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Marine heatwaves (MHWs) adversely impact Aotearoa New Zealand's marine
ecosystems and pose challenges for resource management. In this study, we
evaluate forecast skill of monthly MHWs and sea surface temperature (SST)
anomalies using a multi-model ensemble (MME) comprised of nine general
circulation models and 206 members with a focus on Aotearoa New Zealand
for the first time. Over the hindcast period (1993-2016), the MME outperforms
individual models in forecasting SST anomalies around Aotearoa New Zealand,
based on its higher anomaly correlation coefficient (ACC) and lower root mean
square error (RMSE). The forecast skill of the MME varies seasonally, and is highest
for forecasts initialized between June and September and lowest from October
to December. Forecasts generally outperform persistence across all months and
lead times, except at certain lead times between September and December. The
background climate state also influences the MME skill, with higher accuracy
during ELl Nifio for forecasts initialized from December to February and during La
Nifa for certain lead times from March to August. Skill improves in spring under
neutral (normal) conditions. We also evaluate the MME's skill in predicting MHW
events using a probabilistic framework. The MME retains skill up to two months
along Aotearoa New Zealand's western coast and upper east North Island but has
negligible skill at four- and five-month lead times. Overall, these findings
highlight that MHW and SST can be forecasted with reliability, especially at one
and two months of lead time with important implications for marine
resource management.
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1 Introduction

Marine heatwaves (MHWs) are distinct and extended periods
of unusually warm water that have caused significant alterations in
marine ecosystems and the services they offer (e.g. fisheries and
aquaculture Hobday et al., 2016; Oliver et al., 2018, 2019; Smith
et al,, 2021). These events have increased in frequency, duration,
and intensity over the past century (Oliver et al., 2018; Holbrook
etal,, 2019). This pattern is expected to intensify with future climate
change (Behrens et al., 2022; Cornelissen et al., 2025), potentially
driving many marine species and ecosystems to the brink of their
thermal endurance (Oliver et al., 2019; Smale et al., 2019; Cheng
etal,, 2025), including in the coastal zone (Thoral et al., 2022) where
a significant part of aquaculture occurs (Primavera, 2006).

Marine organisms, including commercially valuable species, are
highly sensitive to changes in ocean temperature, and therefore
MHWSs have been associated with aquaculture loss globally (Smith
et al,, 2021) and throughout Aoteroa New Zealand (Broekhuizen
et al.,, 2021; Rampal et al., 2023; Montie et al., 2024; Cook et al.,
2024; Cheng et al., 2025). Mussel aquaculture in the Pelorus Sound
is more productive under cooler sea surface temperature (SST)
(Zeldis et al., 2013), while higher sea surface temperature anomalies
(SSTA) tend to reduce mussel yields (Rampal et al., 2023). Farming
of Chinook salmon (Oncorynchus tshawytscha) has also suffered
with reduced productivity and higher mortality rates due to recent
MHWSs (Cook et al., 2024). Knowledge of future SST conditions is
particularly important for Aoteroa New Zealand’s aquaculture
sector, which generated NZD$ 600 million in sales in 2018 and
has grown by an average of 7% annually since 2012. In addition, the
sector aims to increase its sales to NZD$ 3 billion by 2035 (Ministry
for Primary Industries, 2023). Thus, understanding and predicting
MHWs is therefore an important challenge for climate science and
marine resource management (Spillman et al., 2025).

Seasonal to sub-seasonal SST forecasts, generated using coupled
ocean-atmosphere general circulation models (GCMs), offer a
means to anticipate these events and provide early warnings
(Jacox et al., 2022; Stevens et al., 2022). The ocean-atmosphere
coupling between these models is essential for capturing large-scale
ocean-atmosphere variability and interactions, such as Western
Boundary Current variabilities (e.g. Santana et al., 2021), the
Indian Ocean Dipole and El Nifo-Southern Oscillation (ENSO),
which are crucial for predictability at monthly to seasonal
timescales (Bi et al.,, 2013; Chaudhari et al., 2013; Johnson et al.,
2019; Wedd et al.,, 2022; Rampal et al., 2023; Hobeichi et al., 2024).
In addition, the skill of seasonal forecasts can vary with the
background climate state. For instance, de Burgh-Day et al.
(2022) found that SST anomaly forecast skill around Aotearoa
New Zealand depends on the season of initialization.
Additionally, Jacox et al. (2022) found that MHW forecast skill
depends on the season of initialization, and showed that global
MHW forecasts have a higher accuracy during active ENSO phases
(El Nifio and La Nifa).

Multi-model ensemble (MME) combines forecasts from
multiple independent GCMs and have been shown to outperform
single models in seasonal prediction by reducing systematic biases

Frontiers in Marine Science

10.3389/fmars.2025.1607806

and enhancing skill (Hagedorn et al., 2005; Fauchereau et al., 2022;
Jacox et al.,, 2022). This MME approach accounts for both initial
condition uncertainty and structural model uncertainty, leading to
more reliable probabilistic forecasts (Chaudhari et al., 2013;
MacLachlan et al.,, 2015a) and a better representation of
uncertainty in a seasonal forecast (Hagedorn et al., 2005;
Fauchereau et al., 2022). Previous evaluations of MHW forecasts
focused on Aotearoa New Zealand have often utilized ensembles
from single coupled models (e.g. de Burgh-Day et al,, 2022), limiting
the assessment of model structural uncertainty.

In this study, we assess the forecast skill of a MME comprising
nine GCMs and 206 ensemble members in predicting SST
anomalies and MHWs around Aotearoa New Zealand, with lead
times of up to five months. Our analysis focuses on five key
aquaculture regions: Coromandel, Opétiki Golden Bay, Pelorus
Sound (near entrance region), and Foveaux Strait (Figure 1). We
evaluate (i) deterministic forecast performance using anomaly
correlation coefficients (ACC) and root mean square error
(RMSE), and (ii) probabilistic MHW forecast skill using the
Symmetric Extremal Dependence Index (SEDI) (Ferro and
Stephenson, 2011; Jacox et al., 2022). In addition, we explore
seasonal variations in forecast skill, the influence of ENSO phases
(El Nino, La Nina, and Neutral), and spatial differences across
coastal regions.

This study builds on previous work by offering a regionally
focused evaluation with direct relevance to aquaculture operations
in Aotearoa New Zealand. It differs from Jacox et al. (2022) and de
Burgh-Day et al. (2022) by employing a larger ensemble of publicly
available models, stratifying forecast performance by ENSO phase,
and targeting specific aquaculture zones. While we acknowledge
that monthly temporal resolution and 0.25° spatial resolution are
not ideal for resolving fine-scale coastal variability, previous studies
have shown that low-resolution satellite SST products compare well
with in situ observations in Aotearoa New Zealand’s coastal waters
(e.g. Shears and Bowen, 2017; Chiswell and Grant, 2018; Montie
et al.,, 2024). Nevertheless, we also evaluate the MME SST forecast
against in situ data from two coastal stations: Leigh and Portbello
(Shears and Bowen, 2017; Cook et al., 2022) (Figure 1). Our findings
support the use of MME forecasts as a valuable early-warning tool
in regions with a relatively high connectivity with the nearby ocean
and/or as boundary input for higher-resolution regional models.

2 Methods
2.1 Observational datasets

We used the Optimum Interpolation Sea Surface Temperature
(OISST) v2.1 observational dataset produced by NOAA (Huang
et al, 2021). This product is available at 1/4° of spatial resolution
and at a daily frequency. OISST is treated as ground truth and is
used to evaluate the SST anomalies and MHW forecasts in this
study. OISST integrates observations from satellites, ships, buoys,
and Argo floats onto a grid, and accounts for platform variations
and sensor biases (Huang et al., 2021). Shears and Bowen (2017)

frontiersin.org


https://doi.org/10.3389/fmars.2025.1607806
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Santana et al.

10.3389/fmars.2025.1607806

Month mean SST anomaly for Feb 2016

30°s

2.7
33°s

18
36°S

0.9
39°s

0.0
42°s

-0.9
45°s

-1.8
48°S

=27

170°E

FIGURE 1

SST anomaly (°C)

Zoomed in regions and stations

36.25°S [N
36.5°S ¢
36.75°S X
37°S 4

e2?

\
r Opo

175°E 176°E 177°E 178°E

174°E

172.5°E 173.5°E 174.5°E 175.5°E
45.5°s -
46°5
46.5°S R
a7°s
47.5°S

165°E 167°E 169°E 171°E

Monthly mean Sea Surface Temperature (SST) anomaly in February 2016 (left panel) highlighting the study area around Aotearoa New Zealand (black
rectangle) and coastal regions (blue rectangles). Each SST grid point (blue circles in the right panels) mark the selected grid points used for multi-
model ensemble (MME) assessment near aquaculture regions in Coromandel and Opotiki (top right), Golden Bay and Pelorus Sound (centre right),
and Foveaux Strait (bottom right). The green circles highlight Leigh (top right) and Portobello (bottom right) coastal stations with long-term in situ

measurements that were used for validation of the MME forecast.

compared OISST and in situ datasets from 1982 to 2016 in different
coastal regions of Aotearoa New Zealand, including estuarine
stations, and found high correlation coefficients (0.66-0.81). The
OISST data used in this study is subset around Aotearoa New
Zealand 30-50°S, and 161-181°W. This region is illustrated as a
black rectangle in Figure 1.

In addition to satellite-derived SST data, we evaluated the MME
forecast skill using in situ SST anomaly observations from two long-
term coastal monitoring stations: Leigh and Portobello (Shears and
Bowen, 2017; Cook et al., 2022). Leigh is located at the entrance of
Hauraki Gulf and is more exposed to offshore conditions, whereas
Portobello is situated within Otago Harbour, a narrow and shallow
estuarine system with limited oceanic exchange (Figure 1). We
anticipate that correlations between the MME and Portobello data
will be negatively impacted by the lack of estuarine representation
in GCMs. Daily SST in situ measurements have been collected at
9:00 AM at the sites since 1967 (Leigh) and 1953 (Portobello),
initially through manual sampling and, since the early 2000s, via
automated electronic sensors. For consistency with the model
output, the in situ data were aggregated to monthly means and
converted to anomalies by subtracting the monthly climatology
over the hindcast period. Linear de-trending was applied to all SST
anomaly observations and model outputs to reduce the effect of
temperature trends on model evaluation and MHW analysis (Smith
et al., 2025).

This study used the Nifio 3.4 index to assess how MME forecast
skill varies across ENSO phases. El Niflo months are defined as
those with sea surface temperature (SST) anomalies in the central
Pacific derived from a 5-month centred running mean exceeding
0.5°C, while La Nifia months are defined as those with SST
anomalies below -0.5°C, all other months between -0.5, and 0.5°C
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are defined as neutral. These indices were obtained from NOAA
(https://psl.noaa.gov/data/correlation/nina34.anom.data, last access
on 7" of April 2025).

2.2 Multi-Model Ensemble

When assessing ensemble monthly forecasts, we evaluated the
hindcast period spanning from 1993 to 2016. The hindcast involves
running a GCM retrospectively using “true” initial conditions
typically derived from reanalysis data. In contrast, forecasts are
operational runs that utilize a slightly varied data assimilation
configuration, usually using a more limited amount of
observational data. Since the hindcast uses initial conditions from
reanalysis data, which incorporate more observations than
operational forecasts, it likely represents an upper bound on the
forecast skill. While the hindcast period (1993-2016) aligns with
Copernicus standards and previous studies (e.g. Jacox et al., 2022;
de Burgh-Day et al, 2022), we acknowledge that extending the
analysis to include operational forecasts post-2016 could offer
additional insights into model evolution and real-time
applicability. This will be explored in future work.

The monthly hindcast outputs are sourced from the Copernicus
Climate Data Store (CDS), established under the auspices of the
Copernicus Climate Change Service (C3S). The CDS collects
hindcast and forecast data generated by nine international
institutions, namely the European Centre for Medium-Range
Weather Forecasts (ECMWF), the United Kingdom
Meteorological Office (UKMO, UK), Meétéo-France (the French
Meteorological agency), The Deutscher Wetterdienst (DWD,
Germany), the Centro Euro-Mediterraneo sui Cambiamenti
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TABLE 1 Characteristics of the general circulation models (GCMs)
constituting the multi-model ensemble.

o General
Originating : : Ensemble
I circulation ’ Reference
institution size
model
hns 1.
ECMWE SEAS5 25 Johnson et a
(2019)
UKMO GloSea6-GC3.2 28 MacLachlan
et al. (2015b)
Météo -France Meteo —France 25 Patterson et al.
System 8 (2025)
Deutscher
DWD GCFS 2.1 30 Wetterdienst
(2020)
Sanna et al.
CMCC CMCC-SPS3.5 40
(2017)
NCEP CFSv2 28 Saba et al
(2014)
Hirahara et al.
JMA JMA/MRI-CPS3 10 franars et d
(2023)
ECCC CanCM4i 10 Lin et al. (2020)
ECCC GEM5-NEMO 10 Lin (2020)

Climatici (CMCC, Italy), the National Centers for Environmental
Prediction (NCEP, USA), the Japan Meteorological Agency (JMA,
Japan), and Environment and Climate Change Canada (ECCC)
which has two GCMs: ECCC-CanCM4i and ECCC-GEM5-NEMO.
Together, these GCMs constitute the multi-model ensemble
(MME). The period covering from 1993 to 2016 is considered
standard by C3S and it is used in several studies (e.g. Lledo et al.,
2020; Thornton et al., 2023).

The coarse resolution (1°) SST fields from all GCMs are
interpolated to the observational grid (0.25°), with land pixels as
defined in the observational dataset removed. Linear de-trending

10.3389/fmars.2025.1607806

was also applied to the individual members of each GCM. In total,
there are 206 ensemble members in the MME (across nine models).
A brief summary about the GCMs used in this study is presented
in Table 1.

2.3 Deterministic forecast validation

In this study, we evaluate the skill of SST anomaly forecasts in
nine GCMs during the hindcast period (1993-2016). The GCM
forecast are initialised around the 1% and the simulations are made
available around the 15" of each month. We downloaded the
forecasted SST data from one to five months of lead time. For
each GCM, we first compute a lead-time-dependent climatology of
SST across all ensemble members, spanning 1993-2016. SST
anomalies are then calculated relative to these climatologies for
each GCM member. The ensemble members for each GCM are
averaged to generate a deterministic prediction of SST anomalies
from each originating institution (e.g. ECMWE, Table 1).
Additionally, we compute a multi-model ensemble (MME) mean
by averaging all members of the deterministic forecasts from each
GCM following Jacox et al. (2022).

The skill of SST forecasts is evaluated using two metrics: the
anomaly correlation coefficient (ACC) and the root mean squared
error (RMSE). ACC and RMSE are defined as:

ShE-00i-)
VL =R S -

RMSE = |/ 5 (5 - )% @

where observed (x) and predicted (y) SST anomalies are

ACC =

(1)

compared at the same time and space (i=1,2,...,n) and against
averages () also applied in time and space, in the case of ACC
(Figure 2). In addition, we calculate the ACC (Equation 1) per
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Anomaly correlation coefficient (ACC, left — larger values indicate more skill), and root mean square error (RMSE, right — smaller values indicate
more skill) of SST anomaly forecast over the Aotearoa New Zealand from 1993 to 2016. The black solid line represents the multi-model ensemble
(MME) mean, while coloured lines denote individual models. The red dashed line corresponds to a persistence forecast.
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Multi-model ensemble (MME) mean sea surface temperature (SST) anomaly correlation coefficient (ACC) per month and per lead time (month). The
ACC is calculated between anomaly SST from OISST and the MME mean. Bold numbers represent ACC larger in the MME mean compared to the

persistence ACC. Non-bold numbers represent the opposite.

month using spatial data (Figure 3). We use 1-month lead time
forecasts to calculate the spatial correlation with observations and
compare that with the ENSO index.

The RMSE (Equation 2) of model SST anomaly quantifies the
overall magnitude of forecast errors by measuring the average
deviation between predicted and observed SST values. The ACC
is a dimensionless metric ranging from -1 to 1 that evaluates the
agreement between forecasted and observed anomalies by
correlating their anomalies. Here, the ACC is computed across all
forecast initialization times and all spatial locations (latitudes and
longitudes), thus evaluating the temporal and spatial consistency of
the forecasts. The ACC is also computed as a function of season and
ENSO index.

The deterministic forecasts are also evaluated against a
persistence baseline. A persistence forecast uses observed SST
anomaly of the previous month (1st to the ~30th) which is ~15
days earlier compared to the same time as the forecasts are available.
In an operational setting, this is more realistic because the next ~15
days future of observations are not available to compute the monthly
mean SST. For instance, a February MME forecast initialised on
January 1st is compared to a persistence forecast also generated on
January 1st using December’s (1st to the ~30th) mean anomaly. The
persistence baseline used here assumes that SST anomalies remain
constant from the previous month, a method commonly used in
seasonal forecast benchmarking (e.g. Jacox et al., 2022).

2.4 MHW forecast evaluation

MHWs are defined as a period of warm ocean temperatures that
exceed the 90" percentile of local historical temperatures for that
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specific time of the year for at least five days (Hobday et al., 2016).
In this work, we analyse monthly averages SST anomalies, therefore
we use an adapted version of the MHW definition which was
proposed by Jacox et al. (2022). They define MHW months as those
when SSTs exceed the 90" percentile for a given month based on a
climatology (e.g. 1993-2016 period). Due to the monthly resolution
of the forecast data, our MHW definition does not capture short-
duration events. This limitation is acknowledged and discussed
further in Section 4.

We evaluate month-mean forecasts of MHW events using both
the MME mean (deterministic approach) and a probabilistic
approach (Jacox et al., 2022). The deterministic approach uses the
MME mean and climatological 90 percentiles to define thresholds
that characterise MHW events. On the other hand, the probabilistic
method uses individual ensemble members and their specific 90"
percentiles. A binary forecast is derived for each member (0 = below
90™ percentile, 1 = equal or above the 90™ percentile) and the
probability of a MHW to occur is then calculated as the average of
these binary forecasts across all ensemble members of the multi-
model ensemble (206 members for the hindcast period).

The probabilistic MHW forecast fall anywhere between zero and
one, and an additional threshold (e.g. 0.2 or 20%) is needed (or
selected by individual decision-makers) to determine the presence or
not of a MHW event per forecasted grid point. The use of this
threshold allows for the binary re-classification of the probabilistic
forecast and for later evaluation. The probabilistic MHW differs from
the deterministic MHW forecast by providing the likelihood of
MHW event to occur which assists decision-making by forecast users.

To evaluate the skill of MHW events produced by the MME
mean (deterministic) and the probabilistic MHW forecast, we use
the symmetric extremal dependency index (SEDI) (Ferro and
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Time series of monthly anomaly correlation coefficient (ACC; left axis, black and grey lines) at one-month lead time from the multi-model ensemble
(MME; black) and individual GCMs (grey lines), along with a five-month moving average of MME ACC (cyan line). The orange line shows the monthly
ENSO index (Nifio 3.4 region, right axis), with red and blue horizontal lines indicating the +0.5 thresholds for El Nifio and La Nifia events, respectively.

Stephenson, 2011). The SEDI is defined as:

log F-log H-log (1-F)+log (1-H)

EDI =
S log F+log H+log (1-F)+log (1-H)

3)

where F is the false alarm rate (ratio of false positives to total
observed non-events) and H is the hit rate (ratio of true positives to total
observed events). H = TP/(TP+FN) in which TP represents the total of
true positives and FN the total of false negatives given a selected
probability threshold (e.g. 0.2). F = FP/(FP+TN), FP is the total of
false positives and TN represents the total of true negatives (Ferro and
Stephenson, 2011). We calculate the SEDI (Equation 3) for different
probability thresholds: 0.05, 0.1, 0.2, and 0.3 (not shown), to determine
MHW events and evaluate the probabilistic MHW forecast. SEDI scores
range from -1 (no skill) to 1 (perfect skill), and scores above (below) zero
indicate forecasts that are better (worse) than random chance.

3 Results

3.1 General SST anomaly forecast
evaluation

Statistical evaluation of the multi-model ensemble (MME)
mean demonstrates consistently higher skill in forecasting SST
anomalies around Aotearoa New Zealand in comparison with
that of any individual coupled model (Figure 2). Over the 1993-
2016 period, the MME mean ACC is greater than any individual
GCM mean at lead times of one to five months. This result aligns
with the well-established rationale that combining models tends to
improve seasonal forecast skill by averaging out individual model
errors (Hagedorn et al., 2005). We also find that the persistence
forecast of SST anomalies (observation from the previous month) is
worse than that of any single GCM at lead times beyond one month.

The MME root mean square error (RMSE) increases with lead
time, indicating growing forecast uncertainty (right panel in
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Figure 2). However, the MME consistently achieves lower RMSE
values compared to any individual GCM, with errors starting
around 0.50°C at one-month lead time and rising to
approximately 0.55°C at five-month lead time. A RMSE of ~0.5°C
is comparable to regional reanalyses SST errors (e.g. Santana et al.,
2020, 2023). The persistence forecast exhibits the highest RMSE,
exceeding 0.70°C at longer lead times. Overall, these results
demonstrate the advantage of multi-model ensembles in SST
forecasting, yielding improved correlation and reduced error
compared to individual models and persistence forecasts.

The decomposition of the ACC as a function of initialisation
month shows that there is strong seasonality in forecasting skill
(Figure 3). In general, the MME is more skillful than the persistence
forecast across most months and lead times (bold numbers in
Figure 3). The ACC of the MME mean tends to be greatest for
forecast initialized between June to September, when ACCs are
greater than 0.6 for lead time of one month and greater than 0.4 for
lead times between one and three months. From October to
December, the MME mean skill decreases for lead times greater
than one month and is outperformed by a persistence forecast.
February SST anomalies are the hardest to predict. Forecasts
initialised in September (5-month lead time) and January (1-
month lead time) have the lowest ACCs for the period analysed.
This lower ACC for February also occurs for forecasts initialised
between October and December. Forecast skill, however, with lead
time longer than a month, starts to improve again from January
onwards, when the ACC exceeds 0.4 in February.

3.2 Influence of ENSO on forecast skill
The ACC demonstrates interannual variability that is, at times,

aligned with phases of ENSO. Periods of elevated ENSO magnitude,
particularly during strong El Nifo (e.g. 1997-1998, 2015-2016) and
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La Nifa events (1999 and 2008), coincide with enhanced forecast
skill (Figure 4). During these phases, the ACC frequently surpasses
0.6, indicating a more reliable predictive capability. This suggests
that ENSO conditions provide predictable large-scale signals.
Conversely, during neutral ENSO conditions (e.g. 228 2003-
2004), the forecast skill markedly decreases and the ACC reaches
values below 0.2 in a few events.

The seasonal dependency and the influence of different ENSO
phases on forecast skill (measured by ACC) are shown in Figure 5.
The top-left panel demonstrates forecast skill for the whole period
as parameter of comparison. As seen in Figure 3, forecasts
initialized during austral winter (JJA) and autumn (MAM) exhibit
the highest ACC values, especially at shorter lead times (1-2
months), reaching values as high as 0.68. Conversely, forecasts
initialized in austral spring (SON) have notably lower ACC,
frequently approaching zero at longer lead times.

When skill is stratified by ENSO phase, distinct patterns
emerge. During El Nifio conditions, ACC values are enhanced for
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forecasts initialized in austral summer (DJF), when the ACC
reaches values above 0.5 at 1- and 3-month lead times. In
contrast, during La Nifla conditions, the forecast skill (ACC
values) tend to be larger during the austral winter (JJA). The
ACC reaches the largest values (0.75) with one-month lead time
and 0.70 with three-month lead time in JJA. This reflects a robust
influence of La Nifia in driving more predictable SST anomalies
from winter towards spring. During neutral ENSO conditions,
forecast skill is generally diminished in summer and winter but it
has the highest ACC values in spring (SON) from one- to three-
months lead time.

3.3 Forecast validation against in situ
observations

The comparison between satellite-derived SST (OISST) and
long-term in situ records provides an important baseline for
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of one month (black lines) for Leigh and Portobello coastal stations (panels). The grey shade represents MME mean +1 standard deviation. Each
panel title shows the ACC computed between OISST and in situ data with lead time of one month.

evaluating the reliability of the MME forecasts at coastal sites. The
correlation coefficient between OISST and in situ data from 1993 to
2016 was 0.89 at Leigh and 0.63 at Portobello, values that are
consistent with those reported previously by Shears and Bowen
(2017) (0.81 and 0.69, respectively). Building on this baseline, we
next assess how well the MME forecasts capture SST anomalies
compared directly with in situ records.

Time series comparisons between MME forecasts, OISST, and
in situ SST anomalies highlight the strengths and limitations of the
ensemble forecast at coastal sites (Figure 6). At Leigh, the MME
closely tracks observed variability, often reproducing both the peaks
and troughs in the observed SST anomalies. This consistency is
reflected in high correlations with both OISST (ACC = 0.51) and in
situ observations (ACC = 0.53). It is worth noting that despite the
high correlation between in situ and satellite data, some large events
were not present in both datasets simultaneously. For instance, the
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large SST anomaly in January 1998 is present in the OISST data but
it was not captured by the in situ measurements which showed a
large peak in January 1999 instead (Figure 6).

At Portobello, the MME agreement with in situ data is much
weaker (ACC = 0.16), even though the correlation with OISST is
moderate (ACC = 0.47). This discrepancy indicates that while the
MME captures regional-scale variability, it does not fully resolve
local estuarine dynamics, as expected. The limitation is particularly
evident at Otago Harbour, a shallow and narrow estuary with
restricted oceanic exchange, where local surface heat fluxes exert
strong control on SST variability (Cook et al., 2022).

ACC results per lead time computed between MME forecasts,
OISST, and in situ SST anomalies at Leigh and Portobello highlight
the contrasting performance between an exposed region and a
highly constricted estuarine environment (Figure 7). At Leigh, the
MME forecast achieved correlations above 0.5 at one-month lead
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Anomaly correlation coefficient (ACC) comparing the multi-model ensemble (MME, solid lines) and persistence forecasts (dashed lines) against/from
OISST (black and red) or in situ data (blue and green). ACC is shown across different lead times (1-5 months) for Leigh and Portobello coastal

stations.

time against both OISST and in situ data, consistently
outperforming the persistences across all lead times. In contrast,
forecast skill at Portobello was weaker: ACC values started below 0.5
against OISST and fell below 0.2 against in situ data (bold blue line
in Figure 7). Although the MME still outperformed the OISST
persistence baseline and produced results comparable to the in situ
persistence forecast, the low in situ persistence correlation reflect
the large temporal variability evident in Figure 6. The reduction in
skill is consistent with the influence of restricted exchange and local
heat flux in Otago Harbour, which are not resolved by coarse-
resolution GCMs. Overall, these findings demonstrate that the
MME is skillful at open-coast sites such as Leigh, but its
predictive capacity is reduced in estuarine systems, with
Portobello in Otago Harbour illustrating an extreme example of
these limitations.

3.4 Forecast skill near aquaculture regions

At the selected regions (or grid points) near aquaculture sites,
the MME mean captures the variability of the SST anomalies during
most of the time analysed, except during large peaks (troughs), such
as high (low) SST anomalies in 1998 (2004). As a result, the MME
mean exhibits high forecast skill, with ACC values ranging between
0.47 and 0.54 at one-month lead time (Figure 8). Coromandel and
Opotiki regions, located in the northeastern area, had the highest
ACC values (0.54 and 0.57 respectively), highlighting their stronger
link to large-scale and more predictable oceanographic processes.
Coromandel has a smaller

ACC compared to Opatiki region, likely due to its location in a
more confined area and under riverine influence. Other stations
located near straits or influenced by freshwater inputs also exhibited
lower ACC values. Golden Bay had the lowest ACC (0.47). This
might be associated with its shallow average depth (~40 m) and
river flow influences (Stevens et al., 2021) which makes its SST
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anomaly more difficult to predict using GCMs which cannot
account for these processes due to their coarse spatial resolution.
Pelorus Sound and Foveaux Strait, with ACC values of 0.52, indicate
skillful forecasts which can be related to the strong connectivity
with the nearby ocean (Walters et al., 2001, 20105 Stevens et al.,
2021). Despite the moderate to high ACC values, we acknowledge
that anomaly SST forecast values may differ from in situ
measurements at the actual aquaculture sites, especially if those
sites are located in regions with restricted exchange with
oceanic waters.

In addition to SST anomalies, the MME also provides skillful
predictions of MHW occurrence when compared to observations
(Figure 8). The time series show that observed MHW events (red
markers) are often reproduced by the deterministic MME forecast
(cyan markers), particularly in the late-1990s. Across all sites, the
SEDI values (0.52-0.59) indicate that the probabilistic MHW
forecasts are substantially better than random chance, with the
strongest skill again found in Opétiki. Nevertheless, mismatches
still occur, including missed events (false negative) during extreme
peaks and false alarms at weaker anomalies (false positive) in the
mid-1990s and in 2008. These discrepancies underscore the value of
probabilistic forecasts, which convey the likelihood of MHW
occurrence and allow users to balance the risks of false alarms
against missed events in their decision-making processes (Jacox
et al., 2022).

Regional variations in forecast performance are also evident
when looking at forecast skill (ACC) at different lead times. For
instance, the Opotiki region had relatively high forecast skill even at
longer lead times (ACC of about 0.4 at five-month lead) (Figure 9).
This is likely due to their exposure to predictable large-scale climate
signals such as ENSO. The Coromandel region also has high
forecast skill (0.4 ACC) at two-month lead time but it decreases
sharply with lead time which might be associated with its shallow
location and riverine influence. Golden Bay and Pelorus Sound
regions show moderate forecast skill, decreasing more sharply at
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longer leads, with ACC values below 0.3 at five months. These
regions are influenced by more localised coastal processes and they
are located near the less predictable position of the South Pacific
Subtropical Front which mark the encounter of two distinct water
masses (Behrens and Bostock, 2023) and tend to reduce the
predictability of SST anomalies. Moreover, Golden Bay has a
large seasonal temperature cycle that likely cause monthly SST
anomalies to be short-lived, meaning a persistence forecast
performs poorly beyond one or two months. Pelorus Sound, by
contrast, has a smaller seasonal cycle by being near Cook Strait
where ocean mixing dominates reduces temperature intra-annual
variability (Stevens, 2014; Stevens et al., 2021). Similarly, Foveaux
Strait shows moderate skill at short lead times, declining to around
0.3 by lead time of 5 months (Figure 9).
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3.5 Marine heatwave probabilistic forecast

We next evaluated the MME’s ability to predict MHWSs using a
probabilistic framework. An example MHW forecast for the 1997-
98 El Nifio period illustrates the capabilities of the system
(Figure 10). In December 1997, the MME forecast indicated an
elevated probability of a MHW developing to the north of Aotearoa
New Zealand one month ahead. The observations confirm that a
significant warm anomaly occurred, though it was more confined to
the northwest of the North Island than forecasted. With a two-
month lead (forecast issued in December for February 1998), the
MME correctly predicted the encroachment of a MHW along the
northeast coast of the North Island. The observed outcome in
February 1998 indeed showed MHW conditions along the
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FIGURE 9

Anomaly correlation coefficient (ACC) comparing the multi-model ensemble (MME, black solid lines) and persistence forecasts (red dashed lines)
across different lead times (1-5 months) for key aquaculture regions around Aotearoa New Zealand.

northeast North Island and even further south along the east coast
of the South Island, exceeding the forecasted extent of 0.05
probability (Figure 10). This case demonstrates that the ensemble
can capture the general location and timing of MHW events a
month or two in advance, even when driven by an unusual strong
climate signal (in this case, the 97-98 unusual El Nifio). Normally,
El Nifo (La Nifia) phases tend to generate colder (warmer) SST
anomalies around Aotearoa New Zealand (de Burgh-Day et al,
2019; Gregory et al,, 2024). Nevertheless, the MME was able to
accurately predict the occurrence and advance of that MHW event.
This was possible via data assimilation which provide accurate
model initial conditions and the MME strategy which cancels out
model physical errors/biases. Nevertheless, discrepancies in
placement and extent, still underline that uncertainty remains in
the exact details of the forecast MHW areas.
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Across the Aotearoa New Zealand domain, the MME’s
probabilistic forecasts show positive SEDI scores at short lead
times, indicating better-than-random prediction of MHW
occurrence (Figure 11). Skill is highest for lead times of 1-2
months, with SEDI values often in the range of 0.3-0.6 in many
regions when using a moderate probability threshold (e.g. 10%
chance of MHW) to issue an event forecast. Certain areas,
particularly off the northeastern coast and parts of the Tasman
Sea west of Aotearoa New Zealand, achieve the highest SEDI,
suggesting that MHWSs in these locations are tied to more
predictable large-scale oceanographic conditions. At longer lead
times (4-5 months), SEDI values drop toward zero or even become
slightly negative in places, implying little to no skill by 4-5 months
lead—a pattern consistent with the loss of SST anomaly correlation
over those horizons. Nevertheless, SEDI scores were all above 0.15
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Marine heatwave (MHW) probabilistic forecast (left-hand column), observed Sea Surface Temperature anomalies (central column) and observed
MHW (1). The contours of the MHW probabilistic forecast (right-hand column) are shown for January 1998 (top row, lead time = 1 month) and
February 1998 (bottom row, lead time = 2 months). The contours in the first and last columns represent 0.2 (20%, purple contour), 0.1 (10%, white

contour) and 0.05 (5%, red contour) probability of MHW occurrence.

near all aquaculture regions for all lead times using a threshold of
0.1 (Table 2).

Table 2 summarises the results across the five aquaculture
regions. Deterministic metrics (ACC and RMSE) confirm that
MME SST anomaly forecasts are most skillful at short lead times
(1-2 months). For instance, Opatiki consistently achieve the highest
ACC values at 1-month lead time (0.57), while also maintaining
relatively low RMSE values, indicating both high correlation and
reduced magnitude of errors. Golden Bay and Coromandel exhibit
slightly higher RMSE/lower skill overall, possibly reflecting the
influence of localised coastal processes not fully resolved at the
model’s 0.25° spatial resolution. Pelorus Sound and Foveaux Strait
showed intermediate skill probably due their location in straits with
increased mixing and less surface heat flux influence. Forecast skill
declines progressively with lead time across all regions, with ACC
values dropping below 0.38 and RMSE exceeding 0.50 by month 5,
highlighting the challenge of accurate seasonal prediction at
longer horizons.

Probabilistic MHW forecasts, evaluated using the symmetric
extremal dependence index (SEDI), display a similar lead-time
dependence, with the highest scores generally occurring for lower
probability thresholds (0.05 and 0.1) and shorter lead times, where
SEDI values exceed 0.6 for several sites. Conversely, higher
thresholds (0.2) maintained high SEDI scores with increasing lead
time (Table 2).

A closer examination of the temporal variability of the
probabilistic forecasts highlights their ability to signal elevated
likelihoods during several observed MHW events across
aquaculture sub-regions, though with varying levels of success.
For example, between 1998 and 2002 in Coromandel region, the

Frontiers in Marine Science

12

probabilistic forecast frequently issued >20% probability of MHW
conditions in the coming month, aligning with several observed
MHW occurrences (Figure 12). In contrast, at a more temperate
southern region like Foveaux Strait, the MHW forecasts were less
confident—probabilities rarely exceeded 20% except during known
extreme events—yielding a lower SEDI, though still largely above
zero. These region-specific results suggest that forecasting extreme
warmth is most effective in regions where MHWSs are usually
extensions of broad regional anomalies (e.g. north-eastern
regions). Conversely, in places where MHWSs are shorter and
driven by more localised weather fluctuations, the MME forecast
system has reduced skill. Nonetheless, even a probabilistic
indication of elevated risk (for instance, a forecast of > 10%
chance of MHW) can provide aquaculture operations with
valuable information prior to extreme heat events.

When compared with the deterministic forecasts shown in
Figure 8, the probabilistic approach yields broadly consistent skill
using a 0.1 probability threshold (Figure 12). The probabilistic
forecast generated a larger (smaller) number of true positive (false
negative) compared to the deterministic approach. However, it
resulted in a higher number of false positive counts, yielding
similar SEDI scores to the deterministic approach. The
probabilistic forecasts provide important additional context by
clarifying some of the mismatches between observed and
deterministic MHW predictions. In several cases where the
deterministic forecast either missed an event or produced a false
alarm, the probabilistic forecast instead assigned intermediate
probabilities (e.g. 5-10%), signalling uncertainty rather than a
strict yes/no outcome. Nevertheless, a combined deterministic
and probabilistic MHW forecast framework offers both a clear
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top row (5-month lead time).

binary signal and gradations of risk, providing a more flexible and
practical basis for decision-making in aquaculture and
coastal management.

4 Discussion

The results illustrate the advantages of using a multi-model
ensemble (MME) approach for predicting sea surface temperature
(SST) anomalies and marine heatwave (MHW) occurrences around
Aotearoa New Zealand. Consistent with previous research
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(Hagedorn et al., 2005; Jacox et al., 2022; Fauchereau et al., 2022),
the MME demonstrated higher skill (higher ACC and lower RMSE)
compared to forecasts from a single GCM and persistence forecasts
across most lead times and regions near aquaculture sites. These
improvements arise primarily from the ensemble’s ability to reduce
systematic biases and uncertainties inherent in individual models
(Chaudhari et al., 2013; MacLachlan et al., 2015a).

The MME forecast skill displayed a marked seasonal variability,
being notably higher during forecasts initialised between June and
August (austral winter) compared to September through December
(austral spring and early summer). The reduced skill during the

frontiersin.org


https://doi.org/10.3389/fmars.2025.1607806
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Santana et al.

TABLE 2 Multi-model ensemble (MME) SST anomaly forecast skill summary.

10.3389/fmars.2025.1607806

ACC 1 month 2 months 3 months 4 months 5 months
Coromandel 0.54 0.43 0.36 0.32 0.28
Opétiki 0.57 0.51 0.44 0.40 0.37
Golden Bay 0.47 0.40 0.35 0.31 0.25
Pelorus Sound 0.52 0.41 0.36 0.32 0.27
Foveaux Strait 0.52 0.42 0.40 0.37 0.34

Coromandel 0.54 0.57 0.59 0.60 0.61

Opétiki 0.49 0.51 0.53 0.54 0.55

Golden Bay 0.54 0.56 0.57 0.58 0.60

Pelorus Sound 0.49 0.53 0.54 0.55 0.56

Foveaux Strait 0.47 0.50 0.50 0.51 0.51

SEDI (0.05) 1 month 2 months 3 months 4 months 5 months
Coromandel 0.51 0.37 0.07 0.06 0.08

Opétiki 0.48 0.37 0.36 0.39 0.10

Golden Bay 0.64 0.42 0.27 0.06 0.08

Pelorus Sound 0.64 0.44 0.24 0.14 -0.03

Foveaux Strait 0.49 0.28 0.46 0.28 0.15

SEDI (0.1) 1 month 2 months 3 months 4 months 5 months
Coromandel 0.52 0.44 0.32 0.26 0.15

Opotiki 0.57 0.40 0.35 0.31 0.32

Golden Bay 0.60 0.55 0.40 0.28 0.27

Pelorus Sound 0.65 0.44 0.35 0.33 0.23

Foveaux Strait 0.48 0.38 0.40 0.45 0.35

SEDI (0.2) 1 month 2 months 3 months 4 months 5 months
Coromandel 0.56 0.38 0.39 0.39 0.48

Opétiki 0.53 0.48 0.51 0.45 0.52

Golden Bay 0.51 0.52 0.36 0.47 0.40

Pelorus Sound 0.51 0.56 0.48 0.44 0.41

Foveaux Strait 0.47 0.41 0.38 0.24 0.44

Anomaly correlation coeficient (ACC) and root mean square error (RMSE) were calculated between monthly observed and MME SST anomalies using different lead times (months). The
probabilistic marine heatwave (MHW) forecast was evaluated against observed MHW (binary) events using the symmetric external dependency index (SEDI) with different probability threshold
(0.05, 0.1 and 0.2) for binary re-characterisation. The maximum SEDI score is 1, and scores above (below) zero indicate forecasts that are better (worse) than random chance (Ferro and

Stephenson, 2011).

latter period is consistent with previous findings by de Burgh-Day
et al. (2022), reflecting decreased ocean-atmosphere coupling and
higher atmospheric variability during these months. Importantly,
forecast performance was notably linked to the state of the El Nifio-
Southern Oscillation (ENSO). During La Nifia, the forecast skill is
improved in winter compared to the whole period analysis.
Conversely, during El Nifio phases, the forecast increased its
performance in summer. During neutral phases, the MME
forecast had improved performance during spring months.
Results discriminated by seasons and ENSO phases provide more
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information on the forecast skill compared to a single separation
into active ENSO (El Nifo and La Nifa) vs neutral state shown in
Jacox et al. (2022). However, Jacox et al. (2022) focused on
analysing the influence of ENSO on the predictability of global
MHWs, and a clear understanding of Aotearoa New Zealand’s
waters wasn’t their focus.

While Jacox et al. (2022) provided a global assessment of MHW
forecast skill, our study offers region-specific insights that extend
those findings in meaningful ways for Aotearoa New Zealand. By
stratifying forecast skill by ENSO phase and season, we identified
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Time series of observed Sea Surface Temperature (SST) anomaly (°C) from OISST (black lines and left-hand y-axis) and observed marine heatwave

(MHW) events (red dotted lines) for different aquaculture regions (panels). MHW probabilistic forecast (lead time of one month and right-hand y-axis)
are show in different colours. Green, blue, orange, and magenta represent <0.05 (<5%), >0.05 (>5%), >0.1 (>10%), and >0.2 (>20%) probability of
MHW (black lines). Each panel title shows the SEDI computed using a probabilistic threshold of 0.1 with one month of forecast lead time and the
total number of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) counts.

distinct “windows of opportunity”, such as austral winter under La
Nifia conditions and spring under neutral conditions that are
directly relevant to aquaculture operations. These seasonal
patterns enable stakeholders to adjust confidence in forecasts
based on the prevailing climate state, supporting more informed
decisions around harvest timing, risk mitigation, and resource
allocation. Furthermore, our spatially resolved evaluation across
key aquaculture regions reveals variability in skill that is masked in
global averages (e.g. Jacox et al., 2022), underscoring the need for
localized forecast products (Spillman et al., 2025). These findings
demonstrate that the added ensemble size and ENSO-phase
breakdown are not merely methodological enhancements, but
provide actionable knowledge for coastal management in
Aotearoa New Zealand.
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Forecast evaluation using in situ data from Leigh and Portobello
underscores the resolution-dependent limitations. At Leigh, a
station with open connection with the ocean, high correlations
between MME, OISST, and in situ data confirm that large-scale
signals dominate. However, in Portobello, a station located in the
narrow Otago Harbour, the reduced skill demonstrates the
importance of fine-scale estuarine dynamics unresolved at coarse
model resolution. These results provide a quantitative basis for the
resolution caveat noted earlier and suggest that integrating high-
resolution regional models would further improve coastal
forecast applications.

Spatial variability in forecast skill was significant, with regions
influenced by large-scale climate signals (e.g. Opotiki and
Coromandel) showing higher skill compared to those dominated
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by local processes, such as freshwater inflows or coastal currents
(e.g. Golden Bay, Pelorus Sound, Foveaux Strait). The higher
predictability at regions like Opatiki aligns well with previous
studies that emphasize the role of ENSO-driven SST variability in
the western and northeastern regions of Aotearoa New Zealand (de
Burgh-Day et al,, 2019). In contrast, lower predictability in areas
such as Golden Bay could be attributed to shallow waters, river
discharge, and strong seasonal temperature cycles (Stevens et al.,
2022), factors typically challenging for coupled climate models to
accurately represent. This suggests the need for application of
downscaled physical simulations to more accurately predict these
coastal processes (e.g. Santana et al., 2023, 2025). Operational use of
MME forecasts should be preceded by validation against in situ
data, especially in regions with limited oceanic exchange.

It is worth noting that SST anomalies analysed in this study are
monthly averaged, whereas daily variability can generate higher
temperature extremes that may be more impactful for marine
organisms and aquaculture operations. While our use of monthly
SST averages enables consistent evaluation across models and lead
times, it inherently limits the detection of short-duration marine
heatwave events. These transient but ecologically significant events
may be missed in our framework, and future work should explore
higher-frequency forecasts or downscaled regional models to
address this gap. This also highlights the importance of having
regional high-frequency ocean forecasts for more accurate
predictions (Spillman et al., 2025).

Marine heatwave forecasts evaluated using the Symmetric
Extremal Dependence Index (SEDI) indicate that the MME has
significant predictive skill, especially at shorter lead times (1-2
months), consistent with global assessments of marine heatwave
predictability (Jacox et al, 2022). On average, however, the skill
declines beyond three months (SEDI < 0.4). Spatially, higher SEDI
values were found around the northern and northeastern coasts,
affirming these regions’ responsiveness to predictable ENSO-related
SST anomalies (de Burgh-Day et al., 2019). Moreover, SEDI scores
were all positive (better-than-random prediction) near all
aquaculture regions for all lead times using a threshold greater
than 0.1. These results emphasise the value of probabilistic
forecasts, at moderate confidence predictions (10% threshold) can
inform proactive management decisions in aquaculture sectors
facing elevated thermal stress risk (Smith et al., 2021; Cook
et al., 2024).

5 Conclusion

This study assessed the predictive skill of a multi-model
ensemble (MME) for seasonal forecasting of sea surface
temperatures (SST) anomalies and marine heatwave (MHW)
events around Aotearoa New Zealand. The MME consistently
outperformed individual models and persistence forecasts,
emphasising the benefit of combining multiple general circulation
models (GCMs) to improve forecast reliability. Forecast skill
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exhibited clear seasonal and spatial variability, with the highest
accuracy found during winter initialisations and in northern
regions more influenced by predictable climate drivers,
notably ENSO.

For regional aquaculture management, the MME offers
substantial value, particularly at one- and two-month lead times,
enabling early-warning strategies and proactive mitigation of MHW
impacts. However, the decline in forecast skill at longer lead times,
lack of coastal processes (e.g. tides and riverine input), and model
coarse spatial resolution highlight the continuing challenges faced
by seasonal forecasting systems. Future work should further explore
the integration of regional downscaling approaches and more
detailed physical-biological coupled models to enhance the
prediction of aquaculture productivity directly linked to
SST variability.
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