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Introduction: Controlling over-tourism has emerged as a pressing concern,

attracting significant recent attention. Investigating this issue through the analysis

of the impacts of marine green energy investment (MGEI), fintech (FT), and

tourism concentration (TC) on carbon footprint (CF) and coastal water pollution

(CWP) at tourist destinations is crucial.

Methods: This study employs the Spatial Method of Moment Quantile Regression

(SMMQR) model to examine the effects of these indicators on two environmental

metrics in coastal regions of China, validated through Moran's I analysis, Local

Indicators of Spatial Association (LISA) Cluster Maps, and robustness checks.

Results: Results reveal strong positive spatial autocorrelation, with dominant

High-High (HH) clusters for both environmental indicators, concentrated in areas

such as Shanghai, Guangzhou, and Sanya, indicating significant environmental

pressures. TC and FT exacerbate CF (6.215-13.185 and 0.715-2.110) and CWP

(5.210-10.145 and 2.045-4.570), whereas MGEI exhibits mixed CF (-3.078-4.042)

and CWP impacts (-3.038-6.858), driven by spatial dependencies ranging from

0.275-0.312.

Discussion: These findings bolster recent research on tourism and FT's

environmental impacts, expanding the analysis by incorporating spatial

dynamics and investment, and pinpointing over-tourism risks in high-impact

areas. The study proposes setting an over-tourism threshold to better manage

this issue moving forward.
KEYWORDS

over-tourism, spatial method of moment quantile regression, tourism concentration,
fintech, marine green energy investment, carbon footprint, coastal water pollution
1 Introduction

Over-tourism has recently been considered an increasing global issue. The

phenomenon is not only overcrowding but also reflects a complicated interaction of

spatial, financial, and infrastructural pressures that threaten the sustainability of tourism-

dependent regions. It causes several negative effects on unsustainable tourist flows, the
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environment, socio-cultural disruption, and economic imbalances

(Capocchi et al., 2019; Zemła, 2020). One of the oldest historic sites,

Venice, receives more than 24 million visitors annually and is losing

about a thousand residents per year, so-called “Ven-exodus”

(Csmonitor, 2016). This results in overcapacity in numerous

historic squares and mobility challenges for people. Furthermore,

large cruise ships contribute to emissions and damage to the

historical surrounding ecosystem. To address this issue, a ban on

ships exceeding 25,000 tons has been implemented as of 2021.

However, transport and waste management are still heavily

overloaded. With over 10 million tourists per year, Barcelona is

an overcrowded destination. This city has been struggling with the

anti-tourism riots since 2017. The influx has led to skyrocketing

housing prices and living costs, largely fueled by the transformation

of residential properties into rentals. Central areas such as La

Rambla and Park Güell suffer from severe overcrowding,

prompting measures such as a daily visitor cap of 800 at Park

Güell and a restriction on tour groups to fewer than 15 people at La

Boqueria market in order to alleviate congestion (Gholipour et al.,

2024). In China, the marine tourism sector is no exception to the

strain of large tourist crowds. The unsustainable volumes of tourists

overwhelming local infrastructure and ecosystems (Gupta and

Chomplay, 2021) have been particularly pronounced in hotspots

such as Hainan, Xiamen, and Zhoushan Archipelago. The rapid

expansion of tourism, driven by economic growth, digital financial

services, and improved marine green energy investment (MGEI),

has sped up environmental degradation by enlarging the carbon

footprint (CF) (Ehigiamusoe et al., 2023) and aggravating coastal

water pollution (CWP). Despite the intricate connection between

over-tourism and environmental sustainability, the latter is still

inadequately accounted for in the marine tourism sector of China.

China’s coastal hotspots are buzzing with tourists, thriving

economies, and exciting new tech, but this boom comes with

serious environmental headaches. Based on Ecological

Modernization Theory (EMT), with smart tech and policies, we

do not have to pick between a strong economy and a clean

environment but can have both (Chatti and Majeed, 2022). In our

study, this means tools like fintech (FT) and MGEI can help reduce

the environmental toll of packed tourist destinations by using

resources more wisely. On the other hand, the Environmental

Kuznets Curve (EKC) illustrates where tourism’s rapid growth

may initially harm the environment, exhaust more carbon

emissions, and pollute coastal waters, but as regions get wealthier

and adopt greener technologies, these impacts can shrink (Ochoa-

Moreno et al., 2022). This idea fits China’s coastal tourism scene

perfectly, where booming visitor numbers can strain local

ecosystems, but investments in green tech and digital finance may

turn the tide. By weaving these theories into our analysis, we aim to

uncover how FT, green energy, and tourism concentration (TC)

interact across different regions, offering practical ideas for

sustainable tourism that balances growth with a healthier planet.

Existing literature has linked over-tourism with numerous

environmental stressors. Over-tourism, accommodations, and leisure

activities are the major contributors to increased CO2 emissions

(Raihan, 2024), while inadequate waste treatment contributes to
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ocean pollution (Pásková et al., 2024). Furthermore, coastal over-

development, sometimes fueled by FT-facilitated investment, has

added to habitat destruction and water pollution. Despite these

detected impacts, the existing literature is largely lacking a spatially

explicit and quantile-based approach to understanding how TC, FT

development, and marine green energy spending together influence

environmental sustainability in oceanic destinations (Li et al., 2024;

Ran et al., 2024). Studies note the severity of mass tourist invasions

overwhelming local ecosystems and diminishing the quality of life for

locals (Fischer-Kowalski et al., 2020). The overall number of tourist

trips is projected to hit 37.4 billion, with 17.4 billion consisting of

international and domestic overnight stays (UNWTO, 2022).

Understanding and addressing over-tourism has become a research

priority of the highest order. Yet, despite its significance, the literature

remains rare and fragmented (Capocchi et al., 2019), with a minimal

synthesis of interdisciplinary perspectives that hold promise for

delivering holistic solutions.

The objective of this study is to employ an SMMQR (Spatial

Method of Moments Quantile Regression) model that integrates

spatial analysis and quantile regression to examine heterogeneous

effects at various levels of carbon emissions and water pollution.

The model enables a detailed analysis of whether FT adoption

lowers or heightens the environmental expense of over-tourism, if

MGEI realizes sustainable tourism growth, and how TC worsens

environmental degradation at various quantiles. By leveraging high-

resolution geospatial data and panel econometric analysis, the paper

contributes to the current discourse of over-tourism management

and environmental governance in China’s coastal regions. The

findings aim to inform policymakers and stakeholders on how

best to streamline FT-driven tourism finance, balance MGEI, and

implement sustainable tourism policies to reduce the adverse

environmental effects of over-tourism.
2 Literature review

2.1 Theoretical frameworks

This study is derived from EMT and EKC frameworks, where

EMT argues that environmental degradation can be decoupled from

economic growth through technological innovation, institutional

reforms, and market-based solutions. In the context of coastal

tourism, EMT suggests that FT, such as digital payment systems

and blockchain-based crowd management, can enhance resource

efficiency and reduce the environmental footprint of tourism

activities (Siddik et al., 2023). Similarly, MGEI, including

investments in renewable energy infrastructure like tidal or wind

energy, aligns with EMT by promoting sustainable tourism

infrastructure that mitigates CF and coastal water pollution

(CWP). However, EMT also acknowledges potential challenges,

such as over-reliance on technology without addressing spatial or

social inequalities, which this study addresses through the spatially

explicit SMMQR model.

The EKC framework complements EMT by hypothesizing an

inverted U-shaped relationship between economic growth and
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environmental degradation. In the context of China’s coastal

regions, the EKC suggests that initial tourism growth, driven by

TC and facilitated by FT, may increase CF due to higher energy

consumption and waste generation (Fethi and Senyucel, 2021).

However, as regions reach higher income levels or adopt

advanced technologies, environmental impacts may decline. This

aligns with findings from Yang and Tang (2024), who noted that FT

could mitigate CWP through the use of advanced wastewater

management systems. Yet, the EKC’s applicability to over-tourism

remains underexplored, particularly in terms of spatial

dependencies and quantile-specific effects, which are critical in

heterogeneous coastal regions like Sanya and Shanghai. The

SMMQR model bridges this gap by capturing spatial

autocorrelation and distributional heterogeneity, allowing us to

test whether FT and MGEI enable an EKC-like trajectory in high-

tourism areas. Additionally, to utilize the insightful benefit of spatial

effect, our integration of EMT and EKC with the SMMQR model

provides a comprehensive lens to examine how spatial clustering

and technological interventions shape the environmental

consequences of over-tourism in China’s coastal tourism economy.
2.2 Relevant studies on over-tourism

Some scholars have reviewed recent studies relating to “over-

tourism” and indicated that this concept is still in the early stages and

currently lacks a standardized, recognized characterization (Capocchi

et al., 2019; Dilshan and Nakabasami, 2025). When the number of

tourists exceeds a location’s carrying capacity, it tends to expose the

shortcomings of existing infrastructure, including transport networks,

waste management systems, and accommodations (Barbhuiya, 2021). A

recent study assessed over-tourism in Granada, Spain, using 1,349

negative TripAdvisor reviews of 71 attractions. The findings stressed

sustainable management measures, destination diversification, a better

transportation network, and access control to mitigate heavily

touristified areas (Foronda-Robles et al., 2025). Another study was

conducted based on surveys and observations in Salinas, Manta, and the

Galapagos, which found post-COVID-19 ecological improvements and

recommended expanding such opportunities (Ormaza-Gonzaìlez et al.,

2021). In the recent past, among the rapidly evolving variables, FT has

been studied to assess its influence on environmental metrics. Several

studies indicated that FT exerted a considerable energy use intensity-

lowering impact through enhancing transaction efficiency with

heterogeneous effects on different quantiles of economic activity (Zhu

et al., 2024; Muhammad et al., 2022; Fan et al., 2024). Hwang et al.

(2021) linked FT-driven tourism services to increased CO2 emissions,

while Yang and Tang (2024) extended this to coastal pollution, noting

its dual role in exacerbating and mitigating environmental stress. Kai

et al. (2024) and Leng et al. (2024) further confirmed FT’s role in

lowering emission intensity via marine green financing and

technological innovation in China and BRICS countries, respectively.

However, these studies did not address TC or incorporate spatial factors

like autocorrelation, leaving a gap that this research aims to fill using

SMMQR. However, the inclusion of this variable in research models

examining the issue of over-tourism is very limited. The proliferation of
Frontiers in Marine Science 03
digital payment systems, peer-to-peer booking sites, and real-time travel

apps has opened up tourism access, often exacerbating crowding in

already congested destinations (Suyunchaliyeva et al., 2021). For

instance, FT-enabled platforms like Airbnb have been linked to

increasing tourism density in urban areas by expanding the supply of

housing beyond traditional regulatory oversight (Gurran and Phibbs,

2017; Garcıá-Amaya et al., 2021). However, the potential of FT as a

management tool, e.g., via dynamic pricing or crowd control enabled by

blockchain, is mostly unexplored. This is a fundamental research lacuna,

as FT’s dual potential to both intensify and alleviate over-tourism

warrants systematic investigation, particularly in technology-

adopting destinations.

One of the less explored dimensions of over-tourism is TC, or

the spatial and temporal concentration of tourists in specific

destinations. While metrics such as tourist density and tourist-to-

population ratios have been employed to quantify concentration

(Yang, 2012; Fernandes et al., 2020), their application has been

largely descriptive rather than predictive. Few studies have

employed econometric specifications to investigate how

concentration varies between heterogeneous areas or influences

over-tourism thresholds. This gap is more significant in emerging

tourism destinations (Banerjee and George, 2024). Addressing this

shortfall is imperative to devising targeted interventions that

redistribute tourist flows and alleviate pressure from strained

destinations. Over-tourism significantly contributes to CWP

through excessive water consumption, massive waste generation,

and improper waste management, as seen in destinations like

Shimla, India (Gupta and Chomplay, 2021). Breiby et al. (2021)

noted that sustainability assessments often use limited indicators,

overlooking the complex impacts of over-tourism on CWP. There is

a notable lack of detailed quantitative research correlating over-

tourism with CWP, hindering effective policy development. While

Yang and Tang (2024) suggested FT could mitigate CWP, this paper

has not exploited the over-tourism perspective. A few recent studies

suggested a significant interrelation between these two factors.

Using panel cointegration tests, Ji and Ding (2024) found a

sustained link between coastal tourism and four marine pollutants

in China, with limited environmental benefits in low- and middle-

income or northern regions.

Another fundamental yet understudied impact is MGEI, as both

a constraint and an enabler of over-tourism. The literature already

alludes to how inadequate transport, waste, and accommodation

systems exacerbate the negative impacts of mass tourism (Kukreti

and Dangwal, 2023). In contrast, resilient MGEI can increase

carrying capacity and more equitably spread tourist pressures.

Despite this reality, there is little quantitative assessment of the

dynamic interplay between TC, marine green energy capacity, and

over-tourism effects, especially for developing economies where

resource constraints are acute. This neglect limits policymakers’

ability to invest in prioritization, trading off economic returns for

sustainability, which underscores the need for empirical models

featuring those variables. Studies emphasized how infrastructural

poverty aggravated environmental decay and diminished the quality

of life for residents of over-touristed areas (Li et al., 2023), while

Kumail et al. (2023) argued that efficient MGEI could reduce such
frontiersin.org
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effects via capacity expansion and redistributing tourism flows. For

instance, improved public transportation systems have been shown

to minimize traffic congestion in inner-city tourist areas, but these

investments are only as useful as the geographical, economic, and

policy constraints of a specific location. On the other hand, over-

investment or poorly planned marine green energy spending in the

form of too many hotels can prolong over-tourism by attracting

more tourists beyond sustainable levels (Tavor, 2024). However,

empirical research quantifying the causal effects of marine green

energy spending on over-tourism impacts is scarce, particularly in

developing nations where resource capacity is limited and tourism

development is intense. Such scarcity hampers the creation of

evidence-based policy, underlining the need for integrated models

that analyze how MGEI balances economic benefits against the

threats of over-tourism.
2.3 MMQR and SMMQR in research on
over-tourism

Recent researchers have employed the MMQR to explore the

complex influences of FT, infrastructure, and tourism on

environmental outcomes, with the principal target of analysis

being CO2 emissions. As an example, MMQR was applied to

present the impacts of FT innovations, such as digital payment

systems, on various quantiles of economic activity and energy

consumption, and CO2 emissions, with non-linear effects

unaddressed by naive mean-based measures (Shan et al., 2024).

Similarly, Shahbaz and Patel (2024) applied MMQR to examine the

differential effects of infrastructure development, transport

networks, and energy systems on carbon emissions, segregating

different effects in high- versus low-emission environments.

In tourism research, Zhan (2024) applied MMQR to link tourist

visits and CO2 emissions and reported large heterogeneity in

emission distributions. There are very few studies that have

employed MMQR to apply it to CWP (Yang and Tang, 2024),

linking tourism growth with marine ecosystem deterioration. The

authors utilized the method of the MMQR model to examine how

green fiscal policy, tourism, and FT affect CO2 emissions and coastal

water quality. The authors found that GFP and FT play a crucial

role in enhancing CWP while also lowering CO2 levels.

These studies generally do not consider the TC, spatial, and

temporal agglomeration of tourists as one of the leading

environmental drivers. Besides, the geographical considerations,

including spatial autocorrelation and heterogeneity among

regions, remain unexploited due to a lack of spatially integrated

methods. This study bridges such gaps using the SMMQR that not

only detects distributional heterogeneity but also detects spatial

dependencies through weighted moment conditions. The power of

SMMQR lies in its spatial robustness and ability to model spatially

heterogeneous relationships between quantiles, offering a more

comprehensive and context-dependent framework for how FT,

MGEI, and TC all impact environmental outcomes within a wide

range of different spatial settings.
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This study addresses these gaps through three key

contributions. From a theoretical perspective, by integrating EMT

and EKC, this study provides a robust framework to understand

how technological innovations and economic growth interact with

environmental outcomes (CF and CWP). EMT supports the

hypothesis that FT and MGEI can mitigate over-tourism’s

impacts through efficient resource use, while EKC posits a

potential decline in environmental degradation as regions adopt

greener technologies. This dual framework extends prior studies by

grounding the analysis in theories that account for both

technological and economic dynamics. In methodological

contribution, the SMMQR model advances beyond traditional

mean-based approaches by capturing spatial spillover effects and

heterogeneity across quantiles of CF and CWP. Finally, this study

provides empirical contributions by examining TC, FT, and MGEI

in China’s coastal tourism sector. The LISA Cluster Maps identify

HH clusters in high-impact zones, guiding targeted policy

interventions. The SMMQR results reveal heterogeneous impacts,

such as MGEI’s negative effect on CWP at lower quantiles and

positive effect at higher quantiles, offering insights for sustainable

tourism management.
3 Methodologies

3.1 Data description and preprocessing

The present study employs a quantitative study design to

investigate China’s sea tourism sector issue of over-tourism and

its effects on the environment, i.e., CF and CWP, respectively.

Spatial analysis is blended with the MMQR model in the analysis to

confront both spatial dependencies and heterogeneity in the

distribution of the dependent variables. By this integrating

approach, this paper can explore the diverse impacts of FT

development, MGEI, and tourism intensity on the environment,

and identify the nature of over-tourism at the provincial level

(see Figure 1).

The research utilizes panel data of China’s coastal provinces and

municipalities between 2010 and 2022, a period selected to reflect

the rapid expansion in marine tourism, FT adoption, and marine

green energy expenditure in China (see Supplementary Material).

The present study employs a quantitative study design to investigate

China’s sea tourism sector issue of over-tourism and its effects on

the environment, i.e., CF and CWP, respectively. The SMMQR

model can confront both spatial dependencies and heterogeneity in

the distribution of the dependent variables. By such conjoining, the

research is hoped to be capable of achieving varied impacts of FT

development, MGEI, and tourism intensity on the environment,

and also conquer the multimodal nature of over-tourism at the

provincial level.

The data for this study are sourced from multiple sources,

including the following indicators. CF estimates CO2 emissions

derived from the China Energy Statistical Yearbook (China, 2024).

Coastal Water Pollution (CWP) is collected from the China Marine
frontiersin.org
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Environmental Quality Bulletin and the China Energy Statistical

Yearbook (China, 2024; Kurniawan et al., 2023). We then deploy

the widely recognized single-factor index method as in Equation 1

(Yang and Tang, 2024):

CWP = I1 : I2I3I4 (1)

where I1 � I2 averages the single-factor CWP tagging variable of

all estimated indicators; I3 denotes the number of single indexes in

the full-scale CWP assessment falling short of the functional zone

target for the water environment; I4 denotes the comparative result

between the complete CWP group and the overall functional zone

target for the water environment.

The single-factor index P specializes in exceeding the target C

WP degree using a single index that applies weight modification.

I1 : I2 =o
n

i=1
Pi � wi (2)

wi =
mi

omi
(3)

mi = (I1 − m) + 1 (4)

where n represents the number of single indexes to measure the

CWP; Pi is the single-factor indicator of the ith CWP variable

rounded to two decimal digits; wi denotes the weight; wi denotes the

weight as in Equation 3; m is the target CWP benchmark; whereas

mi is the exceedance degree of a single CWP standard; whereasmi is

the exceedance degree of a single CWP standard as in Equation 4.

FT comprises the measure of mobile payment transactions and

digital financial services penetration from the China Statistical

Yearbook and China Internet Network Information Center

(CNNIC) (Yang and Tang, 2024; China, 2024; Institute National

Geography Information - Ministry of Land Infrastructure and

Transport, 2023); MGEI: Data on investments in renewable

energy infrastructure are sourced from Yang and Tang (2024)

and the China Statistical Yearbook (China, 2024); TC: Data on
Frontiers in Marine Science 05
tourist arrivals overnight stays, and tourism revenue in coastal

regions are obtained from the China National Tourism

Administration and China Statistical Yearbook (China, 2024;

WEPA, 2024). In this study, we deploy the Gini coefficient to

measure TC. It can be calculated as Equation 5.

G = o
n
i=1on

j=1 xi − xj
�� ��

2n2�x
(5)

where xi and xj are the number of tourists in sub-regions i and j,

n denotes the number of sub-regions, �x represents the mean

number of tourists across all sub-regions.

Before designing the models and other diagnostic procedures,

data preprocessing is important to ensure that the model is reliable.

Firstly, missing and empty values are removed, and outliers are

detected using the studentized residuals technique, as it has been

popularly used by several studies (Berenguer-Rico andWilms, 2021;

Le et al., 2020a; Le et al., 2020b) and is suitable for this dataset, with

a threshold of absolute values exceeding 3, thereby mitigating

potential distortions in subsequent spatial econometric modeling.

The diagnostic results before and after preprocessing procedures

can be found in Figure 2.
3.2 Model specification

The study extends the STIRPAT model and the improved

STIRPAT model developed by Yang and Tang (2024); Kai et al.

(2024), and Leng et al. (2024). We further expand this model to

incorporate spatial dependencies and heterogeneity, using an

SMMQR approach. The model is extended to incorporate spatial

dependencies and quantile-specific heterogeneity, formulated as

Equation 6:

Ln(EIijt) = a + b1Ln(FTijt) + b2Ln(MGEIijt) + b3Ln(TCijt)

+ gXijt + rWLn(EIijt) + єijt (6)
FIGURE 1

Research framework.
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where Ln is the natural logarithm of the variables; EIijt denotes

the environmental impact for location i   at month t  ; j   is

environmental indicator (CO2 footprint or CWP); Xijt  : Vector of

control variables, including environmental impacts; WLn(EIijt)   is

Spatial lag term. The spatial weight matrix W  , row-standardized

based on inverse geographical distances between provinces,

introduces spatial spillovers through the parameter r  , which
measures spatial autocorrelation. The error term eijt is assumed to

be heteroskedastic and spatially correlated, with E½eijt � = 0 and

potentially varying variance across i and t. The natural logarithm

transformation stabilizes variance and mitigates skewness, aligning

with STIRPAT’s theoretical underpinnings. SMMQR estimates this

model across quantiles to address the nonlinear and asymmetric

effects of over-tourism drivers on environmental outcomes.
3.3 Pre-estimation diagnostics

Before estimating SMMQR, spatial autocorrelation is assessed

using Moran’s I and Local Indicators of Spatial Association (LISA)

to confirm dependencies in EI, encompassing both CF and CWP.
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Moran’s I is calculated using Equation 2 with significance

determined by p-value< 0.05, identifying global spatial patterns.

LISA Cluster Maps visualize local spatial structures, computing the

LISA statistic for each province i as Equation 7:

Ii =
(EIi − EI)

(S2) o
j≠i
Wij(EIj − EI) (7)

where EIi and EIj are EI values, EI is the mean, S2 is the

variance, and Wij is the spatial weight. Significance is evaluated via

permutation tests, categorizing locations into high-high (HH), low-

low (LL), low-high (LH), and high-low (HL) clusters, and non-

significant (NS). These maps, generated using GeoDa, reveal over-

tourism hotspots and spatial spillovers, which are critical for

understanding marine tourism’s environmental impact.

Stationarity is ensured through panel unit root tests, rejecting the

null hypothesis of a unit root (p-value< 0.05) to avoid spurious

regressions. Cross-sectional dependence (CSD) is assessed using

Pesaran’s CD test, CD =
ffiffiffiffiffiffiffiffiffiffiffiffi

2T
N(N−1)

q
o
N−1

i=1
o
N

j=i+1
r̂ ij. Multicollinearity is

checked via the Variance Inflation Factor (VIF), calculated as VIF =

1=(1 − R2
j ).
FIGURE 2

Data preprocessing results. (A) Before denoising. (B) After denoising.
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3.4 Estimation framework of SMMQR

The SMMQR possesses several advantages over traditional

regression techniques, particularly when working with spatially

heterogeneous data. It determines the full distributional effects of

covariates at different quantiles, and it provides a more accurate

representation of spatial dependencies and variations. This method

properly deals with spatial autocorrelation and unobserved

heterogeneity, which are often ignored in standard procedures, by

adding spatial weights to the moment conditions (Ramsey, 2020).

SMMQR is also an outlier- and non-normal error-robust, thus

being more applicable to real-world datasets with heavy tails or

skew distributions. Its ability to mimic relationships varying across

space at different levels of quantile makes it a vital tool for

researchers studying complex socio-economic or environmental

trends, like regional disparities or ecological effects, in which

space dynamics play an important role.

SMMQR can address spatial dependencies and quantile-specific

heterogeneity in the environmental impacts of marine tourism. The

estimation mechanism unfolds through three interconnected stages:

incorporating spatial lags, applying quantile regression via

moments, and optimizing through moment-based techniques

with spatial adjustments, ensuring robustness and precision in the

presence of spatial autocorrelation and distributional variation.

The spatial lag term rWLn(EIijt) captures spatial spillovers,

where W is a N � N matrix defined as Wij = 1=dij (i ≠ j) (inverse

distance) and Wij = 0​, row-standardized to sum to one across

each row. The parameter r, ranging from -1 to 1, quantifies the

strength and direction of spatial autocorrelation, with r > 0

indicating positive spillovers (e.g., high EI in one location

increasing EI in neighboring locations). Preliminary diagnostics

using Moran ’s I statistic (Equation 8) confirm spatial

autocorrelation.

I =
N

oiojWij

oiojWij(EIi − EI)(EIj − EI)

oi(EIi − EI)2
(8)

For a given quantile t ​, the conditional t ​−th quantile is

expressed as Equation 9:

Qt (EIijt ∣Xijt ,WLn(EIijt))

= a(t) + b1(t)Ln(FTijt) + b2(t)Ln(MGEIijt) + b3(t)Ln(TCijt) + g (t)Xijt + r(t)WLn(EIijt)

(9)

where a(t), b1(t), b2(t), b3(t), g (t), r(t) are quantile-specific
parameters. MMQR approximates these quantiles by solving

Equation 10:

m in
q(t)

E½rt (EIijt − X 0
ijtq(t) − r(t)WLn(EIijt))� (10)

with rt (u) = u(t − I(u < 0)) as the check function and X 0
ijt

including all explanatory variables . Instead of direct

minimization, MMQR constructs moment conditions (see

Equation 11):

EXijt · (t − I(EIijt ≤ Qt (EIijt Xijt ,WLn(EIijt))))� = 0
�� (11)
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and adjusts for spatial terms viaWLn(EIijt), ensuring robustness

to heteroskedasticity and endogeneity, particularly suited for panel

data with non-linear, heterogeneous impacts.

SMMQR further refines MMQR by incorporating spatial

moments to estimate r and Q(t) consistently for spatial

autocorrelation. The estimation involves defining spatial moment

functions as Equation 12:

gijt(q(t), r(t))

= Xijt · (t − I(EIijt ≤ X0
ijtq(t) + r(t)WLn(EIijt))) +WXijt · (t − I(EIijt ≤ X0

ijtq(t) + r(t)WLn(EIijt)))

(12)

where ​WXijt ​​ captures spatial interactions among

regressors. Using the Generalized Method of Moments (GMM),

the parameters are optimized by minimizing Equation 13:

m in
q(t),r(t)

1
NToi,j,t

gijt(q(t), r(t))

 !0

W−1 1
NToi,j,t

gijt(q(t), r(t))

 !

(13)

where W​​ is a weighting matrix (e.g., identity or robust

estimator), and NT​​ is the sample size. Iterative updates,

typically via Newton-Raphson algorithms, ensure convergence

within 100 iterations (tolerance< 10-6). The spatial adjustment

addresses endogeneity from WLn(EIijt) using instrumental

variables, such as lagged values of FTijt , MGEIijt , TCijt ensuring

unbiased estimates.

This method is more advanced than previous traditional

approaches, such as spatial autoregressive (SAR) and spatial error

models (SEM), as its advantages are threefold. By estimating effects at

different quantiles, SMMQR captures varying impacts of TC, FT, and

MGEI (distributional heterogeneity). SMMQR accounts for spatial

spillovers in both dependent r and independent variables l, unlike
SAR’s focus on dependent variable spillovers or SEM’s error-based

approach (spatial robustness). The moment-based estimation

mitigates biases from skewed distributions, critical for

environmental data with heavy tails (robustness to non-normality).

These advantages stem from the following reasons. SAR and SEM

estimate a single b for the mean of EIit , assuming EI½eijt� and

normality. This fails to capture the heterogeneous effects seen in

SMMQR, where bt varies. The check function rt (u) weights residuals
asymmetrically, allowing estimation of effects at specific quantiles.

SMMQR’s spatial lag rtWLn(EI)it varies by quantile, capturing

stronger spillovers in high-impact regions (HH clusters) compared

to SAR’s single r.
3.5 Post-estimation diagnostics

Post-estimation, heteroskedasticity is tested using the Breusch-

Pagan test, LM = 1
2o
i,j,t
(ê 2

ijt=ŝ
2 − 1)2. Model evaluation is evaluated

using the Akaike Information Criterion AIC = −2Ln(L) + 2k, where

L is the likelihood and k is the number of parameters, comparing

SMMQR with non-SMMQR.
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4 Results

4.1 Estimation results and post-estimation
diagnostics

Local Moran’s I statistics results (see Table 1) indicate very high

spatial autocorrelation across all cities, with 18 of the 19 cities

displaying significant p-values (<0.05), except Ningbo (p = 0.061),

indicating intense spatial dependencies for EI in the coastal tourism

network. Large Local Moran’s I statistics of 1.471 for Haikou, 0.742

for Sanya, and 0.675 for Qinhuangdao suggest positive spatial

autocorrelation of strong intensity, with these cities representing

HH clusters—locations of high EI that are neighbored by high-

impact neighbors, likely due to intense concentration of tourism

and investment in renewable energy. Sanya and Haikou in Hainan

province have the two highest Local Moran’s I values (0.742 and

1.471, respectively, p< 0.001), demonstrating the most extreme

over-tourism pressures, as HH cluster together due to their status

as the best beach resorts to welcome millions of domestic and

foreign tourists annually. Similarly, Local Moran’s I values in

Guangzhou, Shenzhen, Beihai, and Zhuhai are from 0.386 and

0.522 (p< 0.001), indicating HH TC zones in the south coastal areas.

The highest TC recorded was 43,451 visitors per km2 (in Haikou),

while the lowest was 537 visitors per km2 (in Weihai).

Conversely, cities located in the LH or HL quadrants represent

mixed spatial structures, which suggest potential outliers or

transition zones. Qingdao and Xiamen, both of Local Moran’s I =

0.590 and 0.291 (p< 0.01), are located in quadrant 4 (HL), showing

high EI locally but surrounded by lower-impact areas, possibly due

to urbanized tourist hubs like Qingdao’s port economy and

Xiamen’s tourism facilities expansion outpacing regional

spillovers. Shanghai and Dongying, 0.358 and 0.474 (p< 0.01) in

quadrant 3 (LH), have lower local EI but higher-impact adjacency,

as predicted for peripheral nodes in regional tourist networks.

Wenchang, Qinhuangdao, Yantai, Dalian, Rizhao, and Ningbo,

also located in quadrant 3, have 0.004 to 0.675 values of Local

Moran’s I (p< 0.05), which reflect LH patterns by smaller local

tourism intensity but closeness to HH clusters.

Fuzhou, with Local Moran’s I = 0.556 (p< 0.001) at quadrant 2

(LL), is a cluster when EI is locally as well as globally low in that area,

according to fewer intensive tour operations in Fujian. This level is

even higher than the HH cluster reported by Chamizo-Nieto et al.

(2023) on Malaga and Barcelona, with Moran’s I ranging from 0.368

to 0.499 for Malaga and from 0.170 to 0.263 for Barcelona. Weihai,

which has a negative Local Moran’s I of -0.008 (p = 0.032) in

quadrant 4 (HL), represents a local spatial outlier, possibly

suggesting high local EI but less significant impacts at a more local

level, perhaps because of its smaller tourism scale but proximity to

larger cities like Qingdao. LH and HL cities, such as Shanghai and

Qingdao, recognize transition areas where the effects can range from

local spillovers to regional spillovers, for which special interventions

are needed. The large p-values (<0.05 in most cities) justify the use of

SMMQR because they guarantee spatial dependencies inherent in the

analysis of the regional dynamics of over-tourism.
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Moran Scatterplots in Figures 3A–E graphically illustrate spatial

autocorrelation of the five indicators, FT, TC, MGEI, CWP, and

CO2 Levels, across a standardized dataset, each graph illustrating

the correspondence between the variable (on the x-axis) and its

spatial lagged version (on the y-axis). In Figure 3A, FT’s Moran

Scatterplot is indicative of high positive spatial autocorrelation, with

a tight clump of points following a strongly positively sloping

regression line (having slope typical of high positive Moran’s I,

probably > 0.8), showing that the high-value areas of FT are

surrounded by the neighboring areas having similarly high values,

with a majority of them falling in the HH quadrant, with fewer in

the HL, LH, and LL quadrants. Figure 3B, on TC, also proves to

have positive spatial autocorrelation, whereby the points converge

along an upward-sloping line, proving that the concentrated areas

of high tourism are situated together spatially, though the

dispersion appears slightly greater, possibly indicating a moderate

spatial heterogeneity and reduced Moran’s I compared to FT. In

Figure 3C, the Moran Scatterplot for MGEI similarly shows a

positive spatial autocorrelation pattern, with a very steep

regression line and concentration of points in the HH quadrant,

largely suggesting heavy spatial clustering of high-investment areas,

although the dispersion into HL and LH quadrants suggests

localized heterogeneity as well. Figure 3D, for CWP, illustrates

positive spatial autocorrelation with a similarly positively sloping

regression line, though the points are more closely clustered around

the origin, indicating somewhat lessened spatial dependence

(possibly a Moran’s I ~ 0.7–0.8) and higher frequency of HH and

LL clusters with fewer transitions to HL or LH. Finally, Figure 3E,

CO2 Levels, also demonstrates positive spatial autocorrelation, with

points concentrated along a steep regression line, mostly in the HH

quadrant, indicating that high CO2-emitting regions are spatially

proximate to regions of similar levels, although the truncation of the

x-axis (-3 to 2) and y-axis (0 to 1) suggests potential data constraints

or scaling differences affecting the full visualization of spatial

patterns. Across all the numbers, the positive gradients of the

regression lines confirm strong positive Moran’s I values, typically

between 0.7 and 0.9, which indicate pronounced spatial clustering

of high values around high values and low values around low values,

with policy implications for targeting environmental and economic

indicators in China’s coastal regions. These patterns define the need

for the effects of clustering, which are spatially targeted for the

intervention, albeit with different degrees of dispersion, signal

alternative degrees of heterogeneity spatially across FT, TC,

MGEI, CWP, and CO2 Levels.

Spatial autocorrelation analysis, measured by Moran’s I, detects

significant positive spatial clustering in CF and CWP with

respective statistics of 0.404 (p< 0.000) and 0.386 (p< 0.001) for

CF and CWP (see Table 2). The large and statistically significant

values indicate strong spatial spillovers, where high environmental

impacts in one coastal province are strongly associated with high

impacts in other adjacent provinces, reflecting the transboundary

nature of marine tourism activity across provinces. This finding

warrants the inclusion of spatial lags in the SMMQR model, as it

demonstrates the need to account for geographical proximity and
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regional interactions in modeling the environmental effects of

over-tourism.

Stationarity tests also ensure the fitness of the panel data for

econometric modeling. Panel unit root tests, including Levin-Lin-

Chu and Im-Pesaran-Shin, both reject the null hypothesis of non-

stationarity for all of the principal variables after first differencing.

Levin-Lin-Chu reports statistics of -3.14, -2.89, -2.76, and -2.65 (all

p< 0.000 or p< 0.001), and Im-Pesaran-Shin reports -2.95, -2.71,

-2.58, and -1.66 (all p< 0.01 or p< 0.001), suggesting that Ln(EIijt),

Ln(FTijt), Ln(MGEIijt), Ln(TCijt) are stationary in their differenced

form. This stability eliminates the risk of spurious regressions, and

the SMMQR estimates are unbiased and consistent over time.

The multicollinearity test verifies explanatory variables to be

independent since VIF values are 2.177, 3.197, and 3.215 (less than

5 levels), and this establishes that there is no multicollinearity

among Ln(FTijt), Ln(MGEIijt), Ln(TCijt). These low VIF values

ensure that the estimated coefficients in SMMQR will be reliable

and free from confounding with linear relationships among

predictors, confirming the stability of the model in capturing the

unique impacts of FT, MGEI, and TC on EI. These results provide

access to quantile-specific and space-adjusted estimations, and thus,

allow for a specific understanding of the heterogeneous impact that

FT, MGEI, and TC exert on environmental degradation, as other

analyses explore.

To address the CSD identified by Pesaran’s CD test (statistic =

3.89, p< 0.01), we extended the SMMQR to a Spatial Durbin Model
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with CSD (SDM-CSD) as in Equation (14).

Ln(EIijt) = a + b1Ln(FTijt) + b2Ln(MGEIijt) + b3Ln(TCijt)

+ gXijt + rWLn(EIijt) + lMLn(EIijt) + єijt (14)

where M captures inter-provincial economic or trade linkages,

l estimates CSD, and other terms remain as defined.

The results in Table 3 indicate significant spatial heterogeneity

in both CF and CWP across quantiles. The results demonstrate

significant spatial dependence in both CF and CWP, as evidenced

by the consistently positive and highly significant r​​ and l​
values (p< 0.001 across most quantiles), ranging from 0.109 to 0.712

for CF and 0.211 to 0.846 for CWP. This indicates strong spatial

autocorrelation in the dependent variables and residuals,

underscoring the importance of spatial factors in EI. Similarly, g (
Xijt) is positive and statistically significant (p< 0.001), with values

ranging from 0.635 to 1.728 for CF and 0.748 to 1.736 for CWP,

highlighting the spatial spillover effects of exogenous variables

across quantiles. For CF, the coefficient of Ln(FTijt) varies from

1.078 at t = 0.1 to 2.085 at t = 0.9 (p< 0.001 at t ≥ 0.2), suggesting

that FT positively and increasingly influences CF at higher

quantiles, likely due to increased energy consumption linked to

FT activities. The coefficient of Ln(MGEIijt) is negative at lower

quantiles (-3.038 at t = 0.1) but becomes positive at higher quantiles

(0.200 at t = 0.9, p< 0.05), indicating that MGEI may reduce CF in

less developed areas but elevate it in more developed regions due to
TABLE 1 Local Moran’s I and quadrant clustering.

No Province-level Local Moran’s I p-value Quadrant

1 Sanya 0.742610 0.000 1

2 Shanghai 0.358070 0.001 3

3 Dongying 0.473506 0.000 3

4 Wenchang 0.625817 0.000 3

5 Guangzhou 0.52212 0.000 1

6 Qingdao 0.58985 0.006 4

7 Xiamen 0.290624 0.000 4

8 Shenzhen 0.337408 0.002 1

9 Qinhuangdao 0.675027 0.000 3

10 Fuzhou 0.555797 0.000 2

11 Haikou 1.471396 0.000 1

12 Beihai 0.386490 0.000 1

13 Zhuhai 0.374784 0.000 1

14 Yantai 0.004390 0.051 3

15 Dalian 0.08379 0.000 3

16 Ningbo 0.113475 0.061 3

17 Huizhou 0.221953 0.002 1

18 Rizhao 0.64101 0.001 3

19 Weihai -0.00812 0.032 4
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higher energy demands. Ln(TCijt) shows a consistently positive and

highly significant coefficient (p< 0.001) across most t, ranging from
6.250 at t = 0.8 to 13.185 at t = 0.3, demonstrating that TC

significantly drives CF, particularly in lower quantiles.

For CWP, the coefficient of Ln(FTijt) decreases from 2.045 at t
= 0.1 to 3.765 at t = 0.9 (p< 0.001 at t ≥ 0.3), reflecting an increasing

but less intense impact of FT on CWP compared to CF, possibly due

to differing mechanisms linking FT to carbon-water interactions.

The coefficient of Ln(MGEIijt) is negative at lower quantiles (-3.038

at t = 0.1 to -1.060 at t = 0.4) but positive at higher quantiles (4.665
Frontiers in Marine Science 10
at t = 0.5, p< 0.001), suggesting that MGEI mitigates CWP in less

developed areas but increases it in more developed regions due to

higher water and energy demands. Ln(TCijt) exhibits positive values

at all quantiles, indicating that TCmay exacerbate CWP. The spatial

lag g (Xijt) for CWP is smaller (0.025–0.048) and stable compared to

CF (0.025–0.435), suggesting weaker spatial spillover effects

for CWP.

As t increases from 0.1 to 0.9, the coefficients of Ln(FTijt) and

Ln(MGEIijt) for both CF and CWP show increasing or sign-

changing trends, reflecting spatial heterogeneity across
FIGURE 3

Moran’s I scatterplot for spatial autocorrelation diagnostics. (A) Coastal water pollution (significant only). (B) Carbon footprint (significant only).
(C) Fintech (significant only). (D) Tourism concentration (significant only). (E) Marine green energy investment (significant only).
frontiersin.org

https://doi.org/10.3389/fmars.2025.1605039
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2025.1605039
development levels. For lower quantiles, the effect of Ln(TCijt)   on

the environment is more pronounced than for upper quantiles. The

spatial lag effect via g (Xijt) varies, with CF exhibiting stronger

spillover effects than CWP, indicating greater spatial sensitivity of

CF to exogenous variables.
4.2 Robustness test

The LISA Cluster Maps presented in Figures 4A–E provide

spatially explicit confirmation of the SMMQR estimation. The maps

present HH, HL, LH, and LL clusters as red, light red, light blue, and

blue, respectively, confirming strong positive spatial autocorrelation

consistent with the output of the model. For CO2, Figure 4A shows

tight HH clusters along southeastern and northern coastal regions,

notably around Shanghai, Guangzhou, and Qingdao, reflecting high

spatial clustering of emissions, with thin LL clusters in less

industrialized regions such as Fujian, reflecting concentrated

environmental pressures from economic activity. Figure 4B for

CWP shows similar HH clustering in the southern and eastern

coastal cities such as Sanya, Xiamen, and Ningbo, with hardly any

HL and LH clusters, and LL clusters in the north, such as Dalian,

which suggests geographically adjacent pollution caused by

industrial and tourist activities. In Figure 4C, FT shows intense

HH clustering in southeast hubs such as Shanghai, Shenzhen, and

Xiamen, and LL clusters in underdeveloped regions such as Beihai

and Dongying, suggesting that FT development complements

economic activities such as tourism via digital financial services.

Figure 4D for TC displays HH clusters in well-known destinations

like Sanya, Haikou, and Qingdao with sustained space stability and
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widely scattered LL clusters in less well-known places like Yantai,

indicating high tourist activity causing regional environmental

impacts. Finally, Figure 4E for MGEI shows HH clusters in

economic centers like Shanghai, Guangzhou, and Dalian, with LL

clusters in the periphery like Beihai, indicating investment

concentration fueling tourism and FT growth.

Breusch-Pagan tests confirm no heteroskedasticity (CF: 2.14,

p = 0.143; CWP: 1.89, p = 0.169), confirming model suitability (see

Table 4). r t-tests indicate significant spatial autocorrelation (CF:

7.43, p< 0.001; CWP: 6.58, p< 0.001), which supports the spatial

structure, while Moran’s I test on residuals indicates no residual

spatial auto-correlation (CF: 0.012, p = 0.387; CWP: 0.009, p =

0.412), which confirms the success of the model in preserving

spatial patterns. The AIC favors the SMMQR (245.8) over the

non-spatial model (263.2), and the robustness check of Ln(TCijt)  

exhibits a consistent coefficient of 0.241 (p< 0.001, SE = 0.037),

evidencing estimate consistency.

The outcome of the results of the robustness checks is presented

in Table 5, presenting the SMMQR estimation’s stability for EI on

the coefficient of TC across various model specifications for both the

key indicators at quantiles t = 0.5 and t = 0.9.

Despite variations in spatial weighting matrices (Inverse

Distance, Queen Contiguity, Economic Distance), non-spatial

controls (MMQR), and data transformations (No Ln

Transformation), TC consistently exerts highly significant (p<

0.001) positive impacts on both metrics, with coefficients ranging

between 0.155 to 0.261 for CF and 0.105 to 0.219 for CWP,

indicating a strong spatial connection. Minor variations (≤5%)

throughout specifications, such as a small increase (≤3%) upon

excluding environmental policy or a fall with the non-spatial model
TABLE 2 Pre-estimation diagnostic results.

Test Variable Statistic p-value Conclusion

Moran’s I (CF) EI (CF) 0.404 < 0.000 Significant (+)

Moran’s I (CWP) EI (CWP) 0.386 < 0.001 Significant (+)

Levin-Lin-Chu

Ln(EIijt )​​ -3.14 < 0.000 Stationary (differenced)

Ln(FTijt )​​ -2.89 < 0.001 Stationary (differenced)

Ln(GEIijt)​​ -2.76 < 0.000 Stationary (differenced)

Ln(TCijt)​​ -2.65 < 0.000 Stationary (differenced)

Im-Pesaran-Shin

Ln(EIijt )​​ -2.95 < 0.01 Stationary (differenced)

Ln(FTijt )​​ -2.71 < 0.000 Stationary (differenced)

Ln(GEIijt)​​ -2.58 < 0.001 Stationary (differenced)

Ln(TCijt)​​ -1.66 < 0.01 Stationary (differenced)

Pesaran’s CD Panel 3.89 < 0.01 CSD present

VIF Ln(FTijt )​​ 2.177 – No multicollinearity

VIF Ln(GEIijt)​​ 3.197 – No multicollinearity

VIF Ln(TCijt)​​ 3.215 – No multicollinearity
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TABLE 3 SMMQR estimation results for environmental impact (EI).

Indicator Variable t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9

) 2.110** (0.000) 1.128** (0.000) 0.715*** (0.001) 1.105** (0.003) 1.098* (0.000) 2.092* (0.001) 2.085* (0.005)

0) 3.060* (0.002) 1.068* (0.001) 2.072* (0.000) -3.078** (0.006) -2.085** (0.003) -1.091** (0.005) -0.095** (0.001)

46) 13.185*** (0.002) 10.200*** (0.001) 8.212*** (0.013) 7.225*** (0.017) 7.235*** (0.014) 6.250*** (0.026) 7.065*** (0.009)

8) 0.635* (0.013) 1.038* (0.006) 1.441* (0.000) 1.244** (0.042) 0.946** (0.047) 0.745*** (0.035) 1.152*** (0.021)

45) 0.310*** (0.003) 0.712*** (0.001) 0.312*** (0.000) 0.211*** (0.040) 0.109*** (0.025) 0.607*** (0.015) 0.505*** (0.004)

15) 0.451*** (0.013) 0.517*** (0.011) 0.392*** (0.022) 0.119*** (0.000) 0.467*** (0.006) 0.668*** (0.036) 0.705*** (0.004)

2) 3.062* (0.002) 3.068* (0.001) 2.570* (0.001) 3.271* (0.002) 4.072* (0.003) 4.570* (0.000) 3.765 (0.009)

2) -0.152* (0.019) -1.060* (0.026) 4.665* (0.000) 3.970** (0.002) 5.275** (0.004) 5.180** (0.001) 6.585** (0.004)

28) 6.175*** (0.001) 8.190*** (0.004) 7.195*** (0.003) 9.200*** (0.002) 6.205*** (0.019) 5.210*** (0.037) 6.215*** (0.004)

9) 0.904* (0.008) 1.736* (0.017) 1.038* (0.001) 1.532** (0.0295) 0.589** (0.036) 1.113** (0.033) 1.048** (0.024)

06) 0.379*** (0.045) 0.647*** (0.015) 0.211*** (0.027) 0.385*** (0.032) 0.812*** (0.002) 0.846*** (0.004) 0.771*** (0.000)

45) 0.826*** (0.044) 0.845*** (0.026) 0.548*** (0.002) 0.734*** (0.000) 0.297*** (0.000) 0.366*** (0.001) 0.379*** (0.010)
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CF​​

Ln(FTijt)​​ 1.078 (0.006) 0.95* (0.00

Ln(GEIijt)​​ 4.042 (0.003) 2.050 (0.00

Ln(TCijt )​​ 9.155*** (0.004) 12.170*** (0.

g (Xijt )​​ 1.728 (0.029) 1.531 (0.01

r​​ 0.305*** (0.017) 0.208*** (0.0

l​ 0.505*** (0.017) 0.673*** (0.0

CWP​​

Ln(FTijt)​​ 2.045 (0.000) 3.055 (0.00

Ln(GEIijt)​​ -3.038 (0.005) -2.045 (0.01

Ln(TCijt )​​ 10.145*** (0.022) 7.160*** (0.0

g (Xijt )​​ 1.025 (0.030) 0.748 (0.02

r​​ 0.275*** (0.003) 0.278*** (0.0

l​ 0.602*** (0.017) 0.596*** (0.0

*p< 0.05, **p< 0.01, ***p< 0.001.
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(p = 0.15), point to spatial dependence as important, but the overall

findings are insensitive. These results imply that TC has

environmental impacts consistently in coastal China, most likely

due to its spatial clustering and economic interdependencies.

Decision-makers are encouraged to prefer spatially targeted

approaches, such as managing the intensity of tourism in high-

impact coastal zones, to fight CF and CWP while taking advantage

of the stability of these estimates to ensure effective, spatially

conscious environmental management.
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5 Discussions and conclusions

5.1 Robustness test

Based on the analysis results, the intensive FT operation

facilitates tourism through digital payments, online booking sites,

and money management, boosting TC in the areas. This

complementarity exacerbates over-tourism, which is characterized

by uncontrolled tourism streams leading to environmental
frontiersin.o
FIGURE 4

Lisa cluster map for post-estimation and robustness check. (A) CO2 level. (B) Coastal water pollution. (C) Fintech. (D) Tourism concentration.
(E) Marine green energy investment.
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TABLE 4 Post-estimation diagnostic and robustness check results.

Test/Check Variable Statistic p-value Conclusion

EI (CF) 0.143 No heteroskedasticity

EI (CWP) 0.169 No heteroskedasticity

EI (CF) < 0.001 Significant spatial autocorrelation

EI (CWP) < 0.001 Significant spatial autocorrelation

Residuals 0.387 No residual spatial autocorrelation

Residuals 0.412 No residual spatial autocorrelation

– – Better fit than non-spatial (263.2)

EI < 0.001 Stable coefficient

cations.

t = 0:5 (CF t = 0:9 (CWP) p-value Conclusion

0.165** (0.058 0.210*** (0.045) < 0.01 Stable

0.162** (0.059 0.208*** (0.046) < 0.01 Stable, minor variation (<5%)

0.168** (0.060 0.213*** (0.047) < 0.01 Stable

0.210*** (0.04 0.212*** (0.031) < 0.001 Stable, slight increase (<3%)

0.205*** (0.04 0.207*** (0.033) < 0.001 Stable, but lower r​​(0.15)

0.208*** (0.04 0.210*** (0.032) < 0.001 Stable, minor variation (<4%)
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Breusch-Pagan (CF)

Breusch-Pagan (CWP)

r​​t-test (CF)

r​​t-test (CWP)

Moran’s I (Residuals, CF)

Moran’s I (Residuals, CWP)

AIC (SMMQR)

Robustness Ln(TCijt)​​(new W)

***p<0.001.

TABLE 5 Robustness check results across specifi

Specification Variable

Inverse Distance W​​ Ln(TCijt)​​

Queen Contiguity W​​ Ln(TCijt)​​

Economic Distance W​

​
Ln(TCijt)​​

No Environmental
Impacts

Ln(TCijt)​​

Non-SMMQR Ln(TCijt)​​

No Ln Transformation Ln(TCijt)​​

**p< 0.01, ***p< 0.001.
2.14

1.89

7.43

6.58

0.012

0.009

245.8

0.241*** (0.037)

) t = 0:5 (CWP) t = 0:9 (CF)

0.158** (0.056) 0.225*** (0.047)

0.155** (0.057) 0.222*** (0.048)

0.160** (0.058) 0.228*** (0.049)

0.195*** (0.039) 0.263*** (0.033)

0.190*** (0.041) 0.258*** (0.035)

0.193*** (0.040) 0.261*** (0.034)
)

)

)
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degradation in the form of elevated CO2 emissions and CWP for

HH clusters. The commonness of HH clusters suggests that tourism

growth enabled by FT gives rise to hotspots of spatial pressure on

the environment, while the uncommonness of HL and LH clusters

corresponds to constrained spatial heterogeneity that suggests the

need for targeted intervention.

To respond to over-tourism, policy paths should leverage these

spatial effects. First, the use of FT solutions, such as real-time tourist

flow monitoring and adaptive prices, can manage visitor quantities

in HH concentrations like Sanya and Qingdao, reducing CO2 and

water pollution by mitigating peak-season stress. Second, scaling up

MGEI in green technology, i.e., green sea transport and wastewater

treatment, can help enhance TC while keeping environmental

impacts in check, particularly in tourist-dense areas. Third, spatial

zoning policy should restrict tourism development in LL areas to

prevent early saturation, preserving their environmental integrity

without encouraging the over-tourism of HH districts. Guided by

the spatial agglomeration of FT, TC, and MGEI, these policies are a

scientifically guided approach to balancing economic development

with a sustainable environment, facilitating the solution to the

problems of over-tourism in coastal China effectively.

Consistent with previous studies (Han et al., 2021; Cheng

et al., 2023), these findings prove that tourism intensity and FT

increase CF owing to greater energy consumption from

transportation and accommodation infrastructure and energy-

demanding digital infrastructure. Specifically, the high and

significant coefficients of Ln(TCijt) and Ln(FTijt) on CF (7.065–

9.155 and 1.078–2.085, respectively, for quantiles t = 0.1–0.9)

identify their contribution to environmental degradation via

spatial agglomeration in high-impact coastal hubs like Shanghai

and Sanya. Similarly, the negative impact of Ln(FTijt) on CWP

(-6.215 to -10.145 and -3.038 to -6.858) is in line with Yang and

Tang (2024), who noted that FT can mitigate water pollution

through the use of advanced management methods, such as

wastewater treatment and internet monitoring systems.

However, it meaningfully contributes to the existing literature

by including TC, MGEI, and spatial factors into the equation,

offering a comprehensive explanation of EI. In contrast to

previous studies, which tended to concentrate narrowly on

tourism numbers or FT uptake without accounting for spatial

dependencies, our incorporation of spatial lag (g (Xijt)),

autoregressive (r), and CSD (l) parameters—uniformly positive

and significant (p< 0.001, from 0.275 to 0.312)—discloses high

spatial auto-correlation that influences environmental effects. The

LISA Cluster Maps also illustrate this with high HH clusters for TC,

FT, and MGEI in cities, with minimal spatial variation (few HL and

LH clusters), illustrating concentrated environmental pressure in

coastal regions. This geographical emphasis indicates how MGEI

promotes TC and FT to raise CF while lowering CWP through

enhanced MGEI, like biomass and other renewable energy sources

(Bui-Duy et al., 2023), rather than other types of fuel sources (Minh

et al., 2024; Le and Xuan-Thi-Thu, 2024).
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5.2 Policy recommendations

Based on these important findings, we propose the following

specific policy recommendations:
• Real-time tourist flow management in HH clusters: In HH

clusters like Sanya, Haikou, and Guangzhou, where TC

drives significant CF and CWP, FT solutions should be

leveraged for real-time tourist flow monitoring and

dynamic pricing. The use of mobile apps and blockchain-

based platforms can help cap visitor numbers during peak

seasons, thereby reducing environmental strain. These

cities, with higher spatial lags, require coordinated

regional policies to prevent tourism overflow to

neighboring areas, such as implementing cross-provincial

visitor quotas. To balance ecological protection with

profitability, a phased approach may be considered,

including quantifying the carrying capacity of smaller

clusters for specific tourism activities, zoning, and

establishing monitoring and supervision plans to adjust

maximum capacity accordingly.

• Prioritizing MGEI in lower-quantile regions: MGEI reduces

CWP significantly in less developed regions with lower

quantiles, including LL and LH clusters. Governments

and local authorities should enhance green infrastructure,

AI-based automated waste-sorting systems, AI-based

monitoring systems (Bui-Minh et al., 2025), green

transportation networks, and solar-power facilities to

enhance carrying capacity while maintaining air quality.

The application of institutional incentives may also be

considered for private operators that proactively invest in

environmentally friendly solutions. The low environmental

impact in these regions should be utilized to scale up

renewable energy infrastructure to support sustainable

tourism growth. In addition, investments should also

allocate resources to installing more recycling stations and

enforcing fines for littering.

• Spatial zoning in transitional zones (HL/LH Clusters): In

HL and LH clusters, where local impacts differ from

neighboring areas, spatial zoning policies should restrict

tourism infrastructure expansion in high-impact zones

while redirecting development to lower-impact areas. The

HL cluster status suggests high local CF but lower regional

spillovers, warranting localized restrictions on new hotel

construction and incentives for eco-friendly transport (e.g.,

electric shuttle buses) to mitigate CF.

• Mitigating FT’s environmental impact in high-quantile

regions: In high-quantile regions, as FT amplifies CF and

CWP, policies should focus on greener FT applications.

Solutions, including incentivizing digital platforms to

promote low-carbon tourism activities, can reduce

energy-intensive transactions. Additionally, integrating FT
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with environmental monitoring systems can enhance real-time

pollution tracking in these hubs. Integrating satellite data with

digital device usage monitoring to estimate tourist flows,

combined with ecological awareness campaigns and selected

enforcement measures through FT techniques, should also be

gradually considered for implementation.
5.3 Limitations and future research

There are some limitations that need to be considered for this

study. Firstly, the hidden relationships between nodes within each

cluster remain unexplored. For instance, intra-cluster dynamics,

such as network interactions among tourism businesses, local

governance structures, or socio-economic factors driving HH

clustering in Sanya, were not analyzed. In the future, machine

learning and deep learning techniques can be considered to exploit

the hidden complex networks among nodes in each cluster and of

the LISA map, as they can offer a complementary approach by

modeling non-linear patterns and high-dimensional interactions

(Ta et al., 2025; Le, 2025). Also, by leveraging the spatial

concentration of TC and FT, as embodied in the intense HH

clusters in Sanya, Qingdao, and Shanghai, this paper opens up

new prospects for the formulation of spatially targeted policies. For

instance, future research may suggest integrating FT-driven tools,

e.g., real-time tracking of tourist flows and dynamic pricing

mechanisms, into zoning policy to manage visitor numbers in

high-impact areas, reducing CF while maintaining CWP benefits.

This model can be applied to develop an index system for

measuring the benchmark of over-tourism, utilizing the insights

provided. Future research can be proposed for monitoring this issue

in favored tourist destinations based on this index.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

QS: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft, Writing – review & editing. XW: Formal
Frontiers in Marine Science 16
Analysis, Methodology, Writing – original draft, Writing – review &

editing. LC: Conceptualization, Data curation, Software,

Supervision, Writing – original draft, Writing – review & editing.

MY: Conceptualization, Funding acquisition, Investigation,

Writing – original draft, Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://github.com/MQY446/SMMQR
References
Banerjee, S., and George, A. (2024). Identifying overtourism & spill-over tourism
using ST-DBSCAN analysis for sustainable management of tourism. Curr. Issues Tour.
doi: 10.1080/13683500.2024.2382378

Barbhuiya, M. R. (2021). Overtourism in Indian cities: a case study of Nainital. Int. J.
Tour. Cities. 7, 702–724. doi: 10.1108/IJTC-08-2019-0148
Berenguer-Rico, V., and Wilms, I. (2021). Heteroscedasticity testing after outlier
removal. Econom. Rev. 40, 51–85. doi: 10.1080/07474938.2020.1735749

Breiby, M. A., Øian, H., and Aas, Ø. (2021). “‘Good’, ‘bad’ or ‘ugly’ tourism?
Sustainability discourses in nature-based tourism,” in Nordic Perspectives on Nature-
Based Tourism: From Place-Based Resources to Value-Added Experiences.
frontiersin.org

https://github.com/MQY446/SMMQR
https://doi.org/10.1080/13683500.2024.2382378
https://doi.org/10.1108/IJTC-08-2019-0148
https://doi.org/10.1080/07474938.2020.1735749
https://doi.org/10.3389/fmars.2025.1605039
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Sun et al. 10.3389/fmars.2025.1605039
(Massachusetts, USA: Edward Elgar Publishing Limited), 130–142. doi: 10.4337/
9781789904031.00018

Bui-Duy, L., Le, L. T., Vu-Thi-Minh, N., Hoang-Huong, G., Bui-Thi-Thanh, N., and
Nguyen, P. N. (2023). Economic and environmental analysis of biomass pellet supply
chain using simulation-based approach. Asia. Pac. Manage. Rev. 28, 470–486.
doi: 10.1016/j.apmrv.2023.02.002

Bui-Minh, T., Giang, N. L., and Le, L. T. (2025). Efficient method for trademark
image retrieval: leveraging siamese and triplet networks with examination-informed
loss adjustment. Comput. Mater. Contin. 84, 1203–1226. doi: 10.32604/
cmc.2025.064403

Capocchi, A., Vallone, C., Pierotti, M., and Amaduzzi, A. (2019). Overtourism: A
literature review to assess implications and future perspectives. Sustain 11, 3303.
doi: 10.3390/su11123303

Chamizo-Nieto, F. J., Salazar, N. N. G. D., Rosa-Jiménez, C., and Reyes-Corredera, S.
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