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Few studies have investigated the potential drivers of high-resolution (daily and

24-hour scales) on ocean acidification (OA) and the carbonate system in a

coastal estuary during an intense La Niña event. Therefore, we conducted the

first high-resolution total scale pH (pHT) monitoring every three hours for 56 days

(13 September to 7 November 2021) at the Colombian Pacific in El Muelle reef,

Gorgona National Natural Park. Two moored autonomous submersible

instruments (iSAMI-pH and CTD-Diver) were deployed at a depth of 2 m in an

area influenced by extreme precipitation, river discharge, semi-diurnal tides, and

southwest winds during La Niña 2020-2023. Total alkalinity was derived from

salinity data and used alongside pHT to calculate sea surface seawater partial

pressure of CO2 (pCO2w; matm), dissolved inorganic carbon (DIC; mmol kg-1), and

omega aragonite saturation (Wa). The findings suggest that the observed low pH

(7.93) and aragonite saturation state (Wa = 2.22) values are likely attributed to

increased precipitation. This enhanced precipitation resulted in higher river

discharge, transporting naturally low-pH water to the island via mixing

mechanisms (RiOMar type 2). Daily, decreasing solar radiation may reduce the

seawater temperature, simultaneously elevating the pCO2w levels and reducing

pHT. In contrast, elevated precipitation may reduce surface seawater salinity

through freshwater dilution. Throughout the diurnal cycle, peak pHT values were

recorded during late afternoon hours, likely driven by photosynthetic activity,

while minimum values coincided with early morning periods of maximal

respiratory activity. These results underscore the dynamic nature of this area

and emphasize the need for long-term evaluation.
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1 Introduction

Ocean acidification (OA) driven by human-induced increases

in atmospheric carbon dioxide (CO2) (Sabine et al., 2004; Feely

et al., 2009) has significantly altered carbonate chemistry, leading to

increased concentration of hydrogen ions [H+] and reduced global

pH levels (Kleypas et al., 1999; Caldeira and Wickett, 2003; Gattuso

et al., 2015). The El Niño–Southern Oscillation (ENSO) modulates

OA. During El Niño events in the Eastern Tropical Pacific, reduced

trade winds weaken equatorial upwelling, limiting the transport of

cold, nutrient- and carbon-rich waters from the deep ocean to the

surface (Vaittinada Ayar et al., 2022). As a result, surface dissolved

inorganic carbon (DIC) concentrations decrease, leading to

relatively lower seawater pCO2w and reduced CO2 outgassing to

the atmosphere (Feely et al., 2006; Ishii et al., 2014; Espinoza-

Morriberón et al., 2019). In contrast, La Niña events strengthen the

trade winds and enhance upwelling, bringing DIC and nutrient-rich

waters to the surface (Vaittinada Ayar et al., 2022). This increase in

upwelling elevates pCO2w levels, thereby increasing CO2 outgassing

(Yasunaka et al., 2019) and can lead to lower pH levels in coastal

waters, intensifying OA (Oliva-Méndez et al., 2018).

La Niña event also induces increased rainfall, which enhances

river discharge in coastal areas (Restrepo and Kjerfve, 2000;

Hernández et al., 2006; Blanco, 2009). This influx of freshwater

significantly reduces the buffering capacity of estuaries to neutralize

acids and maintain stable pH levels, because freshwater lacks the

carbonate buffer system found in seawater. These conditions

increase the solubility of CO2 and reduce the dissociation of

bicarbonates (HCO3
-) into carbonate ions (CO3

-2; Cai et al.,

2021). Additionally, rivers contribute to pH reduction by

transporting organic matter, which releases carbon dioxide as it

oxidizes upon reaching the sea (Salisbury et al., 2008; Zhai et al.,

2015; Vargas et al., 2016). Moreover, nutrients from land and rivers

are transported to coastal waters via runoff, forming low-salt river

plumes that extend to the continental shelf, driven by winds and

tides (Dai et al., 2022a). The areas influenced by these plumes,

associated with the 19 largest rivers globally, cover an average of 3.7

× 106 km2 annually (Kang et al., 2013), representing approximately

14% of the total global continental shelf area (Dai et al., 2022a).

Thus, salinity variations in estuary systems are determined by the

mixing process influenced by tidal movements, precipitation, river

discharges, and seawater influx (Atekwana et al., 2022).

In the Colombian Caribbean, La Niña events have been

observed to intensify precipitation, leading to increased

freshwater inflow and a subsequent dilution that significantly

reduces DIC and total alkalinity (TA) (Ricaurte-Villota et al.,

2025). Furthermore, heavy rains in the tropical Pacific Ocean can

modify salinity, with dilution effects persisting for over 10 days

(Henocq et al., 2010). This phenomenon decreases two key

parameters of the carbonate system: TA and DIC (Turk et al.,

2010; Ashton et al., 2016; Ho and Schanze, 2020). The relationship

between low salinity and variations in the carbonate system has also

been documented in other coastal regions of the Eastern Tropical

Pacific (10°N), where precipitation influences can extend over
Frontiers in Marine Science 02
40,000 km2, due to surface ocean currents dispersing freshwater

over larger areas (Ho and Schanze, 2020).

Estuaries and coastal waters present greater complexity

compared to open ocean waters when estimating OA and the

carbonate system, as they are highly variable environments due to

the mixing of seawater and freshwater (Wang et al., 2019; Nehir

et al., 2022). Additionally, these Tropical Pacific waters, often

influenced by anthropogenic activities, are critical for acidification

studies. However, their complexity and the time scales (ranging

from hours to interannual changes) require high-resolution

monitoring to accurately assess OA (Carstensen et al., 2018;

Nehir et al., 2022). One of the key parameters to monitor in

estuaries is the natural variation of water pH (Nehir et al., 2022),

which is typically measured using the National Bureau of Standards

scale (pHNBS) and total pH scales (pHT). The pHT is preferred in

oceanography due to its accuracy. It also considers other factors that

affect proton activity in complex solutions such as seawater,

including the presence of salts (Fassbender et al., 2021).

The equatorial Pacific waters are characterized by lower pH

values (8.00; Zhong et al., 2025) compared to the global average

(8.05; von Schuckmann et al., 2024), making this region a key area for

analyzing OA and its ecological impacts. To address this, continuous

monitoring efforts using in situ submersible spectrophotometric

sensors, such as Lab-on-Chip (Yin et al., 2021; Nehir et al., 2022)

and the iSAMI-pH (Valauri-Orton et al., 2025), have proven effective

for small-scale autonomous monitoring of the total pH scale (pHT).

For example, in the Pacific Coastal Ocean, significant pHT variation

(7.93 to 8.37) has been associated with upwelling events (Monterey

Bay, USA) which increase pCO2w and reduce pHT (Gray et al., 2011).

In contrast, during periods without upwelling and in the rainy season,

a more minor pHT variation (ranging from 7.98 to 8.06) has been

observed along the Pacific coast of Costa Rica (Bahia Culebra;

Sánchez-Noguera et al., 2018). In this region, a distinct 24-hour

cycle was detected, with the lowest pHT occurring in the early

morning hours, due to organic matter respiration at night, and the

highest pHT values recorded in the late afternoon, associated with

photosynthesis (Sánchez-Noguera et al., 2018).

In the Colombian Pacific Ocean, high-resolution measurements

of pHT have not been conducted. Instead, discrete measurements

related to carbonate chemistry and pHNBS have primarily been

performed in the Caribbean Sea and the Pacific Ocean, including

sampling sites around Gorgona National Natural Park (GNNP) by

Instituto de Investigaciones Marinas y Costeras José Benito Vives de

Andréis (INVEMAR) as part of the program “Red de Vigilancia

para la Conservación y Protección de las Aguas Marinas y Costeras

de Colombia (REDCAM)”. In Tayrona National Natural Park,

studies such as those by Ricaurte-Villota et al. (2025) have

collected discrete samples of pHNBS, TA, and DIC, revealing high

variability strongly influenced by coastal upwelling, precipitation,

and river runoff, which are further affected by ENSO events. The

high variability of oceanographic processes in coastal regions

underscores the need for high-resolution monitoring, as discrete

measurements are limited in their ability to capture natural

variability and achieve sufficient temporal resolution (Nehir et al.,
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2022). Gorgona National Natural Park, located on the Colombian

Pacific continental shelf, is a potential hotspot for OA due to its

exposure to frequent ENSO events, which drive significant climate

variability through El Niño and La Niña events (Lavıń et al., 2006;

Emerton et al., 2017; Fiedler and Lavıń, 2017; Berri et al., 2019). As

part of the Eastern Tropical Pacific (ETP), it is influenced by the

Choco Jet, which brings intense precipitation from September to

November (Serna et al., 2018; Guzmán et al., 2014), further

increasing the already high fluvial discharge from the Patia-

Sanquianga deltaic complex, the largest in Colombia (Dıáz, 2007).

Additionally, the Intertropical Convergence Zone (ITCZ)

intensifies cloudiness and precipitation during this period,

reducing solar radiation and potentially impacting the carbonate

system and OA by altering water temperature and CO2 solubility, as

observed in other regions (Webster, 2020; Cai et al., 2021).

Therefore, this study investigates fine-scale, high-frequency

dynamics in coastal carbonate chemistry using continuous

measurements of pHT, temperature, salinity, and derivation of TA,

DIC, pCO2w, and omega aragonite saturation (Wa). Focusing on

Gorgona National Natural Park (GNNP) in the Colombian Pacific

Ocean (Panama Bight), it examines how freshwater pulses during

strong rainy season La Niña events modulate coastal carbonate

buffering capacity and influence pH stability and ecosystem

resilience to ocean acidification under climatic stress. This study

uses a fixed mooring equipped with autonomous sensors to

characterize high-frequency variability (daily over 56 days and

hourly over 24 hours) of pHT and other carbon chemistry variables

(TA, pCO2w, and DIC). Additionally, it explores the influence of tidal

dynamics (ebb vs. flood) on variations in pHT, salinity, temperature,

pCO2w, DIC, and TA, synchronizing high-resolution measurements

from the iSAMI-pH and CTD-Diver with tide height data to identify

primary sources of pHT variation (oceanic vs. riverine influences).

Furthermore, the relationships, both in magnitude and direction,

between pHT, salinity, temperature, pCO2w, DIC, and TA, with

external drivers such as daily solar radiation and daily precipitation

(influenced by the Intertropical Convergence Zone, ITCZ) were

analyzed. Daily mean values of the dependent variables were

calculated to assess their response to these environmental factors

under extreme climatic and hydrological dynamics. Finally, the study

evaluates whether pHT, salinity, temperature, pCO2w, DIC, and TA

exhibit significant differences between early morning and late

afternoon within a 24-hour daily cycle, providing insights into

diurnal variability in the study area. By addressing the critical role

of fine-scale processes in shaping coastal carbonate chemistry, this

research fills a significant gap in understanding the dynamics of

coastal systems under extreme conditions.
2 Methods

2.1 Study area

The Gorgona National Natural Park (GNNP; 2° 55’45” - 3° 00’

55”N, 78° 09’ 00″ - 78° 14’ 30”W) is located on the continental shelf

of the Colombian Pacific basin (Figure 1). This region is
Frontiers in Marine Science 03
characterized by warm and low-salinity surface waters (Giraldo

López, 2008; Giraldo et al., 2008, 2011, 2014), and constitutes one of

the rainiest regions of the world, being also the rainiest area of

Colombia with annual values ranging from 2500 mm to 8000 mm

(Rangel and Rudas, 1990; Blanco, 2009). This condition is mainly

associated with the latitudinal migration of the Intertropical

Convergence Zone (ITCZ; Dıáz Guevara et al., 2008) and the

Choco Jet Stream, which increases cloudiness and precipitation

due to the convergence of trade winds from the northern and

southern hemispheres (Prahl et al., 1990; Dıáz Guevara et al., 2008;

Guzmán et al., 2014; Serna et al., 2018). During the second half of

the year, the ITCZ moves north, altering the wind direction near 3°

N latitude, which becomes dominant in the southwesterlies and

forms the Choco Jet off western Colombia (Poveda and Mesa, 2000;

Amador et al., 2006; Guerrero Gallego et al., 2012). During the

study period (September 13 to November 7, 2021), the area was

affected by the strong La Niña 2020–2023 event (thermal anomalies

of -1.4 ± 0.1°C; Supplementary Table 1, IDEAM, 2021) that

increased total precipitation in the Colombian Pacific.

Gorgona Park is in front of the Patia-Sanquianga delta complex

(Figure 1B), the largest in the country, which contributes

approximately 23% of the total freshwater discharged to the

Colombian Pacific (2045 m3 s-1; Dıáz, 2007). This delta comprises

several rivers, including the Guapi, Patia, Iscuande, Tapaje, and

Sanquianga (Dıáz, 2007, Figure 1B). Likewise, the tidal regime

around GNNP is semi-diurnal, repeating twice in 24 hours, with

two alternating high tides (5.82 m) and two low tides (-0.78 m;

Flanders Marine Institute [VLIZ] and Intergovernmental

Oceanographic Commission [IOC], 2025).

The Pacific coast has an average daily solar radiation of 3500 to

4000Whm-2 and an annual availability of solar radiation that varies

between 1,080,000 and 1,440,000 Wh m-2 (UPME, 2005). During

the year’s second half, solar radiation decreases until it reaches its

minimum in December (Rangel and Rudas, 1990). Regarding its

biodiversity, GNNP hosts one of the most critical coral reef areas in

the Eastern Tropical Pacific (ETP) region in terms of structure and

species diversity (Glynn et al., 1982; Zapata, 2001; Dıáz et al., 2001)

and connects the ETP with other Pacific regions (e.g., Hawaii,

Polynesia) via larval potential dispersion (Romero-Torres et al.,

2018). Remarkably, these reefs persist despite being regularly

exposed to multiple environmental stressors. At the beginning of

the year, they experience sub-aerial exposure during extreme low

tides (Zapata, 2001; Zapata et al., 2010), low pH levels reaching as

low as 7.4 (Giraldo and Valencia, 2013), cooler temperatures (16.69

°C; Giraldo et al., 2008), and hypoxic conditions (< 3.7 mg L-1)

associated with seasonal upwelling (Castrillón-Cifuentes et al.,

2023a, b). During the second half of the year, these reefs are

subjected to low salinity levels during the rainy season (as low as

25; Giraldo et al., 2008), warmer temperatures (27 °C; Giraldo et al.,

2008), and increased sedimentation rates (23.30 ± 4.34 g m-2 d-1;

Lozano-Cortés et al., 2014). Coral species such as Pocillopora spp.

and Pavona spp. dominate the eastern (leeward) and southern areas

of Gorgona Island, while occurring more sparsely in the western

and northern areas (Figure 1A, Zapata, 2001). The sampling point

(Figure 1A) was located at the north end of El Muelle reef
frontiersin.org
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(northward surface current), where the genus Pocillopora spp.

predominantly dominates this and the major eastern coral patch

of Azufrada (Zapata, 2001; Romero-Torres and Acosta, 2010).
2.2 In situ measurements

Continuous measurements of pHT, conductivity (mS cm-1), and

temperature (°C) were made at a fixed depth of around 2 meters in

El Muelle reef, GNNP (2° 57’ 39” N, 78° 10’ 25”W; Figure 1A) from

13 September to 07 November 2021, every three hours, using a buoy

anchoring system designed to compensate the tidal changes and to

keep the equipment at a similar depth. The iSAMI-pH equipment

(programmed with SAMI Client v2.5 software) was used to record

pHT (accuracy: 0.0004 and precision: ± 0.0024) and temperature

(accuracy: ± 0.14°C; at 24.55 °C Tris bottle number 10 Sunburst

Sensors). The CTD Diver equipment (programmed with Diver

Field software, Van Essen Instruments) was used to take

conductivity measurements (accuracy: ± 1% mS cm-1).

Conductivity data were also downloaded using Diver Field

software. The salinity was calculated using the practical scaling

relationship proposed by Aminot and Kérouel (2004). The iSAMI-
Frontiers in Marine Science 04
pH data were downloaded with the SAMI program (QC pH v4.4).

Because the QC pH v4.4 program handles a constant salinity of 35

units by default, the pHT data were corrected for salinity. To do the

correction, the program was set to the corresponding average

salinity (29.74 ± 0.94, 31.29; mean ± SD, maximum, n = 403) of

the sampling point (2° 57’ 39” N, 78° 10’ 25” W). With the

correction, differences in pHT of ± 0.01 units were observed. We

used the average salinity value to ensure consistency in salinity

correction, as the CTD Diver recorded salinity 30 minutes after

iSAMI-pH measurements from October 10 to November 7. When

both devices recorded simultaneously between September 13 and

October 10, the difference between pH corrected with average and

measured salinity was insignificant (± 0.0001). iSAMI recorded 49

outliers out of 441 data points, which were excluded from the

analysis as iSAMI-pH identified them as measurement anomalies

(error codes 100, 1001, 1010, and 1000) associated with issues

related to pumping, dye supply, or blank measurement.

Additionally, 19 temperature and 38 salinity data points were

identified as outliers when plotting variables and their

relationship to total pHT. These points were excluded from the

analysis after applying a criterion based on standard deviation to

consecutive measurements. Any change greater than 0.030 in pH,
FIGURE 1

Location of Gorgona National Natural Park in the Colombian Pacific Ocean, Eastern Tropical Pacific (ETP). (A) iSAMI-pH and CTD-Diver
measurements at El Muelle reef (black star). The colored polygons show the coral reefs (Pavona spp - Porites spp, Pavona spp, and Pocillopora spp)
around Gorgona according to Colombia’s Atlas of Coral Areas until 2020 (INVEMAR, 2020a). (B) The black polygon shows the protected area of
Gorgona Park and its proximity to the Pacific coast (around 50 km), as well as the main rivers influencing the island (Guapi River, Patia - Sanquianga
Rivers, Tapaje River, and Iscuande River). The black dot represents the “57025020 Gorgona Guapi” pluviometric station (DHIME, 2025), the orange
dot represents the “26015040 Arrayanales” for solar radiation measurements (DHIME, 2025), while the red point represents the Buenaventura station
for tide height measurements (Flanders Marine Institute [VLIZ] and Intergovernmental Oceanographic Commission [IOC], 2025). (C) Square showed
the island’s position within the ETP. The red polygon shows the Panama Bight, which includes the Panama and Colombian Pacific basins.
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0.30°C in temperature, or 0.94°C in salinity between measurements

was considered a potential outlier. Flagged data points underwent

contextual evaluation, considering environmental consistency (e.g.,

salinity-TA relationships, diel cycles, water mass characteristics),

sensor artifacts, and physical plausibility. Only measurements

inconsistent both statistically and contextually were excluded.
2.3 Carbonate system derivation

Total alkalinity (TA; mmol kg-1) was calculated using a regression

line between salinity (in situ data taken with CastAway-CTD

equipment) and TA. Preciado (2023) built the regression (y =

57.479x+249.08; R2 = 0.94; n=268) using measured local discrete

TA data obtained from 8 sampling stations around Gorgona, one of

which included the iSAMI-pH deployment site. The data were

collected over 13 sampling months, from September 2021 to

October 2022, at depths ranging from 2 to 80 meters, following the

SOP-3b protocol (Dickson et al., 2007). Discrete samples of TA (± 13

mmol kg-1, Batch #182 2230.91mmol kg-1) were collected monthly at

the iSAMI-pH site fromNovember 2021 to July 2022. Comparing the

measured TA values with those estimated from salinity, a mean

difference of 11 ± 5 mmol kg-1 and a regression coefficient of R² = 0.91

were observed (Supplementary Figure 1). Specifically, in November

2021, the difference was 10 ± 3 mmol kg-1. This regression approach

for estimating TA through salinity has been validated in previous

studies (Lee et al., 2006; Takatani et al., 2014; Carter et al., 2016;

Fassbender et al., 2017; Metzl et al., 2024).

For the derivation of the carbonate system pCO2w (matm),

dissolved inorganic carbon (DIC; mmol kg-1), and omega

aragonite (Wa), we used the Carbonate System equation solution

(CO2sys v3.0, Pierrot et al., 2021), with the pair pHT (n = 392) from

iSAMI-pH and TA derived from the former regression, as well as

salinity from CTD (Aminot and Kérouel, 2004) and temperature

(iSAMI-pH). Propagation error analysis using CO2sys v3.0

estimated uncertainties of ±52 μmol·kg-1 for DIC, ± 33 matm for

pCO2, and ±0.16 for Wa. In the carbonate system equation solution,

the following constants were used: (i) Dissociation constants for K1

and K2 from Millero, 2010) for waters ranging from 0 to 40, given

that the study area the salinities variation are between 27.03 to

31.29, (ii) KHSO4 dissociation constant from Dickson (1990), (iii)

KHF from Perez and Fraga (1987), (iv) Total pH scale (mol-kg SW),

(v) [B]T value from Lee et al. (2010), and (vi) EOS-80 standard.

To evaluate the influence of temperature and salinity, pHT was

normalized using the mean temperature (27.39°C) and salinity (29.74),

as recommended by Terlouw et al. (2019). Additionally, normalization

was performed using constant values representing the minimum

observed temperature (26.72°C) and salinity (27.03), to account for

the most extreme conditions in the dataset (Supplementary Figure 2).

This normalization process isolates the potential effect of temperature

and salinity on pHT, following the methodology outlined by Sarmiento

and Gruber (2006). The influence of temperature and salinity

corresponds to the difference between the normalized pHT and the

in situ measured pHT.
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2.4 Statistical analysis: evaluation of
external forcing on carbon chemistry

2.4.1 Tidal movement data
Daily tide measurements (m) between 13 September and 07

November 2021 were obtained from the UNESCO Sea Level

Monitoring Facility database (Flanders Marine Institute [VLIZ] and

Intergovernmental Oceanographic Commission [IOC], 2025),

specifically from the Buenaventura station (3° 53’ 26” N, 77° 4’ 51”

W), which measures the tide using a radar sensor. These tide

measurements were temporally synchronized with iSAMI-pH and

CTD-Diver data and subsequently labeled according to the water

movement (ebb or flood; Supplementary Figure 3). The dependent

variables do not meet the assumptions of normality, so non-parametric

tests were chosen (Supplementary Table 2). The Kruskal-Wallis

nonparametric test was used to determine if there were significant

differences (p < 0.05) in the dependent variables (pHT, salinity,

temperature, pCO2W, DIC, and TA) when comparing tidal

movements (ebb and flood tides).

2.4.2 Atmospheric variables, solar radiation, and
precipitation, and correlation with carbon
chemistry

For the study period, 56 days, daily solar radiation (Wh m-2)

was obtained from the “26015040 Arrayanales” fixed station (2° 26’

53” N, 76° 26’ 9” W; DHIME, 2025), and daily total precipitation

(mm) from the “57025020 Gorgona Guapi” fixed station (2° 57’ 47”

N, 78° 10’ 28” W; DHIME, 2025).

Daily means of the dependent variables (pHT, salinity,

temperature, pCO2W, DIC, and TA) were calculated. A Spearman

correlation analysis was performed between the dependent physical

and chemical parameters and atmospheric variables (solar radiation

and total precipitation) to evaluate the importance and direction of

their relationship (rho value).

2.4.3 Hour carbon chemistry cycle analysis
The hourly cycle analysis was performed by calculating the

average of the variables (pHT, salinity, temperature, pCO2W, DIC,

and TA) taken at the same hour every three hours between 13

September and 7 November 2021. Carbonate alkalinity was also

calculated following the equation proposed by Munhoven, 2013:

AlkC = ½HCO−
3 � + 2½CO2−

3 �
The Kruskal-Wallis test executed in RStudio was used to

determine if there were significant differences (p-value < 0.05) in

the dependent variables (pHT, salinity, temperature, pCO2W, DIC,

TA, and carbonate alkalinity) when comparing the early morning

hours (5:00 - 6:00) with the late afternoon hours (17:00 - 18:00).

3 Results

The sampling period took place during a year with strong La

Niña conditions displaying atmospheric thermal anomalies of -1.4
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± 0.1°C (Supplementary Table 1; IDEAM, 2021) and extreme

precipitation values (959 ± 316 mm/monthly; DHIME, 2025).

Throughout the study period, pHT decreased from September

until October 25 (Figure 2), after which it increased until

November 7, while pCO2w, DIC, and salinity increased until

October 25 and then decreased until November 7. Throughout

the study period, pHT and pCO2w exhibited opposite trends

(Figure 2), with lower pHT values corresponding to higher pCO2w

levels and vice versa (Table 1). pHT averaged 8.01 ± 0.03, peaking on

September 15 (8.09), then decreasing until October 25, reaching a

minimum on October 16 (7.93), before increasing again until

November 7. In contrast, pCO2w averaged 397 ± 36 matm,

reaching its minimum on September 15 (302 matm), increasing

until October 25, reaching a maximum on October 16 (499 matm),

and then decreasing until November 7. Salinity averaged 29.74 ±

0.94, increasing until October 25, with a peak on October 20 (31.29),

then decreasing until November 7, reaching its minimum on that

date (27.03). Similarly, TA averaged 1959 ± 54 mmol kg-1, increasing

until October 25, with a maximum on October 20 (2048 mmol kg-1),

then decreasing until November 7, when it reached its minimum

(1803 mmol kg-1). DIC followed a similar pattern, averaging 1728 ±

49 mmol kg-1, increasing until October 25, with a maximum on

October 11 (1807 mmol kg-1), and decreasing until November 7,
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with a minimum on November 5 (1574 mmol kg-1). The

temperature averaged 27.39 ± 0.30°C, with a peak on September

20 (28.50°C), decreasing until October 9 and remaining stable until

October 25 (27.25 ± 0.16°C), before oscillating until November 7,

when it reached a minimum on November 4 (26.72°C).

When pHT was normalized using salinity and temperature, the

variation attributed to mean salinity reached up to 0.001 pH units,

and up to 0.047 pH units when using the minimum salinity. In

contrast, minor temperature-related variations reached only

0.000028 pH units with the mean temperature and 0.017 pH

units with the minimum temperature. These results suggest that

salinity plays a more significant role than temperature in driving

pHT variability (Supplementary Figure 2).
3.1 Tidal movement

No significant differences were found between high and low

tides for the dependent variables of pHT, salinity, temperature,

pCO2w, DIC, and TA (Supplementary Table 3). However, pHT

during flood tide (8.010 ± 0.031) was slightly higher than during ebb

tide (8.008 ± 0.029), with a lower positive slope on the regression

line (Figure 3A). pCO2w and DIC showed similar values during the
FIGURE 2

High-frequency measurements of (A) pHT (green), (B) salinity (blue), (C) temperature (brown), (D) pCO2w (orange), (E) dissolved inorganic carbon
(DIC; red), and (F) total alkalinity (TA; black) every three hours between September 13 and November 07, 2021. The black circles highlight each
variable’s highest and lowest values, while the red dot marks October 25, when pHT began to increase and pCO2w, salinity, TA, and DIC began to
decrease.
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flood tide (396 ± 38 matm and 1726 ± 52 μmol kg-¹, respectively)

and the ebb tide (397 ± 35 matm and 1730 ± 46 μmol kg-¹,

respectively), with a slight negative slope observed in the

regression trend (Figures 3D, E, respectively). Variables such as

temperature, salinity, and TA exhibited slopes close to zero,

indicating that this area’s seawater and river water are well-mixed.
3.2 Physico-chemical seawater parameters
and atmospheric variables (56 days’ time
scale)

The independent atmospheric variables (solar radiation and

total precipitation) were correlated with water type (sea surface

temperature and salinity) and carbon chemistry data (pHT, pCO2w,

DIC, and TA). Total daily solar radiation showed the strongest

correlations with all dependent variables; suggesting that average

radiation values of 3078 ± 1098 Whm-² (n= 56), as well as radiation
Frontiers in Marine Science 07
values in a range of 1378 to 5968 Wh m-² displayed positively

correlations with mean daily temperature and pHT, and negative

correlations with salinity, pCO2w, DIC, and TA (Table 2). In

contrast, total daily precipitation (mean average of 31 ± 27 mm;

n= 56) within the 0 to 115 mm range only correlated negatively with

mean daily salinity (Table 2). No significant correlation was

observed between daily precipitation and pHT, temperature,

pCO2W, DIC, and TA (Table 2). In addition, rainwater samples

collected during the high rainfall season (May 2022) in GNNP

showed the lowest salinity values (0.26).
3.3 Diurnal, 24-hour cycle of the carbonate
system

pHT, temperature, pCO2W, and DIC followed a pronounced

diurnal cycle with significant differences (p < 0.05; Supplementary

Table 4) between early morning and late evening hours (Figure 4).
FIGURE 3

Normalized water level (0.00–1.00) plotted against the dependent variables: (A) pHT, (B) salinity, (C) temperature, (D) pCO2W, (E) dissolved inorganic
carbon (DIC), and (F) total alkalinity (TA). The blue regression line and dots represent flood, while the red regression line and triangles represent ebb.
A normalized tide value of 0.00 corresponds to a minimum low tide, and 1.00 corresponds to a maximum high tide.
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During early morning hours, after sunrise (5:00 - 6:00), at 8:00 the

lowest values of pHT (7.993 ± 0.040; Figure 4A) and temperature

(27.23 ± 0.18; Figure 4B) were recorded, as well as the highest values

of pCO2W (413 ± 40 matm; Figure 4C) and DIC (1739 ± 46 mmol kg-

¹; Figure D). In the late afternoon (17:00 - 18:00), during sunset, the

highest values of pHT (8.030 ± 0.025; Figure 4A) and temperature

(27.61 ± 0.36; Figure 4B) were found, together with the lowest

pCO2W (374 ± 25 matm; Figure 4C) and DIC (1718 ± 50 mmol kg-¹;

Figure 4D). In contrast, salinity (Figure 4E), TA (Figure 4F), and

carbonate alkalinity did not show significant differences (p > 0.05,

Supplementary Table 4) between early morning and late

evening hours.
4 Discussion

4.1 Freshwater input, precipitation, and
river discharges play a key role in the
Pacific Colombian GNNP region

The high variability found in variables pHT, salinity,

temperature, pCO2w, DIC, and TA at El Muelle reef highlights

the influence of La Niña 2020–2023 event. La Niña event

strengthened the Choco Jet (Hoyos et al., 2013; Arias et al., 2015;

Serna et al., 2018), which caused an increase in precipitation in the

Colombian Pacific basin and, consequently, an increase in the
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river flow into the sea (Restrepo and Kjerfve, 2000; Blanco, 2009;

Serna et al., 2018). During the sampling period from September to

November 2021, the station “57025020 Gorgona Guapi” recorded a

total precipitation of 2878 mm, exceeding the total multiannual

monthly average by more than 59% to 1815 mm.

Likewise, the station “53047010 Sangaral” recorded a monthly

average flow of the Guapi River of 447 m³ s-1, exceeding by 44% the

total multiannual monthly average of 309 m³ s-1. Thus, the sampling

period was characterized by a considerable inflow of freshwater

from river discharges and high rainfall that explained the reduced

recorded salinity values and part of the pHT variability (Figure 2).

The salinity normalization and correlation (Table 2) suggest that

salinity plays a significant role in pHT variability. The interplay

between low salinity and reduced alkalinity (directly correlated) and

pH variability underscores its critical role in coastal biogeochemical

cycles. Reduced salinity not only dilutes carbonate and bicarbonate

ions but also disrupts the equilibrium of the CO2 system, as

observed in estuarine zones by Feely et al. (2010) and Cai et al.

(2021), where freshwater influx exacerbates anthropogenic CO2

uptake. These dynamics challenge the buffering capacity and

resilience, particularly in reefs, where a range of water pH is

essential for calcification.

Additionally, high rainfall and the consequent excess of

freshwater (characteristic of a RioMar system) acted as a surface

layer dilution factor (Zeebe and Wolf-Gladrow, 2001; Turk et al.,

2010; Trujillo and Thurman, 2016; Ho and Schanze, 2020),
TABLE 2 Spearman correlation between the dependent variables (daily average) pHT, salinity, temperature, pCO2W, dissolved inorganic carbon (DIC),
total alkalinity (TA), and the independent variables (daily total) solar radiation and precipitation.

Variables Statistics pHT Salinity T pCO2w* DIC * TA*

Radiation p value 0.01 0.00 0.00 0.00 0.00 0.00

rho 0.37 -0.41 0.51 -0.46 -0.42 -0.41

Precipitation p value 0.22 0.04 0.85 0.13 0.06 0.06

rho 0.17 -0.28 0.03 -0.21 -0.26 -0.26

pH p value 0.00 0.03 0.00 0.00 0.00

rho -0.54 0.29 -0.95 -0.63 -0.53

N 56 56 56 56 56 56
In bold, the variables that were significantly correlated (p < 0.05). Dependent variables marked with an asterisk (*) indicate values derived either from a regression with salinity (e.g., TA) or
calculated using CO2sys (e.g., pCO2W and DIC). In contrast, unmarked variables were directly measured in the field.
TABLE 1 Descriptive statistics of the measured and derived variables (*) from September 13 to November 07, 2021, in El Muelle reef, GNNP,
Colombian Pacific.

Statistics
pH Salinity Temperature pCO2w* DIC * TA * Ωa*

(total scale) (°C) (matm) (mmol kg-1) (mmol kg-1)

Mean
± SD

8.01 ± 0.03 29.74 ± 0.94 27.39 ± 0.30 396.78 ± 36.25 1728.10 ± 49.06 1959.42 ± 54.14 2.71 ± 0.17

Maximum 8.09 31.29 28.50 498.94 1806.97 2047.60 3.09

Minimum 7.93 27.03 26.72 302.29 1574.23 1802.74 2.22

N 392 403 422 354 355 391 355
The mean value, standard deviation (SD), maximum, minimum, and sample size of the measured variables pHT, salinity, temperature, and derived variables pCO2w, DIC, TA, and Wa

are described.
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contributing to reducing, even more, the salinity over time. For

example, Ho and Schanze (2020) reported a rapid decrease in

salinity of 4.4 at depths of 2 to 3 cm in response to heavy rainfall

in the Eastern Equatorial Pacific, highlighting the impact of

precipitation on coastal salinity dynamics. Salinity gradients and

alkalinity depletion may act as synergistic stressors, which align

with broader concerns about coastal acidification (Doney et al.,

2009) and the ecological risks associated with climate

change scenarios.

The tides exert a continuous physical influence, due

considerable tidal variation, having maximum amplitudes of 5.82

m and minimum of -0.78 m in 2021 (3.39 ± 1.20 m; Flanders

Marine Institute [VLIZ] and Intergovernmental Oceanographic

Commission [IOC], 2025), implying millions of cubic meters of

freshwater entering and leaving the coastal system, mixing oceanic

water with freshwater coming from the Patia-Sanquianga complex

plus the rainfall. The well-mixed RioMar water has minimal salinity

variations throughout a full ebb and flow cycle (Figure 3). This high

mixing condition persists up to 55 km downstream of the river

mouth. As indicated by Palacios Moreno and Pinto Tovar (1992),

due to the high tide, mixing begins at the river mouth, where

seawater enters through the bottom of the Guapi River, resulting in

waters with a salinity of 25.60 at 10 m, compared to 17 at 1 m.

Furthermore, tides and the southern trade winds during La Niña
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events generate coastal currents and a strong swell (Osorio et al.,

2014) that contribute to mixing these two water types, creating an

estuary environment. Consequently, this coastal zone can be

classified as a Type 2 RiOMar regime (Dai et al., 2022a),

characterized by a high-energy tidal system and significant

mixing near the river mouths (Lamarque et al., 2022).

In this scenario, the riverine influence reaching GNNP may

explain the observed decrease in pHT over the study period. This

trend is likely driven by the input of CO2 derived from riverine DIC,

potentially due to the input and decomposition of organic matter,

which increases H+ ion concentrations, as observed in other coastal

regions (Vargas et al., 2016; Cai et al., 2021). In fact, in the Eastern

Colombian Pacific, the observed decrease and low values of pHT

were strongly correlated with salinity, pCO2w, and DIC (Table 2).

Between 2018 and 2021, data collected at 13 river stations near the

GNNP showed pHNBS values ranging from 6.3 to 8.3. Suspended

solids ranged from 11 to 407 mg L-1, while nitrate (NO3
-)

concentrations ranged from 2 to 90.9 μg L-1. Phosphate (P-PO4
3-)

levels fluctuated between 2 and 3.3 μg L-1, and chlorophyll-a

concentrations ranged from 0.07 to 9.8 μg L-1. The highest values

for these parameters were recorded during the year’s second half,

coinciding with the rainy season (INVEMAR, 2020b; INVEMAR,

2022), which could contribute to acidification. This phenomenon

aligns with RiOMar systems, where high DIC and nutrient inputs
FIGURE 4

The diurnal scale (24 hours) of (A) pHT, (B) temperature, (C) pCO2W, (D) dissolved inorganic carbon (DIC), (E) salinity, and (F) total alkalinity (TA). The
points represent the daily averages of measurements recorded every 3 hours over 56 consecutive days, with the red lines indicating the standard
deviation of the daily averages. The shaded area highlights the daylight hours.
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from rivers reach nearshore waters, and organic matter is

subsequently exported to the continental shelf (Gan et al., 2009;

Dai et al., 2022a). Decreases in pHT in other estuaries have been

indirectly linked to fluvial discharges. For example, along the

central-southern Chilean Pacific coast (Biobıó River basin), the

expansion of the river plume seaward led to reduced pHT

conditions (7.6) during periods of maximum higher river

discharge, compared to more oceanic stations where pHT ranged

from 7.95 to 8.15 (Vargas et al., 2016). Likewise, in the South Pacific

Ocean, in Coral Bay, fluvial discharges from low-pH rivers (7.739 ±

0.022) cause coastal areas with low pHT (8.014 ± 0.015) (Aguilera

et al., 2013), similar to low pH observed across the GNNP

Colombian Pacific Region. Indeed, the surface values (2m) of pHT

(8.01 ± 0.03), salinity (29.74 ± 0.94), TA (1959 ± 54 μmol kg-1), DIC

(1728 ± 49 μmol kg-1) and Wa (2.71 ± 0.17) at El Muelle reef

(GNNP) are below the surface averages reported for the North

Pacific (8. 105 ± 0.06, 34.05 ± 0.86, 2255 ± 34 μmol kg-1, 1959 ± 42

μmol kg-1 and 3.30 ± 0.7; respectively) and the South Pacific (8.079
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± 0.03, 35.29 ± 0.55, 2319 ± 35 μmol kg-1, 2003 ± 39 μmol kg-1 and

3.52 ± 0.4) (Feely et al., 2009).

On the contrary, oceanic areas without river input, such as

North Pacific Monterey Bay, have recorded relatively high pHT

(Gray et al., 2011). However, at higher latitudes on the Pacific coast

of Costa Rica, low pHT levels were associated with the rainy season

(Sánchez-Noguera et al., 2018). A drop in pHT is also known to

occur in the estuaries of Swartkops and Sundays in South Africa,

where, due to strong inflows of freshwater, a high pHT decrease of

0,46 pH units was produced (Edworthy et al., 2022). The relatively

low pHT of the Pacific Colombian Coast (El Muelle, GNNP,

Table 3) is similar to studies in the East River China Sea, where

the low pHT (7.98 to 8.07) was attributed to the high river inputs

from the Changjiang plume, known to carry organic carbon,

nutrients, and CO2 supersaturated water (Wu et al., 2021). We

already know that freshwater inputs from rivers play a critical role

in shaping carbonate chemistry in coastal systems, particularly in

the continental shelf. As well as in our study site, Rérolle et al.
FIGURE 5

Atmospheric variables in the study area from September 13 to November 7, 2021. (A) Solar radiation was recorded at station 26015040 (Arrayanales).
The black line indicates the daily (September to 7 November 2021) for solar radiation (3078 Wh m-2) and precipitation (31 mm), and (B) Total
precipitation was recorded at station 57025020 (Gorgona). Periods above the daily average are highlighted in blue, while periods below the daily
average are shown in red.
TABLE 3 Comparison between autonomous sensors recorded total scale pH (pHT) across various geographical zones.

Location Long. Lat. Ocean Instrument pHT range Reference

Bahia Monterrey,
EEUU

121° 54′ 0″ W 36° 49′ 48″ N Pacific Ocean iSAMI-pH 7.93 - 8.37 Gray et al., 2011

Bahia Culebra,
Costa Rica

85° 36′ 0″ W 10° 30′ 0″ N Pacific Ocean iSAMI-pH 7.98 - 8.06 Sánchez-Noguera
et al., 2018

East China Sea 128° 30′ 0″ E 30° 0′ 0″ N Pacific Ocean SeaFET Ocean
pH sensor

7.98 - 8.07 Wu et al., 2021

Northwest European
Shelf Seas

10° 0′ 0″ W to 10° 0′ 0″ E 45° 0′ 0″ N to 60° 0′ 0″ N Atlantic Ocean Lab-on-Chip 7.99 - 8.21 Rérolle et al., 2018

Algoa Bay,
South Africa

25° 48′ 0″ E 33° 48′ 0″ S Atlantic Ocean iSAMI-pH 7.98 - 8.44 Edworthy
et al., 2022

Gorgona, Colombia 78° 6′ 0″ W 2° 54′ 0″ N Pacific Ocean iSAMI-pH 7.93 - 8.09 This study (2021)
Note that the minimum pHT recorded at Gorgona Island, Colombia, is lower than in other regions.
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(2018) have identified riverine discharges, characterized by high

DIC and TA, as key drivers of reduced pHT in the Irish Sea,

southern North Sea, and Skagerrak region. Further studies on

carbon chemistry in the region are needed, including direct

measurements of DIC and dissolved organic matter in the Patia-

Sanquianga complex during wet and dry seasons. These and other

chemical parameters, such as nutrients, are crucial to evaluating

rivers’ contribution to coastal carbonate chemistry, particularly near

reef systems, and the impact on ocean acidification (Borges et al.,

2005; Cai et al., 2021). The main knowledge gaps include the effects

of remineralization on pH in tropical estuaries (Dai et al., 2022b;

Vargas et al., 2016) to understand the vulnerability of ecosystems

to OA.
4.2 Daily scale of carbon and physical
seawater variability and atmospheric
variables, solar radiation, and precipitation

During the study period, the ITCZ was located close to the

equator in the Colombian Pacific Ocean (Dıáz Guevara et al., 2008),

which intensified cloudiness and precipitation due to the

convergence of trade winds from the northern and southern

hemispheres (Dı ́az Guevara et al., 2008). The increase in

cloudiness likely contributed to the decline in solar radiation,

which diminished from 3,709 ± 1,205 Wh m-2 in September to

2,501 ± 789 Wh m-2 in November, with a marked reduction

between October 1 and 25 (2,488 ± 590 Wh m-2; Figure 5A).

Given the positive correlation between solar radiation and

temperature (Trujillo and Thurman, 2016; Webster, 2020), the

decrease in solar radiation may explain the low SST observed

from September 13 to November 7. According to Millero (2007,

2013) lower temperatures increase CO2 solubility in seawater,

suggesting that the temperature decline likely improved oceanic

CO2 uptake by enabling its transfer from the atmosphere to the

ocean during the study period. The resulting CO2 increase could

explain pCO2w and DIC’s highest values (Figure 2), particularly

between October 1 and 25, when solar radiation was at its lowest

(Figure 5). Thus, the solar radiation and temperature reduction may

partially explain the observed decline in pHT during this period.

The inverse correlation between pHT and pCO2w also suggests that

fluctuations in pCO2w (indirectly DIC) could help explain pHT

variations over September-November (Table 2; Zeebe and Wolf-

Gladrow, 2001; Millero, 2013; Cai et al., 2021). After October 25, the

rise in solar radiation and temperature may have led to a pHT

increment by approximately 0.028 units, along with a decrease in

pCO2w by 41 matm and DIC by 100 mmol kg-1 (Figures 2D, E).

Between October 3 and 16, total precipitation amounted to 22

mm (Figure 5B), with most days recording values below the mean

daily precipitation of 31 mm. The observed reduction in

precipitation likely diminished freshwater inflow relative to

seawater, thereby enhancing salinity levels and elevating TA and

DIC concentrations during this period. During the sampling period

(September 13 to November 7), evaporation (Copernicus Climate

Change Service, 2024) was highest in October (-62 mm), followed
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by September (-36 mm) and November (-15 mm). However, in all

cases, the monthly accumulated evaporation remained well below

the corresponding monthly precipitation totals of 680 mm, 727

mm, and 261 mm, respectively (DHIME, 2025).

In addition to previously discussed mechanisms, the elevated

levels of pCO2w, DIC, and salinity observed between October 1 and

25 may also be influenced by a coastal upwelling event. This

hypothesis is supported by the positive values of zonal Ekman

transport (ZET) during this period, which indicates eastward

surface water movement, given the regional coastline orientation

and prevailing wind patterns (Corredor-Acosta et al., 2020). The

eastward Ekman transport suggests offshore water displacement

and the potential for deeper, carbon- and nutrient-rich water

upwelling (Supplementary Figure 4).
4.3 24-hour cycle of the carbonate system

During early morning hours (5:00 - 6:00 am), we registered the

lowest pHT and temperature values, along with the highest

concentration of pCO2w and DIC, suggesting the influence of

night-time respiration processes before daylight (Millero, 2013;

Albright et al., 2013; Sánchez-Noguera et al., 2018). On the other

hand, the highest values of pHT and temperature and the lowest

values of pCO2w and DIC recorded during the late afternoon (17:00

- 18:00) suggest photosynthetic processes during daylight driven by

increased solar radiation (Cyronak et al., 2013). The mean diel

change of 0.037 units in pHT and 0.38 °C in temperature between

early morning and afternoon hours fall within the expected diel

variability for shallow environments (0.7–17 m), where biological

and physical processes significantly influence pH and temperature

dynamics (Cyronak et al., 2013).

The absence of a significant difference in TA and carbonate

alkalinity between early morning and late afternoon hours may be

due to the derivation of TA using a TA-salinity relationship, which

primarily accounts for processes such as evaporation, precipitation,

andmixing tides (Spaulding et al., 2014). In contrast, calcification and

dissolution, more likely to exhibit variations over a 24-hour cycle,

may not be adequately reflected (Zeebe and Wolf-Gladrow, 2001;

Millero, 2013; Cai et al., 2021). However, the data indicate that the El

Muelle reef, close to the sampling point, is composed predominantly

of Pocillopora spp. (Figure 1; Zapata, 2001; Acosta et al., 2007), was

exposed during the sampling period to low pHT (8.01 ± 0.03), salinity

(29.32 ± 1.01), and Wa (2.71 ± 0.17). These environmental conditions

are considered challenging for Pocillopora spp., which are known to

be highly sensitive to reduced pH and lowered salinity associated with

river discharge (Alvarado et al., 2005; Lizcano-Sandoval et al., 2018;

Sánchez-Noguera, 2019). Notably, the global, annually averaged

tolerance limit for coral reefs is an Wa of 2.82, indicating that corals

at this site live below the threshold commonly reported in the

literature (Guan et al., 2015).

Despite these adverse conditions and frequent riverine

influence, especially during the rainy season in the latter half of

the year (Giraldo et al., 2008, 2011), Pocillopora spp. persist and

even dominate the area (Zapata, 2001; Acosta et al., 2007; Lizcano-
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Sandoval et al., 2018). Previous studies have shown that Pocillopora

spp. in GNNP can maintain growth rates (Lizcano-Sandoval et al.,

2018) and tolerate hypoxia, low salinity, and temperature

fluctuations by reducing reproductive output rather than growth

(Castrillón-Cifuentes et al., 2023a, 2023). This suggests that these

corals are either locally adapted or possess a degree of physiological

tolerance to low pH, salinity, and Wa. Similar findings from the

Pearl River Estuary in Southeast China indicate that long-term

hypo-salinity acclimation can enhance the tolerance of Pocillopora

spp. to low salinity by reducing energy consumption, slowing

metabolism, improving the energy metabolism of their symbiotic

algae (Symbiodiniaceae), and altering their symbiotic bacterial

communities to avoid bleaching (Chen et al., 2024). Nevertheless,

Pocillopora spp. corals at Gorgona Island exhibit lower calcification

rates (3.16 g CaCO3 cm-2 yr-1; Lizcano-Sandoval et al., 2018)

compared to those reported in other reef systems, such as

Panama (5–6 g CaCO3 cm-2 yr-1; Manzello, 2010) and Mexico

(2.99–6.02 g CaCO3 cm-2 yr-1; Medellıń-Maldonado et al., 2016;

González-Pabón et al., 2021; Tortolero-Langarica et al., 2022). To

establish a more robust correlation between the carbonate system

and calcification rates in Pocillopora spp. at GNNP, future research

efforts should prioritize in situ measurements of TA, dissolved

oxygen, and direct calcification assessments (e.g., via buoyant

weight or alkalinity anomaly techniques) on a 24-h scale during

both rainy and dry seasons, to better quantify metabolic dynamics

and clarify the adaptive capacity of this species under adverse

environmental conditions.

In addition, future research should prioritize high-frequency

measurements of pH, nutrient concentrations, and stable isotopes

across diurnal, seasonal, and interannual timescales. These efforts

should encompass both rainy and dry seasons and different ENSO

phases, such as El Niño and neutral conditions, to better distinguish

water sources in the region and assess the influence of these

temporal scales on carbonate chemistry variability.
5 Conclusions

The natural variability of the Ocean Acidification on 24-hour and

daily scales and during 56 days at El Muelle reef, Colombian Pacific,

Gorgona Island, was assessed in a fixed station using high-resolution

measurements of seawater pHT, salinity, and temperature taken every

three hours during a year with a strong La Niña event and extreme

precipitation months. The prolonged 2020–2023 La Niña event

amplified rainfall and freshwater discharges from the Guapi River,

establishing a Type 2 RIOMar (river-marine) system dominated by

high-energy tidal dynamics and intense river-sea mixing. This

freshwater influx likely contributed to localized declines in seawater

pHT. Concurrently, the southward migration of the ITCZ triggered

persistent cloud cover and strong southwesterly winds, attenuating

solar radiation and lowering both sea surface temperatures and pHT.

Enhanced rainfall within the RIOMar system further diluted the

surface layer, progressively reducing salinity and TA, thereby

diminishing the system’s buffering capacity against carbonate

chemistry fluctuations. Biological processes such as photosynthesis
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and respiration shaped pronounced diurnal patterns within the 24-

hour cycles, driving decreased and increased pH, pCO2w, and DIC.

These results highlight the substantial and high-frequency variability

of pH and acidification conditions formed by the heavy rainfall and

runoff that characterize this Pacific Colombian region. Therefore, we

strongly recommend implementing long-term monitoring programs

(COCAS Ocean Decade Project) to support acidification impact

studies and adaptive management and conservation efforts within

this National Natural Park.
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Universitas Scientiarum 12, 65–81.

Aguilera, V. M., Vargas, C. A., Manrıq́uez, P. H., Navarro, J. M., and Duarte, C.
(2013). Low-pH freshwater discharges drive spatial and temporal variations in life
history traits of the neritic copepod. Acartia tonsa. Estuaries Coasts 36, 1084–1092.
doi: 10.1007/s12237-013-9615-2

Albright, R., Langdon, C., and Anthony, K. R. N. (2013). Dynamics of seawater
carbonate chemistry, production, and calcification of a coral reef flat, central Great
Barrier Reef. Biogeosciences 10, 6747–6758. doi: 10.5194/bg-10-6747-2013

Alvarado, J. J., Cortés, J., Fernández, C., and Nivia, J. (2005). Comunidades y arrecifes
coralinos del Parque Nacional Marino Ballena, costa del Pacıfíco de Costa Rica. Rev.
Biologıá Trop. 31, 1–20.

Amador, J. A., Alfaro, E. J., Lizano, O. G., and Magaña, V. O. (2006). Atmospheric
forcing of the eastern tropical Pacific: A review. Prog. Oceanography 69, 101–142.
doi: 10.1016/j.pocean.2006.03.007

Aminot, A., and Kérouel, R. (2004).Hydrologie des écosystèmes marins: paramètres et
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Gorgona: marzo 2013,” in Informe Técnico producto No. 8 del proyecto de investigación
(Monitoreo de los valores objeto de conservación priorizados para las áreas protegidas
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zooplancton en el área marina protegida de Isla Gorgona, Colombia, y su relación con
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Giraldo, A., Valencia, B., and Ramıŕez, D. G. (2011). Productividad planctónica y
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Hernández, D., Málikov, I., and Villegas, N. (2006). Relaciones espacio-temporales
entre la temperatura superficial del mar de la Cuenca del Pacıfíco Colombiano y el ciclo
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Cano, J. D., Toro, F. M., et al. (2014). Hydrodynamics applied to the management and
conservation of marine and coastal ecosystems: Gorgona Island, Colombian Pacific
Ocean. Rev. Biol. Trop. 62, 133–147. doi: 10.15517/rbt.v62i0.15983

Palacios Moreno, M. A., and Pinto Tovar, C. A. (1992). Estudio de la influencia de la
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