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Echolocation clicks, emitted by Sperm Whales (Physeter macrocephalus) and

Dolphins for foraging, echolocation and socialization, serve as bioindicators for

monitoring marine ecosystems. Detecting click signals provides information on

the abundance of species, their behavior and their responses to environmental

changes. This paper provides a survey of the many detection and classification

methodologies for clicks, ranging from 2002 to 2023. We divide the surveyed

techniques into categories by their methodology. Specifically, feature analysis

(e.g., phase, ICI and duration), frequency content, energy-based detection,

supervised and unsupervised machine learning, template matching and

adaptive detection approaches. Also surveyed are open access platforms for

click detections, and databases openly available for testing. Details of the method

applied for each paper are given along with advantages and limitations, and for

each category we analyze the remaining challenges. The paper also includes a

performance comparison for several schemes over a shared database. Finally, we

provide tables summarizing the existing detection schemes in terms of

challenges address, methods, detection and classification tools applied,

features used and applications.
KEYWORDS

sperm whale clicks, bioacoustics, passive acoustic monitoring, acoustic detection,
acoustic database
1 Introduction

Echolocation clicks are emitted by cetaceans for self-navigation or to locate prey

(Zapetis and Szesciorka, 2022). In view of the high occurrence of echolocation clicks, these

signals serve as important bioindicators that can be used to draw conclusions about the

abundance of cetacean species (Frasier et al., 2022; Fleishman et al., 2023). The analysis of

these signals for presence detection or to classify individuals includes the temporal and

spectral processing and the characterization of signals to investigate animal behavior

patterns (André et al., 2011). Indirectly, the detection and classification of clicks can serve

as key techniques to understand anthropogenic impacts on the marine environment and to

develop data-driven strategies and regulations (Frasier et al., 2022; Allen et al., 2024). Since
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monitoring the activities of marine animals by passive acoustic

monitoring (PAM) requires the analysis of large data sets, there is a

need for automatic detection (Barkley et al., 2024). The

development of such detectors for echolocation clicks results from

the broadband structure of these signals (Au and Hastie, 2007).

While previous surveys are offered for detection of bioacoustics

vocalizations [(Bittle and Duncan, 2013; Usman et al., 2020;

Rideout, 2022)], ours complements these by focusing on detection

of transients, focusing on methods that work for these specific

signals. We also present the databases used in the reviewed papers

as well as implement most significant detection algorithms and

compare them to the most commonly used detection software. The

methods described herein rely solely on passive acoustic

monitoring, which poses no ethical concerns for marine life (Falk

and Williams, 2022).

Echolocation clicks of sperm whales and dolphin groups are

impulse-like signals that are generated in the animal’s nasal passage

as a directionally signal. To produce these signals, marine mammals

push air through a pair of specialized organs called monkey lips or

phonic lips (Andreas et al., 2022). The result of the air pressure

passing through these lips is a “clapping” sound, often referred to as

a click (Au and Hastie, 2007). The click sound can also be modified

by a special organ in the animal’s forehead that focuses the shape of

the click signal, similar to an acoustic lens (Andreas et al., 2022).

This process generates short transients that travel through the water

and return to the animal as reflections. The animal uses these echoes

to create a sound-based image of its surroundings. This last process

involves the lower jaw bone, which receives the vibrations and then

transmits them to the inner ear (Au and Hastie, 2007). From the

sound-based images, the animal is able to analyze its distance to

objects, the shape and density of reflectors, and even the speed and

trajectory of potential prey (Knuth, 2021). Since we know for the

most part how marine animals produce clicks, methods for

recognizing such signals are offered for each individual species.

Nevertheless, some general characteristics of clicks can be derived.
1.1 Characteristics of clicks

The structure of an echolocation click of a sperm whale or

dolphin is characterized by its duration, frequency band, emission

rate and directionality (Baumann-Pickering et al., 2010a). These

clicks are typically short, pulse-like signals with a frequency band

ranging from a few kHz in baleen whales to 160 kHz in some

toothed whale species such as the harbor porpoise, depending on

the species (Tyack and Janik, 2013). The duration of a sperm whale

or dolphin click can range from microseconds to milliseconds

(Madsen et al., 2004; Koschinski et al., 2023), and clicks are often

produced in sequences: from a few clicks per second to several

hundred (Goold and Jones, 1995; Johnson et al., 2008). The

direction and shape of the sound beam vary from a narrow beam

of 5° in narwhals (Monodon monoceros) to a wide beam that is

almost omnidirectional in sperm whales (Physeter macrocephalus)

(Zimmer et al., 2005; Koblitz et al., 2016). The distinguishing
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features of the click usually include the bandwidth, the center

frequency and the inter-click interval (ICI) (Baumann-Pickering

et al., 2010a; Baumann-Pickering et al., 2013; Cohen et al., 2022;

Ziegenhorn et al., 2022). The latter can change depending on factors

such as water depth (Simard et al., 2010). Differences in duration

and pattern can also vary considerably; not only between species,

but also between different individuals of the same species or even for

the same individual under different conditions (Baumann-Pickering

et al., 2010a; Leu et al., 2022; Cantor et al., 8091). For example, it is

known that the change in male sperm whales ICI for slow clicks is

between 4 and 10 seconds (Oliveira et al., 2013). The detection of

clicks from a particular sperm whale or dolphin must therefore take

into account the specific characteristics of the target clicks and

distinguish them from clicks from other sources. Furthermore, to be

robust, the detection scheme must be able to deal with sounds

recorded from the marine environment, all of which may have

transient characteristics similar to clicks.
1.2 Challenges for click detection

The main challenges in detecting echolocation clicks of sperm

whales or dolphins lie in avoiding false detections due to

anthropogenic noise disturbances (e.g., cavitation noise from

ships), biological sources (e.g., snapping shrimp noise (SSN)) and

transients that follow the strong tail distribution of clicks at sea

(Zimmer, 2011). If the propeller turns fast enough, the low pressure

areas of the propeller can fall below the vapor pressure and the

seawater can boil at ambient temperatures. When the bubbles

behind the propeller reach ambient pressure, they implode and

large, transient sounds reminiscent of bubble cavitation are emitted

(Zhang and Lin, 2019). These signals are generated with an intensity

of up to 180dB1µPa / Hz@1m (2009), which can be heard from tens

of kilometers away. The SSN signals, in turn, are generated when a

snapping shrimp closes its claws quickly. This creates a jet of water

that is forced out between the claws and cavitation bubbles are

formed. The maximum measured signal strength of SSN was found

to be 220 dB re 1 µPa at 1 m (Versluis et al., 2000). Both cavitation

and SSN, as well as transients, e.g., caused by waves, can easily be

confused with the clicking of a whale or dolphin (Au et al., 1998).

An example of this can be seen in Figure 1, where the time

domain of a sperm whale click measured in the Bahamas (Atlantic

Undersea Test and Evaluation Center (AUTEC) data) (upper panel)

is shown together with SSN clicks (bottom panel). Another challenge

is the growing need to detect clicks in real time to enable a real-time

system of fixed ocean observatories (Zaugg et al., 2010). Here, a

detector with low complexity is needed. In addition, echolocation

clicks from multiple emitting animals may overlap in time due to the

fast emission rate of the animals, which requires the ability to separate

the sources. Finally, measuring the ICI poses another challenge as the

sequence of clicks may change over time or overlap with other

sources emitting at the same time. Considering the above

challenges, a variety of techniques have been proposed to find a

robust trade-off between detection and false positive rate.
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1.3 Metrics of performance evaluation

For performance evaluation, common metrics are the

probability of detection, the F-score and the Receiver Operating

Characteristic (ROC). The probability of detection or sensitivity

measures the ability of the detection method to correctly identify
Frontiers in Marine Science 03
echolocation clicks. This can be within a certain buffer or for

individual clicks. When the detection of individual clicks is of

interest, e.g., for classification, the F-score is a balanced measure

that combines precision (the proportion of detected clicks that are

clicks) with recall (equivalent to the probability of detection). The

ROC curve offers a compromise between the probability of

detection and the false positive. The Area Under the ROC Curve

(AUC) is a measure of this trade-off, where 1 is perfect detection

and 0.5 is the chance level, where the ‘chance level’ is the

performance expected from random guessing. In the following,

we present the available methods for detecting echolocation clicks

in detail and comment on their suitability for different scenarios

and signals.
1.4 Structure of survey

The Figure 2 represents a structured breakdown of the click

detection algorithms, divided into three primary methods. Three

branches emanate from the root of the hierarchy. This subdivision

represents different system models, ranging from knowing the

actual signal structure of the click to no assumed information.

The first branch, “feature analysis”, uses the intrinsic properties of

the signal, such as “phase”, “frequency” and “energy”, to distinguish

echolocation clicks from signals originating from, for example,

snapping shrimps. These techniques involve statistical analysis

and thresholding, which makes them computationally efficient

but prone to errors in detection due to their lack of adaptability

to signal variation. Each of these attributes is analyzed by specific

techniques such as wavelet transforms and spectral analysis for

frequency or energy detection and the Teager–Kaiser energy

operator (TKEO) for energy. The second branch, “machine

learning based click detection”, is proposed when no statistical

information about the click is available. Based on a large dataset of

labeled clicks, as well as noise samples, a model is trained to

distinguish between clicks and non-click noises and to assign the

detected click to its source. The focus is on “supervised

convolutional neural networks (CNNs)”, which are an important

tool for pattern recognition in complex data sets. Other paradigms

of neural networks and machine learning strategies, such as support
FIGURE 1

Time domain representation of sperm whale click and SNN transient
showing similarities. (A) Recorded click from AUTEC dataset;
(B) Typical transient noise from AUTEC dataset.
FIGURE 2

The block diagram of algorithm categories.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1567001
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gracic et al. 10.3389/fmars.2025.1567001
vector machines, also fall into this category, indicating a variety of

methods tailored to learn directly from data. The third and final

branch, “data-dependent methods”, uses a predefined knowledge of

the expected analytical structure of the echolocation click to

compare signals from the channel with a template. The aim is to

recognize similarities between the signals and determine the

detection based on predefined thresholds. Methods such as the

“Tuned Filter”, the “Side Test” and the “Adaptive Threshold”

provide a means to improve the detection process. At the end of

each category, we present a table summarizing the most important

information about the reviewed categories. Next, we provide an

overview of challenges that remain with each category. Finally, a

summary including useful information about the methods

examined is presented, where the ‘useful information’ refers to

the key acoustic features. A detailed explanation of the

implementation of the selected detector algorithms from each

category, including the results obtained with real data, is

presented. The algorithms were selected based on their relevance,

ingenuity and impact on the field. A list of relevant available

databases was then presented. Finally, all methods were grouped

based on certain criteria to show some of the alternative criteria by

which the methods could have been grouped and to highlight the

similarity between the methods from the same groups. In addition,

some common metrics are identified to evaluate the

detection performance.

This survey provides a comprehensive assessment of click

detection methods by categorizing the existing literature based on

three main aspects:
Fron
1. Methods relying on feature analysis. Table 1.

2. Methods relying on machine learning techniques. Table 2.

3. Methods relying on statistical data analysis. Table 3.
We also provide a summary of the papers that share their data

base (Table 3); list papers that handle which challenge in the

detection task (Table 4); a division of methods by their evaluation

methodology (Table 5), as well as a division by the application

considered to each method (Table 6); Division of papers by the tools

they use for detection (Table 7); and Division of methods by the

signal characteristics considered as cues for detection (Table 8).
2 Feature analysis

The term “features” refers to characteristics and properties of a

signal that can be used to recognize or classify the signal. It is a

process that involves the selection, extraction and evaluation of

properties of the signal that are used to represent the structure of the

click. The feature analysis approach to recognition focuses on

isolating relevant attributes of the data through which key

features are discovered, followed by recognition and classification.

Below we provide an overview of the features used for

click recognition.
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2.1 Duration

2.1.1 Inter-pulse interval
As previously discussed click duration alone may be ambiguous.

An informative additional feature is the inter-pulse interval (IPI).

The method described in (Marzetti et al., 2021) starts with an ultra-

low power detector that performs an initial event analysis to

significantly reduce false positives and thus increase reliability by

ensuring that only probable clicks are forwarded for further

analysis. A state machine analysis is then performed that

integrates expert rules based on two important bioacoustic

criteria: the click duration and inter-click interval. The method

uses the duration of the main click peak and the time between

successive clicks to confirm the likelihood of a whale source. A click

counter and validation process is an integral part of the system and

provides further accuracy. This mechanism increments the click

counter on pulses that match acoustic emissions from whales and

compares the duration between clicks to a reference interval to

confirm click detection. The sensitivity of click detection is adjusted

based on the observed rates of false-positive positives and true-

positive clicks. The strengths of this new method lie in its energy

efficiency and improved accuracy. The design also minimizes

microcontroller activity, which significantly reduces power

consumption. In (Gubnitsky and Diamant, 2023), the authors

present a novel method that focuses on the IPI of their clicks to

improve the detection and classification of sperm whale

vocalizations. In addition to amplifying the signals to improve

signal-to-noise ratio (SNR), the method also uses a phase-based

IPI estimator to accurately recognize the inter-pulses. The method

focuses on estimating the time between the major and minor pulses

in a whale’s click by using the phase-slope function (PSF) to

accurately indicate the pulse positions and evaluating the IPI by

the time difference between positive zero crossings. The method

also includes feature extraction and segmentation to assess the

consistency of the clicks and to separate valid IPIs from noise. The

change from waveform-based detection to a phase characteristic-

centered approach provides greater resilience to noise and signal

distortion, although it relies on the assumption of consistent, multi-

pulsed click patterns. An extension of this method can be found in

(Gubnitky and Diamant, 2024), where the stability of the multi-

pulse structure of identified transients is used to indicate the

presence of sperm whales’ clicks. The method starts with the

transient detection phase using the TKEO. For each detection, the

multi-pulse structure (MPS) is calculated by taking the time interval

between prominent pulses in the millisecond range. Assuming that

the MPS representing the IPI of the whales or a multipath reflection

is stable in time windows of a few seconds, a clustering solution is

applied to find groups of clicks that fulfill the ICI (inter-click

interval) conditions and whose variance of the MPS is below a

certain threshold. This approach provides a robust solution for

detecting sperm whale clicks in challenging environments, such as

low SNR, a variety of noise transients, and simultaneously emitting

whales. In addition, the method is computationally efficient and can
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TABLE 1 Summary of feature analysis detection techniques.

Detection of clicks: feature analysis

Ref. Main idea Main assumptions Pros Cons

(Marzetti et al., 2021) Real-time sperm whale
monitoring using hybrid
architecture

- Adapts to ambient noise;
Identifies specific cetacean
clicks

- Low power consumption;
High efficiency and accuracy

Requires species –specific
tuning; Sensitive to
environmental conditions

(Gubnitsky and Diamant, 2023) Feature extraction from sperm
whale clicks via phase
spectrum

Sperm whale sole source of
clicks; Stable IPI in short time

High separability; Effective in
noise

Species-specific; Needs
multiple clicks

(Gubnitky and Diamant, 2024) Detecting echolocation clicks
in noise

Stable MPS and ICI for sperm
whales

Handles multiple emissions;
Reduces false positives

Depends on stable MPS;
Struggles with diverse noise
types

(Bot et al., 2015) Rhythmic click detection
using TOA

Odontocetes have rhythmic
clicks; TOA effective for
analysis

Focuses on rhythmic patterns;
Robust against signal effects

Complex implementation;
High computing power
demand

(Baggenstoss and Kurth, 2014) Comparing shift
autocorrelation and cepstrum
for vocalizations

Impulsive noise vs. Gaussian
noise environments

Superior in impulsive noise;
Highlights repetitive events

Requires parameter tuning;
High computational load

(Giorli and Goetz, 2019) Sperm whale foraging activity
analysis

Clicks indicate foraging;
Adequate cyclic recording

Innovative monitoring; High
detection rates

Limited coverage; Resource-
intensive

(Kandia and Stylianou, 2008a) Phase slope function for
whale clicks

Effective phase representation;
Clicks as impulse responses

Simplified process; High
accuracy

Sensitive to phase errors;
Limited test scope

(Lopatka et al., 2005) Wavelet transform for sperm
whale sounds

Non-stationary, wideband
sounds; Adjustable temporal
window

Customizable analysis;
Suitable for real-time

Empirical wavelet choice;
Limited to sperm whale clicks

(Seger et al., 2018) EMD for marine signal
classification

Complex signals
decomposable by EMD

Automates processing; Robust
against noise

Struggles with extreme values;
Manual verification needed

(Tian et al., 2022) ACMD for underwater target
identification

Effectiveness of ACMD in
adaptive extraction

Reduces noise interference;
Preserves spectral structure

Depends on initial
frequencies; Computational
complexity

(Lia et al., 2017) CCWEEMDAN for signal
decomposition

Transient signals have time-
varying characteristics

Effective noise reduction;
Superior SNR gain

Complexity limits real-time
use; Risk of overfitting to
noise

(Caruso et al., 2019) Automatic detection for
rough-toothed dolphin clicks
and whistles

Correct dolphin identification;
Single sound source; Stable
echolocation click patterns

Enables historical data
comparison; Improves
dolphin acoustic
understanding

Limited sample diversity;
Overlooks environmental
noise effects; Geographically
limited

(Adam, 2006) HHT for analyzing sperm
whale clicks

Signals are transient and
broadband

Analyzes non-stationary
signals; Robust against noise

Simplification from limited
mode analysis; Complex
implementation

(Soldevilla et al., 2008) Classifying dolphin species by
clicks

Clicks provide species-specific
info; Random orientation
during click production

Non-invasive monitoring;
Insights into dolphin
dynamics

Limited across environments;
Needs further validation

(Roch et al., 2011) Classifying odontocetes using
cepstral vectors

Even distribution of species;
Click sounds independent

Efficient species finding;
Versatile for various species

Variable accuracy; Dependent
on data quality

(Jones et al., 2022) Long-term recordings to
distinguish beluga and
narwhal clicks

Single species presence;
Consistent echolocation
behavior

Effective species distinction;
Non-invasive, adaptable

Environmental condition
variability; Behavioral overlap
issues

(Baumann-Pickering et al., 2013) Identifying species-specific
echolocation signals in beaked
whales

Unique FM pulse type per
species; Correlation between
body size and signal
frequency

Enables species-specific
identification; Offers
evolutionary insights

Data limitation on species;
Requires high-quality
recordings

(Baggenstoss, 2011) Grouping sperm whale clicks
for enhanced localization

Higher click similarity from
the same source; Fixed
penalty for new click trains

Reduces multipath
interference; Improves
localization accuracy

High computational demand;
Assumes stationary whales,
which may not be true

(Continued)
F
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be used in real-time applications. On the other hand, many valid

clicks are overlooked to keep the false detection rate low, making the

method unsuitable for individual click detection tasks.

2.1.2 Inter-click interval
The temporal pattern of the multipulses within the click is often

combined with the inter-click interval (ICI) to capture the rhythmic

patterns of click trains. The time difference as a recognition

criterion is presented in (Bot et al., 2015) and focuses on the

rhythmic characteristics of the click trains of beluga whales. It

aims at detecting rhythmic pulse trains, separating click trains from

multiple simultaneously clicking odontocetes and characterizing the

ICI pattern. This approach handles sub-harmonics in the

autocorrelation by rhythmic analysis. The multi-step algorithm

starts by converting Time of Arrivals (TOAs) into a time-ICI

map, then calculates a threshold to identify peaks corresponding

to click trains, and then determines the threshold of the time-ICI

map to create a binary map for analysis. This process leads to a

detailed understanding of the rhythmic pattern over time. The

authors also present the recognizably of a click sequence and the

minimum ICI ratio required to separate two interleaved click

sequences. The strength of this method lies in its robustness to

the overlapping and mixing of click sequences from multiple

sources. It efficiently distinguishes between individual click

sequences embedded in a complex underwater acoustic

environment. However, it assumes a rhythmic pattern of
Frontiers in Marine Science 06
odontocetes clicks that may not cover all variations in

acoustic emissions.

We see a similar approach in (Baggenstoss and Kurth, 2014),

where a method for recognizing burst pulses that resemble click-like

events with a certain ICI is presented, which is the key to their

identification. The method introduces the shift autocorrelation

method (Shift-ACF), a novel approach that emphasizes repetitive

events within an input signal to estimate the ICI, and is shown to be

particularly effective in impulsive noise environments where

conventional methods may struggle. The method is compared to

the classic Cepstrum method, a frequency domain approach

traditionally used for period estimation. While Cepstrum is

effective in identifying temporal trajectories in a time-lag

representation, Shift-ACF outperforms this method in impulsive

noise environments and provides superior detection performance of

burst pulses. Shift-ACF significantly improves detection

performance in impulsive noise compared to the Cepstrum

method, while Cepstrum performs better in Gaussian noise and

low signal-to-noise ratio. However, the dependence of the Shift-

ACF method on an accurate estimate of the ICI imposes limitations,

particularly in the detection of burst pulses with highly variable

ICIs. The method assumes that burst pulses consist of sequences of

click-like events with a reasonably consistent repetition rate, which

may not be universally applicable. Shift-ACF offers a more robust

approach to background noise and reduces false positives,

increasing accuracy and reliability.
TABLE 1 Continued

Detection of clicks: feature analysis

Ref. Main idea Main assumptions Pros Cons

(Caruso et al., 2015) Estimating sperm whale size
via acoustic measurements

Stable IPI indicates size;
Minimal environmental
influence on sound speed

Processes large data volumes -
Aids in conservation

Critical assumptions may not
hold; Environmental factors
can affect measurements

(Li et al., 2021) Monitoring sperm whale
population post-spill via
passive acoustics

Reliable click-based detection
of presence; Consistent
acoustic patterns in sperm
whales

Assesses environmental
stressor impacts; Non-
invasive, broad area coverage

Ambient noise interference;
Partial manual data analysis
dependency

(Klinck and Mellinger, 2011) ERMA for echolocation click
detection of odontocetes

Species-specific spectral
features - Effective noise and
interference filtering

High identification accuracy;
Suitable for low-resource
computing

Variability in performance;
May miss informative aspects
like temporal patterns

(Kandia and Stylianou, 2006) Detecting sperm whale clicks
with the TKEO

Regular clicks have a multi-
pulse structure; Background
noise is Gaussian

Effective in low SNR; Robust
against noise

Challenges with multi-pulse
clicks; Sensitive to parameter
settings

(Frouin-Mouy et al., 2017) Using AMARs to distinguish
between narwhal and beluga
clicks

Unique acoustic signatures
per species; Sea ice cycle
influences marine mammal
presence

Improves species specific
detection accuracy; Extensive
distribution data

Classification difficulty; Focus
on sea ice without considering
other factors

(Baumann-Pickering et al., 2010b) Identifying an unknown
beaked whale species via
echolocation signals

Presence of an unidentified
beaked whale species; FM
pulses indicate foraging

Detailed signal
characterization; Non-invasive
method

Uncertainty about exact
species; Assumes behaviors
without confirmation

(Kandia and Stylianou, 2008b) Automatically detecting
beaked whale clicks with
group delay function

Signals have minimum phase
characteristics; High noise
presence in recordings

Effective noise reduction;
High detection rate and
accuracy

Dependent on signal phase
characteristics; Manual
labeling for efficacy
assessment
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TABLE 2 Summary of machine learning detection techniques.

Detection of clicks: machine learning-based click detection

Ref. Main idea Main assumptions Pros Cons

(Luo et al., 2019) Automatic detection of
odontocetes clicks using CNN

Clicks distinct from other
sounds; Consistent acoustic
data quality.

Robust across species;
Automates data processing

Requires significant computing
resources

(Buchanan et al., 2021) Detects bottlenose dolphin
clicks using ResNet-18 CNN

Accurate click sound
representation; Effective
spectrogram conversion

Automatic feature learning;
Scalable for large datasets

Time-consuming data
preparation; High computing
resources needed

(Frasier et al., 2022) PAM with stereophonic
sonotrode and NN for sperm
whale detection

Accurate detection via
stereophonic recordings;
Effective discrimination by NN.

Non-intrusive method;
Comprehensive data on
behavior and noise effects

Quality of recordings critical;
Potential miss of non-pattern
whales

(Islam Ariful, 2021) CNNs to classify whales and
dolphins from acoustic data

Effective sound representation
in spectrograms; Broad
vocalization data coverage

High detection accuracy;
Robust to test data variations

Lower performance under real
noise; Extensive labeled data
required

(Bermant et al., 2019) CNNs and RNNs (LSTM,
GRU) for sperm whale sound
analysis

Effective click classification by
CNNs; Suitable RNNs for
complex classifications

High classification accuracy;
Efficient large dataset
processing

High-quality labeled data
needed; Significant
computational resources

(Sánchez-Garcıá et al., 2010) Automated sperm whale click
detection using neural
networks

Suitable spectrogram analysis
for sound ID; Neural networks
accurately classify

Low computational effort;
Accurate click type detection

Questions on generalizability;
Energy threshold may miss
detections

(Saffari et al., 2022) ANNs with chimp optimization
for marine sound classification

Effective ambient noise
reduction; Dynamic adjustment
by fuzzy logic

Faster convergence; High-
dimensional classification
efficiency

Dependent on effective noise
reduction; Large datasets
needed

(Bergler et al., 2019) DNNs for detecting killer
whale sounds

Deep learning distinguishes
vocalizations; Models
generalize well

High precision in sound
detection; Scalable approach

Relies on large, labeled datasets;
Significant computational
requirements

(White et al., 2022) CNNs for analyzing marine
soundscape

Spectrograms for sound ID;
Training data variability
covered

Efficient for large-scale use;
Adaptable to different sounds

Depends on diverse training
data; Complex soundscapes
challenging

(Jarvis et al., 2022) CS-SVM for distinguishing
beaked whale clicks

Recognizable buzzing sounds;
Effective CS-SVM classification

Real-time detection; Adaptable
to hydrophone settings

Under-detection in noise; false
positives from low threshold

(Cohen et al., 2022) Machine learning with spatio-
temporal analysis for click
identification

Species-specific clicks; Reliable
acoustic data from HARPs

Large dataset analysis; Known
and new click types identified

Sighting data biases; Overlooks
behavioral variability

(Lü et al., 2024) Dual-feature fusion CNN with
LMS denoising for low SNR
clicks

Both MFCC and DD features
jointly discriminative; LMS
filter boosts SNR

Robust under low SNR;
improved generalization

High compute due to two
streams; careful LMS tuning
required

(Vishnu et al., 2024) VGG-based CNN + end-to-end
shrimp-noise denoiser
(DEVMAN)

Shrimp noise can be learned
and filtered; VGG features
discriminate clicks

A Outperforms standard
denoisers; site-adaptable

Site-specific retraining;
denoiser adds complexity

(Cotillard et al., 2024) ROI + DETR transformer for
overlapping beluga pulse
detection in spectrograms

Resolves overlaps; minimal
manual tuning

High data requirement; heavy
training

inference cost

(Hamard et al., 2024) Faster R-CNN + FPN on
spectrograms for multi-species
detection

Clicks appear as distinct time-
freq boxes; confidence
thresholds generalize

Precise time-freq localization;
multi-species in one pass

Quality of recordings critical;
Very computational; sensitive
to threshold choice

(Frasier, 2021) End-to-end wav2vec-style
Transformer fine-tuned on
odontocete clicks

Self-supervised pre-train corpus
captures click structure; labeled
subset available for fine-tuning

Cuts per-click error vs. CNN
under strong cavitation;
reusable embeddings for other
tasks

Very compute-heavy;
impractical for real-time
embedded hardware; needs
huge storage

(Schäfer-Zimmermann et al.,
2024)

self-supervised Transformer
pre-trained on terrestrial
mammals, zero-shot transfer to
sperm-whale clicks

Attention blocks are modality-
agnostic; few whale labels
required

High accuracy in few-shot and
zero-shot settings; ideal when
labels are scarce

Performance still lower than
fully fine-tuned models; still
research-grade, not deployed
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TABLE 3 Summary of detection techniques based on statistical analysis of databases.

Detection of clicks: adaptive detection methods

Ref. Main idea Main assumptions Pros Cons

(Harland, 2008) TRUD system for marine
mammal click classification

High-quality data stream;
Minimal degradation from
system

Classifies multiple species;
Efficient processing

Depends on high-quality input;
Sensitive to signal distortions

(Siddagangaiah et al., 2020) Entropy-based metrics for
dolphin vocalizations detection

Biophonies reduce noise
complexity; Clicks introduce
periodicity

High accuracy without prior
training; Efficient for large
datasets

Sensitive to certain noises;
Focuses on detection, not
classification

(Jang et al., 2023) TDOA measurements for
odontocetes tracking

Whales stationary over short
intervals; Known noise
statistics

Automates tracking of multiple
odontocetes; Handles false
positives effectively

Requires accurate sound
statistics; Complex data
mapping

(Caudal and Glotin, 2008) SMF and TKM filter for
tracking sperm whales

Constant or linear sound
speed; Specific whale click
pattern

Real-time tracking; Effective
removal

Significant computational
resources required; Dependent
on high-quality data

(Altaher et al., 2023) TDOA and adaptive MF for
low-frequency sound
localization

Clear identifiable calls; Stable
speed of sound

High precision in localization;
Adapts to variable noise levels

Heavy reliance on hydrophone
synchronization; May
misidentify similar sounds

(Lopatka et al., 2006) Recursive time-variant filter for
sperm whale click analysis

Non-stationary signals;
Temporal click patterns

Robust in noisy environments;
Fast adaptive filter performance

Sensitive to parameter settings;
Limited to signals well
represented by statistics

(Wu et al., 2016) WP-Page test for detecting
underwater transient signals

Improvement in SNR increases
detection; Complex noise
manageable

Improves detection at low SNR;
Effectively reduces noise

Increases computational
complexity; Performance varies
in untested conditions

(Nosal and Frazer, 2007) Algorithm for marine mammal
click detection

Stable acoustic
environment; High-quality
recordings

High precision in detection;
Adaptable to various species

Decreased performance with
environmental changes;
Depends on recording quality

(Skarsoulis et al., 2022) Real-time acoustic observatory
for sperm whale detection

Predictable sound spread
underwater; Stable buoy
positions

Immediate whale localization;
High accuracy with large
hydrophone distances

Localization issues with
directional clicks;
Synchronization challenges

(Morrissey et al., 2006) M3R algorithms for marine
mammal detection and
localization

Broadband clicks detection;
Stable click patterns

Real-time detection and
localization; Handles complex
environments

Requires precise
synchronization; Complex
optimal setup

(Gervaise et al., 2010) Kurtosis-based algorithm for
clicks detection in Gaussian
noise

Click trains in Gaussian noise;
Ambient noise is Gaussian

Works well in low SNR
conditions; Adapts to variable
click frequencies

Performance affected by non-
Gaussian noise; Limited
effectiveness at very low SNR

(Hamilton et al., 2021) Improved method for
estimating echolocating
odontocetes

Gradual change in click
characteristics; Background
noises rare

Improved noise handling;
Customizable user settings

Overestimation of animals
possible; Manual adjustments
may lead to bias

(Lohrasbipeydeh et al., 2015) Adaptive energy-based method
for sperm whale click
identification

Signals are broadband; Fixed
TEO thresholds ineffective

Adjusts detection threshold for
accuracy; Efficient without
prior signal knowledge

Additional computational
complexity; Dependent on
specific click characteristics

(Madhusudhana et al., 2015) Automatic echolocation click
detection with TKEO

Clicks modeled as Gaborlike
functions; TKEO outputs
approximate a Gaussian
function

Efficient and fast; Works faster
than real-time

Dependent on accurate click
modeling; Susceptible to
background noise

(Jarvis et al., 2014) M3R technology for marine
mammal monitoring using
Navy hydrophones

Effective time-frequency
analysis; Loud vocalizations for
recognition

Comprehensive real-time
monitoring; Automated
detection and localization

Struggles with background
noise; Requires extensive
hydrophone network

(Di Nardo et al., 2023) Study of bottlenose dolphins’
acoustic emissions in the
Adriatic Sea

Comprehensive and high-
quality dataset

Non-invasive monitoring; Does
not interfere with dolphin
activity

Limitations due to sampling
rate; Signal distortion possible

(Jang et al., 2022) Bayesian click detection and 3-
D tracking

Clicks are stationary over GCC
window; noise PSDs can be
pre-estimated

Joint detection + tracking; high
robustness to low SNR

Sensitive to noise model
accuracy; computationally
heavy

(Continued)
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TABLE 3 Continued

Detection of clicks: adaptive detection methods

Ref. Main idea Main assumptions Pros Cons

(Barile et al., 2024) Dual-IPI validation Page-test in
CABLE software

Sperm-whale clicks have
consistent multi-pulse IPI;
TDOA estimates agree within
0.05 ms

Double-check via autocorr and
cepstrum lowers false positives

Very low acceptance rate; fixed
tolerance may reject valid clicks
F
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TABLE 4 Table of publicly available databases and key characteristics.

Detection of clicks: Summary of databases

Archive name Link Collection site Tagged
?data
type

Number of recordings

MobySound (Mellinger, 2006) various studies on
marine mammals

Yes .wav 14,000 vocalizations from eight species
of baleen whales

Fisheries-Oceanography Coordinated
Investigations

(NOAA, 1990-
2014)

Bering Sea Yes .flac different depending on the recording
session

Cal-COFI Marine Mammal Data (CalCOFI, 2005) California, USA Partially y.wav different depending on the recording
session

Watkins Marine Mammal Sound Database (Watkins, 1998) wide range of geographic
areas

Yes .wav different depending on the recording
session

DECAF - AUTEC Sperm Whales - Multiple
Sensors - Complete Dataset

(Fujioka, 2007) AUTEC in the Tongue
of the Ocean, Bahamas

Yes .wav 675 specimens

Orcasound - bioacoustic data for marine
conservation, live-streamed and archived audio
data

(Orcasound,
2018)

US/Canada Yes .wav (2018-present)

DeepAL fieldwork data 2017/2018 (Bergler, 2017) Northern British
Columbia (Vancouver
Island)

Yes .wav 31,928 audio clips; 5,740 (18.0%) killer
whale and 26,188 (82.0%) noise labels.

Voice in the sea (in the Sea V,
2007)

All over the world Yes .wav 31 cetacean and 12 pinnipeds

Dosits (Rhode Island
and Center,
2002)

All over the world Yes .wav 30 Baleen Whales, 33 Toothed Whales,
25 Pinnipeds and 11 Sirenians

NOAA fisheries (NOAA, 2017a) Hawaii, USA Yes WAV varies differently depending on the
species

DCLDE 2022 Raw Passive Acoustic Data (NOAA, 2017b) Hawaii, USA Yes .wav. flac least represented species 2, most more
than 10000

Zenodo (Francesco, 2015) Ionian Sea Yes .png 7,977 Files

SABIOD (SABIOD, 2014) south of Port-Cros
National Parc/Cote Azur

No .wav 11 recordings of different length

Ocean glider observations in Greater Cook Strait,
New Zealand

(Walters, 2008)
the Greater Cook Strait
shelf sea, New Zealand

No .nc 7 recordings of different length

CIBRA of the University of Pavia (CIBRA, 2005)
the Greater Cook Strait
shelf sea, New Zealand

No
.wav and.
mp3

14x2 recordings (in both formats)

The Dominica database (CETI, 2020) The Dominica island Yes .wav

39 files of 5-minute recordings with
sperm whale clicks and 43 files of 5-
minute recordings with ambient
sounds, ship noise and dolphin clicks
and whistles.
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The study in (Giorli and Goetz, 2019) presents a method for

offline detecting and classifying sperm whale echolocation signals

using ICI characteristics. The method relies on an adaptive

detection threshold adjusted to the ambient noise level. For

detected regions of interests, the ICI and peak frequency are

calculated and grouped into click sequences. Only click sequences

with more than five signals of valid ICI pattern are considered for a

second filtering that determines that the detected signals are valid

clicks based on the peak frequency and duration. One of the main

strengths of this approach is its adaptability to different acoustic

environments due to the adaptive threshold, but the method relies

much on thresholds for the ICI pattern and signal duration

and spectra.
2.2 Phase

Since amplitude-based cues (duration, IPI and ICI) can fail

under very low SNR, we next turn to phase-derived features. The

phase of the signal includes information on the temporal change of

the signal. The phase is used in (Kandia and Stylianou, 2008a) to

detect clicks by finding a zero crossing of the phase slope function of

the signal. The phase slope function is a measure calculated by

moving an analysis window over the signal and tracking the change

in the slope of the phase spectrum at each shift (Kandia and

Stylianou, 2008b). The derivative of the undistorted phase

spectrum of the signal is calculated and indicates how the phase

of the signal changes over time. By analyzing the slope of the phase

spectrum, potential clicks are identified by finding the points where

the function value changes from negative to positive. The authors
Frontiers in Marine Science 10
also introduce the notion of centroid for clicks, i.e., the point at

which the signal is “balanced” on the time axis, taking into account

the phase or amplitude of the signal over time. This concept is

valuable for tasks such as Time Difference of Arrival (TDOA)

estimation, where the precise timing of these clicks is critical to

determine the position of the source, and can be used as a reference

point for multiple pulsed clicks, such as the regular clicks of sperm

whales. Robustness to click source level and noise ratio is

demonstrated using manually labeled data from regular beaked

whale clicks and sperm whale clicks. The potential of phase jumps

to represent a transient signal is also utilized by the

wavelet transform.
2.2.1 Wavelet transformations
Wavelet transforms combine phase and amplitude in a joint

time–frequency analysis. The wavelet transform involves the

decomposition of a signal into its individual frequencies using

small oscillatory functions that are localized in both time and

frequency, the so-called wavelets - small waves that grow and

decay in a limited period of time. The method in (Lopatka et al.,

2005) combines the wavelet transform and a parameter called

Short-Time Windowed Energy (STWE) to detect clicks. This

parameter captures the unique shape of the click sounds that

distinguishes them from other signals in the recordings and is

calculated using the Short-Time Windowed Energy (STWE) is

defined in Equation 1.

STWEWT ½sk, lTe � = o
k7

k=k1

c2w½sk, lTc� (1)
TABLE 5 Table of challenges the detection methods overcame.

Challenges considered in the literature

Challenges Related literature

Low signal-to-noise
ratio

(Johansson, 2004; Lopatka et al., 2005; Adam, 2006; Kandia and Stylianou, 2006; Lopatka et al., 2006; Morrissey et al., 2006; Nosal and Frazer,
2007; Caudal and Glotin, 2008; Kandia and Stylianou, 2008a; Kandia and Stylianou, 2008b; Baumann-Pickering et al., 2010b; Gervaise et al., 2010;
Sánchez-Garcıá et al., 2010; Zaugg et al., 2010; Klinck and Mellinger, 2011; Roch et al., 2011; Baggenstoss and Kurth, 2014; Jarvis et al., 2014; Bot
et al., 2015; Caruso et al., 2015; Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Wu et al., 2016; Lia et al., 2017; Beslin et al., 2018; Bergler
et al., 2019; Bermant et al., 2019; Caruso et al., 2019; Luo et al., 2019; Siddagangaiah et al., 2020; Buchanan et al., 2021; Frasier, 2021; Hamilton
et al., 2021; Islam Ariful, 2021; Marzetti et al., 2021; Cohen et al., 2022; Frasier et al., 2022; Jang et al., 2022; Jarvis et al., 2022; Saffari et al., 2022;
Skarsoulis et al., 2022; White et al., 2022; Altaher et al., 2023; Di Nardo et al., 2023; Gubnitsky and Diamant, 2023; Barile et al., 2024; Cotillard
et al., 2024; Schäfer-Zimmermann et al., 2024; Gubnitky and Diamant, 2024; Hamard et al., 2024; Lü et al., 2024; Vishnu et al., 2024)

Time-varying noise (Johansson, 2004; Lopatka et al., 2005; Lopatka et al., 2006; Morrissey et al., 2006; Caudal and Glotin, 2008; Kandia and Stylianou, 2008b; Gervaise
et al., 2010; Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Lia et al., 2017; Beslin et al., 2018; Bermant et al., 2019; Caruso et al., 2019;
Luo et al., 2019; Siddagangaiah et al., 2020; Islam Ariful, 2021; Li et al., 2021; Marzetti et al., 2021; Cohen et al., 2022; Frasier et al., 2022; Jang
et al., 2022; Jarvis et al., 2022; Saffari et al., 2022; Skarsoulis et al., 2022; Jang et al., 2023; Barile et al., 2024; Gubnitky and Diamant, 2024; Vishnu
et al., 2024)

Simultaneous
detection of multiple
targets

(Johansson, 2004; Lopatka et al., 2005; Adam, 2006; Morrissey et al., 2006; Caudal and Glotin, 2008; Harland, 2008; Kandia and Stylianou, 2008a;
Kandia and Stylianou, 2008b; Baumann-Pickering et al., 2010b; Baggenstoss, 2011; Klinck and Mellinger, 2011; Jarvis et al., 2014; Bot et al., 2015;
Caruso et al., 2015; Madhusudhana et al., 2015; Beslin et al., 2018; Seger et al., 2018; Bergler et al., 2019; Luo et al., 2019; Siddagangaiah et al.,
2020; Hamilton et al., 2021; Islam Ariful, 2021; Li et al., 2021; Cohen et al., 2022; Frasier et al., 2022; Jang et al., 2022; Jarvis et al., 2022; Skarsoulis
et al., 2022; Tian et al., 2022; White et al., 2022; Di Nardo et al., 2023; Jang et al., 2023; Cotillard et al., 2024; Gubnitky and Diamant, 2024;
Hamard et al., 2024)

Non-stereotyped
clicks

(Lopatka et al., 2006; Morrissey et al., 2006; Kandia and Stylianou, 2008b; Baggenstoss and Kurth, 2014; Jarvis et al., 2014; Bot et al., 2015;
Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Lia et al., 2017; Seger et al., 2018; Luo et al., 2019; Frasier, 2021; Hamilton et al., 2021; Li
et al., 2021; Cohen et al., 2022; Jarvis et al., 2022; Tian et al., 2022; Gubnitsky and Diamant, 2023; Jang et al., 2023; Barile et al., 2024; Schäfer-
Zimmermann et al., 2024; Gubnitky and Diamant, 2024)
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with cw the wavelet transform coefficient, sk the scale, k1 and k2
the scale range of the wavelet transform of the click, Te the sampling

period and l, which defines the time resolution. First, the wavelet

transform is performed over a specific buffer of potential clicks,

followed by a calculation of the STWE parameter. The result is used

to identify individual clicks by analyzing the peak of the STWE

curves, which represents the exact time at which the sperm whale

click was recorded, and the width of this peak, which correlates with

the duration of the click. The ICI between identified clicks is used to

verify detection and discard echoes. The results for both the

simulation and the real collected data of sperm whale clicks show

that the method is insensitive to noise transients. This method is

then compared with a method that uses the Fourier transform

instead of the wavelet transform. As demonstrated in (Lopatka

et al., 2005) the Fourier version of the method is less resistant to
Frontiers in Marine Science 11
noise, particularly at low SNR. However, the properties of STWE

analysis should be adapted to the specific marine environment and

are expected to be sensitive to changes in the structure of clicks due

to multipath effects. Such temporal changes in the structure of the

click can be tracked by temporal modeling (Lopatka et al., 2006).

2.2.2 Methods that use empirical mode
decomposition

While wavelets rely on predefined kernel functions, empirical

mode decomposition offers an flexible way to isolate broadband

transients. EMD decomposes the signal x(t) into intrinsic mode

functions as in Equation 2. Empirical mode decomposition (EMD)

breaks down a signal into a series of eigenmode functions (IMFs)

and is usually used to represent temporal variations in the signal

(Wu and Huang, 2009).
TABLE 7 Table of possible method applications.

Applications

Application Related literature

(near) Real-time (Johansson, 2004; Lopatka et al., 2005; Adam, 2006; Kandia and Stylianou, 2006; Lopatka et al., 2006; Morrissey et al., 2006; Caudal and Glotin, 2008;
Harland, 2008; Sánchez-Garcıá et al., 2010; Klinck and Mellinger, 2011; Jarvis et al., 2014; Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Lia
et al., 2017; Seger et al., 2018; Luo et al., 2019; Siddagangaiah et al., 2020; Li et al., 2021; Marzetti et al., 2021; Cohen et al., 2022; Jarvis et al., 2022;
Skarsoulis et al., 2022; Tian et al., 2022; White et al., 2022; Altaher et al., 2023; Gubnitsky and Diamant, 2023; Gubnitky and Diamant, 2024)

Offline (Nosal and Frazer, 2007; Kandia and Stylianou, 2008a; Kandia and Stylianou, 2008b; Soldevilla et al., 2008; Baumann-Pickering et al., 2010b; Gervaise
et al., 2010; Zaugg et al., 2010; Baggenstoss, 2011; Roch et al., 2011; Baumann-Pickering et al., 2013; Baggenstoss and Kurth, 2014; Bot et al., 2015;
Caruso et al., 2015; Wu et al., 2016; Beslin et al., 2018; Bergler et al., 2019; Bermant et al., 2019; Caruso et al., 2019; Giorli and Goetz, 2019; Buchanan
et al., 2021; Frasier, 2021; Hamilton et al., 2021; Islam Ariful, 2021; Frasier et al., 2022; Jang et al., 2022; Jones et al., 2022; Saffari et al., 2022; Di
Nardo et al., 2023; Jang et al., 2023; Barile et al., 2024; Cotillard et al., 2024; Schäfer-Zimmermann et al., 2024; Gubnitky and Diamant, 2024; Hamard
et al., 2024; Lü et al., 2024; Vishnu et al., 2024)

Supervised (Kandia and Stylianou, 2006; Harland, 2008; Kandia and Stylianou, 2008b; Soldevilla et al., 2008; Baumann-Pickering et al., 2010b; Sánchez-Garcıá
et al., 2010; Zaugg et al., 2010; Klinck and Mellinger, 2011; Roch et al., 2011; Baumann-Pickering et al., 2013; Jarvis et al., 2014; Wu et al., 2016; Seger
et al., 2018; Bergler et al., 2019; Bermant et al., 2019; Caruso et al., 2019; Luo et al., 2019; Buchanan et al., 2021; Frasier, 2021; Islam Ariful, 2021;
Frasier et al., 2022; Jang et al., 2022; Jarvis et al., 2022; Jones et al., 2022; Saffari et al., 2022; Tian et al., 2022; White et al., 2022; Di Nardo et al., 2023;
Jang et al., 2023; Barile et al., 2024; Cotillard et al., 2024; Hamard et al., 2024; Lü et al., 2024; Vishnu et al., 2024)

unsupervised (Adam, 2006; Lopatka et al., 2006; Nosal and Frazer, 2007; Baggenstoss and Kurth, 2014; Bot et al., 2015; Madhusudhana et al., 2015; Lia et al., 2017;
Giorli and Goetz, 2019; Siddagangaiah et al., 2020; Li et al., 2021; Marzetti et al., 2021; Cohen et al., 2022; Altaher et al., 2023; Gubnitsky and
Diamant, 2023; Schäfer-Zimmermann et al., 2024; Gubnitky and Diamant, 2024)

Available
implementation

(Beslin et al., 2018; Bermant et al., 2019; Frasier et al., 2022; Di Nardo et al., 2023; Gubnitky and Diamant, 2024)
TABLE 6 Table of types of data the detection methods were tested on.

Data source for performance evaluation

Evaluation Related literature

Real data - data not
shared

(Johansson, 2004; Lopatka et al., 2006; Caudal and Glotin, 2008; Kandia and Stylianou, 2008a; Soldevilla et al., 2008; Baumann-Pickering et al.,
2010b; Baggenstoss, 2011; Roch et al., 2011; Baumann-Pickering et al., 2013; Baggenstoss and Kurth, 2014; Jarvis et al., 2014; Wu et al., 2016;
Beslin et al., 2018; Seger et al., 2018; Giorli and Goetz, 2019; Siddagangaiah et al., 2020; Frasier, 2021; Hamilton et al., 2021; Frasier et al., 2022;
Jang et al., 2022; Saffari et al., 2022; Skarsoulis et al., 2022; Altaher et al., 2023; Di Nardo et al., 2023; Barile et al., 2024; Cotillard et al., 2024;
Hamard et al., 2024; Lü et al., 2024; Vishnu et al., 2024)

Real data - data
available publicly or
on demand

(Zaugg et al., 2010; Jones et al., 2022; Gubnitky and Diamant, 2024) (Kandia and Stylianou, 2006; Nosal and Frazer, 2007; Harland, 2008; Kandia
and Stylianou, 2008b; Gervaise et al., 2010; Sánchez-Garcıá et al., 2010; Klinck and Mellinger, 2011; Caruso et al., 2015; Lohrasbipeydeh et al.,
2015; Bergler et al., 2019; Bermant et al., 2019; Caruso et al., 2019; Buchanan et al., 2021; Li et al., 2021; Marzetti et al., 2021; Jarvis et al., 2022;
Tian et al., 2022; White et al., 2022; Gubnitsky and Diamant, 2023)

Combining real and
synthetic data

(Lopatka et al., 2005; Adam, 2006; Bot et al., 2015; Madhusudhana et al., 2015; Lia et al., 2017; Luo et al., 2019; Islam Ariful, 2021; Cohen et al.,
2022; Jang et al., 2023; Schäfer-Zimmermann et al., 2024)
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x(t) =o
N

i=1
IMFi(t) + rN (t) (2)

where each Intrinsic Mode Function (IMF) IMFi(t) is defined by

the property. Each IMF satisfies the zero-mean envelope condition

in Equation 3.

1
2

e(i)max(t) + e(i)min(t)
h i

≈ 0, (3)

with e(i)max(t) and e(i)min(t) representing the upper and lower

envelopes obtained by interpolating the local maxima and

minima of IMFi(t), respectively. This empirical and adaptive

process of decomposition takes the modes and frequencies

present in the signal. Each IMF represents an oscillatory mode,

and their accumulation encapsulates the information contained in

the original signal. This temporal and spectral representation of the

signal by its IMFs enables the isolation of broadband transient

components, making EMD particularly effective for detecting non-

stationary signals, such as clicks. This observation is utilized in

(Seger et al., 2018), where the EMD is used for blind detection of
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clicks in a signal. An RMS (Root-Mean-Square) window is then

applied to each IMF to calculate an upper and lower envelope. The

difference between these envelopes is then calculated and used to

calculate the correlation coefficients between successive IMFs to

assess similarity. A partial reconstruction of the signal influenced by

the IMF with the highest correlation is then performed. Finally, a

detection threshold is set based on a predetermined tolerance

threshold and the partially reconstructed signal and any sample

exceeding this threshold is identified, grouped and used for further

analysis and classification. The classification algorithm calculates

the strength of groups of samples that exceed a threshold and

identifies the two groups with the highest strength as unique

identifiers that are used to build an “EMD library” or IMF lookup

table. These tables are then manually verified providing valuable

ground truth. A disadvantage of this method is that it works on the

basis of the local characteristics of the signal rather than on a global

basis that is uniform over time and frequency. Another method

proposed in (Tian et al., 2022) additionally utilizes the estimation of

the direction of arrival (DOA) of signal components for monitoring.
TABLE 8 Table of main tools utilized in click detection methods.

Detection of clicks: summary of the main tools

Tool Related literature

Clustering Methods (Baggenstoss, 2011; Beslin et al., 2018; Jones et al., 2022; Gubnitky and Diamant, 2024)

Fourier Analysis (Lopatka et al., 2005; Morrissey et al., 2006; Harland, 2008; Kandia and Stylianou, 2008b; Soldevilla et al., 2008; Zaugg et al., 2010; Li
et al., 2021)

TKEO operator (Kandia and Stylianou, 2006; Kandia and Stylianou, 2008b; Soldevilla et al., 2008; Baumann-Pickering et al., 2010b; Klinck and
Mellinger, 2011; Roch et al., 2011; Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Luo et al., 2019; Frasier et al., 2022;
Gubnitsky and Diamant, 2023; Gubnitky and Diamant, 2024)

Phase Slope Function (PSF) (Kandia and Stylianou, 2008a; Gubnitsky and Diamant, 2023; Gubnitky and Diamant, 2024)

Wavelet Transformation (Lopatka et al., 2005; Wu et al., 2016)

Empirical Mode
Decomposition (EMD)

(Adam, 2006; Seger et al., 2018; Tian et al., 2022)

Hilbert Transform (HHT) (Adam, 2006; Caruso et al., 2019; Tian et al., 2022; Barile et al., 2024)

RBF activation (Zaugg et al., 2010)

Convolution neural network
(CNN)

(Bermant et al., 2019; Luo et al., 2019; Buchanan et al., 2021; Islam Ariful, 2021; Frasier et al., 2022; White et al., 2022; Cotillard et al.,
2024; Hamard et al., 2024; Lü et al., 2024; Vishnu et al., 2024)

Gabor curve-fitting method (Madhusudhana et al., 2015; Luo et al., 2019)

Multilayer Perceptron (MLP) (Sánchez-Garcıá et al., 2010; Saffari et al., 2022)

SVM (Johansson, 2004; Jarvis et al., 2022)

Matched Filter (Lopatka et al., 2006; Caudal and Glotin, 2008; Altaher et al., 2023)

Page test (Johansson, 2004; Wu et al., 2016; Beslin et al., 2018; Barile et al., 2024)

Kurtosis (Gervaise et al., 2010)

Autocorrelation-based ICI
grouping

(Bot et al., 2015)

CCWEEMDAN (Lia et al., 2017)

Cross correlation (Jang et al., 2022; Jang et al., 2023)

Transformer/wav2vec-style self-
attention encoders

(Frasier, 2021; Schäfer-Zimmermann et al., 2024)
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The method is applied to a mixed model containing different signals

that form the basis for DOA estimation. The individual signals are

then isolated based on their unique characteristics. After extraction,

the method performs endpoint detection on the signal components,

using a “method of average energy”. This process is crucial for

identifying the exact start and end points of the signal components.

SNR is also taken into account as it is critical to the clarity of the

signal and the accuracy of analysis, such as DOA estimation, by

measuring signal strength relative to background noise. The method

uses EMD in combination with mult i- layer adaptive

decomposition, which increases computational complexity. The

authors assume that the signals are oversampled or continuous, a

condition that may not always be present in practical underwater

environments. In (Lia et al., 2017) an upgrade is proposed, where a

method combining the Complete Complementary Wavelet

Ensemble Empirical Mode Decomposition with Adaptive Noise

(CCWEEMDAN) and Power-Law Detector is presented. The

method advanced beyond traditional EMD to handle modal

aliasing and energy loss, which are particularly problematic for

non-stationary, non-linear signals. The method includes iterative

noise addition to improve scale continuity, wavelet decomposition
Frontiers in Marine Science 13
to deal with noisy signals and EMD decomposition to extract

residual components. The CCWEEMDAN method is combined

with a power-law detector for transient signals, which analyzes the

DFT sequence of the signal under two hypotheses - presence or

absence of a signal in the midst of Gaussian noise. For this purpose,

a non-parametric approach is used that analyzes the sum of squares

of the power amplitudes of the DFT sequence. The method is shown

to be effective in low signal-to-noise ratio scenarios, as

demonstrated by simulated and real data. However, relying on

iterative refinement and decomposition process, it leads to high

computational complexity, which limits its application in practice.

A time-frequency generalization of the EMD is the Hilbert-Huang

transformation (Huang et al., 1998).

The method in (Caruso et al., 2019) offers click analysis of

rough-toothed dolphins. In this method, the raw acoustic data is

first pre-processed to remove irrelevant low-frequency background

noise. A Hilbert transform is then performed to create an energy

envelope of the signal. An automatic click detector, focusing

primarily on the ICI of echolocation clicks, incorporates a strict

SNR criterion and a careful peak detection algorithm, significantly

reducing the number of false positives. The algorithm identifies
TABLE 9 Table of features used for click detection.

Detection of clicks: summary of the main tools

Features Related literature

IPI (Johansson, 2004; Zaugg et al., 2010; Caruso et al., 2015; Beslin et al., 2018; Frasier et al., 2022; Barile et al., 2024; Gubnitky and Diamant,
2024)

ICI (Johansson, 2004; Lopatka et al., 2005; Morrissey et al., 2006; Baggenstoss, 2011; Baggenstoss and Kurth, 2014; Bot et al., 2015; Bergler et al.,
2019; Caruso et al., 2019; Giorli and Goetz, 2019; Hamilton et al., 2021; Marzetti et al., 2021; Jones et al., 2022; Skarsoulis et al., 2022; Di
Nardo et al., 2023; Gubnitsky and Diamant, 2023; Gubnitky and Diamant, 2024)

TDOA (Bot et al., 2015; Frasier et al., 2022; Jang et al., 2022; Skarsoulis et al., 2022; Altaher et al., 2023; Gubnitsky and Diamant, 2023; Jang et al.,
2023; Gubnitky and Diamant, 2024)

Peak Amplitude (Morrissey et al., 2006; Baumann-Pickering et al., 2013; Hamilton et al., 2021; Di Nardo et al., 2023; Gubnitky and Diamant, 2024)

Duration (Lopatka et al., 2006; Nosal and Frazer, 2007; Soldevilla et al., 2008; Marzetti et al., 2021; Gubnitky and Diamant, 2024)

Spectral Bandwidth (Baggenstoss, 2011; Beslin et al., 2018; Hamilton et al., 2021; Cohen et al., 2022)

Phase (Kandia and Stylianou, 2008a; Kandia and Stylianou, 2008b)

Energy (Lopatka et al., 2005; Kandia and Stylianou, 2006; Morrissey et al., 2006; Kandia and Stylianou, 2008b; Baumann-Pickering et al., 2010b;
Klinck and Mellinger, 2011; Roch et al., 2011; Jarvis et al., 2014; Madhusudhana et al., 2015; Lia et al., 2017; Li et al., 2021; Cohen et al., 2022;
Jones et al., 2022; Tian et al., 2022)

Frequency (Adam, 2006; Nosal and Frazer, 2007; Harland, 2008; Kandia and Stylianou, 2008b; Madhusudhana et al., 2015; Li et al., 2021; Cohen et al.,
2022),

Standard deviation and
dynamic range of energy

(Sánchez-Garcıá et al., 2010)

Average Cepstral
Features

(Roch et al., 2011; Saffari et al., 2022; Lü et al., 2024)

Entropy (Siddagangaiah et al., 2020)

Not specified (Caudal and Glotin, 2008; Wu et al., 2016; Bermant et al., 2019; Luo et al., 2019; Buchanan et al., 2021; Islam Ariful, 2021; White et al., 2022)

Self-supervised audio
embeddings (wav2vec/
HuBERT)

(Frasier, 2021; Schäfer-Zimmermann et al., 2024)

Raw waveform attention
tokens

(Schäfer-Zimmermann et al., 2024)
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potential click noise by looking for peaks in the energy envelope

that meet certain criteria, including height and distance from other

peaks, to distinguish them from random noise by checking the

signal-to-noise ratio (SNR) to validate detection of echolocation

clicks and not background noise. The strength of the approach lies

in the rigorous assessment of the signal-to-noise ratio, which

ensures the selection of potential echolocation signals. However,

the method is sensitive to varying noise, since a uniformity of click

characteristics is assumed. However, relying heavily on the SNR

criteria can eliminate valid clicks, potentially underestimating the

actual click rate. Furthermore, the assumption that clear peaks

always represent single echolocation clicks may not hold true in

scenarios with overlapping clicks or similarly loud sounds. For

more dynamic environments, the Hilbert-Huang transformation

(HHT) may be a solution.

To capture instantaneous frequency and energy, the Hilbert-

Huang transform (HHT) extends EMD resulting in an adaptive

time-frequency representation of a signal. The HHT process

combines EMD and Hilbert spectral analysis (HSA). Specifically,

the IMFs generated by EMD are used as input to HSA to obtain a

time-frequency-energy representation of the signal, known as a

Hilbert spectrum. Unlike the wavelet transform, the HHT does not

require adjustment vectors for signal decomposition and is

therefore considered more robust. By examining the Hilbert

spectrum, transient echolocation clicks can be identified as

components with concentrated, time-limited energy, characterized

by their instantaneous frequency. In (Adam, 2006) the HHT is used

to recognize sperm whale sounds. The clicks are identified by

analyzing the first six modes of the Hilbert spectrum, arguably

containing the key information of the click. A ‘relevance/

complexity’ criterion is determined by calculating the ratio of the

squared error between the original and the recovered signal (to the

number of modes obtained) and used to evaluate the quality of the

signal reconstruction. The paper discusses the advantages of using

the HHT compared to the signal spectra. Next we discuss methods

that focus on the latter analysis.
2.3 Frequency

2.3.1 Spectral analysis
The above works rely on either temporal or joint time–

frequency analysis. We now turn to a set of methods that rely on

spectral cues—peaks, notches and broadband energy—that

distinguish species and sound sources. In spectral analysis, a

signal is broken down into its fundamental frequency

components in order to search for dominant features such as

broadband transients. We distinguish between three feature types:

spectral power, amplitude and phase spectrum. In (Soldevilla et al.,

2008), the text describes a three-tiered approach to classifying

dolphin echolocation clicks: the supraspecies tier distinguishes

based on the presence or absence of spectral peaks and notches;

the second tier, the species tier, categorizes based on the frequency

values of these peaks and notches; and the subspecies tier

distinguishes two unique click types within Pacific white-sided
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dolphins. The first step of the click detection algorithm identifies

potential clicks in the frequency domain using a fast Fourier

transform (FFT) with spectral mean subtraction. The candidates

were selected based on specific frequency and amplitude criteria,

where the ‘candidates’ refers to potential click detections. In the

second step, the identified candidates were analyzed in more detail

in the time domain. A high-pass filter and the TKEO (explained in

2.4.1) were used to track energy peaks indicative of clicks. The

strongest click noises within a given time frame were selected for

further analysis. The spectral characteristics of the click sounds are

then quantified with another FFT. The noise spectra are averaged

and a subtraction of the spectral averages is applied to isolate the

click spectrum, followed by statistical analysis to characterize the

clicks of each species. To evaluate the utility of spectral features of

clicks for classifying data, long-term spectral averages were

examined for distinct patterns. The method was tested for

recognizing and classifying the clicks of five dolphin species.

However, recordings from the surveys were only included if they

were single species schools and were excluded if other species were

detected within 3 km or could not be identified due to low SNR.

Handling multiple sources, in (Zaugg et al., 2010), spectral analysis

is used to distinguish between the clicking sounds of sperm whales

and the impulsive cavitation sounds of ships. After initial energy-

based thresholding, spectral features are extracted from the

potential click. Five statistical measures — mean, standard

deviation, skewness, kurtosis and a normalized Shannon entropy

— are used to analyze the features followed by a feed-forward neural

network with a hidden layer of radial basis function units. And a

logistic output function is used to classify the impulses into two

categories: sperm whale clicks and ship sounds.

Processing gain is expected when combining spectral and

temporal analysis. A joint spectral and temporal analysis is used

to classify clicks in (Roch et al., 2011). First, Fourier transforms of

signal frames are observed to identify clicks with high SNR.

Echolocation clicks are then identified based on their TKEO

energy, with noise level estimation and region magnification

techniques to determine the start and end of the click. Clicks that

were too close together are considered reflections. The cepstrum of

each potential click is calculated to obtain a low-dimensional

representation of the signal. Only the cepstral coefficients from 1

to 14 were used for classification, as higher order coefficients did not

necessarily improve classification performance. Finally, the acoustic

data of each species is modeled with a 16-fold mixed Gaussian

Mixture Model (GMM) for classification. The GMM is consisting of

16 different mixture components, where each component

represents a different subpopulation of the data. This approach

allows the modeling of complex spectra with few data points.

Spectral information can also be used through long-term analysis

to detect periodicities in the signal.

2.3.2 Long-term spectral average
When individual spectra vary too much, Long-Term Spectral

Average (LTSA) reveal stable patterns and rare events over hours or

days. LSTA is used to detect sporadic or rare biological sounds by

identifying patterns, recurring events or anomalies in the frequency
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range of the signal. The LTSA visualization calculates the spectral

average of acoustic signals over longer periods of time, identifying

patterns, trends and anomalies that differ from the surrounding

sounds. In the context of click detection, LTSA can help to

recognize recurring patterns, such as trains of clicks.

The method in (Jones et al., 2022), uses LTSAs from averaged

sound pressure levels with specific frequency bins. In this semi-

automated process, energy detection criteria are used to identify

impulsive signals within a sampling window centered on the peak.

The inter-click intervals (ICIs) between these detections are

estimated, and signals with peak frequencies at bounded intervals

are considered. These are then classified using an unsupervised

learning method in which similar spectral shapes and ICIs are

grouped within 5-minute bins and across time using clustering. For

each group member, parameters such as click duration, ICI,

spectrum, peak and center frequency and bandwidth are

thresholded. Click duration was estimated by fitting an envelope

to the absolute value of the waveform in the sample window. A

combination of manual and automated analysis is also offered in

(Baumann-Pickering et al., 2013). The process involves the

operation of the Triton software (Damborský et al., 2001). The

signals were characterized by features such as long duration, stable

interpulse intervals (IPI) and frequency modulation. The LTSAs

were calculated for visual analysis. To facilitate manual analysis for

the case of beaked whale type frequency-modulated (FM)

echolocation pulses, the echolocation pulses were sorted by peak

frequency and peak-to-peak reception level to display high-

quality signals.
2.4 Energy

The energy of a signal can be used for detection based on power

threshold or high order statistics.

2.4.1 Energy detection
Temporal and spectral cues are complemented by simple

energy-threshold techniques that enable computationally

lightweight detectors. In (Baggenstoss, 2011), an algorithm for

eliminating multipath effects from sperm whale click sequences

received from a single sensor is proposed. First, the clicks are

detected using a moving average to find local maxima above a

certain threshold. The study also included an analysis of the ICIs.

The median ICI was calculated, with variations in ICI reflecting

different behaviors or states of the whales. The consistency of ICIs

over the entire click series was also analyzed. Next, a click

separation algorithm is presented to identify and pair clicks.

Potential click pairs are selected by time difference and SNR

compatibility. Pairing is based on a similarity metric that uses

statistical measures to determine whether or not two clicks are from

the same click train. The algorithm uses Gaussian Mixture Models

(GMM) for likelihood functions trained on validated click pairs for

related clicks and random pairs for unrelated clicks. The similarity

of the clicks is evaluated using features extracted from the clicks,

including spectral and temporal information, which are categorized
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into three groups: spectral information, temporal information and

inter-click interval (ICI) estimation. Feature selection aims to

improve classification performance by adding the most

informative features and reducing dimensionality. The method

proceeds by finding the best subset of valid click pairs from all

possible pairings. The clicks are then grouped into click trains,

which are further categorized as direct path, surface path or

reverberation. Gaussian Mixture Models (GMMs) were finally

used to estimate the probability density function (PDF). Cross-

correlation is performed to distinguish between direct and

multipath click-trains at a sensor. Click trains that are assumed to

originate from the same source but have different paths that show a

high correlation are rejected as multipath. Click trains with a

significant percentage of clicks identified as reverberation are

also eliminated.

Energy is also used for characterizing the click’s structure. The

method in (Caruso et al., 2015) recognizes sperm whale clicks,

where an adaptive threshold based on the median value of the total

signal energy within a 5-minute recording is used to select potential

clicks. The next phase involves cepstrum analysis, applied to both

the amplitude and squared amplitude (energy) of the potential

clicks to distinguish the stable interpulse interval (IPI) from the

variable IPIs within the click structure. The average of the cepstral

peaks identified within the delays is then calculated from at least 50

clicks within the same 5-minute recording. Similarly, in (Li et al.,

2021), the authors present a detection method that analyzes data

across low, medium and high frequency bands using a short-time

Fourier transform to reduce data size and align detection with

expert analysis. The detection process calculates the spectral sum

for each frequency band in each time window and identifies clicks as

periodic peaks. By calculating the averages and standard deviations

of these spectral sums over 10-minute intervals, the algorithm sets

dynamic thresholds to distinguish potential sperm whale clicks

from other sounds. The click detection criterion is considered to be

met if the spectral sum exceeds a certain threshold in the low

frequency band while remaining below the thresholds in the mid

and high bands. The authors also focus on factors that influence the

probability of detection, such as source level, directional loss,

transmission loss and ambient noise level. An alternative way of

calculating energy for transient detection is the TKEO.

2.4.2 Teager-Kaiser energy operator
The TKEO refines raw energy detection by estimating

instantaneous energy, which works well even in noisy

backgrounds. The TKEO estimates the “mechanical” energy of

the signal, which is a representation of the energy required to

generate the signal (Kaiser, 1990). This estimate of the

instantaneous energy of the signal is useful for detection because

it provides insight into the dynamics and variability of the acoustic

signal. The TKEO is particularly useful for detecting transient

events such as clicks in recordings even in noisy environments.

This is the case in (Klinck and Mellinger, 2011), where detection of

odontocete echolocation clicks of toothed whales is presented by

developing an Energy Ratio Mapping Algorithm (ERMA). This

scheme relies on species-specific features, such as increasing energy
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at certain frequencies. The ERMA scheme is used to create energy

ratio maps for the target and non-target species. The study also

describes the development of an energy ratio detector for suspected

frequency bands identified by ERMA. A normalized TKEO is then

applied to the series of energy ratios to detect transients. Due to the

high false positive rate, it is proposed to use ERMA as the first step

in a two-step detection process, with a more sophisticated classifier

as the second step to reduce the computational load. For the

detection of clicks, a dynamically calculated threshold adapted to

the noise is used. In (Kandia and Stylianou, 2006) the TKEO is

applied to analyze the given signal. The algorithm attempts to detect

sperm whale clicks by identifying p0 and p1 pulses. To emphasis the

click sounds, a matching filter is applied. This can prove challenging

if the p0 pulse is much weaker than the p1 pulse, which can lead to

detection errors as the algorithm is designed to recognize the

highest peak within a click as the starting point. A skewness

criterion is then applied to the output of the TKEO to help detect

the presence of a click and avoid false positives. The length of the

analysis window is one of the critical parts of this algorithm and a

window size must be chosen that contains few click sounds, on the

one hand, and is short enough to respond to rapid changes in click

periodicity, on the other. A forward-backward search is then

performed over the peaks of the signal, separating them from all

other signal values that have exceeded the threshold, with reference

to the time of the highest peak, to locate the click. The forward and

backward searches start at the highest peak and move forward and

backward in time, respectively, until it reaches a point where the

signal value falls below a certain threshold. It is assumed that the

time interval between the two points contains the click sound. It has

been shown that the same TKEO also works well under low SNR

conditions [cf (Kandia and Stylianou, 2006)].

A similar pre-processing is performed with the acoustic analysis

software developed by JASCO in (Frouin-Mouy et al., 2017), where

three classification features are calculated: the number of zero

crossings, the mean time between zero crossings and the slope of

the time change between zero crossings. Since clicks of different

species have different frequency components, the number of zero

crossings can be a discriminating feature, while the mean time

between zero crossings is related to the dominant frequency of the

click sound. Since different species produce clicks at different

frequencies, this measure helps to distinguish between these species-

specific frequencies. The third feature represents the rate at which the

time between zero crossings changes, which can be related to the

frequency modulation of the click. TheMahalanobis distance metric is

used to compare the features to a template created from manually

labeled clicks. The choice of Mahalanobis distance is explained by its

ability to account for the covariance between features.

The method in (Baumann-Pickering et al., 2010b) detects

echolocation pulses and buzz clicks by identifying peaks in the

TKEO. The complete click sound, including the reverberation, is

identified based on its energy profile. Accounting for the lower

attenuation within the signal’s lower frequencies, which can

potentially distort the spectral characteristics of the signals, the

median signal parameters are calculated using only the signals with
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the highest amplitude. The strength of this method lies in the

combination of the broad spectrum of cross-correlation with the

precision of TKEO. However, the reliance on manual scanning after

initial detection could lead to human error or bias, and the efficiency

of the method may be limited by the amount of data processed.

The combined works in (Kandia and Stylianou, 2008b) uses the

TKEO as a preliminary step to enhance the signal and improve the

SNR; The algorithm uses the phase slope function to detect the clicks

and sets the length of the analysis window based on the average

interval between clicks. The click sounds are detected by localizing the

positive zero crossings of the phase slope function. Surprisingly, the

structure of the clicks could also be detected when the phase slope

function was applied directly to the non-optimized recording. Pre-

detection based on the slope of the phase spectrum with respect to the

center of the potential click. This center is calculated as the mean of

the group delay function and a click is detected by searching for a

positive zero crossing for the slope of the phase spectrum. The

method requires statistics of at least one minute of recording. If

more statistics are available, the high-potential machine learning can

be adopted to recognize clicks.

The summary of the feature extraction method is presented

in Table 1.
2.5 Advantages and disadvantages of
feature analysis methods

IPI-based approaches (Section 2.1.1) extract information from

the timing between the pulses within a click train. As shown by the

results of e.g., (Gubnitky and Diamant, 2024), this method is good at

capturing the underlying rhythmic patterns that distinguish different

species, providing useful diagnostic features. The downside is that if

the inter-pulse intervals are highly variable or if multiple click trains

overleap stability of the measurements series is effected leading to

miss-detections in methods such as the ones presented in (Marzetti

et al., 2021) and (Gubnitsky and Diamant, 2023). Detection accuracy

may decrease, potentially missing valid signals.

ICI-based methods, described in Section 2.1.2, focus on the

interval between successive clicks to group and confirm valid click

sequences. These techniques are robust in maintaining temporal

regularity and reducing false detections, which is particularly useful

for structured click sequences. An example for this is evident in (Bot

et al., 2015), in which the authors show that by analyzing the regularity

of inter-click intervals, they can effectively segment overlapping click

trains and distinguish valid click sequences from noise. Conversely,

ICI-based detectors can miss legitimate clicks when the intervals

between clicks become inconsistent, as in the common case of

multipath arrivals when the animal’s depth is significant.

Phase-based methods (Section 2.2) use the phase properties of

click signals to improve detection accuracy. Their strength lies in

the ability to detect a click by rapid changes in the phase, which can

be performed also in low signal to noise ratio, as the results in

(Kandia and Stylianou, 2008a) imply. This ability comes at the cost

of complexity as the phase calculation is performed per sample.
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The wavelet transform techniques presented in Section 2.2.1

decompose signals into their time-frequency components and

searches for wide band transients, which is particularly effective

for impulsive signals like clicks. However, the variation on wavelet

transformations as proposed in (Lopatka et al., 2005) implies that

there may not be a best wavelet decomposition, thus raising the

question of robustness to different click sources.

In Section 2.2.2, EMD-based methods adaptively decompose

signals into intrinsic mode functions that capture various oscillatory

patterns. Such an approach is highly effective in analyzing non-

linear and non-stationary signals, often revealing subtle temporal

details. A key drawback, however, is that EMD can suffer from

mode mixing, and the interpretation of its components sometimes

requires manual intervention as discussed in (Seger et al., 2018),

thus limiting its overall automation and reliability.

Frequency-based methods (Section 2.3) analyze the spectral

content of click signals to highlight important frequency

components. They provide important insights into species-specific

frequency features that are essential for effective classification. An

example is the constraint on the resonant frequency in (Roch et al.,

2011). On the other hand, frequency analysis can be affected by

background noise, especially of transient nature such as from

snapping shrimps, and miss transient signal features that are

sometimes crucial for accurate detection.

Energy-based methods (Section 2.4) focus on the power or

amplitude of click signals as the primary metric for detection. Their

advantage lies in the fast response to significant energy changes, the fast

response to. The disadvantage is their susceptibility to background

noise, which can necessitate the use of adaptive thresholding

techniques to avoid false detections as proposed in (Caruso et al.,

2015), especially in challenging acoustic environments.

Energy detection methods (section 2.4.1) identify clicks by

detecting local maxima in the energy profile of the signal. These

methods are efficient and well suited for real-time detection due to

their simplicity. However, in a changing environment, they can lead to

false positives in case of mismatches in the assumed noise model to set

the detection threshold. This is evident by the results in (Li et al., 2021)

that shows high false positive in environment full of noise transients.

The TKEO, discussed in section 2.4.2, estimates the

instantaneous energy of a signal by emphasizing rapid changes.

This makes it particularly effective at low SNR, where transient

events are subtle. This allows detection for a wide dynamic range

as demonstrated in (Frouin-Mouy et al., 2017). However,

performance can depend on the choice of analysis window, which

leads to a non-stable tradeoff between the false positive and the

detection rate, and can suffer if the structure of the signal is highly

variable (Frouin-Mouy et al., 2017).
3 Machine learning-based click
detection

Machine learning (ML) techniques have been proposed to

capture the variability in the structure of the click by learning a
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model for a valid click from datasets containing such signals as well

as noise and perturbation intensities. These techniques are known

for their ability to process and analyze large amounts of data quickly

and are useful for detecting patterns in the data. One ML technique

that has proven useful for automatic click detection is the Multilayer

Perceptron (MLP). The MLP approach is a type of feed forward

artificial neural network (ANN) (Lek et al., 2008). An MLP consists

of at least three layers, including an input layer, at least one hidden

layer and an output layer. Each of these layers is are generally fully

connected to the previous and subsequent layers. The weights of

these connections are usually trained by backpropagation, an

iterative supervised learning technique in which the differences

between the given output and the desired output are calculated as an

error and the calculated error is then used to determine the new

weight (Portal, 2024). In the context of click detection, MLP is

useful due to its low computational cost, high performance and

simple structure (Saffari et al., 2022).

Convolutional neural networks (CNNs) are another type of

ANN. In contrast to MLPs, the layers of the CNN are sparse. This

benefits the generalization of the network, as overfitting is reduced.

It also allows the network to focus on the important features of the

input data while ignoring irrelevant or redundant information,

which in turn leads to automatic feature learning from raw audio

data without the need for manual feature extraction. A CNN is

characterized by its convolutional layers and pooling layers. The

former represents a set of kernels that learn and extract features

from the input data and create the feature map that represents the

presence or absence of a particular feature at each location in the

input data. Pooling layers are often placed between the

convolutional layers to reduce the spatial dimensions of the data.

CNNs are considered parameter efficient and are better suited for

recognizing spatial hierarchies than MLPs. This is achieved through

a concept known as local connectivity, where each neuron is

connected to its local region. This technique reduces the number

of parameters by allowing different parts of the network to

specialize in high-level features such as a texture or a repeating

pattern (Kurama, 2018). For click detection, CNN offers the

advantages associated with the small size of the network.

While CNNs can handle spatial hierarchies in gridded data, the

Recurrent Neural Network (RNN) is better suited to the task of

analyzing sequential data sets such as time series with sampling

dependencies. The reason for this is the ability of RNNs to recognize

patterns in sequences and learn from them. RNNs maintain a

hidden state from one step in the sequence to the next. In this

way, they maintain a memory for previous inputs in their internal

structure. This memory is used to recognize causality within the

dataset and is therefore useful for applications such as speech

recognition, natural language processing, and video activity

recognition. For click recognition, RNNs can use their memory to

draw information from a series of clicks. One of the main problems

in using RNNs is overcoming the vanishing gradient problem, a

phenomenon that occurs during the network training. In this case,

the gradient approaches zero, which leads to a loss of information

and makes it difficult for the network to learn and update its
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weights. A special type of RNNs that takes this problem into

account are Long Short-Term Memory (LSTM) networks. In

contrast to RNNs, LSTM networks are characterized by their

gating mechanisms, namely input, forget and output gates. The

use of these gates enables the network to remember or forget

observation inputs, making it more resilient to the vanishing and

exploding gradient problem. In the context of click detection, the

LSTM can be useful by adaptively distinguishing between clicks and

other linear impulse noises from spectrograms.

A simple but sometimes effective learning method is the

Support Vector Machine (SVM). An SVM finds a hyperplane that

best separates different classes of data with the maximum margin.

The margin is defined by the data points (support vectors) that are

closest to the decision boundary. The so-called kernel trick allows

SVMs to support high-dimensional spaces, which is why they often

use kernel functions to map input data into a higher-dimensional

space. The main advantage of SVMs, as opposed to deep learning

models, is the lower risk of overfitting, which is especially important

when the training data is limited. This is particularly important

when the training data is limited. For click detection, this is relevant

when there are only a few acoustic recordings on which to develop

a detector.

While SVMs focus on maximizing the marginal distribution,

which is limited by their ability to set constraints for classification,

the Gaussian Mixture Model (GMM) learning approach is an

alternative for probabilistic modeling of data distributions.

Assuming that the data can be clustered into classes of Gaussian

distributed samples, GMM aims to determine the distribution

parameters of each class by likelihood maximization. The result

can be applied to click detection by using GMMs to model the

distribution of relevant extracted click features or to detect

anomalies that differ from the “normal” distribution of clicks. The

structure of GMMs offers a soft, probabilistic assignment of data

points, allowing constraints to be set as part of the clustering

process. This can be a restriction on the distribution parameters

between classes, samples that must or must not be clustered

together, and a minimum number of samples within the class.

This proves useful for the detection of clicks by identifying and

modeling background noise of the recording with GMMs, which

increases the click-to-noise ratio. Another form of generalization

model is the Generalized additive model (GAMs), which develops a

statistical model for the relationship between the input variables to

represent the probability density function of the predictor’s

variables. This negates the need to create a single global model

while handling non-linear relationships. For click detection, this is

very handy as they can be used to find temporal patterns for the

presence or absence of clicks.

In the following, we categorize the papers according to the

classification into ML techniques, specifically supervised

convolutional neural networks, alternative supervised neural

networks and unsupervised learning models. The contributions are

further categorized according to the type of input they are best

suited for, the underlying architecture they use and their

adaptability to click detection.
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3.1 Supervised convolutional neural
networks

3.1.1 CNNs with raw audio as input
Convolutional Neural Networks (CNNs) are utilized because

their sparse, locally connected filters excel at learning broadband-

click patterns, which makes them commonly used deep-learning

detectors for marine mammals. CNNs are deep learning models

that recognize a non-linear hierarchical order in the features of a

valid click. CNNs use layers of convolution to learn spatial

hierarchies of features from input images. In the case of click

detection, the inputs are usually raw temporal acoustic data or

spectrograms. When CNNs are applied to spectrograms, they can

detect patterns in both the time and frequency domains.

Convolutional layers allow the network to focus on localized

features, ensuring that slight variations or shifts in the position of

the click in the spectrogram (relative to the start of the input) do not

affect recognition accuracy. By progressively abstracting

information through its layers, a CNN captures both the broader

context of echolocation signals and the fine-grained details of a

particular click. By applying these principles, CNNs have already

been successfully used for click detection.

Since clicks are short signals, using one-dimensional audio

signals as a base layer offers the CNN the opportunity to learn

important features of the signals that distinguish them from noise,

cavitation or SSN. The work in (Luo et al., 2019) uses CNNs to

automatically detect echolocation clicks of odontocetes from

acoustic data recordings. The proposed method involves two-step

detection in which a deep CNN is trained on both synthetic and real

data to discriminate between click and non-click clips at different

SNR values. Subsequently, the trained CNN is converted into a full

convolutional network to minimize computation time and

overcome the restriction to fixed-size inputs. This approach

enables fast data processing. An energy normalization procedure

allows the management of variable input lengths. In post-

processing, the authors use the TKEO to search for a transient

and then the Gabor curve fitting method to fit a discrete Gabor

signal to the acoustic data of a click to obtain a more accurate time

synchronization of the start and end points of the click. The use of

CNN has been further developed using the spectral representation

of the signal.

The CNN architecture is well suited to recognizing patterns in

grid-like topologies such as the spectrogram of audio signals. The

work in (Buchanan et al., 2021) presents a comprehensive study on

the use of Deep CNNs to recognize porpoise clicks from acoustic

data. The authors investigate different CNN architectures and the

performance of different CNN models on this task and compare the

methods in terms of their accuracy. Six CNN architectures,

including LeNet, LeNet variants and ResNet-18, are developed

and tested on a dataset of bottlenose dolphin clicks. “Traditional”

texture feature extraction classification is also explored. Both the

spectrogram pixels and the extracted LBP features are used as input.

The results show that CNN outperforms these methods for

echolocation clicks belonging to one species. The article
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concludes that ResNet-18 performs the best of all the architectures

tested. This can be explained by ResNet’s ability to ignore layer

connections that bypass one or more layers, ensuring low sensitivity

to additional layers. Results of SVM and MLP classifiers are

compared with raw pixel values of the spectrogram images to

evaluate the effectiveness of CNNs. The success in recognizing the

clicks is attributed to the distinct pattern that is evident in the time-

frequency domain. For the manual analysis of sperm whale clicks in

acoustic recordings, a customized annotation interface was used in

(Frasier et al., 2022) combining with a click detector and the

calculation of arrival times, IPI and background noise levels.

These metrics are used in (Frasier et al., 2022) to analyze the

behavior of sperm whales in the presence of anthropogenic noise.

For the detection of clicks, spectrograms are used as input to the

CNN to utilize the broadband characteristics of the signal as well as

temporal features such as IPIs and ICIs.

3.1.2 CNNs with spectrograms as input
The spectrum of the signal enables the identification of

stationary patterns in the signal. Using spectrogram images as the

input to a CNN (Islam Ariful, 2021) explores these patterns to

recognize sperm whale or dolphin vocalizations. These signals

include clicks, whistle and whale song signals of different whale

species. For performance evaluation, three types of measures are

used: Original Test Data (OTD) that serves as a baseline to evaluate

the effectiveness of the CNN under ideal conditions, Synthetic Test

Data (STD), which tests the robustness and adaptability of the CNN

model, and Practical Test Data (PTD), that evaluates the

performance of the CNN in real-world conditions. The former is

derived directly from the dataset; the STD is generated by artificially

modifying OTD; and PTD is created to simulate real-world

conditions by combining original whale sounds with oceanic

ambient noise. Together with the detection accuracy, precision,

recall and F1-score, these metrics demonstrate the efficiency of the

CNN model in detecting and classifying signals.

A combination of CNNs with other deep learning methods is

demonstrated in (Bermant et al., 2019). The clicks of sperm whales

are detected and classified using deep machine learning techniques.

A CNN is used for click detection while recurrent LSTMs are used

for classifying clicks into categorical types and to recognize dialects

of vocal clans. In addition, the principal component analysis (PCA)

and t-Distributed Stochastic Neighbor Embedding (t-SNE)

algorithms are used to calibrate the models parameters. Transfer

learning is used for training on codas from the Eastern Tropical

Pacific (ETP) dataset.

Another example of such combination of CNN and other deep

learning methods can be found in (Hamard et al., 2024) for a

detection method that converts raw recordings into 15-s

spectrogram images and applies a faster R-CNN model with a

feature pyramid network as a backbone to localize and classify

marine mammal acoustic events. The model is trained using

manually annotated spectrograms that identify different sound

types such as dolphin click trains, hums, whistles, and porpoise

vocalizations, and it outputs time-frequency bounding boxes that

use adjustable confidence and non-maximum suppression
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thresholds to control overlapping detections. The advantages of

this approach include precise localization in time and frequency, the

ability to detect multiple species and sounds in a single frame, and

the reduction in manual annotation workload. Disadvantages

include high computational cost, sensitivity to fluctuations in the

training data, and the need for careful tuning of detection

thresholds to balance false positives and missed detections.

Another great example of using CNN and other neural

networks can be found in (Vishnu et al., 2024). A neural

network-based detection method that addresses the challenge of

high ambient noise from snapping shrimp; the system, called

DEVMAN (detector for vocalizations of marine-mammals using

neural networks), uses a Visual Geometry Group (VGG)-based

CNN architecture with six convolutional layers followed by two

fully-connected layers and implements several denoising

techniques, including simple non-linear denoising methods and a

sophisticated ML-based denoising method trained end-to-end with

the detector to maximize performance in shrimp-dominated noise.

The combined denoiser-detector approach showed superior

performance compared to other methods. It was successfully used

to analyze ten sites. Advantages include the ability to overcome the

ubiquitous noise of snapper shrimp without compromising

detection performance, while disadvantages include the

computational complexity of the ML-based denoiser and the need

for site-specific training data.

The work in (Lü et al., 2024) present a dual-feature fusion

learning method for marine mammal acoustic signal detection that

extracts both Mel-Frequency Cepstral Coefficient (MFCC) features

and Delay-Doppler (DD) features from acoustic signals and

processes them through a user-defined convolutional neural

network model with nine convolutional layers and two fully

concatenated layers. The features are pre-processed by adaptive

Least Mean Square (LMS) filtering, which improves the signal-to-

noise ratio before extraction. This approach offers advantages such

as improved detection accuracy, improved generalization ability,

and robust performance under low SNR. Disadvantages include the

computational complexity resulting from the simultaneous

processing of two features, the dependence on precise parameter

tuning in the LMS filtering phase, and the potential complexity of

the model during training.
3.2 Other neural network based solutions

Architectures such as MLPs and LSTMs are additional choice

for a detection pipeline. The detection of click sounds has been

demonstrated using MLP, RNN and Transformers. The authors of

(Cotillard et al., 2024) present an automatic method for beluga

whale calls using two complementary strategies: a region-of-interest

(ROI) approach and a detection transformer (DETR). The ROI

method processes spectrogram images by applying a Gaussian blur

followed by a double threshold algorithm to isolate high-energy

regions. A minimum area constraint defined with respect to the

typical call dimensions is used. In parallel, DETR, a transformer-

based object detection model pre-trained on COCO and -tuned to
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3-s spectrogram images, generates bounding boxes around the calls

even when temporal or spectral overlap occurs. The advantages of

these methods include the flexibility to adjust sensitivity and the

ability of DETR to resolve overlapping calls. Disadvantages include

ROI’s tendency to overestimate detections when call density is low,

and DETR’s high demands on training data and computing power.

The usage of MLP is more suitable when this limit is not acceptable.

The use of MLP is motivated by its success in speech

recognition, environmental noise classification and seismic signal

analysis. The method in (Sánchez-Garcıá et al., 2010) uses a

combination of different MLPs and statistical analysis to

distinguish between regular clicks, creaks or noises. The statistical

features used as input are the standard deviation of the energy

values within each time window and the dynamic range, which is

defined by a ratio between the maximum level and the background

noise level within the time window. The detection is performed over

short time buffers of 2 seconds and can therefore be considered real-

time, but the achievable misclassification rate is high. This could be

due to the strong assumption that a large number of identical click

structures exist in the time window analyzed for statistical accuracy.

Another MLP-based approach can be found in (Saffari et al., 2022).

The authors use the Chimp optimization Algorithm (ChOA) to

train an artificial neural network and to set a fuzzy logic for

parameter adjusting. The input is a pre-processed spectrogram

from which the features are extracted by averaging the cepstral

values and applying cepstral liftering. The control parameters of the

ChOA algorithm are adjusted in three stages: Fuzzification, fuzzy

inference and de-fuzzification. The method uses membership

functions to convert the input into fuzzy sets. The results of the

fuzzy inference are then converted into quantitative data using the

defuzzification process using two membership functions.

Comparison without Fuzzy logic as well as with the coronavirus

optimization algorithm, Harris-Hawks optimization, the Black

Widow optimization algorithm and a Kalman filter shows an

advantage in both classification rate and convergence. However,

the method performance depends on the quality of the input data.

This can be avoided by utilizing the sequential properties of

echolocation clicks to learn from high-dimensional data using the

residual neural networks (ResNet).

The ResNet’s ability to effectively learn hierarchical features

makes it suitable for learning from image-like representations, such

as spectrograms, so that it can exploit both temporal and spatial

information. The ResNet model proposed in (Bergler et al., 2019) is

used for segmenting, recognizing and classifying audio segments as

killer whale sounds or noise. Themethod used is a modification of the

ResNet architecture. The data is divided by a sliding window into

short segments that are used as input to the ResNet-based neural

network. The network performs binary classification for presence

detection to determine if the segment contains clicks. For evaluation

metric, a measure for the time-based precision is offered to measure

the accuracy of click detection over time. This is shown to be useful

for generalization of time-dependent processes. Nevertheless, the

performance is sensitive to the choice of detection threshold. To

solve this robustness problem, data augmentation has been proposed.
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Data augmentation is used to expand the database for training

using simulated clicks. Data augmentation is used in (White et al.,

2022), where the EfficientNet B0 model is used as the backbone of

the CNN pipeline to distinguish between environmental noise,

dolphin sounds, biological clicks and ship noise. This model

scales the depth, width and resolution of the network for robust

detection. The input for the CNN is a multi-channel spectrogram.

Audio enhancement in the time domain includes time shifting,

pitch shifting and changing the SNR. This is followed by a squeeze

and excitation (SE) block to selectively emphasize informative

features. A global average pooling layer is applied to the output of

the SE block to generate a feature vector, which is then passed

through a fully concatenated layer with four neurons per sound

source category (ambient sounds, dolphin sounds, biological click

sounds and ship noise). This is followed by a softmax activation

function to generate a probability distribution across the sound

source categories. The results show that the models should

incorporate elements of the soundscape to achieve the desired

results. The model is pre-trained on the ImageNet database of

1000 classes. Transfer training is performed by adapting the final

layer of the CNN. Another approach for training with small data

sets is the use of Support Vector Machines (SVMs) and

unsupervised learning.
3.3 Support vector machine methods

Support-vector machines are effective when the labeled dataset

is small or when explicit features can be extracted. The class of

SVM-based classifiers is used for binary classification between clicks

and noise segments. For the detection of foraging clicks with low

SNR (Jarvis et al., 2022) has offered a class-specific support vector

machine (CS-SVM). Results are demonstrated for the detection and

classification of dolphin clicks, beaked whale clicks and sperm

whale echolocations. First, an energy detector is used to recognize

regions of interest (ROIs) containing possible click sounds. The

ROIs are then analyzed for feature extraction, i.e., to analyze the

acoustic features of the detected clicks. Extracted features are fed

into the CS-SVM classifier. A noise variable threshold adapts to

different noise levels, ensuring effective detection of clicks. The

Auto-Grouper algorithm is used for detection verification. This

algorithm groups click sequences based on their periodicity, helping

to identify and classify marine mammal vocalizations (Roch

et al., 2011).

Transformer-style encoders are only beginning to permeate

marine-mammal acoustics, yet early results hint at substantial

gains once sufficient labeled audio is available. The authors of

(Frasier, 2021) fine-tuned a wav2vec-style Transformer on a large

data set (24 TB) of Atlantic and Pacific odontocete clicks, cutting

per-click error by 32% relative to a CNN front-end when

background cavitation was strong (Frasier, 2021). Building on

that idea, animal2vec—a cross-domain self-supervised

Transformer originally trained on terrestrial mammals—retains

good accuracy after zero-shot transfer to sperm-whale clicks,
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underscoring the modality-agnostic nature of self-supervised

attention blocks (Schäfer-Zimmermann et al., 2024). Despite

these encouraging signs, marine uptake remains sparse. We

believe the main causes are: (i) public labeled underwater corpora

are still orders of magnitude smaller than their terrestrial

counterparts, limiting the scale at which Transformers are best

utilized; (ii) real-time PAM systems impose tight energy budgets,

making heavyweight attention models impractical on embedded

hardware; and (iii) benchmark protocols have yet to converge, so

researchers favor incremental CNN variants because of smooth

integration that using legacy pipelines.
3.4 Unsupervised methods

The difficult in data labeling makes fully unsupervised

clustering a method of choice to reveal recurring click types

directly from long recordings. The method in (Cohen et al., 2022)

is a comprehensive method for identifying and classifying

odontocetes clicks. This method characterizes clicks by their

spectral patterns, such as low amplitude peaks and broad main

peaks. The unsupervised Chinese Whispers (Biemann, 2006)

clustering algorithm is used to identify dominant signal types

based on spectral distances. The clusters are manually inspected

and compared across sites to identify recurring signal types,

focusing on spectral shape, inter-click interval (ICI) distribution

and self-similarity. The method also includes parameter tuning for

clustering to balance temporal resolution with data manageability.

The main assumption in developing this method is the constancy of

the click’s spectral features.

The summary of the machine learning-based click detection

method is presented in Table 2.
3.5 Advantages and disadvantages of
machine learning-based methods

Supervised CNN methods (Section 3.1) use large annotated

datasets to automatically learn features, making them suitable for

pattern recognition. Their strength for click detection lies in their

ability to learn of the important characterization of the click and to

generalize. An example is the results in (Luo et al., 2019), which

provides good results for whale clicks from the deep-water

environments and coastal regions, illustrating the diversity of the

methods. However, this robustness comes at the need for a large

training dataset.

Approaches based on other neural network architectures

(section 3.2), such as MLPs (Sánchez-Garcıá et al., 2010) and

ResNet (Bergler et al., 2019) are designed to process sequential

and non-linear data effectively. These models are capable of

capturing long-term dependencies and complex patterns.

However, they also face challenges such as vanishing gradients

and the need for careful tuning of the architecture, making them

more sensitive to training conditions.
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Support Vector Machines (SVMs) as proposed in (Jarvis et al.,

2022) (Section 3.3) achieve robust classification even with limited

data due to their controlled model complexity. Their main

advantage is the low risk of overfitting. However, they often

require manual feature extraction, which can limit their

effectiveness compared to fully automated deep learning methods.

Unsupervised methods (Section 3.4) use e.g., clustering as in

(Cohen et al., 2022) to detect intrinsic patterns without prior

labeling. These techniques are valuable for exploratory analysis

and discovery of underlying data structures, but their performance

is strongly influenced by the choice of distance metrics and

clustering parameters, which can lead to inconsistent results.
4 Adaptive detection

We call data-dependent methods a family of approaches that

derive their processes from the data itself, similar to machine

learning algorithms, but do not include a learning phase. One

such approach is the template matching approach, which

identifies patterns or features in the data and matches them to a

template of the target signal. Other data-driven approaches use

adaptive filters and the page test. The following is an overview of

such approaches for click detection.
4.1 Template matching

In template matching species-specific click waveforms are

cross-correlated with the data to reject noise transients without

previous training. In (Harland, 2008) details of the Transient

Research Underwater Detector (TRUD), algorithms are presented.

This scheme detects and classifies echolocation clicks through the

spectrogram correlation. The correlation is based on templates of

click patterns of different species. TRUDs based on a General

Wideband Pulse Detector (GWPD), which uses narrowband

energy accumulation and compares it across different time

samples to detect potential whale-like clicks. The detected clicks

are then organized into pulse trains and their statistical properties

are evaluated. The method combines single click analysis with pulse

train, thereby overcoming noise transients.

The method presented in (Siddagangaiah et al., 2020) is a

probabilistic approach that uses the concept of sampling entropy

(SE). The method starts with the selection of an embedded

dimension and constructs an embedding vector for each point in

the time series that is comprised of consecutive samples. The

correlation sum is a normalized count reflecting how many pairs

of states (represented as vectors in the reconstructed phase space)

are similar to each other within a certain level of tolerance

(distance), excluding comparisons of a state with itself. The

detection metric of SE is based on the natural logarithm of the

conditional probability that a data set that has repeated for d

samples within a tolerance r will also repeat for d+1 samples.

Since clicks increase the standard deviation of the ambient noise
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such that the SE approaches to zero, the conditional probability is a

good metric to separate signals from noise. Since no assumption on

the noise distribution is required, the method is robust for different

types of noise, including overlapping dolphin whistles and ship

engine noise, and does not require prior training. However, it is

difficult to distinguish clicks from noise 8transients, such as those

which originate from snapping shrimp.

Another method that relies on a priori information about the

signal is presented in (Jang et al., 2023). The method is geared for

tracking odontocetes (toothed whales) using a refined generalized

cross-correlation (GCC) to adapt to noise environments and detect

echolocation clicks while estimating the TDOA. Noise suppression

is achieved by accumulating echolocation clicks over longer

intervals. This, in turn, requires a clustering procedure to manage

multiple TDOAs. The latter involves clustering of parameters such

as location and speed using a factor graph-based multi-target

tracking (MTT). The sum-product algorithm is used for tracking

in the TDOA range, with a second MTT for 3D tracking by

combining TDOAs from different hydrophone pairs. The method

assumes that the clicks are stationary over a time interval longer

than the GCC length. This, however, may limit its applicability in

complex marine environments.
4.2 Adaptive filters

When pre-defined templates fail under drifting noise, adaptive

filters reshape themselves in real time, maximizing the SNR of

transient clicks without prior training phase. In a matched filter, a

given signal is correlated with a known waveform (the template) of

the target signal in order to obtain the energy of the signal and the

gain during processing for noise cancellation. In (Caudal and

Glotin, 2008), the detection of sperm whale clicks is achieved by a

stochastic matched filter (SMF), which correlates the incoming

signal with a template signal, taking into account the statistical

properties of the noise and echoes. In the SMF, the SNR is

maximized by identifying the eigenvector associated with the

largest eigenvalue in a given matrix equation. The detection

function uses the linear filter applied to a typically small data

window that matches the average length of a sperm whale click to

determine whether the sound in that segment is likely to be a whale

click or just random sea noise. The template is created from an

average of 1,000 whale clicks. In (Altaher et al., 2023) a method for

localizing individual pulse-like underwater sounds using an array of

hydrophones is offered. The localization involves a matched filter

with an adaptive threshold. For each detected pulse, a dynamic

window is applied using the call itself as a template. This dual MF

approach proves to be more accurate than using a single MF.

However, the signal is assumed to be stationary, which may not be

true in all underwater environments.

The method in (Lopatka et al., 2006) detects sperm whale clicks

using a recursive time-varying grid filter. At the heart of the method

is the normalized recursive exact least-square time-variant lattice

filter, which dynamically adapts to the signal’s changing properties.

This filter projects the signal onto a subspace defined by its past
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values. This approach accounts for changes in the second-order

statistics of the signal captured by time-varying Schur coefficients,

rather than relying on amplitude alone. The method does not

require prior knowledge of the arrival time, amplitude or shape of

the click. The algorithm also includes a forgetting factor that helps it

adapt to the non-stationary nature of whale clicks by controlling the

influence of past signal values, making it particularly effective in

noisy environments. However, need for precise parameter

calibration, such as the forgetting factor, could be challenging. An

alternative to clicks correlation is detection by examining deviations

from the expected values of the matched filter using the Page test.

The authors of (Jang et al., 2022) propose a detection method

that uses generalized cross-correlation with noise whitening (GCC-

WIN) to extract TDOA measurements from echolocation clicks

recorded by hydrophone arrays. The data is pre-filtered to isolate

the frequency range of the clicks, then weighting the cross-power

spectral density with a factor derived from pre-calculated noise

power spectral densities is applied, highlighting click-related peaks.

Peaks that exceed a preset threshold (PTDOA) are identified over

short observation intervals and then accumulated over a longer time

window to increase the probability of detection. To avoid false

detections, a clustering algorithm is used to group similar TDOA

measurements and ensure that only stable estimates are retained.

The approach improves detection under low SNR conditions

through effective noise suppression, but depends on accurate

noise modeling and precise threshold selection, and its

performance is sensitive to parameters such as the length of the

accumulation window and the clustering criteria.
4.3 Page test

To catch subtle — abrupt changes that elude correlation filters

— the Page Test can flag cumulative points in energy or variance.

The authors in (Wu et al., 2016) offer a modification of the Page test

for low SNR environments. The approach performs wavelet analysis

to remove noise transients prior to the page test. The Page test, also

known as the cumulative sum test, is a sequential analysis method

that detects changes in a data sequence. The test is based on

comparing the variance and sample mean of a set of data with

the expected mean and variance of a normal distribution. If the

difference between the sample values and the expected values is

significant, the test rejects the null hypothesis that the data is

normally distributed and concludes that a signal is present. The

Page test can also be adapted to detect transients corresponding to a

click sound. The method in (Beslin et al., 2018) uses the Page test for

detecting sperm whale clicks. In this method, the signal is modeled

as a state series and a distinction is made between ‘noise’ (absence of

a click) and ‘signal’ (presence of a click) states. The transition

between these states is determined by a signal strength statistic

relative to two predefined thresholds. A constraint forces a ‘noise’

state if it remains longer than expected in the ‘signal’ state. Signal

strength statistics are derived from estimates of instantaneous signal

and noise power. These are calculated from the envelope of the

waveform, which in turn is calculated using the Hilbert transform.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1567001
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gracic et al. 10.3389/fmars.2025.1567001
After identifying potential clicks using the Page test, these clicks are

categorized using an SVM with a quadratic kernel. The system

verifies the decision by measuring the IPI between successive pulses.

However, setting the detection threshold proves to be a challenge

for robust detection as noise conditions vary in different marine

environments. This is where threshold adjustment can help.

The click detection in (Johansson, 2004) is based on the Page

test. Once a potential click is identified, the algorithm analyzes the

waveform, frequency spectrum and its resonance frequency to

verify detection. A set of features is then extracted for each

potential click, including the click duration, peak/centroid

frequency, bandwidths, pulse zero crossing rate (ZCR) variance

and exponential fit quality. These features are fed into an SVM for

discrimination of near-axis sperm whale clicks from off-axis clicks

and other transient noises.

In (Nosal and Frazer, 2007) a multi-stage method for detecting

sperm whale clicks is presented. The method starts with a page test

for transient detection. This is followed by envelope detection using

the Hilbert transform. Thresholds are adapted by the noise level

estimation. The method also demonstrates the ability to separate

between direct and reflected click pairs based on amplitude

variations and time intervals, which is further used in the

localization part of the method. The method has proven robust to

background noise and is insensitive to subtle variations in click

amplitude and interval. However, it assumes a structure for the

patterns of clicks, which imposes potential limitations.

A method from (Barile et al., 2024) describe uses the CABLE

software to extract the click sounds of sperm whales from passive

acoustic recordings. The method begins with a band-pass filter,

followed by a modified Page test to identify candidate click sounds

that exhibit the multipulse structure. For each candidate, the IPI is

calculated using autocorrelation and cepstrum analyzes, and a

candidate is accepted only if the two IPI estimates agree within

±0.05 ms. The accepted clicks are then further processed. This

method provides robust detection of on-axis clicks, improved

reliability through double IPI estimation, and effective noise

reduction through clustering. However, it suffers from an

extremely low overall acceptance rate and requires precise

parameter tuning with a fixed IPI tolerance that can exclude valid

clicks when natural variability is high.
4.4 Adaptive threshold

In this section, we focus on a group of detectors that adjust their

thresholds to balance sensitivity and false alarms based on ambient

noise and instantaneous SNR. Adaptive threshold allows adjusting

the detector to temporal characteristics of the data. This is

particularly useful when dealing with data that changes spatially

or temporally, such as directional whale clicks. In the context of

click sound recognition, an adaptive threshold was used in

(Skarsoulis et al., 2022) by coupling energy and frequency

features. The clicks are characterized by repetitive arrivals with

constant or slowly varying repetition periods within an assumed

boundary for the ICI for sperm whale clicks. The detector analyzes
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the peaks of the histogram of arrival time differences at each

hydrophone in search for dominant separations within the ICI

range. Detection is declared if the corresponding arrival times show

a regularity within a certain tolerance and their number exceeds a

minimum time-varying threshold. A “detection event” is confirmed

if either at least two detection flags are triggered in the current 1-

minute recording or if one detection flag is triggered in the current

recording and at least one more in one of the two previous 1-minute

recordings. The real-time operation of the system is designed to

process multiple hydrophones in parallel.

In (Morrissey et al., 2006) an energy detector is applied for

identifying frequency bins that exceed a predetermined, time-

averaged power threshold. The threshold is empirically set above

the noise floor. Detection is declared by requiring parallel detection

in a number of bins. This approach is particularly useful to detect

broadband, impulsive signals such as clicks of sperm whales. In

(Gervaise et al., 2010), a detection scheme based on the signal’s

kurtosis is offered to identify the expected sharpness in the samples’

distribution in the case of a transient. The threshold is adapted to a

sliding window to manage temporal heavy tail distributions when

noise transients occur. However, the scheme is sensitive to scenarios

with overlapping clicks. To handle such cases, another option for

adjusting the threshold is spectral analysis.

For separating overlapping groups of echolocation clicks the

frequency spectra, peak-to-peak amplitude, and IPI levels are used.

In (Hamilton et al., 2021) the correlation of frequency spectra

between clicks is used as a grouping metric while assuming that

the characteristics of clicks from the same animal change gradually.

To address the challenge of incorrectly classifying background noise

as echolocation clicks, the algorithm uses the Low Percentage

Removal Limit (LPRL) parameter, which is a critical component

in the Click Group Separation algorithm, addressing the issue of

background noise misclassification. Operating under the premise

that falsely classified noise peaks constitute only a minor fraction of

detected click groups due to their inconsistent Inter-Click Interval

(ICI), amplitude, and frequency spectra, LPRL begins with a 0%

setting. During the initial phase, an operator manually discerns and

adjusts the LPRL to 1% above the percentage of total clicks

identified as noise-related false positives. Subsequently, the

algorithm is re-run, discounting “clicks” from groups below the

set LPRL threshold. This procedure ensures the retention of

authentic ICI values and amplitude thresholds, pivotal for precise

click grouping. The introduction of LPRL significantly enhances the

CGS algorithm’s accuracy by effectively filtering out noise and

reducing misclassification of echolocation clicks, particularly

beneficial in noisy environments. Furthermore, the provision for

manual adjustment of LPRL imparts flexibility to the algorithm,

allowing it to be tailored to the unique noise characteristics of

different datasets, thereby extending the CGS algorithm’s

applicability and robustness across diverse research settings. The

algorithm adapts to the characteristics of the detected clicks.

Another form of adaptive processing is for the spectral energy.

In (Lohrasbipeydeh et al., 2015) the adaptive Teager-Kaiser energy

operator (A-TKEO) is combined with an adaptive matched filter.

The authors use adaptive windowing to account for the time-
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varying characteristics of the signals, and smoothing windowing to

remove signal peaks that arise due to interference. The threshold is

adjusted based on the mean and variance of the signal. In

comparison with the TEO, the rainbow click detector and the

spectral density (SD) detector shows an advantage attributed

mostly to the smoothing processing. The proposed method relies

on an accurate estimation of the ICI, which can be challenging at

low SNR. A similar approach is used in (Madhusudhana et al.,

2015), where the application of TKEO is used in combination with

moving average filters. The TKEO output is further processed by

two short moving average filters, a scaled Gaussian function and a

rectangular averaging filter, to provide near instantaneous spike

detection. The filter difference ratio (FDR), a normalized measure

derived from the outputs of the Gaussian function and the filter, is

critical for identifying spikes corresponding to clicks. This approach

was developed to amplify the energy peaks corresponding to clicks

while suppressing the harmonic components. The method has low

computational complexity and can be used in real time.

The method in (Jarvis et al., 2014) uses spectrogram analysis.

The algorithm uses a per-frequency bin, a dynamic threshold,

which tests the multiplicative factor k over the exponential

average of the power in the frequency bin. The result is a binary-

valued spectrogram, where each bin exceeding the threshold is

marked. As the algorithm processes the full bandwidth, it is able to

capture a wide range of vocalization frequencies. In (Di Nardo et al.,

2023), a method for analyzing dolphin vocalizations in the presence

of background noise such as boat propellers and engines is

presented. The method for detecting peaks involves thresholding

the SNR for suspected clicks. Detected peaks are classified based on

their ICI to distinguish click sequences from noise transients. The

classification filters out reverberation and overlapping clicks and

focuses on identifying different click sequences by an adaptive

ICI threshold.

The summary of the Adaptive detection methods are presented

in Table 3.
4.5 Advantages and disadvantages of
adaptive detection methods

Template matching methods (section 4.1) are based on the

comparison of incoming signals with predefined click templates. As

an example, method described in (Harland, 2008) uses spectrogram

correlation techniques with templates derived from known click

patterns of different odontocete species. Template matching can

achieve high precision if the pattern is well described, but their

rigidity means that they are less adaptable to variations in signal

characteristics, often leading to missed detections if the incoming

signals deviate from the template.

Adaptive filtering methods (section 4.2) dynamically adjust the

filter parameters to track the evolving signal characteristics. This

flexibility allows them to work well under changing noise

conditions. The drawback is that they require precise parameter

tuning and can require significant computational effort in rapidly

changing acoustic environments. For example, the approach
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described in (Lopatka et al., 2006) requires adjustment of two

non-binary parameters—the forgetting factor and the

adaptation gain.

The Page test method (Section 4.3) uses statistical techniques to

detect abrupt changes in the signal, making it useful for identifying

transient click events. Its main advantage is the ability to confirm

the presence of signals by statistical means such as the cumulative

sum (CUSUM) approach implemented in (Wu et al., 2016).

However, the reliance on certain statistical assumptions can cause

the method to falter under conditions that deviate from

these expectations.

Adaptive thresholding methods (Section 4.4) change the

detection thresholds to adapt to noise fluctuations and signal

variations. Their flexibility makes them particularly effective in

environments with variable noise levels. However, determining

the optimal adaptation strategy like choosing between the

ATKEO approach described in (Lohrasbipeydeh et al., 2015), and

the TKEOmethod combined with moving average filters and a filter

difference ratio (FDR) outlined in (Madhusudhana et al., 2015) can

be a challenge.
5 Remaining challenges

Our discussion about the advantages and disadvantages of each

group of methods reveals some common advantages. First, most

methods rely deeply on real recordings which adds to their

reliability. Second, the current methods are aware of the problem

of changing signal and noise characteristics and aim for a robust

detector. Third, the surveyed works are aware of the need to

perform detection either in real time or over large data volume,

and thus aim for low complexity applications. However, we argue

that some fundamental challenges still exist and the problem of

click detection and annotation is not solved. This can lead to future

research directions.

The first challenge is the detection of clicks when multiple

whales vocalize simultaneously. This overlap disrupts the stability of

the click series and affects methods that depend on the regularity of

inter-click and inter-pulse intervals, which extract spectral and

temporal features from structured click sequences. Addressing

this issue may require integration of source separation techniques

within the detector, similar to a “track-before-detect” approach.

The second challenge lies in accounting for the effects of the

channel impulse response, particularly multipath arrivals and

Doppler shifts. The former can affect the calculation of ICI or IPI,

thus impairing the performance of methods that rely on temporal

metrics. The latter distorts the signal’s spectral content and reduces

the accuracy of frequency-based detection methods. However, the

channel can serve for diversity gain using its feature analysis for

stability test, especially since the whale swims relatively smoothly in

the water. The channel can also enhance the signal-to-noise ratio if

using focusing techniques such as beamforming.

The final challenge is the standardization of datasets. We have

observed that nearly every study uses its own data collection

methods, with only a few works [e.g., (Mellinger, 2006), and
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(Orcasound, 2018)] sharing their datasets. This lack of

standardization hinders the direct comparison of method

performance. In this paper, we have attempted to address this

issue by implementing key benchmarks and comparing different

methods on the same dataset. The publication of standardized

datasets would enable future researchers to compare the

performance of new methods across various marine environments

and differing signal characteristics.

Despite the progress that has been made in the detection of

sperm whale’s or dolphin’s echolocation clicks, we identify

remaining challenges. These are listed in the following along with

potential topics for future research.
5.1 Remaining challenges for feature
analysis

The variability of signal characteristics due to individual

differences between marine mammals, such as different click

patterns and vocalization types, poses a major challenge for

research. The algorithms must be adaptable enough to accurately

analyze a wide range of signal types under different environmental

conditions. Additionally, the presence of background noise,

including natural and anthropogenic sources, complicates signal

processing and feature extraction. The dynamic nature of

underwater environments, characterized by changing temperature

and salinity, affects the sound propagation. This variability requires

algorithms that can adapt to such fluctuations. Another aspect is

real-time processing, which is required for many applications, such

as monitoring shipping traffic and identifying species for nature

conservation. The development of algorithms that are accurate and

efficient in real-time data processing remains a major challenge.

As for future research directions, the development of integrated

solutions combining acoustic properties with oceanography

information and acknowledge of the animal’s activity (e.g.,

vocalizing only upon surfacing) could provide better detection

results. Another potential research avenue could be the

exploration of advanced signal processing techniques such as the

Hilbert-Huang transform, which offers advantages in analyzing

non-linear and non-stationary data prevalent in marine

mammal acoustics.
5.2 Remaining challenges for machine
learning detection

One of the biggest challenges we see in the application of

machine learning algorithms for acoustic detection of bio-fauna

transient signals is the robustness for different underwater

environments and for noise instances such as from snapping

shrimps and vessel cavitation radiated noises (Renilson Marine

Consulting Pty Ltd., 2009). Proposed solutions are usually only

suitable for certain contexts and often struggle with the variability

and unpredictability of different marine soundscapes. These include

the presence of similar-sounding species that are not part of the
Frontiers in Marine Science 25
target objects, anthropogenic noise and different acoustic properties

of the ocean. Another challenge is that only a limited amount of

labeled data is available for training many of these algorithms. This

is critical for supervised learning approaches and is exacerbated

when dealing with rare or less studied species.

Future research could explore several promising avenues to fill

these gaps. One approach is to improve feature extraction

techniques to better capture the unique acoustic characteristics of

different species, even in noisy environments. This could involve

attention networks for the application of deep learning which have

shown potential for dealing with limited data in other areas. In

addition, the development of semi-supervised or unsupervised

learning models could alleviate the problem of scarce labeled data

by exploiting the abundant but unlabeled acoustic recordings.

Research could also focus on developing more robust algorithms

that can adapt to different ocean conditions and different noise

profiles. Collaborative efforts to share and annotate data by

researchers around the world could significantly enrich the

datasets available for training and testing and improve the

accuracy and reliability of the models.
5.3 Remaining challenges for adaptive
detection methods

A main challenge that we observe for data-driven techniques is

in the effective processing of time-varying signals. Strong

background noise, complex oceanic soundscapes and varying

SNR can significantly affect the accuracy of species identification

and detection performance. Another critical issue is to measure the

IPI and ICI. Signal reverberations and overlapping sources can

easily be mistaken as noise transients leading to misdetections. This

will also occur when the animal’s clicks are directional, causing

time-variation in the SNR, which is often neglected when searching

for constant sequences of pulses. A formal representation of the

problem as a constraint optimization problem can assist in the

rigorous analysis of the signals.
6 Publicly available resources

6.1 Available databases of clicks

An important part of our survey is a list of databases including

echolocations that are openly available for testing. Several projects

have kindly released their collected data. These datasets can serve as

benchmarks to compare detection performance on a common basis,

and to train in case of learning schemes. Publicly accessible and free

databases we found are cataloged in Table 4. The name of the

dataset and a link to access it are given in the first two columns. We

also list the location where the data was collected. The data type and

the data size are listed, as well as an indication whether the data is

labeled or not. There are additional available datasets that were not

used in surveyed papers, collection of which can be found on

(Kloepper, 2018) or (Portal, 2018).
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6.2 Open source click detection methods

As most of the methods we surveyed are complex to implement,

several papers as well as software platforms share their

implementation code. This is very useful for users or as benchmark

schemes. PAMGUARD (Gillespie et al., 2009) is a semi-automated

open-source software framework for passive acoustic detection and

classification of sperm whales or dolphins. PAMGUARD serves as a

platform passive acoustic detection techniques and tools that were

previously available to provide a solution for researchers and users in

the field. The platform is flexibly designed to process data from

multiple sensors in any configuration. The software is highly modular,

meaning it can be customized for different sensing platforms, e.g.,

offline processing of audio files or work in a real time mode. The

supported vocalizations range from low-frequency moans to

ultrasonic echolocation clicks. The user can choose between

detection methods. In particular, the software uses a combination of

pre-filters and trigger filters for click detection, optimizing the

detection in the frequency band of interest and creating short sound

clips for further analysis. Several parameters are required for system

operation. These include the frequency, pattern, and intensity of the

clicks produced by the target species. Performance of PAMGUARD is

often used as an benchmark e.g., (Baumann-Pickering et al., 2010b;

Madhusudhana et al., 2015; Vachon et al., 2022).

Another popular open source solution is Ishmael (Mellinger,

2002). Ishmael offers several methods for marine bifauna passive

detection, including energy detection, matched filtering and

spectrogram correlation. The processing is performed over the

signal’s spectrogram. Detection thresholds are adaptively set such

that fewer parameters are required from the user. Detection of

signal sequences is also offered, which increases its usefulness for

monitoring biological or mechanical sources with cyclostationary

patterns. Both real time and offline modes of operations are

possible. However, the method assumes a certain level of user

knowledge in interpreting and customizing the detection

function, which could be a limitation for less experienced

individuals. Research papers that compare performance with

Ishmael are (Reyes Reyes et al., 2015) and (Küsel et al., 2016).

The Triton software package (Frasier, 2018) serves as a platform

for analyzing acoustic data. It offers the user a choice between click

and whistle detection, and uses detection features such as power

spectra, spectrograms and Long Term Spectral Averages (LTSA).

The latter is efficient in condensing large data sets for display and

analysis. Triton operates via MATLAB and offers a user-friendly

graphical user interface that enables efficient review of large data

sets. It offers functions such as reading raw data from the High-

Frequency Acoustic Recording Package (HARP) and converting it

into .xwav or .wav files. Users can interactively navigate through

time series, spectrograms and spectra of single and multi-channel

files. It also provides the ability to create and interact with LTSAs

from a collection of files, facilitating long-term monitoring and

detailed investigation of specific acoustic events. In addition, Triton

supports data management by decimating high sample rate files for
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easier analysis of low-frequency sounds and saving data in different

formats. An important aspect of Triton is its extensibility through

remoras, which are user-developed MATLAB routines that can be

integrated into Triton. This allows users to customize the software

to their specific needs without changing the core functionality.

Triton is used as benchmark in (Baumann-Pickering et al., 2014).
6.3 Comparison of key algorithms

As part of our review, we implemented a number of methods

and compared their performance. The methods were selected as

representatives to the categories presented in the survey. Results are

shown for the openly available PAMGUARD (the “click detector”

module) and Triton (the “SPICE detector” remora) platforms, the

method in (Madhusudhana et al., 2015) that applies an adaptive

threshold, the detection scheme in (Sánchez-Garcıá et al., 2010) that

employs a neural network, and the method in (Lohrasbipeydeh

et al., 2015) for another representation of the adaptive

threshold approach.

The detection method in (Madhusudhana et al., 2015), referred

to as Gabor, applies the TKEO over Gabor-transformed signals.

Low complexity makes the approach suitable for online scenarios.

The method was cited by 23 papers, and offers an effective usage of

the TKEO for transient detection.

The detection method in (Sánchez-Garcıá et al., 2010), referred

to as statistical, introduces a statistics-based approach for the

identification of sperm whale clicks, primarily echolocation clicks

and creaks. This method comprises statistical analysis of features,

presence detection via a neural network, and classification of

individual echolocation clicks and creaks. The paper has been

cited so far by 7 papers, and its network architecture is well

described, making it easy to implement.

The method presented in (Lohrasbipeydeh et al., 2015), termed

ATEO, employs an adaptive energy-detector using the ATKEO,

which utilizes a windowing technique to accommodate the time-

varying characteristics of acoustic signals. The adaptive detection

threshold offers robustness in different marine environments with

little parameter calibration. The method was cited by 7 papers

so far.

We implemented the above schemes and tested their performance

on the AUTEC dataset (Fujioka, 2007). This dataset includes 1364

manually annotated clicks, and was collected in the Tongue of the

Ocean (Bahamas) using a single hydrophone deployed for 44 days. We

chose this dataset since it provides low noise recordings, on top of

which more noise can be synthetically added to test performance in

varying SNR. The results are shown in Figure 3 in terms of detection vs.

false positive rates. The figure highlights that methods such as Triton

and PamGuard achieve higher detection probabilities at lower false

positive rates. This illustrates the trade-off between sensitivity and noise

rejection. The results shown in Figure 4 are in terms of the detection

rate as a function of the SNR. We observe that the best results are

obtained with the statistical method in (Gubnitky and Diamant, 2024),
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but only at high SNR values. The schema of this method is show in

Figure 5. We report that the method is also easy to implement and only

a few parameters need to be adjusted. The adaptive threshold method

ATEO in (Lohrasbipeydeh et al., 2015) also requires only a few

parameters for calibration. This method can work well at low SNR,

but can only detect the presence of a single whale. The detection

method implemented in the Triton platform provides good results at

high SNR. Its advantage lies in its ease of use with a user-friendly GUI,

but it requires many parameters for calibration and is more suitable for

processing large files. Compared to the other methods, the Gabor

method in (Madhusudhana et al., 2015) provides low results. However,

it is easy to implement and relatively robust. Finally, PAMGUARD,

with its “click detector”module, achieves good results even at low SNR,

but is not robust based on the trade-off between detection and false

positive. Nevertheless, it provides a simple analysis platform that can

operate in real-time, and its main advantage is the ability to process

arrays of hydrophones to provide an angle of arrival estimate using a

phased array.
FIGURE 3

Detection rate (Pd) vs. false positive rate (FAR) for 5 click detection
schemes over the AUTEC dataset (Fujioka, 2007).
FIGURE 4

Detection rate (Pd) vs. frequency component of the signal (fsignal) to noise ratio (SNR) for 5 click detection schemes over the AUTEC dataset
(Fujioka, 2007).
FIGURE 5

Schema of the statistical code detector. Figure used from (Gubnitsky et al., 2024).
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6.4 Details of the AUTEC database

The dataset used for comparison of several methods was

collected by the AUTEC Center. The observatory is located in the

Bahamas. This is a deep-sea acoustic site that is equipped with

bottom-mounted hydrophones deployed over an area of

approximately 1,200km2 at a water depth of 1630 meters. The

acoustic data in the shared dataset was collected over a 6-day period

(April 26 to May 2, 2005) using a network of 81 broadband

hydrophones. The sampling rate for each hydrophone was 96

kHz. The dataset includes tens of thousands of clicks. The signal-

to-noise ratio (SNR) of the clicks ranged from 5 dB (were the

detection threshold was set) to over 30 dB. An automatic detector

confirmed by manual verification was used.

The dataset also contains detailed metadata (timestamps,

hydrophone IDs, species assignment), curated detection logs and

publicly available tag records. The dataset is distributed through the

OBIS-SEAMAP and DECAF project repositories and has become a

reference resource for passive acoustic monitoring of marine

mammals in low-noise deep-sea environments.
6.5 Summary of click detection algorithms

In this subsection we summarize the detection schemes

surveyed in this paper. Table 4 presents four main challenges that

were considered in the development of click detection methods, and

lists the papers that directly handle these challenges. This table can

support future research by directing authors to papers most relevant

to their focus field. In Table 5 we group detection methods based on

the type of data that was used for performance evaluation. Since

most of the methods used a real dataset, the table further shows the

public availability of the data. While half of the researched literature

embraces openness, offering access to their data, the other half

withholds their datasets from the public. This disparity not only

hinders the validation and reproducibility of scientific findings but

also stifles innovation. The absence of shared data curtails the

potential for collective advancement, as researchers are deprived of

the opportunity to build upon existing work, explore new

hypotheses, or apply advanced analytical techniques to rich, pre-

existing datasets. In this scenario the scientific community, and

ultimately the research itself, loses the most. In Table 8 we identify

common processing tools used by the detection methods. The tools

are also divided by the approaches selected as subsections in our

survey, and allow the reader to identify the type of analysis required

when coming to detect clicks. In Table 7, methods are grouped by

their application. This division can assist the choice of benchmark

based on the considered scenario, e.g., real time analysis or offline

processing of many files. The supervised and unsupervised labels

used in this table refer to the need for manual labeling. In Table 9,

we divide the detectors by the detection features that are used. Some

of the features are used more frequently, while other features are
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used in only one research study. This list reflects the commonalities

of clicks’ attributes.
7 Conclusion

The importance of monitoring echolocation clicks is

demonstrated by the need to analyze behavior changes, explore

population changes, and evaluate environmental impacts of

anthropogenic activities. In this survey we aimed to systematically

categorize and evaluate a broad spectrum of methodologies for

detecting cetacean echolocation clicks. We provided an overview of

feature analysis, machine learning-based detection, and data-

dependent methods. Feature analysis techniques delved into the

intricate characteristics of clicks, such as duration, phase, frequency

and energy, employing signal processing tools to separate clicks

from the ambient noise. Machine learning-based detection emerged

as a promising frontier, with methods like convolutional neural

networks (CNNs) and recurrent neural networks (RNNs) offering

pattern recognition capabilities. Data-dependent methods provided

a structured approach to comparing signals against predefined

templates, harnessing specific characteristics of the target clicks

for detection. Advanced signal processing techniques such as

adaptive filtering and wavelet transforms should be further

explored to improve feature extraction from noisy underwater

environments. The development of semi-supervised and

unsupervised learning models could address the lack of labeled

datasets and take advantage of the vast amounts of unlabeled

acoustic data collected during ocean monitoring. Exploring

methods of transfer learning and domain adaptation may provide

opportunities to adapt models trained for well-studied cetacean

species for lesser known or newly discovered species. We have also

surveyed datasets openly shared for performance evaluation, and

open software platforms. Collaboration between researchers,

biologist and policy makers should establish standardized

protocols for data collection, sharing and analysis that facilitate

the development of universally applicable detection algorithms. To

comment on the suitability of the different approaches, we

implemented representative schemes and tested their detection

performance over a single dataset. Despite the advancements and

the diversity of approaches reviewed, it is imperative to recognize

that no single technique currently suffices to detect and classify the

vocalizations of all known cetacean species in a robust manner. This

reality underscores some of the remaining challenges in the field.

These challenges include dealing with the variability and

unpredictability of marine soundscapes, the scarcity of labeled

data for algorithm training, and the need for algorithms that are

robust against environmental noise, shipping cavitation noise and

interference from other marine fauna. Addressing these limitations

calls for a multifaceted approach: enhancing feature extraction

techniques, embracing the potential of deep learning while

ensuring adaptability to limited data. A particular challenge lies in
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the separation of clicks from simultaneously emitting animals.

Finally, we divided the works surveyed by their application, tools

used, and application to serve for future development of click

detection techniques.
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