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Introduction: Controlling over-tourism has emerged as a pressing concern,
attracting significant recent attention. Investigating this issue through the analysis
of the impacts of marine green energy investment (MGEI), fintech (FT), and
tourism concentration (TC) on carbon footprint (CF) and coastal water pollution
(CWP) at tourist destinations is crucial.

Methods: This study employs the Spatial Method of Moment Quantile Regression
(SMMQR) model to examine the effects of these indicators on two environmental
metrics in coastal regions of China, validated through Moran's | analysis, Local
Indicators of Spatial Association (LISA) Cluster Maps, and robustness checks.
Results: Results reveal strong positive spatial autocorrelation, with dominant
High-High (HH) clusters for both environmental indicators, concentrated in areas
such as Shanghai, Guangzhou, and Sanya, indicating significant environmental
pressures. TC and FT exacerbate CF (6.215-13.185 and 0.715-2.110) and CWP
(5.210-10.145 and 2.045-4.570), whereas MGEI exhibits mixed CF (-3.078-4.042)
and CWP impacts (-3.038-6.858), driven by spatial dependencies ranging from
0.275-0.312.

Discussion: These findings bolster recent research on tourism and FT's
environmental impacts, expanding the analysis by incorporating spatial
dynamics and investment, and pinpointing over-tourism risks in high-impact
areas. The study proposes setting an over-tourism threshold to better manage
this issue moving forward.

KEYWORDS

over-tourism, spatial method of moment quantile regression, tourism concentration,
fintech, marine green energy investment, carbon footprint, coastal water pollution

1 Introduction

Over-tourism has recently been considered an increasing global issue. The
phenomenon is not only overcrowding but also reflects a complicated interaction of
spatial, financial, and infrastructural pressures that threaten the sustainability of tourism-
dependent regions. It causes several negative effects on unsustainable tourist flows, the
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environment, socio-cultural disruption, and economic imbalances
(Capocchi et al., 2019; Zemta, 2020). One of the oldest historic sites,
Venice, receives more than 24 million visitors annually and is losing
about a thousand residents per year, so-called “Ven-exodus”
(Csmonitor, 2016). This results in overcapacity in numerous
historic squares and mobility challenges for people. Furthermore,
large cruise ships contribute to emissions and damage to the
historical surrounding ecosystem. To address this issue, a ban on
ships exceeding 25,000 tons has been implemented as of 2021.
However, transport and waste management are still heavily
overloaded. With over 10 million tourists per year, Barcelona is
an overcrowded destination. This city has been struggling with the
anti-tourism riots since 2017. The influx has led to skyrocketing
housing prices and living costs, largely fueled by the transformation
of residential properties into rentals. Central areas such as La
Rambla and Park Giell suffer from severe overcrowding,
prompting measures such as a daily visitor cap of 800 at Park
Giiell and a restriction on tour groups to fewer than 15 people at La
Boqueria market in order to alleviate congestion (Gholipour et al.,
2024). In China, the marine tourism sector is no exception to the
strain of large tourist crowds. The unsustainable volumes of tourists
overwhelming local infrastructure and ecosystems (Gupta and
Chomplay, 2021) have been particularly pronounced in hotspots
such as Hainan, Xiamen, and Zhoushan Archipelago. The rapid
expansion of tourism, driven by economic growth, digital financial
services, and improved marine green energy investment (MGEI),
has sped up environmental degradation by enlarging the carbon
footprint (CF) (Ehigiamusoe et al., 2023) and aggravating coastal
water pollution (CWP). Despite the intricate connection between
over-tourism and environmental sustainability, the latter is still
inadequately accounted for in the marine tourism sector of China.
China’s coastal hotspots are buzzing with tourists, thriving
economies, and exciting new tech, but this boom comes with
serious environmental headaches. Based on Ecological
Modernization Theory (EMT), with smart tech and policies, we
do not have to pick between a strong economy and a clean
environment but can have both (Chatti and Majeed, 2022). In our
study, this means tools like fintech (FT) and MGEI can help reduce
the environmental toll of packed tourist destinations by using
resources more wisely. On the other hand, the Environmental
Kuznets Curve (EKC) illustrates where tourism’s rapid growth
may initially harm the environment, exhaust more carbon
emissions, and pollute coastal waters, but as regions get wealthier
and adopt greener technologies, these impacts can shrink (Ochoa-
Moreno et al., 2022). This idea fits China’s coastal tourism scene
perfectly, where booming visitor numbers can strain local
ecosystems, but investments in green tech and digital finance may
turn the tide. By weaving these theories into our analysis, we aim to
uncover how FT, green energy, and tourism concentration (TC)
interact across different regions, offering practical ideas for
sustainable tourism that balances growth with a healthier planet.
Existing literature has linked over-tourism with numerous
environmental stressors. Over-tourism, accommodations, and leisure
activities are the major contributors to increased CO, emissions
(Raihan, 2024), while inadequate waste treatment contributes to
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ocean pollution (Paskova et al., 2024). Furthermore, coastal over-
development, sometimes fueled by FT-facilitated investment, has
added to habitat destruction and water pollution. Despite these
detected impacts, the existing literature is largely lacking a spatially
explicit and quantile-based approach to understanding how TC, FT
development, and marine green energy spending together influence
environmental sustainability in oceanic destinations (Li et al., 2024;
Ran et al, 2024). Studies note the severity of mass tourist invasions
overwhelming local ecosystems and diminishing the quality of life for
locals (Fischer-Kowalski et al., 2020). The overall number of tourist
trips is projected to hit 37.4 billion, with 17.4 billion consisting of
international and domestic overnight stays (UNWTO, 2022).
Understanding and addressing over-tourism has become a research
priority of the highest order. Yet, despite its significance, the literature
remains rare and fragmented (Capocchi et al., 2019), with a minimal
synthesis of interdisciplinary perspectives that hold promise for
delivering holistic solutions.

The objective of this study is to employ an SMMQR (Spatial
Method of Moments Quantile Regression) model that integrates
spatial analysis and quantile regression to examine heterogeneous
effects at various levels of carbon emissions and water pollution.
The model enables a detailed analysis of whether FT adoption
lowers or heightens the environmental expense of over-tourism, if
MGEI realizes sustainable tourism growth, and how TC worsens
environmental degradation at various quantiles. By leveraging high-
resolution geospatial data and panel econometric analysis, the paper
contributes to the current discourse of over-tourism management
and environmental governance in China’s coastal regions. The
findings aim to inform policymakers and stakeholders on how
best to streamline FT-driven tourism finance, balance MGEI, and
implement sustainable tourism policies to reduce the adverse
environmental effects of over-tourism.

2 Literature review
2.1 Theoretical frameworks

This study is derived from EMT and EKC frameworks, where
EMT argues that environmental degradation can be decoupled from
economic growth through technological innovation, institutional
reforms, and market-based solutions. In the context of coastal
tourism, EMT suggests that FT, such as digital payment systems
and blockchain-based crowd management, can enhance resource
efficiency and reduce the environmental footprint of tourism
activities (Siddik et al., 2023). Similarly, MGEI, including
investments in renewable energy infrastructure like tidal or wind
energy, aligns with EMT by promoting sustainable tourism
infrastructure that mitigates CF and coastal water pollution
(CWP). However, EMT also acknowledges potential challenges,
such as over-reliance on technology without addressing spatial or
social inequalities, which this study addresses through the spatially
explicit SMMQR model.

The EKC framework complements EMT by hypothesizing an
inverted U-shaped relationship between economic growth and
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environmental degradation. In the context of China’s coastal
regions, the EKC suggests that initial tourism growth, driven by
TC and facilitated by FT, may increase CF due to higher energy
consumption and waste generation (Fethi and Senyucel, 2021).
However, as regions reach higher income levels or adopt
advanced technologies, environmental impacts may decline. This
aligns with findings from Yang and Tang (2024), who noted that FT
could mitigate CWP through the use of advanced wastewater
management systems. Yet, the EKC’s applicability to over-tourism
remains underexplored, particularly in terms of spatial
dependencies and quantile-specific effects, which are critical in
heterogeneous coastal regions like Sanya and Shanghai. The
SMMQR model bridges this gap by capturing spatial
autocorrelation and distributional heterogeneity, allowing us to
test whether FT and MGEI enable an EKC-like trajectory in high-
tourism areas. Additionally, to utilize the insightful benefit of spatial
effect, our integration of EMT and EKC with the SMMQR model
provides a comprehensive lens to examine how spatial clustering
and technological interventions shape the environmental
consequences of over-tourism in China’s coastal tourism economy.

2.2 Relevant studies on over-tourism

Some scholars have reviewed recent studies relating to “over-
tourism” and indicated that this concept is still in the early stages and
currently lacks a standardized, recognized characterization (Capocchi
et al, 2019; Dilshan and Nakabasami, 2025). When the number of
tourists exceeds a location’s carrying capacity, it tends to expose the
shortcomings of existing infrastructure, including transport networks,
waste management systems, and accommodations (Barbhuiya, 2021). A
recent study assessed over-tourism in Granada, Spain, using 1,349
negative TripAdvisor reviews of 71 attractions. The findings stressed
sustainable management measures, destination diversification, a better
transportation network, and access control to mitigate heavily
touristified areas (Foronda-Robles et al, 2025). Another study was
conducted based on surveys and observations in Salinas, Manta, and the
Galapagos, which found post-COVID-19 ecological improvements and
recommended expanding such opportunities (Ormaza-Gonzailez et al,,
2021). In the recent past, among the rapidly evolving variables, FT has
been studied to assess its influence on environmental metrics. Several
studies indicated that FT exerted a considerable energy use intensity-
lowering impact through enhancing transaction efficiency with
heterogeneous effects on different quantiles of economic activity (Zhu
et al, 2024; Muhammad et al,, 2022; Fan et al,, 2024). Hwang et al.
(2021) linked FT-driven tourism services to increased CO, emissions,
while Yang and Tang (2024) extended this to coastal pollution, noting
its dual role in exacerbating and mitigating environmental stress. Kai
et al. (2024) and Leng et al. (2024) further confirmed FT’s role in
lowering emission intensity via marine green financing and
technological innovation in China and BRICS countries, respectively.
However, these studies did not address TC or incorporate spatial factors
like autocorrelation, leaving a gap that this research aims to fill using
SMMQR. However, the inclusion of this variable in research models
examining the issue of over-tourism is very limited. The proliferation of
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digital payment systems, peer-to-peer booking sites, and real-time travel
apps has opened up tourism access, often exacerbating crowding in
already congested destinations (Suyunchaliyeva et al., 2021). For
instance, FT-enabled platforms like Airbnb have been linked to
increasing tourism density in urban areas by expanding the supply of
housing beyond traditional regulatory oversight (Gurran and Phibbs,
2017; Garcia-Amaya et al, 2021). However, the potential of FT as a
management tool, e.g., via dynamic pricing or crowd control enabled by
blockchain, is mostly unexplored. This is a fundamental research lacuna,
as FT’s dual potential to both intensify and alleviate over-tourism
warrants systematic investigation, particularly in technology-
adopting destinations.

One of the less explored dimensions of over-tourism is TC, or
the spatial and temporal concentration of tourists in specific
destinations. While metrics such as tourist density and tourist-to-
population ratios have been employed to quantify concentration
(Yang, 2012; Fernandes et al., 2020), their application has been
largely descriptive rather than predictive. Few studies have
employed econometric specifications to investigate how
concentration varies between heterogeneous areas or influences
over-tourism thresholds. This gap is more significant in emerging
tourism destinations (Banerjee and George, 2024). Addressing this
shortfall is imperative to devising targeted interventions that
redistribute tourist flows and alleviate pressure from strained
destinations. Over-tourism significantly contributes to CWP
through excessive water consumption, massive waste generation,
and improper waste management, as seen in destinations like
Shimla, India (Gupta and Chomplay, 2021). Breiby et al. (2021)
noted that sustainability assessments often use limited indicators,
overlooking the complex impacts of over-tourism on CWP. There is
a notable lack of detailed quantitative research correlating over-
tourism with CWP, hindering effective policy development. While
Yang and Tang (2024) suggested FT could mitigate CWP, this paper
has not exploited the over-tourism perspective. A few recent studies
suggested a significant interrelation between these two factors.
Using panel cointegration tests, Ji and Ding (2024) found a
sustained link between coastal tourism and four marine pollutants
in China, with limited environmental benefits in low- and middle-
income or northern regions.

Another fundamental yet understudied impact is MGEI, as both
a constraint and an enabler of over-tourism. The literature already
alludes to how inadequate transport, waste, and accommodation
systems exacerbate the negative impacts of mass tourism (Kukreti
and Dangwal, 2023). In contrast, resilient MGEI can increase
carrying capacity and more equitably spread tourist pressures.
Despite this reality, there is little quantitative assessment of the
dynamic interplay between TC, marine green energy capacity, and
over-tourism effects, especially for developing economies where
resource constraints are acute. This neglect limits policymakers’
ability to invest in prioritization, trading off economic returns for
sustainability, which underscores the need for empirical models
featuring those variables. Studies emphasized how infrastructural
poverty aggravated environmental decay and diminished the quality
of life for residents of over-touristed areas (Li et al., 2023), while
Kumail et al. (2023) argued that efficient MGEI could reduce such
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effects via capacity expansion and redistributing tourism flows. For
instance, improved public transportation systems have been shown
to minimize traffic congestion in inner-city tourist areas, but these
investments are only as useful as the geographical, economic, and
policy constraints of a specific location. On the other hand, over-
investment or poorly planned marine green energy spending in the
form of too many hotels can prolong over-tourism by attracting
more tourists beyond sustainable levels (Tavor, 2024). However,
empirical research quantifying the causal effects of marine green
energy spending on over-tourism impacts is scarce, particularly in
developing nations where resource capacity is limited and tourism
development is intense. Such scarcity hampers the creation of
evidence-based policy, underlining the need for integrated models
that analyze how MGEI balances economic benefits against the
threats of over-tourism.

2.3 MMQR and SMMQR in research on
over-tourism

Recent researchers have employed the MMQR to explore the
complex influences of FT, infrastructure, and tourism on
environmental outcomes, with the principal target of analysis
being CO, emissions. As an example, MMQR was applied to
present the impacts of FT innovations, such as digital payment
systems, on various quantiles of economic activity and energy
consumption, and CO, emissions, with non-linear effects
unaddressed by naive mean-based measures (Shan et al., 2024).
Similarly, Shahbaz and Patel (2024) applied MMQR to examine the
differential effects of infrastructure development, transport
networks, and energy systems on carbon emissions, segregating
different effects in high- versus low-emission environments.

In tourism research, Zhan (2024) applied MMQR to link tourist
visits and CO, emissions and reported large heterogeneity in
emission distributions. There are very few studies that have
employed MMQR to apply it to CWP (Yang and Tang, 2024),
linking tourism growth with marine ecosystem deterioration. The
authors utilized the method of the MMQR model to examine how
green fiscal policy, tourism, and FT affect CO, emissions and coastal
water quality. The authors found that GFP and FT play a crucial
role in enhancing CWP while also lowering CO, levels.

These studies generally do not consider the TC, spatial, and
temporal agglomeration of tourists as one of the leading
environmental drivers. Besides, the geographical considerations,
including spatial autocorrelation and heterogeneity among
regions, remain unexploited due to a lack of spatially integrated
methods. This study bridges such gaps using the SMMQR that not
only detects distributional heterogeneity but also detects spatial
dependencies through weighted moment conditions. The power of
SMMAQR lies in its spatial robustness and ability to model spatially
heterogeneous relationships between quantiles, offering a more
comprehensive and context-dependent framework for how FT,
MGEL and TC all impact environmental outcomes within a wide
range of different spatial settings.
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This study addresses these gaps through three key
contributions. From a theoretical perspective, by integrating EMT
and EKC, this study provides a robust framework to understand
how technological innovations and economic growth interact with
environmental outcomes (CF and CWP). EMT supports the
hypothesis that FT and MGEI can mitigate over-tourism’s
impacts through efficient resource use, while EKC posits a
potential decline in environmental degradation as regions adopt
greener technologies. This dual framework extends prior studies by
grounding the analysis in theories that account for both
technological and economic dynamics. In methodological
contribution, the SMMQR model advances beyond traditional
mean-based approaches by capturing spatial spillover effects and
heterogeneity across quantiles of CF and CWP. Finally, this study
provides empirical contributions by examining TC, FT, and MGEI
in China’s coastal tourism sector. The LISA Cluster Maps identify
HH clusters in high-impact zones, guiding targeted policy
interventions. The SMMQR results reveal heterogeneous impacts,
such as MGEI's negative effect on CWP at lower quantiles and
positive effect at higher quantiles, offering insights for sustainable
tourism management.

3 Methodologies
3.1 Data description and preprocessing

The present study employs a quantitative study design to
investigate China’s sea tourism sector issue of over-tourism and
its effects on the environment, ie., CF and CWP, respectively.
Spatial analysis is blended with the MMQR model in the analysis to
confront both spatial dependencies and heterogeneity in the
distribution of the dependent variables. By this integrating
approach, this paper can explore the diverse impacts of FT
development, MGEI, and tourism intensity on the environment,
and identify the nature of over-tourism at the provincial level
(see Figure 1).

The research utilizes panel data of China’s coastal provinces and
municipalities between 2010 and 2022, a period selected to reflect
the rapid expansion in marine tourism, FT adoption, and marine
green energy expenditure in China (see Supplementary Material).
The present study employs a quantitative study design to investigate
China’s sea tourism sector issue of over-tourism and its effects on
the environment, i.e., CF and CWP, respectively. The SMMQR
model can confront both spatial dependencies and heterogeneity in
the distribution of the dependent variables. By such conjoining, the
research is hoped to be capable of achieving varied impacts of FT
development, MGEI, and tourism intensity on the environment,
and also conquer the multimodal nature of over-tourism at the
provincial level.

The data for this study are sourced from multiple sources,
including the following indicators. CF estimates CO, emissions
derived from the China Energy Statistical Yearbook (China, 2024).
Coastal Water Pollution (CWP) is collected from the China Marine
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FIGURE 1
Research framework.

Environmental Quality Bulletin and the China Energy Statistical
Yearbook (China, 2024; Kurniawan et al., 2023). We then deploy
the widely recognized single-factor index method as in Equation 1
(Yang and Tang, 2024):

CWP =1, .LLI, (1)

where I} x I, averages the single-factor CWP tagging variable of
all estimated indicators; I; denotes the number of single indexes in
the full-scale CWP assessment falling short of the functional zone
target for the water environment; I, denotes the comparative result
between the complete CWP group and the overall functional zone
target for the water environment.

The single-factor index P specializes in exceeding the target C
WP degree using a single index that applies weight modification.

n
L.L=P xw )

i=1

m;:

- 3)

wi

m;= (I =) +1 4)

where n represents the number of single indexes to measure the
CWP; P; is the single-factor indicator of the i" CWP variable
rounded to two decimal digits; w; denotes the weight; w; denotes the
weight as in Equation 3; u is the target CWP benchmark; whereas
m; is the exceedance degree of a single CWP standard; whereas m; is
the exceedance degree of a single CWP standard as in Equation 4.
FT comprises the measure of mobile payment transactions and
digital financial services penetration from the China Statistical
Yearbook and China Internet Network Information Center
(CNNIC) (Yang and Tang, 2024; China, 2024; Institute National
Geography Information - Ministry of Land Infrastructure and
Transport, 2023); MGEI: Data on investments in renewable
energy infrastructure are sourced from Yang and Tang (2024)
and the China Statistical Yearbook (China, 2024); TC: Data on
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tourist arrivals overnight stays, and tourism revenue in coastal
regions are obtained from the China National Tourism
Administration and China Statistical Yearbook (China, 2024;
WEPA, 2024). In this study, we deploy the Gini coefficient to
measure TC. It can be calculated as Equation 5.

27=1E}1=1|xi - %]

G=
2n’x

(5)

where x; and x; are the number of tourists in sub-regions i and j,
n denotes the number of sub-regions, x represents the mean
number of tourists across all sub-regions.

Before designing the models and other diagnostic procedures,
data preprocessing is important to ensure that the model is reliable.
Firstly, missing and empty values are removed, and outliers are
detected using the studentized residuals technique, as it has been
popularly used by several studies (Berenguer-Rico and Wilms, 2021;
Le et al., 2020a; Le et al., 2020b) and is suitable for this dataset, with
a threshold of absolute values exceeding 3, thereby mitigating
potential distortions in subsequent spatial econometric modeling.
The diagnostic results before and after preprocessing procedures
can be found in Figure 2.

3.2 Model specification

The study extends the STIRPAT model and the improved
STIRPAT model developed by Yang and Tang (2024); Kai et al.
(2024), and Leng et al. (2024). We further expand this model to
incorporate spatial dependencies and heterogeneity, using an
SMMQR approach. The model is extended to incorporate spatial
dependencies and quantile-specific heterogeneity, formulated as
Equation 6:

Ln(EILy) = o+ B Ln(FTy,) + B, Ln(MGEIy,) + B Ln(TCy,)

+ Xy + pPWLn(EL) + € (6)
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Data preprocessing results. (A) Before denoising. (B) After denoising.

where Ln is the natural logarithm of the variables; EI;; denotes
the environmental impact for location i at month t; j is

environmental indicator (CO, footprint or CWP); X;;; : Vector of

ijt
control variables, including environmental impacts; IiVLn(EIij,) is
Spatial lag term. The spatial weight matrix W , row-standardized
based on inverse geographical distances between provinces,
introduces spatial spillovers through the parameter p , which
measures spatial autocorrelation. The error term &, is assumed to
be heteroskedastic and spatially correlated, with E[g;] =0 and
potentially varying variance across i and t. The natural logarithm
transformation stabilizes variance and mitigates skewness, aligning
with STIRPAT’s theoretical underpinnings. SMMQR estimates this
model across quantiles to address the nonlinear and asymmetric
effects of over-tourism drivers on environmental outcomes.

3.3 Pre-estimation diagnostics
Before estimating SMMQR, spatial autocorrelation is assessed

using Moran’s I and Local Indicators of Spatial Association (LISA)
to confirm dependencies in EI, encompassing both CF and CWP.
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Moran’s I is calculated using Equation 2 with significance
determined by p-value< 0.05, identifying global spatial patterns.
LISA Cluster Maps visualize local spatial structures, computing the
LISA statistic for each province i as Equation 7:

(EI, - EI)

==

J#i

(7)

where EI; and EI; are EI values, EI is the mean, S? is the
variance, and W; is the spatial weight. Significance is evaluated via
permutation tests, categorizing locations into high-high (HH), low-
low (LL), low-high (LH), and high-low (HL) clusters, and non-
significant (NS). These maps, generated using GeoDa, reveal over-
tourism hotspots and spatial spillovers, which are critical for
understanding marine tourism’s environmental impact.
Stationarity is ensured through panel unit root tests, rejecting the
null hypothesis of a unit root (p-value< 0.05) to avoid spurious
regressions. Cross-sectional dependence (CSD) is assessed using
Pesaran’s CD test, CD = ,/Wi&ij}%f)ij. Multicollinearity is

i=1 j=it+

checked via the Variance Inflation Factor (VIF), calculated as VIF =
1/(1-R).
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3.4 Estimation framework of SMMQR

The SMMQR possesses several advantages over traditional
regression techniques, particularly when working with spatially
heterogeneous data. It determines the full distributional effects of
covariates at different quantiles, and it provides a more accurate
representation of spatial dependencies and variations. This method
properly deals with spatial autocorrelation and unobserved
heterogeneity, which are often ignored in standard procedures, by
adding spatial weights to the moment conditions (Ramsey, 2020).
SMMQR is also an outlier- and non-normal error-robust, thus
being more applicable to real-world datasets with heavy tails or
skew distributions. Its ability to mimic relationships varying across
space at different levels of quantile makes it a vital tool for
researchers studying complex socio-economic or environmental
trends, like regional disparities or ecological effects, in which
space dynamics play an important role.

SMMQR can address spatial dependencies and quantile-specific
heterogeneity in the environmental impacts of marine tourism. The
estimation mechanism unfolds through three interconnected stages:
incorporating spatial lags, applying quantile regression via
moments, and optimizing through moment-based techniques
with spatial adjustments, ensuring robustness and precision in the
presence of spatial autocorrelation and distributional variation.

The spatial lag term pWLn(El;) captures spatial spillovers,
where W is a N x N matrix defined as Wi =1 / dl-]- (i #j) (inverse
distance) and W;; =0
each row. The parameter p, ranging from -1 to 1, quantifies the

, row-standardized to sum to one across

strength and direction of spatial autocorrelation, with p >0
indicating positive spillovers (e.g., high EI in one location
increasing EI in neighboring locations). Preliminary diagnostics
using Moran’s I statistic (Equation 8) confirm spatial
autocorrelation.

_ N 33, Wy(EL - ED(EL — ED)
EzEJW,] EI(EII _ E)Z

For a given quantile 7 , the conditional 7

I

®)

—th quantile is
expressed as Equation 9:

Qq(ELy | Xy, WLn(EI))
= o(7) + B()Ln(FTy,) + Bo(T)Ln(MGEIy) + 5 (1)Ln(TCy) + y(7) Xy, + p(T) WLn(EL,)

)

where (1), B,(7), B,(7), B5(7), (), p(7) are quantile-specific
parameters. MMQR approximates these quantiles by solving
Equation 10:

m i)nE[pT(EIl-jt - X;;;0(7) — p(7)WLn(EI};))] (10)

with p (1) = u(t —I(u < 0)) as the check function and X{jt
including all explanatory variables. Instead of direct
minimization, MMQR constructs moment conditions (see
Equation 11):

EXy - (v = I(ELy, < Qu(Ely | Xy, WLn(EL)))] =0 (1)
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and adjusts for spatial terms via WLn(EI;;;), ensuring robustness
to heteroskedasticity and endogeneity, particularly suited for panel
data with non-linear, heterogeneous impacts.

SMMQR further refines MMQR by incorporating spatial
moments to estimate p and Q(7) consistently for spatial
autocorrelation. The estimation involves defining spatial moment
functions as Equation 12:

8ir(8(1), p(7))

= Xy - (- I(Ely < X}

§10(7) + p(T)WLn(EI,))) + WXy, - (T = I(El, < X],

it < Xij0(7) + p(T)WLn(EI};)))

(12)

WX captures spatial interactions among
regressors. Using the Generalized Method of Moments (GMM),

the parameters are optimized by minimizing Equation 13:

where

(1 (1
onin (WEgm(G(r),p(r)v Q (W%ggt(e(r%p(r)))

(13)

where Q
estimator), and NT
typically via Newton-Raphson algorithms, ensure convergence

is a weighting matrix (e.g., identity or robust
is the sample size. Iterative updates,

within 100 iterations (tolerance< 10°°). The spatial adjustment
addresses endogeneity from WLn(EIy) using instrumental
variables, such as lagged values of FT,jt, MGEI,»jt, TCijt ensuring
unbiased estimates.

This method is more advanced than previous traditional
approaches, such as spatial autoregressive (SAR) and spatial error
models (SEM), as its advantages are threefold. By estimating effects at
different quantiles, SMMQR captures varying impacts of TC, FT, and
MGEI (distributional heterogeneity). SMMQR accounts for spatial
spillovers in both dependent p and independent variables A, unlike
SAR’s focus on dependent variable spillovers or SEM’s error-based
approach (spatial robustness). The moment-based estimation
mitigates biases from skewed distributions, critical for
environmental data with heavy tails (robustness to non-normality).
These advantages stem from the following reasons. SAR and SEM
estimate a single f3 for the mean of EI, assuming Ellg;] and
normality. This fails to capture the heterogeneous effects seen in
SMMQR, where f3; varies. The check function p,(u) weights residuals
asymmetrically, allowing estimation of effects at specific quantiles.
SMMQR’s spatial lag p, WLn(EI);, varies by quantile, capturing
stronger spillovers in high-impact regions (HH clusters) compared
to SAR’s single p.

3.5 Post-estimation diagnostics

Post-estimation, heteroskedasticity is tested using the Breusch-

Pagan test, LM = %E(é?jr /6% = 1)%. Model evaluation is evaluated
ijit

using the Akaike Information Criterion AIC = —2Ln(L) + 2k, where

L is the likelihood and k is the number of parameters, comparing

SMMQR with non-SMMQR.
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4 Results

4.1 Estimation results and post-estimation
diagnostics

Local Moran’s I statistics results (see Table 1) indicate very high
spatial autocorrelation across all cities, with 18 of the 19 cities
displaying significant p-values (<0.05), except Ningbo (p = 0.061),
indicating intense spatial dependencies for EI in the coastal tourism
network. Large Local Moran’s I statistics of 1.471 for Haikou, 0.742
for Sanya, and 0.675 for Qinhuangdao suggest positive spatial
autocorrelation of strong intensity, with these cities representing
HH clusters—locations of high EI that are neighbored by high-
impact neighbors, likely due to intense concentration of tourism
and investment in renewable energy. Sanya and Haikou in Hainan
province have the two highest Local Moran’s I values (0.742 and
1.471, respectively, p< 0.001), demonstrating the most extreme
over-tourism pressures, as HH cluster together due to their status
as the best beach resorts to welcome millions of domestic and
foreign tourists annually. Similarly, Local Moran’s I values in
Guangzhou, Shenzhen, Beihai, and Zhuhai are from 0.386 and
0.522 (p< 0.001), indicating HH TC zones in the south coastal areas.
The highest TC recorded was 43,451 visitors per km? (in Haikou),
while the lowest was 537 visitors per km? (in Weihai).

Conversely, cities located in the LH or HL quadrants represent
mixed spatial structures, which suggest potential outliers or
transition zones. Qingdao and Xiamen, both of Local Moran’s I =
0.590 and 0.291 (p< 0.01), are located in quadrant 4 (HL), showing
high EI locally but surrounded by lower-impact areas, possibly due
to urbanized tourist hubs like Qingdao’s port economy and
Xiamen’s tourism facilities expansion outpacing regional
spillovers. Shanghai and Dongying, 0.358 and 0.474 (p< 0.01) in
quadrant 3 (LH), have lower local EI but higher-impact adjacency,
as predicted for peripheral nodes in regional tourist networks.
Wenchang, Qinhuangdao, Yantai, Dalian, Rizhao, and Ningbo,
also located in quadrant 3, have 0.004 to 0.675 values of Local
Moran’s I (p< 0.05), which reflect LH patterns by smaller local
tourism intensity but closeness to HH clusters.

Fuzhou, with Local Moran’s I = 0.556 (p< 0.001) at quadrant 2
(LL), is a cluster when EI is locally as well as globally low in that area,
according to fewer intensive tour operations in Fujian. This level is
even higher than the HH cluster reported by Chamizo-Nieto et al.
(2023) on Malaga and Barcelona, with Moran’s I ranging from 0.368
to 0.499 for Malaga and from 0.170 to 0.263 for Barcelona. Weihai,
which has a negative Local Moran’s I of -0.008 (p = 0.032) in
quadrant 4 (HL), represents a local spatial outlier, possibly
suggesting high local EI but less significant impacts at a more local
level, perhaps because of its smaller tourism scale but proximity to
larger cities like Qingdao. LH and HL cities, such as Shanghai and
Qingdao, recognize transition areas where the effects can range from
local spillovers to regional spillovers, for which special interventions
are needed. The large p-values (<0.05 in most cities) justify the use of
SMMQR because they guarantee spatial dependencies inherent in the
analysis of the regional dynamics of over-tourism.
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Moran Scatterplots in Figures 3A-E graphically illustrate spatial
autocorrelation of the five indicators, FT, TC, MGEI, CWP, and
CO, Levels, across a standardized dataset, each graph illustrating
the correspondence between the variable (on the x-axis) and its
spatial lagged version (on the y-axis). In Figure 3A, FT’s Moran
Scatterplot is indicative of high positive spatial autocorrelation, with
a tight clump of points following a strongly positively sloping
regression line (having slope typical of high positive Moran’s I,
probably > 0.8), showing that the high-value areas of FT are
surrounded by the neighboring areas having similarly high values,
with a majority of them falling in the HH quadrant, with fewer in
the HL, LH, and LL quadrants. Figure 3B, on TC, also proves to
have positive spatial autocorrelation, whereby the points converge
along an upward-sloping line, proving that the concentrated areas
of high tourism are situated together spatially, though the
dispersion appears slightly greater, possibly indicating a moderate
spatial heterogeneity and reduced Moran’s I compared to FT. In
Figure 3C, the Moran Scatterplot for MGEI similarly shows a
positive spatial autocorrelation pattern, with a very steep
regression line and concentration of points in the HH quadrant,
largely suggesting heavy spatial clustering of high-investment areas,
although the dispersion into HL and LH quadrants suggests
localized heterogeneity as well. Figure 3D, for CWP, illustrates
positive spatial autocorrelation with a similarly positively sloping
regression line, though the points are more closely clustered around
the origin, indicating somewhat lessened spatial dependence
(possibly a Moran’s I ~ 0.7-0.8) and higher frequency of HH and
LL clusters with fewer transitions to HL or LH. Finally, Figure 3E,
CO, Levels, also demonstrates positive spatial autocorrelation, with
points concentrated along a steep regression line, mostly in the HH
quadrant, indicating that high CO,-emitting regions are spatially
proximate to regions of similar levels, although the truncation of the
x-axis (-3 to 2) and y-axis (0 to 1) suggests potential data constraints
or scaling differences affecting the full visualization of spatial
patterns. Across all the numbers, the positive gradients of the
regression lines confirm strong positive Moran’s I values, typically
between 0.7 and 0.9, which indicate pronounced spatial clustering
of high values around high values and low values around low values,
with policy implications for targeting environmental and economic
indicators in China’s coastal regions. These patterns define the need
for the effects of clustering, which are spatially targeted for the
intervention, albeit with different degrees of dispersion, signal
alternative degrees of heterogeneity spatially across FT, TC,
MGEIL CWP, and CO, Levels.

Spatial autocorrelation analysis, measured by Moran’s I, detects
significant positive spatial clustering in CF and CWP with
respective statistics of 0.404 (p< 0.000) and 0.386 (p< 0.001) for
CF and CWP (see Table 2). The large and statistically significant
values indicate strong spatial spillovers, where high environmental
impacts in one coastal province are strongly associated with high
impacts in other adjacent provinces, reflecting the transboundary
nature of marine tourism activity across provinces. This finding
warrants the inclusion of spatial lags in the SMMQR model, as it
demonstrates the need to account for geographical proximity and
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TABLE 1 Local Moran’s | and quadrant clustering.

10.3389/fmars.2025.1605039

[\ fo) Province-level Local Moran’s | p-value Quadrant
1 Sanya 0.742610 0.000 1
2 Shanghai 0.358070 0.001 3
3 Dongying 0.473506 0.000 3
4 Wenchang 0.625817 0.000 3
5 Guangzhou 0.52212 0.000 1
6 Qingdao 0.58985 0.006 4
7 Xiamen 0.290624 0.000 4
8 Shenzhen 0.337408 0.002 1
9 Qinhuangdao 0.675027 0.000 3
10 Fuzhou 0.555797 0.000 2
11 Haikou 1.471396 0.000 1
12 Beihai 0.386490 0.000 1
13 Zhuhai 0.374784 0.000 1
14 Yantai 0.004390 0.051 3
15 Dalian 0.08379 0.000 3
16 Ningbo 0.113475 0.061 3
17 Huizhou 0.221953 0.002 1
18 Rizhao 0.64101 0.001 3
19 Weihai -0.00812 0.032 4

regional interactions in modeling the environmental effects of
over-tourism.

Stationarity tests also ensure the fitness of the panel data for
econometric modeling. Panel unit root tests, including Levin-Lin-
Chu and Im-Pesaran-Shin, both reject the null hypothesis of non-
stationarity for all of the principal variables after first differencing.
Levin-Lin-Chu reports statistics of -3.14, -2.89, -2.76, and -2.65 (all
p< 0.000 or p< 0.001), and Im-Pesaran-Shin reports -2.95, -2.71,
-2.58, and -1.66 (all p< 0.01 or p< 0.001), suggesting that Ln(El;),
Ln(FTy,), Ln(MGEL), Ln(TCy,
form. This stability eliminates the risk of spurious regressions, and

) are stationary in their differenced

the SMMQR estimates are unbiased and consistent over time.

The multicollinearity test verifies explanatory variables to be
independent since VIF values are 2.177, 3.197, and 3.215 (less than
5 levels), and this establishes that there is no multicollinearity
among Ln(FTj;), Ln(MGEIy), Ln(TCy). These low VIF values
ensure that the estimated coefficients in SMMQR will be reliable
and free from confounding with linear relationships among
predictors, confirming the stability of the model in capturing the
unique impacts of FT, MGEI, and TC on EIL These results provide
access to quantile-specific and space-adjusted estimations, and thus,
allow for a specific understanding of the heterogeneous impact that
FT, MGEI, and TC exert on environmental degradation, as other
analyses explore.

To address the CSD identified by Pesaran’s CD test (statistic =
3.89, p< 0.01), we extended the SMMQR to a Spatial Durbin Model
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with CSD (SDM-CSD) as in Equation (14).
Ln(EILy) = o+ B Ln(FTy,) + B, Ln(MGEIy,) + B5Ln(TC;;,)

+ X + pPWLn(EI;) + AMLn(EIL;) + € (14)
where M captures inter-provincial economic or trade linkages,
A estimates CSD, and other terms remain as defined.

The results in Table 3 indicate significant spatial heterogeneity
in both CF and CWP across quantiles. The results demonstrate
significant spatial dependence in both CF and CWP, as evidenced
and 4
values (p< 0.001 across most quantiles), ranging from 0.109 to 0.712
for CF and 0.211 to 0.846 for CWP. This indicates strong spatial
autocorrelation in the dependent variables and residuals,

by the consistently positive and highly significant p

underscoring the importance of spatial factors in EI. Similarly, y(
Xj;) is positive and statistically significant (p< 0.001), with values
ranging from 0.635 to 1.728 for CF and 0.748 to 1.736 for CWP,
highlighting the spatial spillover effects of exogenous variables
across quantiles. For CF, the coefficient of Ln(FTj;) varies from
1.078 at 7 = 0.1 t0 2.085 at 7 = 0.9 (p< 0.001 at 7 > 0.2), suggesting
that FT positively and increasingly influences CF at higher
quantiles, likely due to increased energy consumption linked to
FT activities. The coefficient of Ln(MGEIy;,) is negative at lower
quantiles (-3.038 at 7 = 0.1) but becomes positive at higher quantiles
(0.200 at 7 = 0.9, p< 0.05), indicating that MGEI may reduce CF in
less developed areas but elevate it in more developed regions due to
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FIGURE 3

Moran's | scatterplot for spatial autocorrelation diagnostics. (A) Coastal water pollution (significant only). (B) Carbon footprint (significant only).
(C) Fintech (significant only). (D) Tourism concentration (significant only). (E) Marine green energy investment (significant only).

higher energy demands. Ln(TCj;;) shows a consistently positive and
highly significant coefficient (p< 0.001) across most T, ranging from
6.250 at 7 = 0.8 to 13.185 at 7 = 0.3, demonstrating that TC
significantly drives CF, particularly in lower quantiles.

For CWP, the coefficient of Ln(FTj;) decreases from 2.045 at 7
=0.1t03.765at 7=0.9 (p<0.001 at 7 > 0.3), reflecting an increasing
but less intense impact of FT on CWP compared to CF, possibly due

to differing mechanisms linking FT to carbon-water interactions.
The coefficient of Ln(MGEIy;) is negative at lower quantiles (-3.038
at 7=0.1to -1.060 at 7 = 0.4) but positive at higher quantiles (4.665
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at 7 = 0.5, p< 0.001), suggesting that MGEI mitigates CWP in less
developed areas but increases it in more developed regions due to
higher water and energy demands. Ln(TCj;) exhibits positive values
at all quantiles, indicating that TC may exacerbate CWP. The spatial
lag y(Xj;) for CWP is smaller (0.025-0.048) and stable compared to
CF (0.025-0.435), suggesting weaker spatial spillover effects
for CWP.

As 7 increases from 0.1 to 0.9, the coefficients of Ln(FTj;) and
Ln(MGEI) for both CF and CWP show increasing or sign-
changing trends, reflecting spatial heterogeneity across
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TABLE 2 Pre-estimation diagnostic results.

10.3389/fmars.2025.1605039

Test Variable Statistic p-value Conclusion
Moran’s I (CF) EI (CF) 0.404 < 0.000 Significant (+)
Moran’s I (CWP) EI (CWP) 0.386 < 0.001 Significant (+)
Ln(EI,j,) -3.14 < 0.000 Stationary (differenced)
Ln(FTij,) -2.89 < 0.001 Stationary (differenced)
Levin-Lin-Chu
Ln(GEI},) -2.76 < 0.000 Stationary (differenced)
Ln(TCy) -2.65 < 0.000 Stationary (differenced)
Ln(EI;) -2.95 < 0.01 Stationary (differenced)
Ln(FTij,) -2.71 < 0.000 Stationary (differenced)
Im-Pesaran-Shin
Ln(GEI,-j,) -2.58 < 0.001 Stationary (differenced)
Ln(TCy) -1.66 <0.01 Stationary (differenced)
Pesaran’s CD Panel 3.89 <0.01 CSD present
VIF Ln(FTy,) 2.177 - No multicollinearity
VIF Ln(GELy,) 3.197 - No multicollinearity
VIF Ln(TCy) 3.215 - No multicollinearity

development levels. For lower quantiles, the effect of Ln(TCy;) on
the environment is more pronounced than for upper quantiles. The
spatial lag effect via 7(Xj;) varies, with CF exhibiting stronger
spillover effects than CWP, indicating greater spatial sensitivity of
CF to exogenous variables.

4.2 Robustness test

The LISA Cluster Maps presented in Figures 4A-E provide
spatially explicit confirmation of the SMMQR estimation. The maps
present HH, HL, LH, and LL clusters as red, light red, light blue, and
blue, respectively, confirming strong positive spatial autocorrelation
consistent with the output of the model. For CO,, Figure 4A shows
tight HH clusters along southeastern and northern coastal regions,
notably around Shanghai, Guangzhou, and Qingdao, reflecting high
spatial clustering of emissions, with thin LL clusters in less
industrialized regions such as Fujian, reflecting concentrated
environmental pressures from economic activity. Figure 4B for
CWP shows similar HH clustering in the southern and eastern
coastal cities such as Sanya, Xiamen, and Ningbo, with hardly any
HL and LH clusters, and LL clusters in the north, such as Dalian,
which suggests geographically adjacent pollution caused by
industrial and tourist activities. In Figure 4C, FT shows intense
HH clustering in southeast hubs such as Shanghai, Shenzhen, and
Xiamen, and LL clusters in underdeveloped regions such as Beihai
and Dongying, suggesting that FT development complements
economic activities such as tourism via digital financial services.
Figure 4D for TC displays HH clusters in well-known destinations
like Sanya, Haikou, and Qingdao with sustained space stability and
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widely scattered LL clusters in less well-known places like Yantai,
indicating high tourist activity causing regional environmental
impacts. Finally, Figure 4E for MGEI shows HH clusters in
economic centers like Shanghai, Guangzhou, and Dalian, with LL
clusters in the periphery like Beihai, indicating investment
concentration fueling tourism and FT growth.

Breusch-Pagan tests confirm no heteroskedasticity (CF: 2.14,
p = 0.143; CWP: 1.89, p = 0.169), confirming model suitability (see
Table 4). p t-tests indicate significant spatial autocorrelation (CF:
7.43, p< 0.001; CWP: 6.58, p< 0.001), which supports the spatial
structure, while Moran’s I test on residuals indicates no residual
spatial auto-correlation (CF: 0.012, p = 0.387; CWP: 0.009, p =
0.412), which confirms the success of the model in preserving
spatial patterns. The AIC favors the SMMQR (245.8) over the
non-spatial model (263.2), and the robustness check of Ln(TCj;)
exhibits a consistent coefficient of 0.241 (p< 0.001, SE = 0.037),
evidencing estimate consistency.

The outcome of the results of the robustness checks is presented
in Table 5, presenting the SMMQR estimation’s stability for EI on
the coefficient of TC across various model specifications for both the
key indicators at quantiles 7 = 0.5 and 7 = 0.9.

Despite variations in spatial weighting matrices (Inverse
Distance, Queen Contiguity, Economic Distance), non-spatial
controls (MMQR), and data transformations (No Ln
Transformation), TC consistently exerts highly significant (p<
0.001) positive impacts on both metrics, with coefficients ranging
between 0.155 to 0.261 for CF and 0.105 to 0.219 for CWP,
indicating a strong spatial connection. Minor variations (<5%)
throughout specifications, such as a small increase (<3%) upon
excluding environmental policy or a fall with the non-spatial model
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TABLE 3 SMMQR estimation results for environmental impact (EI).

Variable

Indicator

Ln(FTy,)

Ln(GELy)

1.078 (0.006)

4,042 (0.003)

0.95% (0.003)

2.050 (0.000)

2.110** (0.000)

3.060* (0.002)

1.128** (0.000)

1.068* (0.001)

0.715%** (0.001)

2.072* (0.000)

1.105** (0.003)

-3.078** (0.006)

1.098* (0.000)

-2.085** (0.003)

2.092* (0.001)

-1.091%* (0.005)

2.085* (0.005)

-0.095** (0.001)

Ln(TCy)
CF

9.155*** (0.004)

12.170*** (0.046)

13.185* (0.002)

10.200%** (0.001)

8.212*** (0.013)

7.225%*%* (0.017)

7.235%** (0.014)

6.250*** (0.026)

7.065** (0.009)

¥ (Xij)

1.728 (0.029)

1.531 (0.018)

0.635* (0.013)

1.038* (0.006)

1.441* (0.000)

1.244** (0.042)

0.946** (0.047)

0.745*** (0.035)

1.152%%* (0.021)

p

0.305*** (0.017)

0.208*** (0.045)

0.310*** (0.003)

0.712*** (0.001)

0.312*** (0.000)

0.211*** (0.040)

0.109*** (0.025)

0.607*** (0.015)

0.505*** (0.004)

A

0.505*** (0.017)

0.673*** (0.015)

0.451*** (0.013)

0.517*** (0.011)

0.392%%* (0.022)

0.119*** (0.000)

0.467*** (0.006)

0.668*** (0.036)

0.705*** (0.004)

Ln(FTy,)

2.045 (0.000)

3.055 (0.002)

3.062* (0.002)

3.068* (0.001)

2.570* (0.001)

3.271* (0.002)

4.072* (0.003)

4.570* (0.000)

3.765 (0.009)

Ln(GEI,)

-3.038 (0.005)

-2.045 (0.012)

-0.152* (0.019)

-1.060% (0.026)

4.665* (0.000)

3.970** (0.002)

5.275** (0.004)

5.180** (0.001)

6.585** (0.004)

Ln(TCy,)
CwP

Y(X;0)
P
2

*p< 0.05, **p< 0.01, **p< 0.001.

10.145%** (0.022)
1.025 (0.030)
0.275%** (0.003)

0.602*** (0.017)

7.160*** (0.028)
0.748 (0.029)
0.278*** (0.006)

0.596*** (0.045)

6.175%** (0.001)
0.904* (0.008)
0.379*** (0.045)

0.826*** (0.044)

8.190*** (0.004)
1.736* (0.017)
0.647*** (0.015)

0.845*** (0.026)

7.195%** (0.003)
1.038* (0.001)
0.211%%* (0.027)

0.548*** (0.002)

9.200%** (0.002)
1.532** (0.0295)
0.385%** (0.032)

0.734*** (0.000)

6.205%** (0.019)
0.589** (0.036)
0.812*** (0.002)

0.297*** (0.000)

5.210%** (0.037)
1.113** (0.033)
0.846*** (0.004)

0.366*** (0.001)

6.215%** (0.004)
1.048** (0.024)
0.771*** (0.000)

0.379*** (0.010)
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FIGURE 4
Lisa cluster map for post-estimation and robustness check. (A) CO; level. (B) Coastal water pollution. (C) Fintech. (D) Tourism concentration.
(E) Marine green energy investment.

(p = 0.15), point to spatial dependence as important, but the overall
findings are insensitive. These results imply that TC has
environmental impacts consistently in coastal China, most likely
due to its spatial clustering and economic interdependencies.
Decision-makers are encouraged to prefer spatially targeted
approaches, such as managing the intensity of tourism in high-
impact coastal zones, to fight CF and CWP while taking advantage
of the stability of these estimates to ensure effective, spatially
conscious environmental management.
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5 Discussions and conclusions

5.1 Robustness test

Based on the analysis results, the intensive FT operation
facilitates tourism through digital payments, online booking sites,
and money management, boosting TC in the areas. This
complementarity exacerbates over-tourism, which is characterized
by uncontrolled tourism streams leading to environmental
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TABLE 4 Post-estimation diagnostic and robustness check results.

Test/Check Variable Statistic p-value Conclusion
Breusch-Pagan (CF) EI (CF) 2.14 0.143 No heteroskedasticity
Breusch-Pagan (CWP) EI (CWP) 1.89 0.169 No heteroskedasticity
p t-test (CF) EI (CF) 7.43 < 0.001 Significant spatial autocorrelation
P t-test (CWP) EI (CWP) 6.58 < 0.001 Significant spatial autocorrelation
Moran’s I (Residuals, CF) Residuals 0.012 0.387 No residual spatial autocorrelation
Moran’s I (Residuals, CWP) Residuals 0.009 0.412 No residual spatial autocorrelation
AIC (SMMQR) - 245.8 - Better fit than non-spatial (263.2)
Robustness Ln(TC,j[) (new W) EI 0.241%°* (0.037) < 0.001 Stable coefficient

“p<0.001.

TABLE 5 Robustness check results across specifications.

Variable

Specification

7=0.5 (CF)

7= 0.5 (CWP)

7= 0.9 (CF)

7= 0.9 (CWP)

p-value

Conclusion

Inverse Distance W Ln(TCy,) 0.165** (0.058) 0.158** (0.056) 0.225%%* (0.047) 0.210%* (0.045) <001 Stable
Queen Contiguity W Ln(TCy,) 0.162** (0.059) 0.155* (0.057) 0222+ (0.048) 0.208** (0.046) <001 Stable, minor variation (<5%)
Economic Distance W
conomic stance Ln(TCy) 0.168** (0.060) 0.160°* (0.058) 0.228%* (0.049) 0.213°** (0.047) <001 Stable
No Environmental o
Impacts Ln(TCy) 0.210°** (0.041) 0.195°* (0.039) 0.263°** (0.033) 0212 (0.031) <0001 Stable, slight increase (<3%)
Non-SMMQR Ln(TCy) 0.205°* (0.043) 0.190** (0.041) 0.258°* (0.035) 0.207°** (0.033) <0001 Stable, but lower p  (0.15)
No Ln Transformation Ln(TCy) 0.208*** (0.042) 0.193*%* (0.040) 0.261°%* (0.034) 0.210%* (0.032) < 0.001 Stable, minor variation (<4%)

©p< 0.01, **p< 0.001.
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degradation in the form of elevated CO, emissions and CWP for
HH clusters. The commonness of HH clusters suggests that tourism
growth enabled by FT gives rise to hotspots of spatial pressure on
the environment, while the uncommonness of HL and LH clusters
corresponds to constrained spatial heterogeneity that suggests the
need for targeted intervention.

To respond to over-tourism, policy paths should leverage these
spatial effects. First, the use of FT solutions, such as real-time tourist
flow monitoring and adaptive prices, can manage visitor quantities
in HH concentrations like Sanya and Qingdao, reducing CO, and
water pollution by mitigating peak-season stress. Second, scaling up
MGEI in green technology, i.e., green sea transport and wastewater
treatment, can help enhance TC while keeping environmental
impacts in check, particularly in tourist-dense areas. Third, spatial
zoning policy should restrict tourism development in LL areas to
prevent early saturation, preserving their environmental integrity
without encouraging the over-tourism of HH districts. Guided by
the spatial agglomeration of FT, TC, and MGE]I, these policies are a
scientifically guided approach to balancing economic development
with a sustainable environment, facilitating the solution to the
problems of over-tourism in coastal China effectively.

Consistent with previous studies (Han et al,, 2021; Cheng
et al., 2023), these findings prove that tourism intensity and FT
increase CF owing to greater energy consumption from
transportation and accommodation infrastructure and energy-
demanding digital infrastructure. Specifically, the high and
significant coefficients of Ln(TCy,) and Ln(FTj;) on CF (7.065-
9.155 and 1.078-2.085, respectively, for quantiles 7 = 0.1-0.9)
identify their contribution to environmental degradation via
spatial agglomeration in high-impact coastal hubs like Shanghai
and Sanya. Similarly, the negative impact of Ln(FT;;) on CWP
(-6.215 to -10.145 and -3.038 to -6.858) is in line with Yang and
Tang (2024), who noted that FT can mitigate water pollution
through the use of advanced management methods, such as
wastewater treatment and internet monitoring systems.

However, it meaningfully contributes to the existing literature
by including TC, MGEI, and spatial factors into the equation,
offering a comprehensive explanation of EI. In contrast to
previous studies, which tended to concentrate narrowly on
tourism numbers or FT' uptake without accounting for spatial
dependencies, our incorporation of spatial lag (y(Xj)),
autoregressive (p), and CSD (A) parameters—uniformly positive
and significant (p< 0.001, from 0.275 to 0.312)—discloses high
spatial auto-correlation that influences environmental effects. The
LISA Cluster Maps also illustrate this with high HH clusters for TC,
FT, and MGEI in cities, with minimal spatial variation (few HL and
LH clusters), illustrating concentrated environmental pressure in
coastal regions. This geographical emphasis indicates how MGEI
promotes TC and FT to raise CF while lowering CWP through
enhanced MGEI, like biomass and other renewable energy sources
(Bui-Duy et al., 2023), rather than other types of fuel sources (Minh
et al., 2024; Le and Xuan-Thi-Thu, 2024).
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5.2 Policy recommendations

Based on these important findings, we propose the following
specific policy recommendations:

* Real-time tourist flow management in HH clusters: In HH
clusters like Sanya, Haikou, and Guangzhou, where TC
drives significant CF and CWP, FT solutions should be
leveraged for real-time tourist flow monitoring and
dynamic pricing. The use of mobile apps and blockchain-
based platforms can help cap visitor numbers during peak
seasons, thereby reducing environmental strain. These
cities, with higher spatial lags, require coordinated
regional policies to prevent tourism overflow to
neighboring areas, such as implementing cross-provincial
visitor quotas. To balance ecological protection with
profitability, a phased approach may be considered,
including quantifying the carrying capacity of smaller
clusters for specific tourism activities, zoning, and
establishing monitoring and supervision plans to adjust
maximum capacity accordingly.

* Prioritizing MGEI in lower-quantile regions: MGEI reduces
CWP significantly in less developed regions with lower
quantiles, including LL and LH clusters. Governments
and local authorities should enhance green infrastructure,
Al-based automated waste-sorting systems, AI-based
monitoring systems (Bui-Minh et al., 2025), green
transportation networks, and solar-power facilities to
enhance carrying capacity while maintaining air quality.
The application of institutional incentives may also be
considered for private operators that proactively invest in
environmentally friendly solutions. The low environmental
impact in these regions should be utilized to scale up
renewable energy infrastructure to support sustainable
tourism growth. In addition, investments should also
allocate resources to installing more recycling stations and
enforcing fines for littering.

* Spatial zoning in transitional zones (HL/LH Clusters): In
HL and LH clusters, where local impacts differ from
neighboring areas, spatial zoning policies should restrict
tourism infrastructure expansion in high-impact zones
while redirecting development to lower-impact areas. The
HL cluster status suggests high local CF but lower regional
spillovers, warranting localized restrictions on new hotel
construction and incentives for eco-friendly transport (e.g.,
electric shuttle buses) to mitigate CF.

* Mitigating FT’s environmental impact in high-quantile
regions: In high-quantile regions, as FT amplifies CF and
CWP, policies should focus on greener FT applications.
Solutions, including incentivizing digital platforms to
promote low-carbon tourism activities, can reduce
energy-intensive transactions. Additionally, integrating FT
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with environmental monitoring systems can enhance real-time
pollution tracking in these hubs. Integrating satellite data with
digital device usage monitoring to estimate tourist flows,
combined with ecological awareness campaigns and selected
enforcement measures through FT techniques, should also be
gradually considered for implementation.

5.3 Limitations and future research

There are some limitations that need to be considered for this
study. Firstly, the hidden relationships between nodes within each
cluster remain unexplored. For instance, intra-cluster dynamics,
such as network interactions among tourism businesses, local
governance structures, or socio-economic factors driving HH
clustering in Sanya, were not analyzed. In the future, machine
learning and deep learning techniques can be considered to exploit
the hidden complex networks among nodes in each cluster and of
the LISA map, as they can offer a complementary approach by
modeling non-linear patterns and high-dimensional interactions
(Ta et al,, 2025; Le, 2025). Also, by leveraging the spatial
concentration of TC and FT, as embodied in the intense HH
clusters in Sanya, Qingdao, and Shanghai, this paper opens up
new prospects for the formulation of spatially targeted policies. For
instance, future research may suggest integrating FT-driven tools,
e.g., real-time tracking of tourist flows and dynamic pricing
mechanisms, into zoning policy to manage visitor numbers in
high-impact areas, reducing CF while maintaining CWP benefits.
This model can be applied to develop an index system for
measuring the benchmark of over-tourism, utilizing the insights
provided. Future research can be proposed for monitoring this issue
in favored tourist destinations based on this index.
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