

MME captures regional-scale variability, it does not fully resolve

local estuarine dynamics, as expected. The limitation is particularly

evident at Otago Harbour, a shallow and narrow estuary with

restricted oceanic exchange, where local surface heat fluxes exert

strong control on SST variability (Cook et al., 2022).

ACC results per lead time computed between MME forecasts,

OISST, and in situ SST anomalies at Leigh and Portobello highlight

the contrasting performance between an exposed region and a

highly constricted estuarine environment (Figure 7). At Leigh, the

MME forecast achieved correlations above 0.5 at one-month lead
FIGURE 6

Time series of observed Sea Surface Temperature (SST) anomaly from OISST (green lines), in situ data (red lines) and the MME mean with lead time
of one month (black lines) for Leigh and Portobello coastal stations (panels). The grey shade represents MME mean ±1 standard deviation. Each
panel title shows the ACC computed between OISST and in situ data with lead time of one month.
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time against both OISST and in situ data, consistently

outperforming the persistences across all lead times. In contrast,

forecast skill at Portobello was weaker: ACC values started below 0.5

against OISST and fell below 0.2 against in situ data (bold blue line

in Figure 7). Although the MME still outperformed the OISST

persistence baseline and produced results comparable to the in situ

persistence forecast, the low in situ persistence correlation reflect

the large temporal variability evident in Figure 6. The reduction in

skill is consistent with the influence of restricted exchange and local

heat flux in Otago Harbour, which are not resolved by coarse-

resolution GCMs. Overall, these findings demonstrate that the

MME is skillful at open-coast sites such as Leigh, but its

predictive capacity is reduced in estuarine systems, with

Portobello in Otago Harbour illustrating an extreme example of

these limitations.
3.4 Forecast skill near aquaculture regions

At the selected regions (or grid points) near aquaculture sites,

the MMEmean captures the variability of the SST anomalies during

most of the time analysed, except during large peaks (troughs), such

as high (low) SST anomalies in 1998 (2004). As a result, the MME

mean exhibits high forecast skill, with ACC values ranging between

0.47 and 0.54 at one-month lead time (Figure 8). Coromandel and

Ōpōtiki regions, located in the northeastern area, had the highest

ACC values (0.54 and 0.57 respectively), highlighting their stronger

link to large-scale and more predictable oceanographic processes.

Coromandel has a smaller

ACC compared to Ōpōtiki region, likely due to its location in a

more confined area and under riverine influence. Other stations

located near straits or influenced by freshwater inputs also exhibited

lower ACC values. Golden Bay had the lowest ACC (0.47). This

might be associated with its shallow average depth (∼40 m) and

river flow influences (Stevens et al., 2021) which makes its SST
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anomaly more difficult to predict using GCMs which cannot

account for these processes due to their coarse spatial resolution.

Pelorus Sound and Foveaux Strait, with ACC values of 0.52, indicate

skillful forecasts which can be related to the strong connectivity

with the nearby ocean (Walters et al., 2001, 2010; Stevens et al.,

2021). Despite the moderate to high ACC values, we acknowledge

that anomaly SST forecast values may differ from in situ

measurements at the actual aquaculture sites, especially if those

sites are located in regions with restricted exchange with

oceanic waters.

In addition to SST anomalies, the MME also provides skillful

predictions of MHW occurrence when compared to observations

(Figure 8). The time series show that observed MHW events (red

markers) are often reproduced by the deterministic MME forecast

(cyan markers), particularly in the late-1990s. Across all sites, the

SEDI values (0.52–0.59) indicate that the probabilistic MHW

forecasts are substantially better than random chance, with the

strongest skill again found in Ōpōtiki. Nevertheless, mismatches

still occur, including missed events (false negative) during extreme

peaks and false alarms at weaker anomalies (false positive) in the

mid-1990s and in 2008. These discrepancies underscore the value of

probabilistic forecasts, which convey the likelihood of MHW

occurrence and allow users to balance the risks of false alarms

against missed events in their decision-making processes (Jacox

et al., 2022).

Regional variations in forecast performance are also evident

when looking at forecast skill (ACC) at different lead times. For

instance, the Ōpōtiki region had relatively high forecast skill even at

longer lead times (ACC of about 0.4 at five-month lead) (Figure 9).

This is likely due to their exposure to predictable large-scale climate

signals such as ENSO. The Coromandel region also has high

forecast skill (0.4 ACC) at two-month lead time but it decreases

sharply with lead time which might be associated with its shallow

location and riverine influence. Golden Bay and Pelorus Sound

regions show moderate forecast skill, decreasing more sharply at
FIGURE 7

Anomaly correlation coefficient (ACC) comparing the multi-model ensemble (MME, solid lines) and persistence forecasts (dashed lines) against/from
OISST (black and red) or in situ data (blue and green). ACC is shown across different lead times (1–5 months) for Leigh and Portobello coastal
stations.
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longer leads, with ACC values below 0.3 at five months. These

regions are influenced by more localised coastal processes and they

are located near the less predictable position of the South Pacific

Subtropical Front which mark the encounter of two distinct water

masses (Behrens and Bostock, 2023) and tend to reduce the

predictability of SST anomalies. Moreover, Golden Bay has a

large seasonal temperature cycle that likely cause monthly SST

anomalies to be short-lived, meaning a persistence forecast

performs poorly beyond one or two months. Pelorus Sound, by

contrast, has a smaller seasonal cycle by being near Cook Strait

where ocean mixing dominates reduces temperature intra-annual

variability (Stevens, 2014; Stevens et al., 2021). Similarly, Foveaux

Strait shows moderate skill at short lead times, declining to around

0.3 by lead time of 5 months (Figure 9).
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3.5 Marine heatwave probabilistic forecast

We next evaluated the MME’s ability to predict MHWs using a

probabilistic framework. An example MHW forecast for the 1997–

98 El Niño period illustrates the capabilities of the system

(Figure 10). In December 1997, the MME forecast indicated an

elevated probability of a MHW developing to the north of Aotearoa

New Zealand one month ahead. The observations confirm that a

significant warm anomaly occurred, though it was more confined to

the northwest of the North Island than forecasted. With a two-

month lead (forecast issued in December for February 1998), the

MME correctly predicted the encroachment of a MHW along the

northeast coast of the North Island. The observed outcome in

February 1998 indeed showed MHW conditions along the
FIGURE 8

Time series of observed Sea Surface Temperature (SST) anomaly from OISST (green lines) and the MME mean with lead time of one month (black lines)
for different aquaculture regions (panels). The red (cyan) dotted lines represent MHW events classified using the OISST (MME). The grey shade represents
MME mean ±1 standard deviation. Each panel title shows the ACC computed between OISST and MME mean and SEDI score for MHW events with lead
time of one month. The total number of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) are also presented.
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northeast North Island and even further south along the east coast

of the South Island, exceeding the forecasted extent of 0.05

probability (Figure 10). This case demonstrates that the ensemble

can capture the general location and timing of MHW events a

month or two in advance, even when driven by an unusual strong

climate signal (in this case, the 97–98 unusual El Niño). Normally,

El Niño (La Niña) phases tend to generate colder (warmer) SST

anomalies around Aotearoa New Zealand (de Burgh-Day et al.,

2019; Gregory et al., 2024). Nevertheless, the MME was able to

accurately predict the occurrence and advance of that MHW event.

This was possible via data assimilation which provide accurate

model initial conditions and the MME strategy which cancels out

model physical errors/biases. Nevertheless, discrepancies in

placement and extent, still underline that uncertainty remains in

the exact details of the forecast MHW areas.
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Across the Aotearoa New Zealand domain, the MME’s

probabilistic forecasts show positive SEDI scores at short lead

times, indicating better-than-random prediction of MHW

occurrence (Figure 11). Skill is highest for lead times of 1–2

months, with SEDI values often in the range of 0.3–0.6 in many

regions when using a moderate probability threshold (e.g. 10%

chance of MHW) to issue an event forecast. Certain areas,

particularly off the northeastern coast and parts of the Tasman

Sea west of Aotearoa New Zealand, achieve the highest SEDI,

suggesting that MHWs in these locations are tied to more

predictable large-scale oceanographic conditions. At longer lead

times (4–5 months), SEDI values drop toward zero or even become

slightly negative in places, implying little to no skill by 4–5 months

lead—a pattern consistent with the loss of SST anomaly correlation

over those horizons. Nevertheless, SEDI scores were all above 0.15
FIGURE 9

Anomaly correlation coefficient (ACC) comparing the multi-model ensemble (MME, black solid lines) and persistence forecasts (red dashed lines)
across different lead times (1–5 months) for key aquaculture regions around Aotearoa New Zealand.
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near all aquaculture regions for all lead times using a threshold of

0.1 (Table 2).

Table 2 summarises the results across the five aquaculture

regions. Deterministic metrics (ACC and RMSE) confirm that

MME SST anomaly forecasts are most skillful at short lead times

(1–2 months). For instance, Ōpōtiki consistently achieve the highest

ACC values at 1-month lead time (0.57), while also maintaining

relatively low RMSE values, indicating both high correlation and

reduced magnitude of errors. Golden Bay and Coromandel exhibit

slightly higher RMSE/lower skill overall, possibly reflecting the

influence of localised coastal processes not fully resolved at the

model’s 0.25° spatial resolution. Pelorus Sound and Foveaux Strait

showed intermediate skill probably due their location in straits with

increased mixing and less surface heat flux influence. Forecast skill

declines progressively with lead time across all regions, with ACC

values dropping below 0.38 and RMSE exceeding 0.50 by month 5,

highlighting the challenge of accurate seasonal prediction at

longer horizons.

Probabilistic MHW forecasts, evaluated using the symmetric

extremal dependence index (SEDI), display a similar lead-time

dependence, with the highest scores generally occurring for lower

probability thresholds (0.05 and 0.1) and shorter lead times, where

SEDI values exceed 0.6 for several sites. Conversely, higher

thresholds (0.2) maintained high SEDI scores with increasing lead

time (Table 2).

A closer examination of the temporal variability of the

probabilistic forecasts highlights their ability to signal elevated

likelihoods during several observed MHW events across

aquaculture sub-regions, though with varying levels of success.

For example, between 1998 and 2002 in Coromandel region, the
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probabilistic forecast frequently issued >20% probability of MHW

conditions in the coming month, aligning with several observed

MHW occurrences (Figure 12). In contrast, at a more temperate

southern region like Foveaux Strait, the MHW forecasts were less

confident—probabilities rarely exceeded 20% except during known

extreme events—yielding a lower SEDI, though still largely above

zero. These region-specific results suggest that forecasting extreme

warmth is most effective in regions where MHWs are usually

extensions of broad regional anomalies (e.g. north-eastern

regions). Conversely, in places where MHWs are shorter and

driven by more localised weather fluctuations, the MME forecast

system has reduced skill. Nonetheless, even a probabilistic

indication of elevated risk (for instance, a forecast of > 10%

chance of MHW) can provide aquaculture operations with

valuable information prior to extreme heat events.

When compared with the deterministic forecasts shown in

Figure 8, the probabilistic approach yields broadly consistent skill

using a 0.1 probability threshold (Figure 12). The probabilistic

forecast generated a larger (smaller) number of true positive (false

negative) compared to the deterministic approach. However, it

resulted in a higher number of false positive counts, yielding

similar SEDI scores to the deterministic approach. The

probabilistic forecasts provide important additional context by

clarifying some of the mismatches between observed and

deterministic MHW predictions. In several cases where the

deterministic forecast either missed an event or produced a false

alarm, the probabilistic forecast instead assigned intermediate

probabilities (e.g. 5–10%), signalling uncertainty rather than a

strict yes/no outcome. Nevertheless, a combined deterministic

and probabilistic MHW forecast framework offers both a clear
FIGURE 10

Marine heatwave (MHW) probabilistic forecast (left-hand column), observed Sea Surface Temperature anomalies (central column) and observed
MHW (1). The contours of the MHW probabilistic forecast (right-hand column) are shown for January 1998 (top row, lead time = 1 month) and
February 1998 (bottom row, lead time = 2 months). The contours in the first and last columns represent 0.2 (20%, purple contour), 0.1 (10%, white
contour) and 0.05 (5%, red contour) probability of MHW occurrence.
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binary signal and gradations of risk, providing a more flexible and

practical basis for decision-making in aquaculture and

coastal management.
4 Discussion

The results illustrate the advantages of using a multi-model

ensemble (MME) approach for predicting sea surface temperature

(SST) anomalies and marine heatwave (MHW) occurrences around

Aotearoa New Zealand. Consistent with previous research
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(Hagedorn et al., 2005; Jacox et al., 2022; Fauchereau et al., 2022),

the MME demonstrated higher skill (higher ACC and lower RMSE)

compared to forecasts from a single GCM and persistence forecasts

across most lead times and regions near aquaculture sites. These

improvements arise primarily from the ensemble’s ability to reduce

systematic biases and uncertainties inherent in individual models

(Chaudhari et al., 2013; MacLachlan et al., 2015a).

The MME forecast skill displayed a marked seasonal variability,

being notably higher during forecasts initialised between June and

August (austral winter) compared to September through December

(austral spring and early summer). The reduced skill during the
FIGURE 11

Symmetric External Dependency Index (SEDI) of the marine heatwave (MHW) forecast using probabilistic thresholds of 0.05 (or 5%, left column), 0.1
(or 10%, centre column), and 0.2 (or 20%, right column) to determine occurrence of MHWs. Lead time grows from the bottom row (1 month) to the
top row (5-month lead time).
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latter period is consistent with previous findings by de Burgh-Day

et al. (2022), reflecting decreased ocean-atmosphere coupling and

higher atmospheric variability during these months. Importantly,

forecast performance was notably linked to the state of the El Niño–

Southern Oscillation (ENSO). During La Niña, the forecast skill is

improved in winter compared to the whole period analysis.

Conversely, during El Niño phases, the forecast increased its

performance in summer. During neutral phases, the MME

forecast had improved performance during spring months.

Results discriminated by seasons and ENSO phases provide more
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information on the forecast skill compared to a single separation

into active ENSO (El Niño and La Niña) vs neutral state shown in

Jacox et al. (2022). However, Jacox et al. (2022) focused on

analysing the influence of ENSO on the predictability of global

MHWs, and a clear understanding of Aotearoa New Zealand’s

waters wasn’t their focus.

While Jacox et al. (2022) provided a global assessment of MHW

forecast skill, our study offers region-specific insights that extend

those findings in meaningful ways for Aotearoa New Zealand. By

stratifying forecast skill by ENSO phase and season, we identified
TABLE 2 Multi-model ensemble (MME) SST anomaly forecast skill summary.

ACC 1 month 2 months 3 months 4 months 5 months

Coromandel 0.54 0.43 0.36 0.32 0.28

Ōpōtiki 0.57 0.51 0.44 0.40 0.37

Golden Bay 0.47 0.40 0.35 0.31 0.25

Pelorus Sound 0.52 0.41 0.36 0.32 0.27

Foveaux Strait 0.52 0.42 0.40 0.37 0.34
RMSE 1 month 2 months 3 months 4 months 5 months

Coromandel 0.54 0.57 0.59 0.60 0.61

Ōpōtiki 0.49 0.51 0.53 0.54 0.55

Golden Bay 0.54 0.56 0.57 0.58 0.60

Pelorus Sound 0.49 0.53 0.54 0.55 0.56

Foveaux Strait 0.47 0.50 0.50 0.51 0.51
SEDI (0.05) 1 month 2 months 3 months 4 months 5 months

Coromandel 0.51 0.37 0.07 0.06 0.08

Ōpōtiki 0.48 0.37 0.36 0.39 0.10

Golden Bay 0.64 0.42 0.27 0.06 0.08

Pelorus Sound 0.64 0.44 0.24 0.14 -0.03

Foveaux Strait 0.49 0.28 0.46 0.28 0.15
SEDI (0.1) 1 month 2 months 3 months 4 months 5 months

Coromandel 0.52 0.44 0.32 0.26 0.15

Ōpōtiki 0.57 0.40 0.35 0.31 0.32

Golden Bay 0.60 0.55 0.40 0.28 0.27

Pelorus Sound 0.65 0.44 0.35 0.33 0.23

Foveaux Strait 0.48 0.38 0.40 0.45 0.35
SEDI (0.2) 1 month 2 months 3 months 4 months 5 months

Coromandel 0.56 0.38 0.39 0.39 0.48

Ōpōtiki 0.53 0.48 0.51 0.45 0.52

Golden Bay 0.51 0.52 0.36 0.47 0.40

Pelorus Sound 0.51 0.56 0.48 0.44 0.41

Foveaux Strait 0.47 0.41 0.38 0.24 0.44
Anomaly correlation coeficient (ACC) and root mean square error (RMSE) were calculated between monthly observed and MME SST anomalies using different lead times (months). The
probabilistic marine heatwave (MHW) forecast was evaluated against observed MHW (binary) events using the symmetric external dependency index (SEDI) with different probability threshold
(0.05, 0.1 and 0.2) for binary re-characterisation. The maximum SEDI score is 1, and scores above (below) zero indicate forecasts that are better (worse) than random chance (Ferro and
Stephenson, 2011).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1607806
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Santana et al. 10.3389/fmars.2025.1607806
distinct “windows of opportunity”, such as austral winter under La

Niña conditions and spring under neutral conditions that are

directly relevant to aquaculture operations. These seasonal

patterns enable stakeholders to adjust confidence in forecasts

based on the prevailing climate state, supporting more informed

decisions around harvest timing, risk mitigation, and resource

allocation. Furthermore, our spatially resolved evaluation across

key aquaculture regions reveals variability in skill that is masked in

global averages (e.g. Jacox et al., 2022), underscoring the need for

localized forecast products (Spillman et al., 2025). These findings

demonstrate that the added ensemble size and ENSO-phase

breakdown are not merely methodological enhancements, but

provide actionable knowledge for coastal management in

Aotearoa New Zealand.
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Forecast evaluation using in situ data from Leigh and Portobello

underscores the resolution-dependent limitations. At Leigh, a

station with open connection with the ocean, high correlations

between MME, OISST, and in situ data confirm that large-scale

signals dominate. However, in Portobello, a station located in the

narrow Otago Harbour, the reduced skill demonstrates the

importance of fine-scale estuarine dynamics unresolved at coarse

model resolution. These results provide a quantitative basis for the

resolution caveat noted earlier and suggest that integrating high-

resolution regional models would further improve coastal

forecast applications.

Spatial variability in forecast skill was significant, with regions

influenced by large-scale climate signals (e.g. Ōpōtiki and

Coromandel) showing higher skill compared to those dominated
FIGURE 12

Time series of observed Sea Surface Temperature (SST) anomaly (°C) from OISST (black lines and left-hand y-axis) and observed marine heatwave
(MHW) events (red dotted lines) for different aquaculture regions (panels). MHW probabilistic forecast (lead time of one month and right-hand y-axis)
are show in different colours. Green, blue, orange, and magenta represent <0.05 (<5%), >0.05 (>5%), >0.1 (>10%), and >0.2 (>20%) probability of
MHW (black lines). Each panel title shows the SEDI computed using a probabilistic threshold of 0.1 with one month of forecast lead time and the
total number of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) counts.
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by local processes, such as freshwater inflows or coastal currents

(e.g. Golden Bay, Pelorus Sound, Foveaux Strait). The higher

predictability at regions like Ōpōtiki aligns well with previous

studies that emphasize the role of ENSO-driven SST variability in

the western and northeastern regions of Aotearoa New Zealand (de

Burgh-Day et al., 2019). In contrast, lower predictability in areas

such as Golden Bay could be attributed to shallow waters, river

discharge, and strong seasonal temperature cycles (Stevens et al.,

2022), factors typically challenging for coupled climate models to

accurately represent. This suggests the need for application of

downscaled physical simulations to more accurately predict these

coastal processes (e.g. Santana et al., 2023, 2025). Operational use of

MME forecasts should be preceded by validation against in situ

data, especially in regions with limited oceanic exchange.

It is worth noting that SST anomalies analysed in this study are

monthly averaged, whereas daily variability can generate higher

temperature extremes that may be more impactful for marine

organisms and aquaculture operations. While our use of monthly

SST averages enables consistent evaluation across models and lead

times, it inherently limits the detection of short-duration marine

heatwave events. These transient but ecologically significant events

may be missed in our framework, and future work should explore

higher-frequency forecasts or downscaled regional models to

address this gap. This also highlights the importance of having

regional high-frequency ocean forecasts for more accurate

predictions (Spillman et al., 2025).

Marine heatwave forecasts evaluated using the Symmetric

Extremal Dependence Index (SEDI) indicate that the MME has

significant predictive skill, especially at shorter lead times (1–2

months), consistent with global assessments of marine heatwave

predictability (Jacox et al., 2022). On average, however, the skill

declines beyond three months (SEDI < 0.4). Spatially, higher SEDI

values were found around the northern and northeastern coasts,

affirming these regions’ responsiveness to predictable ENSO-related

SST anomalies (de Burgh-Day et al., 2019). Moreover, SEDI scores

were all positive (better-than-random prediction) near all

aquaculture regions for all lead times using a threshold greater

than 0.1. These results emphasise the value of probabilistic

forecasts, at moderate confidence predictions (10% threshold) can

inform proactive management decisions in aquaculture sectors

facing elevated thermal stress risk (Smith et al., 2021; Cook

et al., 2024).
5 Conclusion

This study assessed the predictive skill of a multi-model

ensemble (MME) for seasonal forecasting of sea surface

temperatures (SST) anomalies and marine heatwave (MHW)

events around Aotearoa New Zealand. The MME consistently

outperformed individual models and persistence forecasts,

emphasising the benefit of combining multiple general circulation

models (GCMs) to improve forecast reliability. Forecast skill
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exhibited clear seasonal and spatial variability, with the highest

accuracy found during winter initialisations and in northern

regions more influenced by predictable climate drivers,

notably ENSO.

For regional aquaculture management, the MME offers

substantial value, particularly at one- and two-month lead times,

enabling early-warning strategies and proactive mitigation of MHW

impacts. However, the decline in forecast skill at longer lead times,

lack of coastal processes (e.g. tides and riverine input), and model

coarse spatial resolution highlight the continuing challenges faced

by seasonal forecasting systems. Future work should further explore

the integration of regional downscaling approaches and more

detailed physical-biological coupled models to enhance the

prediction of aquaculture productivity directly linked to

SST variability.
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