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Size estimation of particles and plankton is key to understanding energy flows in
the marine ecosystem. A useful tool to determine particle and plankton size -
besides abundance and taxonomy - is in situ imaging, with digital holography
being particularly useful for micro-scale (e.g., 25 — 2,500 pm) marine particles.
However, most standard algorithms fail to accurately size objects in
reconstructed holograms owing to the high background noise. Here we
develop a machine-learning-based method for determining the size of natural
objects recorded in digital holograms. A structured-forests-based edge detector
is trained and refined for detecting the particle (soft) edges. A set of pixel-wise
morphology operators are then used to extract particle regions (masks) from
their edge images. Lastly, the size information of particles is calculated based on
these extract masks. Our results show that the proposed strategy of training the
model on synthetic and real holographic data improves the model's performance
on edge detection in holographic images. Compared with another ten methods,
our method has the best performance and is capable of rapidly and accurately
extracting particles’ regions on a group of synthetic and real holograms (natural
oceanic particles), respectively (mean loU: 0.81 and 0.76; standard-deviation loU:
0.18 and 0.15).
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1 Introduction

Size is a critical parameter for the analysis of plankton and
particles in aquatic systems, as it influences their role in the
ecosystem, such the role of organisms in the marine food web
(Serra-Pompei et al., 2022) and the role of particles in ocean carbon
storage (Laurenceau-Cornec et al., 2020; Serra-Pompei et al., 2022;
Omand et al,, 2020). Recent advances in imaging technologies and
underwater camera systems enable broad-scale in situ monitoring
of plankton and particles, such as their abundances and sizes
(Lombard et al,, 2019; Giering et al., 2020a, 2022). However,
while the technical ability to image particles and plankton has
advanced rapidly, the analysis of these images is still relatively slow,
leading to often long delays (up to years) between image collection
and interpretation. In addition, correctly determining the size of a
particle in an image remains a challenge (Giering et al., 2020b).

An imaging technique that helps to estimate size effectively,
compared to conventional photography, is lensless digital in-line
holography (DIH) (Schnars et al., 2015), as it provides the true sizes
of the particles irrespective of their position in the imaging volume.
Inline holography records the interference pattern between light waves
scattered by a microscopic object and a reference wave along the same
axis. This recorded pattern can then be digitally reconstructed to create
an image of the object at a known distance from the sensor. Inline
holography has been used widely to image microscale (typically
micrometer to millimeter scale) marine particles (Aditya et al., 2021;
Liu et al., 2023a) owing to its high resolution [typically several
micrometers (Liu et al., 2023a)], large depth-of-field [tens of
centimeters in DIH (Schnars et al., 2015; Sun et al., 2008)], and large
sampling volume [typically in the scale of milliliters (Liu et al., 2023a)].
The latter provides a significant advantage over other imaging
techniques, such as photography, which relies on high-magnification
lenses that reduce the depth-of-field and, consequently, the sampling
volume. Furthermore, when recording particles using an imaging
system with a short depth-of-field (e.g., conventional photography),
particle size bias can be introduced from blurred particles that are out
of the depth-of-field along the optical axis (z-axis) (i.e., ‘out of focus’).
Because of its large depth-of-field, lensless DIH has the capability of
resolving this issue, as particles at different z-positions can
(theoretically) be recorded on one hologram and later clearly
reconstructed (Schnars et al., 2015; Graham and Nimmo-Smith, 2010).

A key challenge to estimating the size of natural particles captured
by holographic camera systems is accurate particle region extraction
from the reconstructed holograms. In DIH, the edge of an object is one
of the most important features because it defines the boundaries where
light waves are scattered (especially for opaque particles), creating a
strong contrast in the interference pattern (Liu et al., 2023a; Schnars
et al., 2015). The edges of a particle’s silhouette hence provide critical
information for accurately reconstructing the shape of the object,
whereas its “inner” (e.g., texture) information in the image is less
reliable (Burns and Watson, 2014). The edges in reconstructed
holograms are therefore typically more distinct compared to those in
conventional photography images. As a consequence, segmentation of
the reconstructed holograms should be more reliable when using edge
detection algorithms than region-based approaches. Yet, due to high
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background noise and often complex particle shapes, traditional image
processing methods (including edge detection algorithms) typically
struggle to distinguish particles from the background in
reconstructed holograms.

Recent works show that an efficient approach for image
segmentation in images with a noisy background is machine
learning (Hassen Mohammed et al., 2023; Mahdaviara et al,
2023; Yu et al,, 2020). However, machine learning normally
requires many human pixel-wise annotations for training, which
is time consuming. To generate accurate training data, humans
typically have to carefully trace objects of interest to ensure that all
target pixels are included. Since good training data generally
requires hundreds of images (Martin et al., 2001), such workflows
can be impractical. An alternative to human-generated training data
is the use of synthetic training data. Synthetic training data refers to
artificially generated data created to simulate real-world scenarios
(Jordon et al., 2022); in our case, holograms of marine particles.

Here, we explore whether (a) a machine-learning-based
approach outperforms traditional algorithms in the segmentation
of reconstructed holograms, and (b) whether synthetic holograms
are a useful alternative to human-annotated training data for
this approach.

For machine-learning-based particle segmentation, we use a
state-of-the-art edge detection method based on structured forests
(Dollar and Zitnick, 2015), owing to its high accuracy, good
generalization, fast speed and no requirement on the input image
dimension. We produce a big synthetic holographic dataset of
marine particles. Using this synthetic data, a 2-step training
strategy is applied: the structured forest model with the original
weights is trained on a big synthetic holographic dataset, and then
fine-tuned on a small group of real, pixel-wise annotated
holographic data. Based on the trained structured forest model,
we develop a pipeline (named HoloSForests) for extracting the size
information of marine particles from holograms recorded by a
holographic camera. We also compare our method’s performance
against 10 traditional segmentation methods.

2 Materials
2.1 Real data collection and processing

A real holographic dataset of natural oceanic particles was
collected during an ocean research expedition near South Georgia
[part of the UK Controls over Ocean Mesopelagic Interior Carbon
Storage program (Sanders et al., 2016)] using a commercial
submersible digital holographic camera (LISST-HOLO, Sequoia,
USA) in Nov/Dec 2017. The camera’s optical and configuration
parameters’ are given in Table 1. It records high-resolution inline
holograms of microscale particles using a collimated laser beam
from a 658 nm laser. The recording distance range from the sensor
is 28 = 78 mm in the air. The sensor (hologram) dimension is

1 https://www.comm-tec.com/Docs/Manuali/Sequoia/LISST-HOLO-
manual-v3.0.pdf.
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TABLE 1 Optical and configuration parameters of LISST-HOLO.

Parameters Values

Wavelength 658 nm
Iluminating light collimated beam
Recording structure inline
Recording distance range from the sensor (in the air) =~ 28 - 78 mm

Hologram (sensor) dimension 1600 x 1200 pixels

Pixel pitch size 4.4 pm

Particle size range 25 - 2500 um

1600 x 1200 pixels, and its pixel pitch size is 4.4 um. It has also been
evaluated as having the capability of imaging particles in their
original size (Graham and Nimmo-Smith, 2010). The camera was
mounted on a purpose-built frame (the Red Camera Frame) and
deployed vertically to ~230 m, recording a hologram with a volume
of 1.86 mL every 1.2 — 2.5 m. In total, 5,047 holograms from 11
vertical profiles were used in this work.

To visualize the recorded particles in digital holograms,
holograms need to be first reconstructed numerically using a
reconstruction algorithm on a computer. Additionally, a focus
measure (Liu et al., 2023a) is needed to detect focused images of
recorded particles. For this task, we used the particle image
extraction suite, FastScan (Thevar et al., 2023), which can rapidly
reconstruct and auto-focus inline digital holograms recorded using
collimated laser beams, and output the vignettes of imaged particles.
FastScan uses the Angular Spectrum algorithm to reconstruct
holograms (Liu et al., 2023a; Schnars et al., 2015), and a contour-
gradient-based auto-focus algorithm to extract recorded particles
from the reconstructed holograms (Burns and Watson, 2014).
These algorithms are implemented using parallel computation on
a powerful Field Programmable Gate Array resulting in high
processing speeds [838 Mp/s (Thevar et al., 2023)].

A total of 20,328 particle vignettes were extracted from the
dataset. These vignettes were classified and manually verified using
Ecotaxa®. Noise/background particle vignettes were removed, and
the remaining vignettes were sorted into 40 taxonomic classes. The
20 most representative classes (in terms of abundance and
morphological diversity) were selected, yielding 8,902 vignettes.
Examples of the extracted particle vignettes are shown in Figure 1.

2.2 Synthetic data simulation and
processing

A synthetic holographic dataset, including reconstructed
particle vignettes and their ground-truth edge images, was created
(Figure 2). Each synthetic hologram was simulated based on the
parameters of LISST-HOLO (Table 1). To simulate holograms, we
used images of natural marine particles (zooplankton) imaged using

2 https://ecotaxa.obs-vlfr.fr/gui/index.
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ZooScan (Giering et al., 2019) due to their noiseless background and
similar shape, complexity and resolution to objects imaged by
LISST-HOLO. 877 ZooScan vignettes were binarized and used as
the target pool. To simulate a synthetic hologram, up to 10 particles
(vignettes) were randomly selected from the pool and randomly
placed within the system’s recording optical path (28 to 78 mm
depth from the camera sensor in the air). Each vignette was
positioned at least 50 pixels away from each edge of the
hologram. Details of each vignette in its synthetic hologram
(location, size, and recording distance from the sensor) were
stored. The dimension of each full-size synthetic hologram was
the same as the holograms recorded by LISST-HOLO (1600 x 1200
pixels). Holograms were simulated using the Angular Spectrum
method (Liu et al., 2023a; Schnars et al., 2015). Noise was added to
the simulated holograms by taking real holograms without any
targets and superimposing them as background noise in the
simulated holograms. Specifically, the background hologram was
first normalized with the maximum pixel value equal to the mean
intensity of the simulated hologram (Liu et al., 2023a; Schnars et al.,
2015); two holograms were then added together; and the intensity of
the final hologram was lastly normalized into 0 - 255. The
‘recorded’ particles can be reconstructed from these simulated
holograms based on the stored simulation information, and the
‘true’ edges can be extracted from the corresponding binarized
ZooScan images.

3 Methods
3.1 Methodology in HoloSForests

Our pipeline - HoloSForests, consists of three steps for
estimating particles’ sizes (Figure 3). (1) An edge-detection model
(structured forests) was trained twice using two different datasets:
the model was first trained using the synthetic training dataset, and
then fine-tuned using a small number of real, pixel-wise annotated
holographic data from the natural oceanic dataset. (2) The trained
model was used to extract particles” edges in real holograms, and a
set of morphological operations were then carried out in the
extracted edge images to obtain their region masks. (3) Lastly,
particles’ size information was estimated based on the calculated
convex-hull region masks from the extracted region masks.

All the algorithms in HoloSForests were conducted on
MATLAB (licence: 980953), and then ran on a computer with a
processor of 12" Gen Intel(R) Core(TM) i7-12700 and RAM of
16 GB.

3.1.1 Model training

We used the structured-forests-based model (referred to as
structuredForests) by Dollar and Zitnick (2015) for the edge
detection. The model consists of eight decision trees. In each tree,
the maximum depth is 64, and the number of each of the positive
and negative patches is 5 x 10°. To increase the diversity of the trees
and edge-detection accuracy, the trees are trained independently,
and the features and splits are randomly subsampled when training
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FIGURE 1
Sample particle vignettes extracted by FastScan in the dataset of natural particles recorded in situ. Each white bar indicates 100 um.
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Workflow of HoloSForests to estimate the size information of particles in the particle vignettes. Three steps are contained in this workflow: (1) model
training in the purple box, (2) edge-based region detection in the orange box, and (3) size estimation in the magenta box.

each node in each tree. Structured learning was used to map the
edges between the input and output images in each tree. The eight
trees are combined as a random forest to achieve robust outputs,
and the overlapping edge maps are averaged to obtain a soft edge
response. The ensemble model predicts a structured 16 x 16
segmentation mask (output) from a larger 32 x 32 image patch
(input), thus with 16 x 16 output patches, each pixel receives 256
predictions. The score of each pixel in the output edge map is
averaged over these 256 votes. A descriptive structure graph of the
model is shown in Supplementary Figure 1 in Supplementary
Material. The model codes are available from GitHub’.

The original weights of the model from the training on the
Berkeley Segmentation Data Set 500 (BSDS, 500 natural images
with annotated boundaries) (Martin et al., 2001) were used, since
they provided good generalization on detecting the edges in natural
images. The model (with original weights) was trained on our
synthetic training data. To improve its performance on real
holographic data, the trained model was further fine-tuned on
our real holographic data based on the technique of transfer
learning (Hosna et al., 2022; Pan and Yang, 2010).

3.1.2 Region extraction

structuredForests produces soft edge images, where each pixel
value ranges from 0 to 1. In these images, higher pixel values
indicate a higher probability of the pixel being located at an edge
(second image of the bottom row in Figure 3). Therefore, the output
edge images require further processing to extract particle
size information.

3 https://github.com/pdollar/edges
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A series of pixel-wise morphological operators were used on the
output edge images (Figure 4). Since each edge image has high
contrast between the particle edges and the background (second
image of the bottom row in Figure 3), the thresholding algorithm
Otsu [a fast binarization method based on the intra-class variance
between the foreground and background (Otsu, 1979)] was used to
determine the edge pixels in each edge image. The detected edges by
the structured forest model are wide (Figure 3), resulting in an
estimated particle area that is slightly bigger than the original.
Therefore, if there were more than three pixels in the width
direction of the edges, the edges in a binary edge image were
thinned by removing one pixel from their two sides, respectively. To
obtain the particle mask, the operation of hole filling was then used
to fill the holes surrounded by edges in the binarized edge image.
Subsequently, two steps were implemented to remove regions that
were too small: morphological opening using a disk-shaped
structure element with a diameter of 6 pixels and removing the
regions that are smaller than 25 pixels. In the last step, regions
within a 6-pixel distance from each other were merged in the mask
image. The criteria of 6 and 25 pixels was chosen based on the
minimum concentrated particle size (25 um) and pixel size (4.4 pm)

25 umy)
of LISST-Holo, as: ﬁ t‘:’n ~ 6 and ﬁ ~ 25.

3.1.3 Particle size estimation

Since hole filling is applied in the workflow, an extracted
region by the proposed method might not be the actual region for
a particle, particularly when a string-shape particle forms a
circular pattern in the image. Therefore, the size information of
particles obtained using the proposed method is expected to have
less bias to such particles, if it is calculated in terms of the convex
hull region.
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Three concepts were used to describe particle size based on the
extracted convex hull region: (1) major-axis length (the Euclidean
distance of the two furthest points in a region boundary), (2) minor-
axis length (the Euclidean distance of the two closest points in a
region boundary), and (3) equivalent spherical diameter (ESD)
(Giering et al., 2020b). ESD describes the size of an irregularly
shaped object using the diameter of a sphere which has the same
area as the object. It is calculated as Equation 1:

[A
ESD =2 co;;hull (1)

where A is the convex hull area of a particle which is
calculated as A.,pu :Ei,ijnhull(i’j) X (4.4 um)? with Ry
indicating a binary convex hull mask of the particle, and 4.4 pm
indicating the pixel pitch size of LISST-HOLO. Since LISST-HOLO
can only detect particles whose ESDs are in the range from 25 to
2500 pm, those particles whose ESDs are not in this range are
omitted when estimating particle size.

Note that hull-based size estimates are higher compared to the
pixel-based size estimates for natural particles with highly irregular,
concave or porous shapes. Yet, this metric is useful as an upper
bound for drag estimation, assessing particle morphology [e.g.,
‘solidity’ and ‘roundness’ (Giering et al., 2020b)], and the space
taken up by particles.

3.2 Datasets for model training and
evaluation

A total of three datasets were created for model training and
evaluation: a synthetic holographic dataset and two real holographic
datasets. One real holographic dataset of standardized basalt
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spheres for model evaluation is described in Section 5 of
Supplementary Material.

3.2.1 Synthetic holographic data (SHD)

One thousand synthetic holograms containing a total of 7,000
marine particles were created using the method described in Section
2.2. Each simulated hologram was reconstructed at the z-distances
where the ZooScan vignettes had been placed, and the reconstructed
particles were extracted and saved. 3,000 of the 7,000 reconstructed
particle images were randomly selected to create the training
dataset. These reconstructed images and the edge images from
their original vignettes were used, respectively, as the input and
ground-truth images for training the model (Figure 2). We chose
this number because the performance of trained models on edge
detection did not obviously change when more than 3,000 particles
were used (Section 2 in Supplementary Material). An additional
1,000 pairs of reconstructed particle images and original edge
images were randomly selected from the rest of the synthetic
dataset as the testing data. This SHD dataset was used to test the
edge detection performance of structuredForests, as well as the
region extraction performance of HoloSForests.

3.2.2 Real holographic data - cruise (RHD-Cruise)

We compiled a training/testing dataset with natural and
complex marine particles. For this, we selected 5 representative
particle vignettes from each of the 20 taxonomic classes (Table 2),
yielding a dataset with 100 particle vignettes (Supplementary
Figure 3 in Supplementary Material). Three people manually
labelled the particle regions pixel by pixel in each vignette, and a
pixel was designated as a part of the region if at least two people
labelled it as a region pixel. The edges of the particle(s) in each
region mask (Table 2) are detected used the method proposed by
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TABLE 2 One example for each taxonomic class, and its labelled particle region and edges.
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The image size is adjusted for layout; Each white bar indicates 150mm.
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Liu et al. (2018). This dataset was used for two parts of work: (1)
when evaluating HoloSForests’ performance across the entire data,
3 particle vignettes from each class were randomly selected for
training, and the remaining 2 vignettes were used for testing (i.e., 60
real holographic vignettes as the training data and 40 vignettes as
the test data); (2) when evaluating the capability of HoloSForests for
estimating the size of particles for different taxonomic classes, 5-fold
cross validation (King et al., 2021) was adopted. For this, 1 vignette
in each class was used as test data, and the remaining 4 vignettes
were used as train data, and the process was iterated until every
vignette in each class was used as test data.

3.3 Evaluation metrics

Two metrics were adopted to evaluate the accuracy
performance of HoloSForests in terms of edge detection and
region extraction. Furthermore, the time efficiency (i.e., running
time) was also evaluated.

3.3.1 Structural similarity index measure (SSIM)

SSIM (Wang et al., 2004) was selected to evaluate the accuracy
performance of edge detection. It measures the similarity between
two images based on three features: luminance, contrast, and
structure. As a result, it provides a better evaluation of
image similarity compared to measures that rely solely on the
intensity of corresponding pixels in the two images. SSIM = 1
indicates that the two images are the same; the smaller the value is,
the more different the two images are. SSIM is calculated as
Equation 2:

(zluhugt + Cl)(zoﬂgf * Cz)

SSIM(r, gt) =
80 = + g + C(07 + 0 + Cy)

2

where ¢ and o indicate the mean value and standard deviation
of an image, Oy is the covariance of two images; C, and C, are two
small constants to stabilise the division with a weak denominator
that are calculated by C; = (K;L)? and C, = (K,L)* where K; = 0.01,
K, =0.03, and L = 255 for 8 bits/pixel images.

3.3.2 Intersection over union (loU)

The accuracy of region extraction was evaluated using IoU
(Rezatofighi et al., 2019). It is a key metric to measure the accuracy
of region extraction based on binary images and is computed as the
ratio of the overlap of the predicted region (r) and ground truth gt)
as Equation 3:

TP

V) = 1o e TN ©

where TP is the intersected area between r and gt (TP = r N gt),
FP is the area that is predicted to be part of the region but is not
actually part of the ground truth (FP = r U gt — gt), and FN is the
area that is part of the ground truth but is not predicted as part of
the region (FN =r U gt —r). A perfect overlap of the predicted
region and ground truth region has an IoU value of 1 (r = gt).
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3.4 Evaluation and validation

3.4.1 Optimization of edge detection capabilities
of structuredForests using synthetic data

Since the original structuredForests trained on the BSDS data
demonstrates good generalization in the original work, we
investigated how different training strategies performed in
detecting particle edges in holographic images. For this, five
models were generated by training on five different dataset
combinations: Model 1 was trained on BSDS (n = 500), Model 2
was trained on BSDS and RHD-Cruise (n = 500 + 60, respectively),
Model 3 was trained on BSDS and SHD60 (n = 500 + 60,
respectively; with 60 training images randomly selected from the
3,000 training images in SHD), Model 4 was trained on BSDS and
SHD (n = 500 + 3,000, respectively), and Model 5 was trained on
BSDS, SHD and RHD-Cruise (n = 500 + 3000 + 60, respectively).
The five models were then used to predict particle edges in the test
images from the SHD and RHD-Cruise datasets (1,000 and 40 test
images, respectively). Since the models produce the soft edges for an
input image, SSIM-related measures - including its mean (mSSIM,
reflecting the overall accuracy) and standard deviation (stdSSIM,
reflecting the robustness) - were used to evaluate the five models.

3.4.2 Comparison of HoloSForests with other
region extraction methods

HoloSForests was compared with ten other methods (Liu et al.,
2023b), including four edge-based methods (cannyEdge, sobelEdge,
prewittEdge, and robertsEdge), four region-based methods
(activeContour, regionGrowing, SRegionMerging, and
Watershed), a thresholding-based method (OtsuThresholding),
and a clustering-based method (KMeans). In the four edge-based
methods, the same morphological operations (excluding
binarization and edge thinning) were used to extract the region
masks from their output edge images. In the other six methods, the
operations for Region Mask Refining (Figure 4) were used to refine
the extracted region masks. Additionally, we evaluated the
capability of HoloSForests in region extraction for particles from
different taxonomic classes (20 classes in RHD-Cruise) using the 5-
fold cross validation (Section 3.2). Since extracted region masks are
binary, IoU-related measures - including its mean (mlIoU, reflecting
the overall accuracy) and standard deviation (stdIoU, reflecting the
robustness) - were used to evaluate these eleven methods.

3.4.3 Real-word application

HoloSForests was used to analyze the vertical distribution of
particle size in two depth profiles (Event 034 and Event 098) recorded
during the ocean research expedition. Due to the high noise levels in
particle images from the surface to 4 m depth (Giering et al., 2020b),
the size distribution was assessed below this depth.

4 Results and discussion

Here we present and evaluate the performance of HoloSForests
in terms of edge detection, region extraction, and size estimation.
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4.1 Optimization of edge detection
capabilities of structuredForests using
synthetic data

First, we assessed the effectiveness of structuredForests in
detecting particle edges in reconstructed holograms, using both
synthetic and real datasets (Table 3). As expected, even though the
original model shows good generalisation (Model 1), training on
holographic images (Model 2-5) improves both metrics (mSSIM
and stdSSIM): Model 1 is least accurate (smallest mSSIM) and least
robust (largest stdSSIM) on both test datasets. Therefore, the model
should be trained on holographic data to detect particle edges in
holographic images. The results of Model 2 and Model 3 shows that
training with few holographic images (n = 60) improves the model
performance in accuracy and robustness, however, the output is
domain-specific, particularly regarding accuracy: training on
synthetic data improves performance on both synthetic and real
data, but more on synthetic, while training on real data enhances
both, with greater gains on real data. This domain specificity
becomes weak when the model is trained on a large synthetic
dataset (n = 3,000): compared to Model 1, increasing of mSSIM in
Model 4 by 25.0% on the synthetic data and 23.7% on the real data,
respectively. Although our most comprehensively trained model
(Model 5, trained on both real and synthetic data) performs
similarly on the synthetic test data compared to Model 4, its
performance is slightly better on the real test data. We conclude
that training on synthetic data is an effective way to improve edge
detection in holographic images; the addition of even a small
number of real images (2%) improves the model’s edge detection
accuracy and robustness on real holographic data.

The results from the performance evaluation (Table 3) are
supported by visual inspection of the predicted edges of three
example images from both the synthetic and real holographic
datasets (Figure 5). For both synthetic and real holographic
example images, we can see that the edge images output from the
extensively trained models (Models 4 and 5) have clean

10.3389/fmars.2025.1587939

backgrounds and clear edges (the pixel values along edges are
higher), while the corresponding images from the base model
(Model 1) and low-level trained models (Models 2 and 3) show
more fake edges (noise) around the particles or across the entire
image. This visual inspection also demonstrates that the predicted
edges are wider than the labelled edges in ground truth images,
likely as a result of the soft detection scheme in the models. This
widening could cause a slight overestimate on a particle’s area
compared to its actual area. For this reason, we employed the
operation of edge thinning as a part of the morphological
operations (Figure 4).

Overall, our Model 5, which is trained on both the synthetic and
real holographic datasets, performs best in terms of accuracy and
robustness. We therefore used this model to detect particle edges in
the rest of our experiments (unless stated otherwise).

4.2 Comparison with other region
extraction methods

4.2.1 Performance on entire data

The proposed series of pixel-wise morphological operations by
HoloSForests (Figure 4) for extracting the region mask and the
convex hull from the reconstructed images are effective in defining
the area of even complex particles, like large colonial diatoms whose
‘inner texture’ is similar to the background noise (Figure 6).

Regarding accuracy and robustness, HoloSForests outperforms
the ten other region extraction algorithms (Table 4). On the
synthetic data, it markedly outperforms the other 4 edge-based
methods in terms of accuracy (mIoU: 0.81 vs 0.38 - 0.58,
respectively) and robustness (stdloU: 0.18 vs 0.19 - 0.38,
respectively). SRegionMerging is the best region-based method,
yet it is slightly less accurate (mIoU: 0.79) than HoloSForests.
Moreover, its robustness is lower compared with HoloSForests
(stIoU: 0.23 vs 0.18, respectively). Similarly, the accuracy of
KMeans (mlIoU: 0.78) is close to the one of HoloSForests, but it is

TABLE 3 Performance evaluation of structuredForests on edge detection on the synthetic and real holographic datasets in terms of accuracy (mSSIM

and stdSSIM) after it is trained on the five different datasets.

Dataset

Image number in
training dataset

SHD (1,000 images)

RHD-Cruise (40 images)

mSSIM stdSSIM mSSIM stdSSIM
Model 1 500 0.6622 0.1349 05055 0.1685
(BSDS) ' ' ' b
Model 2 560 0.6717 0.1248 0.5646 0.1619
(BSDS+RHD-Cruise) ' ' : :
Model 3 560 0.7388 0.1185 0.5432 0.1644
(BSDS+SHD60) ' ' ‘ '
Model 4 3500 0.8279 0.0706 0.6254 0.1391
(BSDS+SHD) ' ' ' .
Model 5 3560 0.8284 0.0699 0.6373 0.1342
(BSDS+SHD+RHD-Cruise) : : : !

The bold values indicate the best result based on the corresponding measure.
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Edge images of the synthetic and real holographic image examples output from the five models described above. GT — ground-truth images. The
pixel value scale is converted into [0, 255] from [0, 1] in the edge images for displaying them.

less robust (stdloU: 0.20). OtsuThresholding is the fourth best
method with mIoU of 0.71. Another region-based method -
regionGrowing, is the least accurate method (mIoU: 0.32)
amongst all the 11 methods.

On the real holographic data, the accuracy of 9 of the 11
algorithms decreases relative to their performance on the
synthetic data (Table 4). regionGrowing even fails to detect the
regions in some images. Surprisingly, sobelEdge and prewittEdge
are more accurate and robust on the real data than on the synthetic
data, improving accuracy by ~0.20 and robustness by ~0.12.
HoloSForests remains the best method with only slight changes in
accuracy (a decrease of 0.04) and robustness (a decrease of 0.03),
which shows good generalization for both synthetic and real
holographic images. SRegionMerging becomes the third most-
accurate method (0.66), as sobelEdge takes the second place
(0.67). Amongst the 5 methods with reasonable accuracy
(mIoU > 0.6), KMeans performs the worst. With an accuracy of
< 0.5, cannyEdge, robertsEdge, and activeContour are not suitable
for detecting particle regions in the real holographic test data.

Frontiers in Marine Science

Regarding the processing time, with the exception of
activeContour and regionGrowing, we are able to process the
1,000 synthetic holographic images within 30 seconds with all
methods. In contrast, both activeContour and regionGrowing
take more than 4 minutes. OtsuThresholding has the shortest
processing time of ~10 seconds. Although HoloSForests takes ~15
seconds to process 1,000 images, this speed still enables it to
instantly generate an output once it receives an input image [real-
time processing (Dougherty and Laplante, 1995)]. To detect the
regions in the 40 real holographic images, most methods take < 4
seconds, apart from activeContour (~17 seconds), Watershed (~39
seconds) and regionGrowing (stuck in detecting the regions in some
images). Although cannyEdge is the fastest method (0.66 second), it
has the lowest accuracy compared to the other algorithms (except
for regionGrowing). While HoloSForests is not the fastest method,
among those with reasonable accuracy (mIoU > 0.6), its processing
speed is only marginally slower than the fastest algorithm (1.13
seconds vs. 0.99 seconds) and remains acceptable for real-time
data processing.
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Resultant output of each step in HoloSForests when processing one image example. The image size is adjusted for layout.

TABLE 4 Performance of the methods on region extraction on the synthetic and real holographic datasets in terms of the efficiency of accuracy
(mloU and stdloU) and time.

Dataset
. SHD (1000 images RSD-Cruise (40 images
Method Algorithm type ( = ( =
rocessing processing
mloU stdloU P mloU stdloU .
time * (s) time** (s)
Machine learning
HoloSForests 0.8054 0.1774 15.19 0.7613 0.1453 1.13
based
Edge detection
cannyEdge based 0.3797 0.1940 17.12 0.2772 0.1856 0.66
Edge detection
sobelEdge based 0.4728 0.3752 10.44 0.6726 0.2205 1.00
. Edge detection
prewittEdge based 0.4274 0.3746 10.17 0.6438 0.2503 0.99
Edge detection
robertsEdge 0.5828 0.3228 10.97 0.4758 0.2996 1.05
based
. Region detection
activeContour based 0.5322 0.2811 323.00 0.3716 0.2374 17.00
asSe
Region detecti
regionGrowing e 0.3219 0.2313 256,81 Ve \ \
. . Region detection
SRegionMerging based 0.7899 0.2251 27.47 0.6561 0.2407 1.71
Region detection
Watershed 0.6644 0.2338 14.79 0.5289 0.2491 39.23
based
Otsu-
— Thresholding based 07097 0.2282 9.96 0.5414 0.2580 1.89
Thresholding
KMeans Clustering based 0.7815 0.2039 12.99 0.6197 0.2637 3.30

The bold values indicate the best result based on the corresponding measure.

* The average image size in this dataset is 127 x 387.

** The average image size in this dataset is 152 x 119.

\*** Indicates the method failed to detect the region in some images of this dataset.
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To visualize the performance of the 11 algorithms, we showed
the extracted regions for example holographic images from five of
the complex plankton classes (Figure 7). Qualitatively analysed, the
performance rank of the methods is similar with the calculated
performance metrics (Table 4). HoloSForests performs consistently
well on the five images, with fine features at a reasonable level, such
as the complex shape of colony-forming diatoms and the
appendages of zooplankton. Other methods that also perform
reasonably well are sobelEdge, prewittEdge, and SRegionMerging.
In contrast, cannyEdge, activeContour, and regionGrowing cannot
detect the plankton in any of the images, likely because of the high
background noise from interference patterns in the reconstructed
holograms. robertsEdge, Watershed, OtsuThresholding, and
KMeans can detect the plankton in some images, however, they

Edge detection based

10.3389/fmars.2025.1587939

also introduce false regions and/or miss real ones, likely due to the
noisy background.

4.2.2 Performance on individual taxonomic
classes

As the complexity of a particle’s shape influences the ability of an
algorithm to correctly identify the particle regions, we here
investigated how size estimation varies for different plankton
classes. To do so, we compared HoloSForests to the other top 4
algorithms (sobelEdge, SRegionMerging, prewittEdge, KMeans;
Table 4) in terms of mIoU on the RSD-Cruise test data.
HoloSForests overperforms the other 4 methods in all classes apart
from the class of chain-forming diatom Thalassiosira (Figure 8S),
where sobelEdge and prewittEdge are more accurate (mlIoU: 0.64 vs
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Regions (in white) and boundaries of their convex hulls (in red) extracted from five examples of the real holographic test data. The images have been

resized for the layout purpose.
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FIGURE 8

Box plotting of the results of 5 methods when evaluating them on the images of each class of 20 classes. (A) Aggregate, (B) Asterionella, (C) Chaetoceros
chain, (D) Chaetoceros socialis, (E) Chainthin, (F) Ciliophora, (G) Copepod, (H) Corethron, (I) Cylinder, (J) Detritus, (K) Dinoflagellates, (L) Eucampia
antarctica, (M) Fecal pellets, (N) Fragilariopsis, (O) Nauplii, (P) Pennate, (Q) Round, (R) Square, (S) Thalassiosira, (T) Thalassiothrix. The example of

each class shown in Table 2 is given for visualization of them
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0.71 and 0.68, respectively; Supplementary Table 1 in Supplementary
Material). It clearly outperforms the other methods for classes with
fine features, such as appendages and spikes (e.g., Chaetoceros sp.,
copepods and nauplii; Figures 8C, G, O) and complex shapes (e.g.,
aggregates and Asterionella sp.; Figures 8A, B). HoloSForests was least
accurate for thin and long particles (class Chainthin; mIoU = 0.58).
The discrepancies may be due to the relatively wide edges that it
predicts and which require thinning. For long objects that are only a
few pixels wide, a small change in width will lead to big differences in
relative size estimates. However, even for this class, HoloSForests still
performs remarkably better than the other 4 methods (mIoU: 0.11 -
0.37; Supplementary Table 1 in Supplementary Material).

Another advantage of HoloSForests is its robust performance
across most classes (as determined by stdloU in Supplementary
Table 1 in Supplementary Material, and visualized by the short
boxes in Figure 8). HoloSForests deviates by < 0.05 mIoU for 8 of
the 20 classes (Square, Cylinder, Copepod, Detritus, Aggregate,
Dinoflagellates, Fecal pellets, and Fragilariopsis). In contrast, the
second-best method - SRegionMerging - performs similarly well for
only 3 classes; while the remaining 3 methods can achieve this
robustness for only 1 class each. The most robust performance of
HoloForests comes from the class Square (stdloU = 0.01;
Supplementary Table 1 in Supplementary Material), which

10.3389/fmars.2025.1587939

contains simple square-like particles (such as the side view of
centric diatoms). Interestingly, the value for another simple shape
- Round (stdIoU = 0.07; Supplementary Table 1 in Supplementary
Material) is higher than for some of the more complicated shapes
(e.g., Aggregates). Possible explanations could be: (1) the regions of
round particles are generally very small such that a small difference
between the extracted region and ground-truth regions can cause a
big decrease in IoU; (2) regular holographic fringes (i.e., noise)
usually occur around reconstructed round particles, which cause
instability in extracting their regions. The least robust classes are
Corethron sp., Thalassiosira sp., and chain-forming Chaetoceros sp.
(stdIoU = 0.27, 0.24, and 0.20, respectively; Supplementary Table 1
in Supplementary Material), since these particles have many fine
structures and/or multiple disconnected components (Table 2).

Overall, HoloSForests has good accuracy and robustness when
extracting the regions of complex natural particles from
reconstructed holograms.

4.3 Real-world application

Histogram analysis (Figures 9-1, 2) indicates the expected long-
tailed distribution: the majority of detected particles (> 90%) had
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(1-2) Histograms showing particle size in 50 bins for the two profiles (1. Event 034, and 2: Event 098). (3-4) Vertical profiles of particle size (hull-
based ESD) estimated using HoloSForests from two deployments (3: Event 034, and 4: Event 098). The solid orange lines follow the smoothed
average. The dashed lines show the mean hull-based ESD in the depth ranges 4 — 50 m (red), 150 — 230 m (purple), and 4 — 230 m (orange). Please

note that the x-axis is logarithmic in the bottom two graphs.
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hull-based ESDs smaller than 500 pm, while only a small fraction (<
1%) exceeds 1000 um. The scarcity of large particles is likely due to
a low abundance of particles of this size within the sampling area,
though we cannot completely rule out limitations in the FastScan
reconstruction algorithm for very large particles. However, given
that some particles exceeding 1000 um were successfully
reconstructed by FastScan (Supplementary Figure 5 in
Supplementary Material), it is likely that the low detection rate of
these larger particles reflects their true low abundance in the
observation area at the time of data collection.

Both profiles (Figures 9-3, 4) exhibit similar trends in particle
size distribution, with a general decrease in particle size with
increasing depth. Notably, the mean hull-based ESD (Table 5)
shows a marked reduction between 50 m and 150 m depth. The
mean ESD decreased from 245.5 + 202.9 um to 123.0 + 87.4 um
from above 50 m to below 150 m in Event 034; while in Event 098, it
declined from 232.6 + 179.0 um to 136.5 + 83.1 um (above 50 m
and below 150 m, respectively). The average particle size across the
entire water column was 211.8 + 182.6 wm and 218.2 + 177.4 um in
Event 034 and Event 098, respectively.

These size estimates are slightly smaller than previous estimates
of these particle profiles based on reconstructed images made using
the software HoloBatch combined with a sequence of image
processing steps aimed to avoid fragmentation of complex
particles (Planktonator; Giering et al., 2020b). The final vignettes
in that workflow had a clear white background, and particle regions
were hence determined using a range of region detection methods,
with Otsu being used as the reference algorithm. As the original
work used pixel-wise ESD, we recalculated their size estimates using
hull-based ESD and calculated mean sizes across the entire water
column. The recalculated values (234 + 225 um and 246 + 239 um
for Event 034 and Event 098, respectively) are ~10% higher than the
size estimates by HoloSForests. Compared to the previous work
(Giering et al., 2020b), our workflow here has several advantages.
Besides the faster hologram reconstruction time (using FastScan
compared to HoloBatch), visual inspection shows that FastScan is
less prone to fragment large complex plankton (such as Chaetoceros
socialis) than HoloBatch. The higher size estimates observed with
HoloBatch + Planktonator are likely due to Planktonator’s tendency
to over-combine particles, potentially incorporating ‘false’ particles
created by interference patterns, when particle abundance is high.

Overall, HoloSForests applies less image manipulation, which
likely provides images closer to reality (albeit with noisy
background). Lastly, we validated size estimates by HoloSForests

TABLE 5 Mean values (mean) and stand deviation values (std) of the two
profiles in different depth ranges.

Depth range

Profile Measure
4-230m 4-50m 150-230m
mean 211.8 245.5 123.0
Event 034
std ‘ 182.6 202.9 ‘ 87.4
mean ‘ 2182 232.6 ‘ 136.5
Event 098
std ‘ 177.4 179.0 ‘ 83.1
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using both human pixel-wise annotations and size-sorted basalt
spheres (Section 5 in Supplementary Material), providing an
evidence base for the accuracy of the produced size estimates.

5 Conclusions

Images provide valuable information on marine particle size. DIH,
with its high resolution and capacity for relatively large-volume
recording, is a powerful tool for imaging marine microscale particles.
However, extracting particle size from holograms remains challenging
owing to the complex shape of naturally occurring particles and
background noise in reconstructed holograms. This paper presents a
method developed to address these challengers, which involves two
primary steps: (1) training a structured forest model on three datasets —
BSDS500, synthetic holographic data, and real holographic data - to
detect the particle edges in images; and (2) applying a series of pixel-
wise morphology operators (including binarization, edge thinning, hole
filling, morphological opening, small-region removal, close-region
merging, convex hull) on the edge-detection outputs to extract the
particle regions and convex-hull masks. Particle size information is
subsequently estimated from the extracted regions.

Our five main findings are:

1. The training strategy on a combination of synthetic
holographic images and a small number of real
holographic images increases the accuracy of particle
region extraction in holograms.

2. Amongst the 11 region detection methods tested in this
work, the proposed method HoloSForests gives the highest
accuracy when extracting particle regions from the
synthetic and real test images (respective mIoU of ~0.81
and ~0.76) at competitive processing speeds.

3. HoloSForests can accurately extract the regions of naturally
occurring oceanic particles with complicated shapes, such as
aggregate, Chaetoceros sp. chains, and chain-like thin particles.

4. HoloSForests has the capability of providing accurate size
information of recorded particles in holograms, even when
multiple particles with complicated shapes exist in the
same image.

5. Synthetic holographic data is a useful alternative to human-
annotated data for training a machine-learning-based
model for object detection/segmentation in holograms,
particularly when it is not practical to prepare a large
amount of human-annotated data.

Overall, we propose that our method is capable of rapidly and

accurately extracting particle regions from reconstructed holographic
images, as well as estimating the particle size accurately.
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