

[image: Cover: Machine learning for improved size estimation of complex marine particles from noisy holographic images]




  
    Table of Contents

    
      	Cover

      	Machine learning for improved size estimation of complex marine particles from noisy holographic images 
      
        	1 Introduction

        	2 Materials 
        
          	2.1 Real data collection and processing

          	2.2 Synthetic data simulation and processing

        


        	3 Methods 
        
          	3.1 Methodology in HoloSForests 
          
            	3.1.1 Model training

            	3.1.2 Region extraction

            	3.1.3 Particle size estimation

          


          	3.2 Datasets for model training and evaluation 
          
            	3.2.1 Synthetic holographic data (SHD)

            	3.2.2 Real holographic data - cruise (RHD-Cruise)

          


          	3.3 Evaluation metrics 
          
            	3.3.1 Structural similarity index measure (SSIM)

            	3.3.2 Intersection over union (IoU)

          


          	3.4 Evaluation and validation 
          
            	3.4.1 Optimization of edge detection capabilities of structuredForests using synthetic data

            	3.4.2 Comparison of HoloSForests with other region extraction methods

            	3.4.3 Real-word application

          


        


        	4 Results and discussion 
        
          	4.1 Optimization of edge detection capabilities of structuredForests using synthetic data

          	4.2 Comparison with other region extraction methods 
          
            	4.2.1 Performance on entire data

            	4.2.2 Performance on individual taxonomic classes

          


          	4.3 Real-world application

        


        	5 Conclusions

        	Data availability statement

        	Author contributions

        	Funding

        	Acknowledgments

        	Conflict of interest

        	Correction note

        	Generative AI statement

        	Supplementary material

        	Footnotes

        	References

      


    

  
Landmarks

  
    	Cover

    	Table of Contents

    	Start of Content

  


Print Page List

  
    	 Page 01. 

    	 Page 02. 

    	 Page 03. 

    	 Page 04. 

    	 Page 05. 

    	 Page 06. 

    	 Page 08. 

    	 Page 07. 

    	 Page 09. 

    	 Page 11. 

    	 Page 10. 

    	 Page 12. 

    	 Page 13. 

    	 Page 14. 

    	 Page 15. 

    	 Page 16. 

  



ORIGINAL RESEARCH

published: 15 August 2025

doi: 10.3389/fmars.2025.1587939

[image: Frontiers: Stamp Date]



Machine learning for improved size estimation of complex marine particles from noisy holographic images



Zonghua Liu 1,2*, Marika Takeuchi 2, Yéssica Contreras 3, Thangavel Thevar 4, Alex Nimmo-Smith 5, John Watson 4 and Sarah L. C. Giering 2*


1School of Computing, Engineering and Technology, Robert Gordon University, Aberdeen, United Kingdom, 2National Oceanography Centre, Southampton, United Kingdom, 3Division of Oceanography, Center for Scientific Research and Higher Education of Ensenada, Ensenada, Mexico, 4School of Engineering, University of Aberdeen, Aberdeen, United Kingdom, 5School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom






Edited by: 
Cosimo Distante, National Research Council (CNR), Italy


Reviewed by: 

Prathan Buranasiri, King Mongkut’s Institute of Technology Ladkrabang, Thailand
Victor Dyomin, Tomsk State University, Russia

*Correspondence: 

Zonghua Liu
 z.liu3@rgu.ac.uk 
Sarah L. C. Giering
 s.giering@noc.ac.uk




Received: 06 March 2025


Accepted: 14 July 2025


Published: 15 August 2025


Citation:
Liu Z, Takeuchi M, Contreras Y, Thevar T, Nimmo-Smith A, Watson J and Giering SLC (2025) Machine learning for improved size estimation of complex marine particles from noisy holographic images
. Front. Mar. Sci. 12:1587939. doi: 10.3389/fmars.2025.1587939




Size estimation of particles and plankton is key to understanding energy flows in the marine ecosystem. A useful tool to determine particle and plankton size - besides abundance and taxonomy - is in situ imaging, with digital holography being particularly useful for micro-scale (e.g., 25 – 2,500 µm) marine particles. However, most standard algorithms fail to accurately size objects in reconstructed holograms owing to the high background noise. Here we develop a machine-learning-based method for determining the size of natural objects recorded in digital holograms. A structured-forests-based edge detector is trained and refined for detecting the particle (soft) edges. A set of pixel-wise morphology operators are then used to extract particle regions (masks) from their edge images. Lastly, the size information of particles is calculated based on these extract masks. Our results show that the proposed strategy of training the model on synthetic and real holographic data improves the model’s performance on edge detection in holographic images. Compared with another ten methods, our method has the best performance and is capable of rapidly and accurately extracting particles’ regions on a group of synthetic and real holograms (natural oceanic particles), respectively (mean IoU: 0.81 and 0.76; standard-deviation IoU: 0.18 and 0.15).
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1 Introduction


Size is a critical parameter for the analysis of plankton and particles in aquatic systems, as it influences their role in the ecosystem, such the role of organisms in the marine food web (Serra-Pompei et al., 2022) and the role of particles in ocean carbon storage (Laurenceau-Cornec et al., 2020; Serra-Pompei et al., 2022; Omand et al., 2020). Recent advances in imaging technologies and underwater camera systems enable broad-scale in situ monitoring of plankton and particles, such as their abundances and sizes (Lombard et al., 2019; Giering et al., 2020a, 2022). However, while the technical ability to image particles and plankton has advanced rapidly, the analysis of these images is still relatively slow, leading to often long delays (up to years) between image collection and interpretation. In addition, correctly determining the size of a particle in an image remains a challenge (Giering et al., 2020b).


An imaging technique that helps to estimate size effectively, compared to conventional photography, is lensless digital in-line holography (DIH) (Schnars et al., 2015), as it provides the true sizes of the particles irrespective of their position in the imaging volume. Inline holography records the interference pattern between light waves scattered by a microscopic object and a reference wave along the same axis. This recorded pattern can then be digitally reconstructed to create an image of the object at a known distance from the sensor. Inline holography has been used widely to image microscale (typically micrometer to millimeter scale) marine particles (Aditya et al., 2021; Liu et al., 2023a) owing to its high resolution [typically several micrometers (Liu et al., 2023a)], large depth-of-field [tens of centimeters in DIH (Schnars et al., 2015; Sun et al., 2008)], and large sampling volume [typically in the scale of milliliters (Liu et al., 2023a)]. The latter provides a significant advantage over other imaging techniques, such as photography, which relies on high-magnification lenses that reduce the depth-of-field and, consequently, the sampling volume. Furthermore, when recording particles using an imaging system with a short depth-of-field (e.g., conventional photography), particle size bias can be introduced from blurred particles that are out of the depth-of-field along the optical axis (z-axis) (i.e., ‘out of focus’). Because of its large depth-of-field, lensless DIH has the capability of resolving this issue, as particles at different z-positions can (theoretically) be recorded on one hologram and later clearly reconstructed (Schnars et al., 2015; Graham and Nimmo-Smith, 2010).


A key challenge to estimating the size of natural particles captured by holographic camera systems is accurate particle region extraction from the reconstructed holograms. In DIH, the edge of an object is one of the most important features because it defines the boundaries where light waves are scattered (especially for opaque particles), creating a strong contrast in the interference pattern (Liu et al., 2023a; Schnars et al., 2015). The edges of a particle’s silhouette hence provide critical information for accurately reconstructing the shape of the object, whereas its “inner” (e.g., texture) information in the image is less reliable (Burns and Watson, 2014). The edges in reconstructed holograms are therefore typically more distinct compared to those in conventional photography images. As a consequence, segmentation of the reconstructed holograms should be more reliable when using edge detection algorithms than region-based approaches. Yet, due to high background noise and often complex particle shapes, traditional image processing methods (including edge detection algorithms) typically struggle to distinguish particles from the background in reconstructed holograms.


Recent works show that an efficient approach for image segmentation in images with a noisy background is machine learning (Hassen Mohammed et al., 2023; Mahdaviara et al., 2023; Yu et al., 2020). However, machine learning normally requires many human pixel-wise annotations for training, which is time consuming. To generate accurate training data, humans typically have to carefully trace objects of interest to ensure that all target pixels are included. Since good training data generally requires hundreds of images (Martin et al., 2001), such workflows can be impractical. An alternative to human-generated training data is the use of synthetic training data. Synthetic training data refers to artificially generated data created to simulate real-world scenarios (Jordon et al., 2022); in our case, holograms of marine particles.


Here, we explore whether (a) a machine-learning-based approach outperforms traditional algorithms in the segmentation of reconstructed holograms, and (b) whether synthetic holograms are a useful alternative to human-annotated training data for this approach.


For machine-learning-based particle segmentation, we use a state-of-the-art edge detection method based on structured forests (Dollár and Zitnick, 2015), owing to its high accuracy, good generalization, fast speed and no requirement on the input image dimension. We produce a big synthetic holographic dataset of marine particles. Using this synthetic data, a 2-step training strategy is applied: the structured forest model with the original weights is trained on a big synthetic holographic dataset, and then fine-tuned on a small group of real, pixel-wise annotated holographic data. Based on the trained structured forest model, we develop a pipeline (named HoloSForests) for extracting the size information of marine particles from holograms recorded by a holographic camera. We also compare our method’s performance against 10 traditional segmentation methods.






2 Materials





2.1 Real data collection and processing


A real holographic dataset of natural oceanic particles was collected during an ocean research expedition near South Georgia [part of the UK Controls over Ocean Mesopelagic Interior Carbon Storage program (Sanders et al., 2016)] using a commercial submersible digital holographic camera (LISST-HOLO, Sequoia, USA) in Nov/Dec 2017. The camera’s optical and configuration parameters1 are given in 
Table 1
. It records high-resolution inline holograms of microscale particles using a collimated laser beam from a 658 nm laser. The recording distance range from the sensor is 28 – 78 mm in the air. The sensor (hologram) dimension is 1600 × 1200 pixels, and its pixel pitch size is 4.4 μm. It has also been evaluated as having the capability of imaging particles in their original size (Graham and Nimmo-Smith, 2010). The camera was mounted on a purpose-built frame (the Red Camera Frame) and deployed vertically to ~230 m, recording a hologram with a volume of 1.86 mL every 1.2 – 2.5 m. In total, 5,047 holograms from 11 vertical profiles were used in this work.



Table 1 | 
Optical and configuration parameters of LISST-HOLO.





	Parameters

	Values






	Wavelength
	658 nm



	Illuminating light
	collimated beam



	Recording structure
	inline



	Recording distance range from the sensor (in the air)
	28 – 78 mm



	Hologram (sensor) dimension
	1600 × 1200 pixels



	Pixel pitch size
	4.4 μm



	Particle size range
	25 – 2500 μm










To visualize the recorded particles in digital holograms, holograms need to be first reconstructed numerically using a reconstruction algorithm on a computer. Additionally, a focus measure (Liu et al., 2023a) is needed to detect focused images of recorded particles. For this task, we used the particle image extraction suite, FastScan (Thevar et al., 2023), which can rapidly reconstruct and auto-focus inline digital holograms recorded using collimated laser beams, and output the vignettes of imaged particles. FastScan uses the Angular Spectrum algorithm to reconstruct holograms (Liu et al., 2023a; Schnars et al., 2015), and a contour-gradient-based auto-focus algorithm to extract recorded particles from the reconstructed holograms (Burns and Watson, 2014). These algorithms are implemented using parallel computation on a powerful Field Programmable Gate Array resulting in high processing speeds [838 Mp/s (Thevar et al., 2023)].


A total of 20,328 particle vignettes were extracted from the dataset. These vignettes were classified and manually verified using Ecotaxa2. Noise/background particle vignettes were removed, and the remaining vignettes were sorted into 40 taxonomic classes. The 20 most representative classes (in terms of abundance and morphological diversity) were selected, yielding 8,902 vignettes. Examples of the extracted particle vignettes are shown in 
Figure 1
.


[image: Microscopic images of various microorganisms and particles. Top left shows a detailed organism with antennae. Below, a spiral, elongated structure. Top right features a cluster of small particles. Below, a linear arrangement of particles, a segmented organism, a small round particle, and a single-celled organism with a central spot. Each section displays scale bars indicating magnification.]
Figure 1 | 
Sample particle vignettes extracted by FastScan in the dataset of natural particles recorded in situ. Each white bar indicates 100 μm.








2.2 Synthetic data simulation and processing


A synthetic holographic dataset, including reconstructed particle vignettes and their ground-truth edge images, was created (
Figure 2
). Each synthetic hologram was simulated based on the parameters of LISST-HOLO (
Table 1
). To simulate holograms, we used images of natural marine particles (zooplankton) imaged using ZooScan (Giering et al., 2019) due to their noiseless background and similar shape, complexity and resolution to objects imaged by LISST-HOLO. 877 ZooScan vignettes were binarized and used as the target pool. To simulate a synthetic hologram, up to 10 particles (vignettes) were randomly selected from the pool and randomly placed within the system’s recording optical path (28 to 78 mm depth from the camera sensor in the air). Each vignette was positioned at least 50 pixels away from each edge of the hologram. Details of each vignette in its synthetic hologram (location, size, and recording distance from the sensor) were stored. The dimension of each full-size synthetic hologram was the same as the holograms recorded by LISST-HOLO (1600 × 1200 pixels). Holograms were simulated using the Angular Spectrum method (Liu et al., 2023a; Schnars et al., 2015). Noise was added to the simulated holograms by taking real holograms without any targets and superimposing them as background noise in the simulated holograms. Specifically, the background hologram was first normalized with the maximum pixel value equal to the mean intensity of the simulated hologram (Liu et al., 2023a; Schnars et al., 2015); two holograms were then added together; and the intensity of the final hologram was lastly normalized into 0 – 255. The ‘recorded’ particles can be reconstructed from these simulated holograms based on the stored simulation information, and the ‘true’ edges can be extracted from the corresponding binarized ZooScan images.


[image: Flowchart depicting the creation of synthetic holograms. It starts with a target pool of scanned images, which undergo binarization and placement. Edge detection is then applied, followed by the simulation of a clear synthetic hologram. Background noise is added to create a synthetic hologram with noise. This is reconstructed at 44 millimeters, leading to a reconstructed hologram. An image cropping process retrieves the reconstructed particle vignette.]
Figure 2 | 
Workflow of data simulation. [x, y, w, h, f] indicates the details of the vignette in the synthetic hologram, including the top-left location in the hologram [x, y], vignette size [w, h], and recording distance from the sensor [f]. Each image size is adjusted for layout.









3 Methods





3.1 Methodology in HoloSForests


Our pipeline - HoloSForests, consists of three steps for estimating particles’ sizes (
Figure 3
). (1) An edge-detection model (structured forests) was trained twice using two different datasets: the model was first trained using the synthetic training dataset, and then fine-tuned using a small number of real, pixel-wise annotated holographic data from the natural oceanic dataset. (2) The trained model was used to extract particles’ edges in real holograms, and a set of morphological operations were then carried out in the extracted edge images to obtain their region masks. (3) Lastly, particles’ size information was estimated based on the calculated convex-hull region masks from the extracted region masks.


[image: Flowchart illustrating a three-step process: (1) Model Training with synthetic and real training data feeding into structured forests for edge detection, (2) Region Detection using image input from LISST-HOLO followed by morphological operations, (3) Size Estimation via convex hull computation to obtain size information.]
Figure 3 | 
Workflow of HoloSForests to estimate the size information of particles in the particle vignettes. Three steps are contained in this workflow: (1) model training in the purple box, (2) edge-based region detection in the orange box, and (3) size estimation in the magenta box.




All the algorithms in HoloSForests were conducted on MATLAB (licence: 980953), and then ran on a computer with a processor of 12th Gen Intel(R) Core(TM) i7-12700 and RAM of 16 GB.





3.1.1 Model training


We used the structured-forests-based model (referred to as structuredForests) by Dollár and Zitnick (2015) for the edge detection. The model consists of eight decision trees. In each tree, the maximum depth is 64, and the number of each of the positive and negative patches is 5 × 105. To increase the diversity of the trees and edge-detection accuracy, the trees are trained independently, and the features and splits are randomly subsampled when training each node in each tree. Structured learning was used to map the edges between the input and output images in each tree. The eight trees are combined as a random forest to achieve robust outputs, and the overlapping edge maps are averaged to obtain a soft edge response. The ensemble model predicts a structured 16 × 16 segmentation mask (output) from a larger 32 × 32 image patch (input), thus with 16 × 16 output patches, each pixel receives 256 predictions. The score of each pixel in the output edge map is averaged over these 256 votes. A descriptive structure graph of the model is shown in 
Supplementary Figure 1
 in 
Supplementary Material
. The model codes are available from GitHub3.


The original weights of the model from the training on the Berkeley Segmentation Data Set 500 (BSDS, 500 natural images with annotated boundaries) (Martin et al., 2001) were used, since they provided good generalization on detecting the edges in natural images. The model (with original weights) was trained on our synthetic training data. To improve its performance on real holographic data, the trained model was further fine-tuned on our real holographic data based on the technique of transfer learning (Hosna et al., 2022; Pan and Yang, 2010).






3.1.2 Region extraction


structuredForests produces soft edge images, where each pixel value ranges from 0 to 1. In these images, higher pixel values indicate a higher probability of the pixel being located at an edge (second image of the bottom row in 
Figure 3
). Therefore, the output edge images require further processing to extract particle size information.


A series of pixel-wise morphological operators were used on the output edge images (
Figure 4
). Since each edge image has high contrast between the particle edges and the background (second image of the bottom row in 
Figure 3
), the thresholding algorithm Otsu [a fast binarization method based on the intra-class variance between the foreground and background (Otsu, 1979)] was used to determine the edge pixels in each edge image. The detected edges by the structured forest model are wide (
Figure 3
), resulting in an estimated particle area that is slightly bigger than the original. Therefore, if there were more than three pixels in the width direction of the edges, the edges in a binary edge image were thinned by removing one pixel from their two sides, respectively. To obtain the particle mask, the operation of hole filling was then used to fill the holes surrounded by edges in the binarized edge image. Subsequently, two steps were implemented to remove regions that were too small: morphological opening using a disk-shaped structure element with a diameter of 6 pixels and removing the regions that are smaller than 25 pixels. In the last step, regions within a 6-pixel distance from each other were merged in the mask image. The criteria of 6 and 25 pixels was chosen based on the minimum concentrated particle size (25 µm) and pixel size (4.4 µm) of LISST-Holo, as: 
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[image: Flowchart illustrating a region mask extraction and refining process. The sequence begins with an “Original Image” leading to “Edge Detection” and “Soft Edge Image.” Followed by “Binarization,” “Edge Thinning,” “Hole Filling,” and “Opening” to achieve “Region Mask Extraction.” “Region Mask” undergoes “Close Region Merging,” “Small Region Removal,” and further refining through “Region Mask Refining.” It ends with “Convex Hull Computation,” resulting in “Convex Hull Mask.” Each step is connected by arrows indicating the flow of the process.]
Figure 4 | 
Flow chart of pixel-wise morphological operations for extracting the region masks from the edge image output from structuredForests.








3.1.3 Particle size estimation


Since hole filling is applied in the workflow, an extracted region by the proposed method might not be the actual region for a particle, particularly when a string-shape particle forms a circular pattern in the image. Therefore, the size information of particles obtained using the proposed method is expected to have less bias to such particles, if it is calculated in terms of the convex hull region.


Three concepts were used to describe particle size based on the extracted convex hull region: (1) major-axis length (the Euclidean distance of the two furthest points in a region boundary), (2) minor-axis length (the Euclidean distance of the two closest points in a region boundary), and (3) equivalent spherical diameter (ESD) (Giering et al., 2020b). ESD describes the size of an irregularly shaped object using the diameter of a sphere which has the same area as the object. It is calculated as Equation 1:
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 indicating a binary convex hull mask of the particle, and 4.4 µm indicating the pixel pitch size of LISST-HOLO. Since LISST-HOLO can only detect particles whose ESDs are in the range from 25 to 2500 µm, those particles whose ESDs are not in this range are omitted when estimating particle size.


Note that hull-based size estimates are higher compared to the pixel-based size estimates for natural particles with highly irregular, concave or porous shapes. Yet, this metric is useful as an upper bound for drag estimation, assessing particle morphology [e.g., ‘solidity’ and ‘roundness’ (Giering et al., 2020b)], and the space taken up by particles.







3.2 Datasets for model training and evaluation


A total of three datasets were created for model training and evaluation: a synthetic holographic dataset and two real holographic datasets. One real holographic dataset of standardized basalt spheres for model evaluation is described in 
Section 5
 of 
Supplementary Material
.





3.2.1 Synthetic holographic data (SHD)


One thousand synthetic holograms containing a total of 7,000 marine particles were created using the method described in Section 2.2. Each simulated hologram was reconstructed at the z-distances where the ZooScan vignettes had been placed, and the reconstructed particles were extracted and saved. 3,000 of the 7,000 reconstructed particle images were randomly selected to create the training dataset. These reconstructed images and the edge images from their original vignettes were used, respectively, as the input and ground-truth images for training the model (
Figure 2
). We chose this number because the performance of trained models on edge detection did not obviously change when more than 3,000 particles were used (
Section 2
 in 
Supplementary Material
). An additional 1,000 pairs of reconstructed particle images and original edge images were randomly selected from the rest of the synthetic dataset as the testing data. This SHD dataset was used to test the edge detection performance of structuredForests, as well as the region extraction performance of HoloSForests.






3.2.2 Real holographic data - cruise (RHD-Cruise)


We compiled a training/testing dataset with natural and complex marine particles. For this, we selected 5 representative particle vignettes from each of the 20 taxonomic classes (
Table 2
), yielding a dataset with 100 particle vignettes (
Supplementary Figure 3
 in 
Supplementary Material
). Three people manually labelled the particle regions pixel by pixel in each vignette, and a pixel was designated as a part of the region if at least two people labelled it as a region pixel. The edges of the particle(s) in each region mask (
Table 2
) are detected used the method proposed by Liu et al. (2018). This dataset was used for two parts of work: (1) when evaluating HoloSForests’ performance across the entire data, 3 particle vignettes from each class were randomly selected for training, and the remaining 2 vignettes were used for testing (i.e., 60 real holographic vignettes as the training data and 40 vignettes as the test data); (2) when evaluating the capability of HoloSForests for estimating the size of particles for different taxonomic classes, 5-fold cross validation (King et al., 2021) was adopted. For this, 1 vignette in each class was used as test data, and the remaining 4 vignettes were used as train data, and the process was iterated until every vignette in each class was used as test data.



Table 2 | 
One example for each taxonomic class, and its labelled particle region and edges.





	Class

	Aggregate

	Asterionel-a

	Chaetoceros chain

	Chaetoceros socialis

	Chainthin

	Ciliophora

	Copepod

	Corethron

	Cylinder

	Detritus






	Image
	
[image: Microscopic image of a fossilized creature with a long, slender body segmented into various parts, embedded in a stone matrix. A scale bar is visible in the bottom left corner.]

	
[image: An electron micrograph showing several rod-shaped bacteria on a textured background. A white scale bar is visible at the bottom, indicating size reference.]

	
[image: Microscopic image showing a grid-like structure with intersecting lines, resembling a cage formation. A scale bar is present in the lower left corner, indicating magnification.]

	
[image: A grayscale microscopic image showing an elongated, textured structure, possibly a biological specimen or mineral formation, set against a blurred background.]

	
[image: Close-up grayscale image of a fiber-like structure diagonally crossing the frame on a textured, patterned background.]

	
[image: Blurry grayscale image depicting a small insect-like creature with visible legs against a textured background. A white scale bar is present at the bottom.]

	
[image: Close-up black and white image of a rotifer under a microscope. The rotifer has a segmented body with spiny projections and a tail-like appendage. A scale bar is visible for size reference.]

	
[image: Microscopic image showing a bacteriophage, resembling a spider-like structure with a hexagonal head and long tail fibers, against a textured background. A scale bar is visible at the bottom left.]

	
[image: Grainy black and white image showing a slightly blurred, elongated black shape against a mottled gray background.]

	
[image: Microscopic image showing a small, irregularly shaped object with a prominent protrusion. The object appears to be a cellular or microbial structure, observed on a light background. A scale bar is visible at the bottom left.]




	Label-region
	
[image: A black, abstract shape resembling a jagged, diagonal line with uneven edges and protrusions, set against a white background.]

	
[image: An abstract, pixelated black shape resembling an irregular form with jagged edges on a white background.]

	
[image: bstract black geometric pattern composed of intersecting lines and spikes on a white background, creating a dynamic and complex visual.]

	
[image: llustration of a textured, irregularly shaped object resembling a rough, elongated mass. It has a detailed, intricate surface with varying shades to suggest depth and dimension.]

	
[image: A simple, curved black line on a white background sloping upwards from left to right.]

	
[image: Silhouette of an apple with a bite taken out, resembling a distorted or pixelated image. The apple's outline is jagged, and it has a stem on top.]

	
[image: Silhouette of a hammer with a distinct handle and head, positioned at an angle against a white background.]

	
[image: Silhouette of an insect, possibly a mosquito, perched at an angle. The image is in high contrast with detailed limbs and a long body.]

	
[image: A blurry, abstract black silhouette resembling a jagged, elongated shape against a white background. Details and context are indistinct.]

	
[image: A black silhouette of a landmass resembling the shape of Afghanistan, featuring jagged and uneven edges.]




	Label-edge
	
[image: A black silhouette of a stylized bird in flight against a white background, showing simple geometric shapes and angles.]

	
[image: Coiled black telephone cord twisted diagonally against a white background.]

	
[image: Black silhouette of a long, irregular shape on a white background, resembling a stretched or elongated object viewed from the side.]

	
[image: A single black curved line on a white background, resembling an arch.]

	
[image: Silhouette of a flying pig with wings spread, depicted in a solid black color.]

	
[image: A black silhouette of a feather with a jagged edge on one side, tapering to a point on the other.]

	
[image: A black, irregularly shaped polygon resembling a crude circle against a white background.]

	
[image: Black pixelated shape resembling a simplified or abstract design, unevenly edged with no discernible features, against a white background.]

	
[image: A diagonal row of black, irregular shapes resembling a line of uneven spots or smudges on a white background.]

	
[image: Pen and ink drawing of a tall, narrow canoe made of bark with interior struts visible.]






	Class

	Dinoflagellates

	Eucampia antarctica

	Fecal pellets

	Fragilariopsis

	Nauplii

	Pennate

	Round

	Square

	Thalassiosira

	Thalassiothrix






	Image
	
[image: Line drawing showing a branching, irregularly shaped structure against a black background, with multiple protrusions and two arrows pointing to distinct segments near the right side.]

	
[image: White outline of an irregular, compact shape centered on a black background, consisting of jagged edges and multiple sharp angles without any directional indicators or annotations.]

	
[image: White contour of a symmetrical, spiky structure on a black background, with dense clusters of small circular forms at the center and radiating linear extensions on both sides.]

	
[image: Dark, textured structure resembling a connected, elongated mass with varying widths, composed of dense, irregular patterns against a black background, lacking distinct edges or annotations.]

	
[image: Thin, slightly curved linear structure extending diagonally across a black background, with uniform thickness and no visible texture, markings, or additional elements.]

	
[image: White outline of an enclosed, irregular shape centered on a black background, with jagged, angular edges and one elongated protrusion extending upward from the top.]

	
[image: White contour of an irregular, elongated shape on a black background, featuring three distinct protrusions and a tapering end, with smooth and continuous edges throughout.]

	
[image: White outline of two intersecting tubular structures on a black background, with multiple short radial projections extending from the junction, suggesting a branching or nodal formation.]

	
[image: White outline of a short, horizontally oriented, enclosed shape with slightly irregular edges, centered on a black background and lacking any internal detail or protrusions.]

	
[image: Pixelated white outline of an irregular, abstract shape with multiple enclosed regions and sharp protrusions, extending diagonally across a black background with scattered small detached segments.]




	Label-region
	
[image: A grainy, black and white image showing an airborne object with a triangular shape and pointed edges. A thick white line appears beneath the object, presumably for scale. The background is textured.]

	
[image: Electron micrograph showing a spiral-shaped bacterium, likely a spirochete, against a textured background. The scale bar in the bottom left suggests magnification level.]

	
[image: Microscopic image of a rectangular, textured structure against a speckled grey background, possibly depicting a single bacterial cell or a similar microorganism. A white scale bar is present for size reference.]

	
[image: A black, curved, elongated structure on a textured gray background, resembling an electron microscope image. A white scale bar is visible in the bottom left corner.]

	
[image: Microscopic view of a small rotifer, a multi-celled organism, showing its elongated body and appendages. The image includes a scale bar for size reference.]

	
[image: A grayscale image showing a saucer-shaped object in the center. There is a white scale bar at the bottom left, suggesting a microscopic or small-scale observation. The background is grainy.]

	
[image: Microscopic image showing a single, dark, oval-shaped bacterium against a gray background. A white scale bar is present below the bacterium.]

	
[image: Microscopic grayscale image of a nano-scale structure resembling a rectangular shape with three parallel lines inside. A white scale bar is visible at the bottom for size reference.]

	
[image: Close-up view of a nanostructured pattern showing regularly spaced dark dots on a textured gray background. A scale bar is visible at the bottom left.]

	
[image: Microscopic image showing elongated, needle-like structures against a textured background, likely depicting a biological or mineral specimen. The structures are arranged in a crisscross pattern.]




	Label-edge
	
[image: White outline of a narrow, elongated shape with a slightly curved and tapering form, centered on a black background and lacking internal details or additional elements.]

	
[image: White contour of a coiled, helical structure oriented diagonally on a black background, with consistent spacing and curvature, resembling a tightly wound spring or filament.]

	
[image: White outline of an elongated, enclosed shape with slightly irregular edges and a rounded end, oriented diagonally across a black background without internal features or annotations.]

	
[image: Thin, curved structure resembling an arc or crescent, outlined in gray against a black background, with consistent thickness and smooth contour, lacking internal details or additional elements.]

	
[image: White outline of an irregular shape with a rounded left side and multiple jagged protrusions extending outward on the right, centered on a black background with no internal details.]

	
[image: Pixelated white outline of a simple, enclosed quadrilateral shape with straight edges and slightly angled corners, centered on a black background and lacking internal features or texture.]

	
[image: white outline of a roughly circular, enclosed shape centered on a black background, with slightly uneven edges and no internal details or protrusions.]

	
[image: White outline of a small, enclosed, irregular shape centered on a black background, with slightly angular edges and no internal markings or protrusions.]

	
[image: Series of small, irregular ring-like structures arranged diagonally in a helical or coiled pattern, outlined in gray against a black background, with consistent spacing between loops.]

	
[image: Gray outline of a vertically oriented, elongated structure with branching extensions near the top and a tapered lower end, set against a black background, resembling a segmented or vascular form.]








The image size is adjusted for layout; Each white bar indicates 150mm.









3.3 Evaluation metrics


Two metrics were adopted to evaluate the accuracy performance of HoloSForests in terms of edge detection and region extraction. Furthermore, the time efficiency (i.e., running time) was also evaluated.





3.3.1 Structural similarity index measure (SSIM)


SSIM (Wang et al., 2004) was selected to evaluate the accuracy performance of edge detection. It measures the similarity between two images based on three features: luminance, contrast, and structure. As a result, it provides a better evaluation of image similarity compared to measures that rely solely on the intensity of corresponding pixels in the two images. SSIM = 1 indicates that the two images are the same; the smaller the value is, the more different the two images are. SSIM is calculated as Equation 2:
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3.3.2 Intersection over union (IoU)


The accuracy of region extraction was evaluated using IoU (Rezatofighi et al., 2019). It is a key metric to measure the accuracy of region extraction based on binary images and is computed as the ratio of the overlap of the predicted region (
r

) and ground truth 

g
t


) as Equation 3:
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3.4 Evaluation and validation





3.4.1 Optimization of edge detection capabilities of structuredForests using synthetic data


Since the original structuredForests trained on the BSDS data demonstrates good generalization in the original work, we investigated how different training strategies performed in detecting particle edges in holographic images. For this, five models were generated by training on five different dataset combinations: Model 1 was trained on BSDS (n = 500), Model 2 was trained on BSDS and RHD-Cruise (n = 500 + 60, respectively), Model 3 was trained on BSDS and SHD60 (n = 500 + 60, respectively; with 60 training images randomly selected from the 3,000 training images in SHD), Model 4 was trained on BSDS and SHD (n = 500 + 3,000, respectively), and Model 5 was trained on BSDS, SHD and RHD-Cruise (n = 500 + 3000 + 60, respectively). The five models were then used to predict particle edges in the test images from the SHD and RHD-Cruise datasets (1,000 and 40 test images, respectively). Since the models produce the soft edges for an input image, SSIM-related measures - including its mean (mSSIM, reflecting the overall accuracy) and standard deviation (stdSSIM, reflecting the robustness) - were used to evaluate the five models.






3.4.2 Comparison of HoloSForests with other region extraction methods


HoloSForests was compared with ten other methods (Liu et al., 2023b), including four edge-based methods (cannyEdge, sobelEdge, prewittEdge, and robertsEdge), four region-based methods (activeContour, regionGrowing, SRegionMerging, and Watershed), a thresholding-based method (OtsuThresholding), and a clustering-based method (KMeans). In the four edge-based methods, the same morphological operations (excluding binarization and edge thinning) were used to extract the region masks from their output edge images. In the other six methods, the operations for Region Mask Refining (
Figure 4
) were used to refine the extracted region masks. Additionally, we evaluated the capability of HoloSForests in region extraction for particles from different taxonomic classes (20 classes in RHD-Cruise) using the 5-fold cross validation (Section 3.2). Since extracted region masks are binary, IoU-related measures - including its mean (mIoU, reflecting the overall accuracy) and standard deviation (stdIoU, reflecting the robustness) - were used to evaluate these eleven methods.






3.4.3 Real-word application


HoloSForests was used to analyze the vertical distribution of particle size in two depth profiles (Event 034 and Event 098) recorded during the ocean research expedition. Due to the high noise levels in particle images from the surface to 4 m depth (Giering et al., 2020b), the size distribution was assessed below this depth.








4 Results and discussion


Here we present and evaluate the performance of HoloSForests in terms of edge detection, region extraction, and size estimation.





4.1 Optimization of edge detection capabilities of structuredForests using synthetic data


First, we assessed the effectiveness of structuredForests in detecting particle edges in reconstructed holograms, using both synthetic and real datasets (
Table 3
). As expected, even though the original model shows good generalisation (Model 1), training on holographic images (Model 2-5) improves both metrics (mSSIM and stdSSIM): Model 1 is least accurate (smallest mSSIM) and least robust (largest stdSSIM) on both test datasets. Therefore, the model should be trained on holographic data to detect particle edges in holographic images. The results of Model 2 and Model 3 shows that training with few holographic images (n = 60) improves the model performance in accuracy and robustness, however, the output is domain-specific, particularly regarding accuracy: training on synthetic data improves performance on both synthetic and real data, but more on synthetic, while training on real data enhances both, with greater gains on real data. This domain specificity becomes weak when the model is trained on a large synthetic dataset (n = 3,000): compared to Model 1, increasing of mSSIM in Model 4 by 25.0% on the synthetic data and 23.7% on the real data, respectively. Although our most comprehensively trained model (Model 5, trained on both real and synthetic data) performs similarly on the synthetic test data compared to Model 4, its performance is slightly better on the real test data. We conclude that training on synthetic data is an effective way to improve edge detection in holographic images; the addition of even a small number of real images (2%) improves the model’s edge detection accuracy and robustness on real holographic data.



Table 3 | 
Performance evaluation of structuredForests on edge detection on the synthetic and real holographic datasets in terms of accuracy (mSSIM and stdSSIM) after it is trained on the five different datasets.





	Model

	Image number in training dataset

	Dataset




	SHD (1,000 images)

	RHD-Cruise (40 images)




	mSSIM

	stdSSIM

	mSSIM

	stdSSIM






	Model 1
(BSDS)
	500
	0.6622
	0.1349
	0.5055
	0.1685



	Model 2
(BSDS+RHD-Cruise)
	560
	0.6717
	0.1248
	0.5646
	0.1619



	Model 3
(BSDS+SHD60)
	560
	0.7388
	0.1185
	0.5432
	0.1644



	Model 4
(BSDS+SHD)
	3500
	0.8279
	0.0706
	0.6254
	0.1391



	Model 5
(BSDS+SHD+RHD-Cruise)
	3560
	
0.8284

	
0.0699

	
0.6373

	
0.1342








The bold values indicate the best result based on the corresponding measure.




The results from the performance evaluation (
Table 3
) are supported by visual inspection of the predicted edges of three example images from both the synthetic and real holographic datasets (
Figure 5
). For both synthetic and real holographic example images, we can see that the edge images output from the extensively trained models (Models 4 and 5) have clean backgrounds and clear edges (the pixel values along edges are higher), while the corresponding images from the base model (Model 1) and low-level trained models (Models 2 and 3) show more fake edges (noise) around the particles or across the entire image. This visual inspection also demonstrates that the predicted edges are wider than the labelled edges in ground truth images, likely as a result of the soft detection scheme in the models. This widening could cause a slight overestimate on a particle’s area compared to its actual area. For this reason, we employed the operation of edge thinning as a part of the morphological operations (
Figure 4
).


[image: Five rows and six columns show images comparing original, GT, and model outputs for SHD and RHD-Cruise datasets. Top row displays original grayscale images. Second row shows GT outlines in yellow on blue. Remaining rows display outputs from models one to five, with heatmap style effects on blue backgrounds.]
Figure 5 | 
Edge images of the synthetic and real holographic image examples output from the five models described above. GT – ground-truth images. The pixel value scale is converted into [0, 255] from [0, 1] in the edge images for displaying them.




Overall, our Model 5, which is trained on both the synthetic and real holographic datasets, performs best in terms of accuracy and robustness. We therefore used this model to detect particle edges in the rest of our experiments (unless stated otherwise).






4.2 Comparison with other region extraction methods





4.2.1 Performance on entire data


The proposed series of pixel-wise morphological operations by HoloSForests (
Figure 4
) for extracting the region mask and the convex hull from the reconstructed images are effective in defining the area of even complex particles, like large colonial diatoms whose ‘inner texture’ is similar to the background noise (
Figure 6
).


[image: Flowchart illustrating the process of region mask creation and refinement in image processing. The steps are edge detection, binarization, edge thinning, hole filling, opening, small region removal, close region merging, and convex hull computation. The process is divided into two main parts: region mask extraction and region mask refining.]
Figure 6 | 
Resultant output of each step in HoloSForests when processing one image example. The image size is adjusted for layout.




Regarding accuracy and robustness, HoloSForests outperforms the ten other region extraction algorithms (
Table 4
). On the synthetic data, it markedly outperforms the other 4 edge-based methods in terms of accuracy (mIoU: 0.81 vs 0.38 – 0.58, respectively) and robustness (stdIoU: 0.18 vs 0.19 – 0.38, respectively). SRegionMerging is the best region-based method, yet it is slightly less accurate (mIoU: 0.79) than HoloSForests. Moreover, its robustness is lower compared with HoloSForests (stIoU: 0.23 vs 0.18, respectively). Similarly, the accuracy of KMeans (mIoU: 0.78) is close to the one of HoloSForests, but it is less robust (stdIoU: 0.20). OtsuThresholding is the fourth best method with mIoU of 0.71. Another region-based method - regionGrowing, is the least accurate method (mIoU: 0.32) amongst all the 11 methods.



Table 4 | 
Performance of the methods on region extraction on the synthetic and real holographic datasets in terms of the efficiency of accuracy (mIoU and stdIoU) and time.





	Method

	Algorithm type

	Dataset




	SHD (1000 images)

	RSD-Cruise (40 images)




	mIoU

	stdIoU

	processing time * (s)

	mIoU

	stdIoU

	processing time** (s)






	HoloSForests
	Machine learning 
based
	
0.8054

	
0.1774

	15.19
	
0.7613

	
0.1453

	1.13



	cannyEdge
	Edge detection 
based
	0.3797
	0.1940
	17.12
	0.2772
	0.1856
	
0.66




	sobelEdge
	Edge detection 
based
	0.4728
	0.3752
	10.44
	0.6726
	0.2205
	1.00



	prewittEdge
	Edge detection 
based
	0.4274
	0.3746
	10.17
	0.6438
	0.2503
	0.99



	robertsEdge
	Edge detection 
based
	0.5828
	0.3228
	10.97
	0.4758
	0.2996
	1.05



	activeContour
	Region detection 
based
	0.5322
	0.2811
	323.00
	0.3716
	0.2374
	17.00



	regionGrowing
	Region detection 
based
	0.3219
	0.2313
	256.81
	\***
	\
	\



	SRegionMerging
	Region detection 
based
	0.7899
	0.2251
	27.47
	0.6561
	0.2407
	1.71



	Watershed
	Region detection 
based
	0.6644
	0.2338
	14.79
	0.5289
	0.2491
	39.23



	Otsu-Thresholding
	Thresholding based
	0.7097
	0.2282
	
9.96

	0.5414
	0.2580
	1.89



	KMeans
	Clustering based
	0.7815
	0.2039
	12.99
	0.6197
	0.2637
	3.30







The bold values indicate the best result based on the corresponding measure.

* The average image size in this dataset is 127 × 387.

** The average image size in this dataset is 152 × 119.

\*** Indicates the method failed to detect the region in some images of this dataset.




On the real holographic data, the accuracy of 9 of the 11 algorithms decreases relative to their performance on the synthetic data (
Table 4
). regionGrowing even fails to detect the regions in some images. Surprisingly, sobelEdge and prewittEdge are more accurate and robust on the real data than on the synthetic data, improving accuracy by ~0.20 and robustness by ~0.12. HoloSForests remains the best method with only slight changes in accuracy (a decrease of 0.04) and robustness (a decrease of 0.03), which shows good generalization for both synthetic and real holographic images. SRegionMerging becomes the third most-accurate method (0.66), as sobelEdge takes the second place (0.67). Amongst the 5 methods with reasonable accuracy (mIoU > 0.6), KMeans performs the worst. With an accuracy of < 0.5, cannyEdge, robertsEdge, and activeContour are not suitable for detecting particle regions in the real holographic test data.


Regarding the processing time, with the exception of activeContour and regionGrowing, we are able to process the 1,000 synthetic holographic images within 30 seconds with all methods. In contrast, both activeContour and regionGrowing take more than 4 minutes. OtsuThresholding has the shortest processing time of ~10 seconds. Although HoloSForests takes ~15 seconds to process 1,000 images, this speed still enables it to instantly generate an output once it receives an input image [real-time processing (Dougherty and Laplante, 1995)]. To detect the regions in the 40 real holographic images, most methods take < 4 seconds, apart from activeContour (~17 seconds), Watershed (~39 seconds) and regionGrowing (stuck in detecting the regions in some images). Although cannyEdge is the fastest method (0.66 second), it has the lowest accuracy compared to the other algorithms (except for regionGrowing). While HoloSForests is not the fastest method, among those with reasonable accuracy (mIoU > 0.6), its processing speed is only marginally slower than the fastest algorithm (1.13 seconds vs. 0.99 seconds) and remains acceptable for real-time data processing.


To visualize the performance of the 11 algorithms, we showed the extracted regions for example holographic images from five of the complex plankton classes (
Figure 7
). Qualitatively analysed, the performance rank of the methods is similar with the calculated performance metrics (
Table 4
). HoloSForests performs consistently well on the five images, with fine features at a reasonable level, such as the complex shape of colony-forming diatoms and the appendages of zooplankton. Other methods that also perform reasonably well are sobelEdge, prewittEdge, and SRegionMerging. In contrast, cannyEdge, activeContour, and regionGrowing cannot detect the plankton in any of the images, likely because of the high background noise from interference patterns in the reconstructed holograms. robertsEdge, Watershed, OtsuThresholding, and KMeans can detect the plankton in some images, however, they also introduce false regions and/or miss real ones, likely due to the noisy background.


[image: Comparative analysis of image segmentation techniques applied to four types of samples. Rows represent different samples: Chaetoceros Asterionela, Copepod socialis, Nauplii, and Thalassiothrix. Columns categorize methods: Original, Ground Truth (GT), Holo-SForests, several edge detection techniques (Canny, Sobel, Prewitt, Roberts), region detection (active contour, region growing, SRegion merging), thresholding (Otsu), and clustering (KMeans). Each method's output is shown alongside the original for visual comparison.]
Figure 7 | 
Regions (in white) and boundaries of their convex hulls (in red) extracted from five examples of the real holographic test data. The images have been resized for the layout purpose.








4.2.2 Performance on individual taxonomic classes


As the complexity of a particle’s shape influences the ability of an algorithm to correctly identify the particle regions, we here investigated how size estimation varies for different plankton classes. To do so, we compared HoloSForests to the other top 4 algorithms (sobelEdge, SRegionMerging, prewittEdge, KMeans; 
Table 4
) in terms of mIoU on the RSD-Cruise test data. HoloSForests overperforms the other 4 methods in all classes apart from the class of chain-forming diatom Thalassiosira (
Figure 8S
), where sobelEdge and prewittEdge are more accurate (mIoU: 0.64 vs 0.71 and 0.68, respectively; 
Supplementary Table 1
 in 
Supplementary Material
). It clearly outperforms the other methods for classes with fine features, such as appendages and spikes (e.g., Chaetoceros sp., copepods and nauplii; 
Figures 8C, G, O
) and complex shapes (e.g., aggregates and Asterionella sp.; 
Figures 8A, B
). HoloSForests was least accurate for thin and long particles (class Chainthin; mIoU = 0.58). The discrepancies may be due to the relatively wide edges that it predicts and which require thinning. For long objects that are only a few pixels wide, a small change in width will lead to big differences in relative size estimates. However, even for this class, HoloSForests still performs remarkably better than the other 4 methods (mIoU: 0.11 – 0.37; 
Supplementary Table 1
 in 
Supplementary Material
).


[image: Bar chart showing IoU values for different segmentation methods: HoloSForests, sobelEdge, prewittEdge, SRegionMerging, and KMeans. Each method is color-coded and labeled. Below are sample microscopic images of various structures, labeled A to T.]
Figure 8 | 
Box plotting of the results of 5 methods when evaluating them on the images of each class of 20 classes. (A) Aggregate, (B) Asterionella, (C) Chaetoceros chain, (D) Chaetoceros socialis, (E) Chainthin, (F) Ciliophora, (G) Copepod, (H) Corethron, (I) Cylinder, (J) Detritus, (K) Dinoflagellates, (L) Eucampia antarctica, (M) Fecal pellets, (N) Fragilariopsis, (O) Nauplii, (P) Pennate, (Q) Round, (R) Square, (S) Thalassiosira, (T) Thalassiothrix. The example of each class shown in 
Table 2
 is given for visualization of them.




Another advantage of HoloSForests is its robust performance across most classes (as determined by stdIoU in 
Supplementary Table 1
 in 
Supplementary Material
, and visualized by the short boxes in 
Figure 8
). HoloSForests deviates by ≤ 0.05 mIoU for 8 of the 20 classes (Square, Cylinder, Copepod, Detritus, Aggregate, Dinoflagellates, Fecal pellets, and Fragilariopsis). In contrast, the second-best method - SRegionMerging - performs similarly well for only 3 classes; while the remaining 3 methods can achieve this robustness for only 1 class each. The most robust performance of HoloForests comes from the class Square (stdIoU = 0.01; 
Supplementary Table 1
 in 
Supplementary Material
), which contains simple square-like particles (such as the side view of centric diatoms). Interestingly, the value for another simple shape - Round (stdIoU = 0.07; 
Supplementary Table 1
 in 
Supplementary Material
) is higher than for some of the more complicated shapes (e.g., Aggregates). Possible explanations could be: (1) the regions of round particles are generally very small such that a small difference between the extracted region and ground-truth regions can cause a big decrease in IoU; (2) regular holographic fringes (i.e., noise) usually occur around reconstructed round particles, which cause instability in extracting their regions. The least robust classes are Corethron sp., Thalassiosira sp., and chain-forming Chaetoceros sp. (stdIoU = 0.27, 0.24, and 0.20, respectively; 
Supplementary Table 1
 in 
Supplementary Material
), since these particles have many fine structures and/or multiple disconnected components (
Table 2
).


Overall, HoloSForests has good accuracy and robustness when extracting the regions of complex natural particles from reconstructed holograms.







4.3 Real-world application


Histogram analysis (
Figures 9-1, 2
) indicates the expected long-tailed distribution: the majority of detected particles (> 90%) had hull-based ESDs smaller than 500 μm, while only a small fraction (< 1%) exceeds 1000 μm. The scarcity of large particles is likely due to a low abundance of particles of this size within the sampling area, though we cannot completely rule out limitations in the FastScan reconstruction algorithm for very large particles. However, given that some particles exceeding 1000 μm were successfully reconstructed by FastScan (
Supplementary Figure 5
 in 
Supplementary Material
), it is likely that the low detection rate of these larger particles reflects their true low abundance in the observation area at the time of data collection.


[image: Two histograms and scatter plots show data for Events 034 and 098. The histograms display particle count versus equivalent spherical diameter (ESD) in micrometers, with a decreasing trend. The scatter plots, showing depth in meters versus ESD, feature particle distributions and smooth curves with mean ESD lines above and below certain depths. Different colors and line styles represent overall mean ESD, mean ESD above fifty meters, and below one hundred fifty meters. Plots highlight differences in particle distribution and size with depth for each event.]
Figure 9 | 
(1-2) Histograms showing particle size in 50 bins for the two profiles (1: Event 034, and 2: Event 098). (3-4) Vertical profiles of particle size (hull-based ESD) estimated using HoloSForests from two deployments (3: Event 034, and 4: Event 098). The solid orange lines follow the smoothed average. The dashed lines show the mean hull-based ESD in the depth ranges 4 – 50 m (red), 150 – 230 m (purple), and 4 – 230 m (orange). Please note that the x-axis is logarithmic in the bottom two graphs.




Both profiles (
Figures 9-3, 4
) exhibit similar trends in particle size distribution, with a general decrease in particle size with increasing depth. Notably, the mean hull-based ESD (
Table 5
) shows a marked reduction between 50 m and 150 m depth. The mean ESD decreased from 245.5 ± 202.9 μm to 123.0 ± 87.4 μm from above 50 m to below 150 m in Event 034; while in Event 098, it declined from 232.6 ± 179.0 μm to 136.5 ± 83.1 μm (above 50 m and below 150 m, respectively). The average particle size across the entire water column was 211.8 ± 182.6 μm and 218.2 ± 177.4 μm in Event 034 and Event 098, respectively.



Table 5 | 
Mean values (mean) and stand deviation values (std) of the two profiles in different depth ranges.





	Profile

	Measure

	Depth range




	4 – 230 m

	4 – 50 m

	150 – 230 m






	Event 034
	mean
	211.8
	245.5
	123.0



	std
	182.6
	202.9
	87.4



	Event 098
	mean
	218.2
	232.6
	136.5



	std
	177.4
	179.0
	83.1










These size estimates are slightly smaller than previous estimates of these particle profiles based on reconstructed images made using the software HoloBatch combined with a sequence of image processing steps aimed to avoid fragmentation of complex particles (Planktonator; Giering et al., 2020b). The final vignettes in that workflow had a clear white background, and particle regions were hence determined using a range of region detection methods, with Otsu being used as the reference algorithm. As the original work used pixel-wise ESD, we recalculated their size estimates using hull-based ESD and calculated mean sizes across the entire water column. The recalculated values (234 ± 225 μm and 246 ± 239 μm for Event 034 and Event 098, respectively) are ~10% higher than the size estimates by HoloSForests. Compared to the previous work (Giering et al., 2020b), our workflow here has several advantages. Besides the faster hologram reconstruction time (using FastScan compared to HoloBatch), visual inspection shows that FastScan is less prone to fragment large complex plankton (such as Chaetoceros socialis) than HoloBatch. The higher size estimates observed with HoloBatch + Planktonator are likely due to Planktonator’s tendency to over-combine particles, potentially incorporating ‘false’ particles created by interference patterns, when particle abundance is high.


Overall, HoloSForests applies less image manipulation, which likely provides images closer to reality (albeit with noisy background). Lastly, we validated size estimates by HoloSForests using both human pixel-wise annotations and size-sorted basalt spheres (Section 5 in Supplementary Material), providing an evidence base for the accuracy of the produced size estimates.







5 Conclusions


Images provide valuable information on marine particle size. DIH, with its high resolution and capacity for relatively large-volume recording, is a powerful tool for imaging marine microscale particles. However, extracting particle size from holograms remains challenging owing to the complex shape of naturally occurring particles and background noise in reconstructed holograms. This paper presents a method developed to address these challengers, which involves two primary steps: (1) training a structured forest model on three datasets – BSDS500, synthetic holographic data, and real holographic data - to detect the particle edges in images; and (2) applying a series of pixel-wise morphology operators (including binarization, edge thinning, hole filling, morphological opening, small-region removal, close-region merging, convex hull) on the edge-detection outputs to extract the particle regions and convex-hull masks. Particle size information is subsequently estimated from the extracted regions.


Our five main findings are:


	
The training strategy on a combination of synthetic holographic images and a small number of real holographic images increases the accuracy of particle region extraction in holograms.


	
Amongst the 11 region detection methods tested in this work, the proposed method HoloSForests gives the highest accuracy when extracting particle regions from the synthetic and real test images (respective mIoU of ~0.81 and ~0.76) at competitive processing speeds.


	
HoloSForests can accurately extract the regions of naturally occurring oceanic particles with complicated shapes, such as aggregate, Chaetoceros sp. chains, and chain-like thin particles.


	
HoloSForests has the capability of providing accurate size information of recorded particles in holograms, even when multiple particles with complicated shapes exist in the same image.


	
Synthetic holographic data is a useful alternative to human-annotated data for training a machine-learning-based model for object detection/segmentation in holograms, particularly when it is not practical to prepare a large amount of human-annotated data.





Overall, we propose that our method is capable of rapidly and accurately extracting particle regions from reconstructed holographic images, as well as estimating the particle size accurately.
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https://ecotaxa.obs-vlfr.fr/gui/index.
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