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Echolocation clicks, emitted by Sperm Whales (Physeter macrocephalus) and
Dolphins for foraging, echolocation and socialization, serve as bioindicators for
monitoring marine ecosystems. Detecting click signals provides information on
the abundance of species, their behavior and their responses to environmental
changes. This paper provides a survey of the many detection and classification
methodologies for clicks, ranging from 2002 to 2023. We divide the surveyed
techniques into categories by their methodology. Specifically, feature analysis
(e.g., phase, ICl and duration), frequency content, energy-based detection,
supervised and unsupervised machine learning, template matching and
adaptive detection approaches. Also surveyed are open access platforms for
click detections, and databases openly available for testing. Details of the method
applied for each paper are given along with advantages and limitations, and for
each category we analyze the remaining challenges. The paper also includes a
performance comparison for several schemes over a shared database. Finally, we
provide tables summarizing the existing detection schemes in terms of
challenges address, methods, detection and classification tools applied,
features used and applications.

KEYWORDS
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1 Introduction

Echolocation clicks are emitted by cetaceans for self-navigation or to locate prey
(Zapetis and Szesciorka, 2022). In view of the high occurrence of echolocation clicks, these
signals serve as important bioindicators that can be used to draw conclusions about the
abundance of cetacean species (Frasier et al., 2022; Fleishman et al., 2023). The analysis of
these signals for presence detection or to classify individuals includes the temporal and
spectral processing and the characterization of signals to investigate animal behavior
patterns (Andre et al., 2011). Indirectly, the detection and classification of clicks can serve
as key techniques to understand anthropogenic impacts on the marine environment and to
develop data-driven strategies and regulations (Frasier et al., 2022; Allen et al., 2024). Since
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monitoring the activities of marine animals by passive acoustic
monitoring (PAM) requires the analysis of large data sets, there is a
need for automatic detection (Barkley et al., 2024). The
development of such detectors for echolocation clicks results from
the broadband structure of these signals (Au and Hastie, 2007).
While previous surveys are offered for detection of bioacoustics
vocalizations [(Bittle and Duncan, 2013; Usman et al., 2020;
Rideout, 2022)], ours complements these by focusing on detection
of transients, focusing on methods that work for these specific
signals. We also present the databases used in the reviewed papers
as well as implement most significant detection algorithms and
compare them to the most commonly used detection software. The
methods described herein rely solely on passive acoustic
monitoring, which poses no ethical concerns for marine life (Falk
and Williams, 2022).

Echolocation clicks of sperm whales and dolphin groups are
impulse-like signals that are generated in the animal’s nasal passage
as a directionally signal. To produce these signals, marine mammals
push air through a pair of specialized organs called monkey lips or
phonic lips (Andreas et al., 2022). The result of the air pressure
passing through these lips is a “clapping” sound, often referred to as
a click (Au and Hastie, 2007). The click sound can also be modified
by a special organ in the animal’s forehead that focuses the shape of
the click signal, similar to an acoustic lens (Andreas et al., 2022).
This process generates short transients that travel through the water
and return to the animal as reflections. The animal uses these echoes
to create a sound-based image of its surroundings. This last process
involves the lower jaw bone, which receives the vibrations and then
transmits them to the inner ear (Au and Hastie, 2007). From the
sound-based images, the animal is able to analyze its distance to
objects, the shape and density of reflectors, and even the speed and
trajectory of potential prey (Knuth, 2021). Since we know for the
most part how marine animals produce clicks, methods for
recognizing such signals are offered for each individual species.
Nevertheless, some general characteristics of clicks can be derived.

1.1 Characteristics of clicks

The structure of an echolocation click of a sperm whale or
dolphin is characterized by its duration, frequency band, emission
rate and directionality (Baumann-Pickering et al., 2010a). These
clicks are typically short, pulse-like signals with a frequency band
ranging from a few kHz in baleen whales to 160 kHz in some
toothed whale species such as the harbor porpoise, depending on
the species (Tyack and Janik, 2013). The duration of a sperm whale
or dolphin click can range from microseconds to milliseconds
(Madsen et al., 2004; Koschinski et al., 2023), and clicks are often
produced in sequences: from a few clicks per second to several
hundred (Goold and Jones, 1995; Johnson et al., 2008). The
direction and shape of the sound beam vary from a narrow beam
of 5" in narwhals (Monodon monoceros) to a wide beam that is
almost omnidirectional in sperm whales (Physeter macrocephalus)
(Zimmer et al,, 2005; Koblitz et al, 2016). The distinguishing
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features of the click usually include the bandwidth, the center
frequency and the inter-click interval (ICI) (Baumann-Pickering
et al,, 2010a; Baumann-Pickering et al., 2013; Cohen et al., 2022;
Ziegenhorn et al., 2022). The latter can change depending on factors
such as water depth (Simard et al., 2010). Differences in duration
and pattern can also vary considerably; not only between species,
but also between different individuals of the same species or even for
the same individual under different conditions (Baumann-Pickering
et al., 2010a; Leu et al., 2022; Cantor et al., 8091). For example, it is
known that the change in male sperm whales ICI for slow clicks is
between 4 and 10 seconds (Oliveira et al., 2013). The detection of
clicks from a particular sperm whale or dolphin must therefore take
into account the specific characteristics of the target clicks and
distinguish them from clicks from other sources. Furthermore, to be
robust, the detection scheme must be able to deal with sounds
recorded from the marine environment, all of which may have
transient characteristics similar to clicks.

1.2 Challenges for click detection

The main challenges in detecting echolocation clicks of sperm
whales or dolphins lie in avoiding false detections due to
anthropogenic noise disturbances (e.g., cavitation noise from
ships), biological sources (e.g., snapping shrimp noise (SSN)) and
transients that follow the strong tail distribution of clicks at sea
(Zimmer, 2011). If the propeller turns fast enough, the low pressure
areas of the propeller can fall below the vapor pressure and the
seawater can boil at ambient temperatures. When the bubbles
behind the propeller reach ambient pressure, they implode and
large, transient sounds reminiscent of bubble cavitation are emitted
(Zhang and Lin, 2019). These signals are generated with an intensity
of up to 180dBlyPa / Hz@1m (2009), which can be heard from tens
of kilometers away. The SSN signals, in turn, are generated when a
snapping shrimp closes its claws quickly. This creates a jet of water
that is forced out between the claws and cavitation bubbles are
formed. The maximum measured signal strength of SSN was found
to be 220 dB re 1 yPa at 1 m (Versluis et al., 2000). Both cavitation
and SSN, as well as transients, e.g., caused by waves, can easily be
confused with the clicking of a whale or dolphin (Au et al., 1998).

An example of this can be seen in Figure 1, where the time
domain of a sperm whale click measured in the Bahamas (Atlantic
Undersea Test and Evaluation Center (AUTEC) data) (upper panel)
is shown together with SSN clicks (bottom panel). Another challenge
is the growing need to detect clicks in real time to enable a real-time
system of fixed ocean observatories (Zaugg et al, 2010). Here, a
detector with low complexity is needed. In addition, echolocation
clicks from multiple emitting animals may overlap in time due to the
fast emission rate of the animals, which requires the ability to separate
the sources. Finally, measuring the ICI poses another challenge as the
sequence of clicks may change over time or overlap with other
sources emitting at the same time. Considering the above
challenges, a variety of techniques have been proposed to find a
robust trade-off between detection and false positive rate.
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FIGURE 1

Time domain representation of sperm whale click and SNN transient
showing similarities. (A) Recorded click from AUTEC dataset;
(B) Typical transient noise from AUTEC dataset

1.3 Metrics of performance evaluation

For performance evaluation, common metrics are the
probability of detection, the F-score and the Receiver Operating
Characteristic (ROC). The probability of detection or sensitivity
measures the ability of the detection method to correctly identify

10.3389/fmars.2025.1567001

echolocation clicks. This can be within a certain buffer or for
individual clicks. When the detection of individual clicks is of
interest, e.g., for classification, the F-score is a balanced measure
that combines precision (the proportion of detected clicks that are
clicks) with recall (equivalent to the probability of detection). The
ROC curve offers a compromise between the probability of
detection and the false positive. The Area Under the ROC Curve
(AUC) is a measure of this trade-off, where 1 is perfect detection
and 0.5 is the chance level, where the ‘chance level’ is the
performance expected from random guessing. In the following,
we present the available methods for detecting echolocation clicks
in detail and comment on their suitability for different scenarios

and signals.

1.4 Structure of survey

The Figure 2 represents a structured breakdown of the click
detection algorithms, divided into three primary methods. Three
branches emanate from the root of the hierarchy. This subdivision
represents different system models, ranging from knowing the
actual signal structure of the click to no assumed information.
The first branch, “feature analysis”, uses the intrinsic properties of

»

the signal, such as “phase”, “frequency” and “energy”, to distinguish
echolocation clicks from signals originating from, for example,
snapping shrimps. These techniques involve statistical analysis
and thresholding, which makes them computationally efficient
but prone to errors in detection due to their lack of adaptability
to signal variation. Each of these attributes is analyzed by specific
techniques such as wavelet transforms and spectral analysis for
frequency or energy detection and the Teager-Kaiser energy
operator (TKEO) for energy. The second branch, “machine
learning based click detection”, is proposed when no statistical
information about the click is available. Based on a large dataset of
labeled clicks, as well as noise samples, a model is trained to
distinguish between clicks and non-click noises and to assign the
detected click to its source. The focus is on “supervised
convolutional neural networks (CNNs)”, which are an important
tool for pattern recognition in complex data sets. Other paradigms
of neural networks and machine learning strategies, such as support
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FIGURE 2
The block diagram of algorithm categories
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vector machines, also fall into this category, indicating a variety of
methods tailored to learn directly from data. The third and final
branch, “data-dependent methods”, uses a predefined knowledge of
the expected analytical structure of the echolocation click to
compare signals from the channel with a template. The aim is to
recognize similarities between the signals and determine the
detection based on predefined thresholds. Methods such as the
“Tuned Filter”, the “Side Test” and the “Adaptive Threshold”
provide a means to improve the detection process. At the end of
each category, we present a table summarizing the most important
information about the reviewed categories. Next, we provide an
overview of challenges that remain with each category. Finally, a
summary including useful information about the methods
examined is presented, where the ‘useful information’ refers to
the key acoustic features. A detailed explanation of the
implementation of the selected detector algorithms from each
category, including the results obtained with real data, is
presented. The algorithms were selected based on their relevance,
ingenuity and impact on the field. A list of relevant available
databases was then presented. Finally, all methods were grouped
based on certain criteria to show some of the alternative criteria by
which the methods could have been grouped and to highlight the
similarity between the methods from the same groups. In addition,
some common metrics are identified to evaluate the
detection performance.

This survey provides a comprehensive assessment of click
detection methods by categorizing the existing literature based on
three main aspects:

1. Methods relying on feature analysis. Table 1.
2. Methods relying on machine learning techniques. Table 2.
3. Methods relying on statistical data analysis. Table 3.

We also provide a summary of the papers that share their data
base (Table 3); list papers that handle which challenge in the
detection task (Table 4); a division of methods by their evaluation
methodology (Table 5), as well as a division by the application
considered to each method (Table 6); Division of papers by the tools
they use for detection (Table 7); and Division of methods by the
signal characteristics considered as cues for detection (Table 8).

2 Feature analysis

The term “features” refers to characteristics and properties of a
signal that can be used to recognize or classify the signal. It is a
process that involves the selection, extraction and evaluation of
properties of the signal that are used to represent the structure of the
click. The feature analysis approach to recognition focuses on
isolating relevant attributes of the data through which key
features are discovered, followed by recognition and classification.
Below we provide an overview of the features used for
click recognition.
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2.1 Duration

2.1.1 Inter-pulse interval

As previously discussed click duration alone may be ambiguous.
An informative additional feature is the inter-pulse interval (IPI).
The method described in (Marzetti et al., 2021) starts with an ultra-
low power detector that performs an initial event analysis to
significantly reduce false positives and thus increase reliability by
ensuring that only probable clicks are forwarded for further
analysis. A state machine analysis is then performed that
integrates expert rules based on two important bioacoustic
criteria: the click duration and inter-click interval. The method
uses the duration of the main click peak and the time between
successive clicks to confirm the likelihood of a whale source. A click
counter and validation process is an integral part of the system and
provides further accuracy. This mechanism increments the click
counter on pulses that match acoustic emissions from whales and
compares the duration between clicks to a reference interval to
confirm click detection. The sensitivity of click detection is adjusted
based on the observed rates of false-positive positives and true-
positive clicks. The strengths of this new method lie in its energy
efficiency and improved accuracy. The design also minimizes
microcontroller activity, which significantly reduces power
consumption. In (Gubnitsky and Diamant, 2023), the authors
present a novel method that focuses on the IPI of their clicks to
improve the detection and classification of sperm whale
vocalizations. In addition to amplifying the signals to improve
signal-to-noise ratio (SNR), the method also uses a phase-based
IPI estimator to accurately recognize the inter-pulses. The method
focuses on estimating the time between the major and minor pulses
in a whale’s click by using the phase-slope function (PSF) to
accurately indicate the pulse positions and evaluating the IPI by
the time difference between positive zero crossings. The method
also includes feature extraction and segmentation to assess the
consistency of the clicks and to separate valid IPIs from noise. The
change from waveform-based detection to a phase characteristic-
centered approach provides greater resilience to noise and signal
distortion, although it relies on the assumption of consistent, multi-
pulsed click patterns. An extension of this method can be found in
(Gubnitky and Diamant, 2024), where the stability of the multi-
pulse structure of identified transients is used to indicate the
presence of sperm whales’ clicks. The method starts with the
transient detection phase using the TKEO. For each detection, the
multi-pulse structure (MPS) is calculated by taking the time interval
between prominent pulses in the millisecond range. Assuming that
the MPS representing the IPI of the whales or a multipath reflection
is stable in time windows of a few seconds, a clustering solution is
applied to find groups of clicks that fulfill the ICI (inter-click
interval) conditions and whose variance of the MPS is below a
certain threshold. This approach provides a robust solution for
detecting sperm whale clicks in challenging environments, such as
low SNR, a variety of noise transients, and simultaneously emitting
whales. In addition, the method is computationally efficient and can
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TABLE 1 Summary of feature analysis detection techniques.

Detection of clicks: feature analysis

Main idea

Main assumptions

Pros

10.3389/fmars.2025.1567001

(Marzetti et al., 2021)

(Gubnitsky and Diamant, 2023)

Real-time sperm whale
monitoring using hybrid
architecture

Feature extraction from sperm
whale clicks via phase
spectrum

- Adapts to ambient noise;
Identifies specific cetacean
clicks

Sperm whale sole source of
clicks; Stable IPI in short time

- Low power consumption;
High efficiency and accuracy

High separability; Effective in
noise

Requires species -specific
tuning; Sensitive to
environmental conditions

Species-specific; Needs
multiple clicks

(Gubnitky and Diamant, 2024)

(Bot et al., 2015)

(Baggenstoss and Kurth, 2014)

Detecting echolocation clicks
in noise

Rhythmic click detection
using TOA

Comparing shift
autocorrelation and cepstrum
for vocalizations

Stable MPS and ICI for sperm
whales

Odontocetes have rhythmic
clicks; TOA effective for
analysis

Impulsive noise vs. Gaussian
noise environments

Handles multiple emissions;
Reduces false positives

Focuses on rhythmic patterns;
Robust against signal effects

Superior in impulsive noise;
Highlights repetitive events

Depends on stable MPS;
Struggles with diverse noise

types

Complex implementation;
High computing power
demand

Requires parameter tuning;
High computational load

(Giorli and Goetz, 2019)

(Kandia and Stylianou, 2008a)

(Lopatka et al., 2005)

Sperm whale foraging activity
analysis

Phase slope function for
whale clicks

Wavelet transform for sperm
whale sounds

Clicks indicate foraging;
Adequate cyclic recording

Effective phase representation;
Clicks as impulse responses

Non-stationary, wideband
sounds; Adjustable temporal
window

Innovative monitoring; High
detection rates

Simplified process; High
accuracy

Customizable analysis;
Suitable for real-time

Limited coverage; Resource-
intensive

Sensitive to phase errors;
Limited test scope

Empirical wavelet choice;
Limited to sperm whale clicks

(Seger et al,, 2018)

(Tian et al., 2022)

EMD for marine signal
classification

ACMD for underwater target
identification

Complex signals
decomposable by EMD

Effectiveness of ACMD in
adaptive extraction

Automates processing; Robust
against noise

Reduces noise interference;
Preserves spectral structure

Struggles with extreme values;
Manual verification needed

Depends on initial
frequencies; Computational
complexity

(Lia et al., 2017)

CCWEEMDAN for signal
decomposition

Transient signals have time-
varying characteristics

Effective noise reduction;
Superior SNR gain

Complexity limits real-time
use; Risk of overfitting to
noise

(Caruso et al., 2019)

(Adam, 2006)

(Soldevilla et al., 2008)

Automatic detection for
rough-toothed dolphin clicks
and whistles

HHT for analyzing sperm
whale clicks

Classifying dolphin species by
clicks

Correct dolphin identification;
Single sound source; Stable
echolocation click patterns

Signals are transient and
broadband

Clicks provide species-specific
info; Random orientation
during click production

Enables historical data
comparison; Improves
dolphin acoustic
understanding

Analyzes non-stationary
signals; Robust against noise

Non-invasive monitoring;
Insights into dolphin
dynamics

Limited sample diversity;
Overlooks environmental
noise effects; Geographically
limited

Simplification from limited
mode analysis; Complex
implementation

Limited across environments;
Needs further validation

(Roch et al., 2011)

(Jones et al., 2022)

Classifying odontocetes using
cepstral vectors

Long-term recordings to
distinguish beluga and
narwhal clicks

Even distribution of species;
Click sounds independent

Single species presence;
Consistent echolocation
behavior

Efficient species finding;
Versatile for various species

Effective species distinction;
Non-invasive, adaptable

Variable accuracy; Dependent
on data quality

Environmental condition
variability; Behavioral overlap
issues

(Baumann-Pickering et al., 2013)

Identifying species-specific
echolocation signals in beaked
whales

Unique FM pulse type per
species; Correlation between
body size and signal
frequency

Enables species-specific
identification; Offers
evolutionary insights

Data limitation on species;
Requires high-quality
recordings

(Baggenstoss, 2011)

Grouping sperm whale clicks
for enhanced localization

Higher click similarity from
the same source; Fixed
penalty for new click trains

Reduces multipath
interference; Improves
localization accuracy

High computational demand;
Assumes stationary whales,
which may not be true
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TABLE 1 Continued

Detection of clicks: feature analysis

Main idea

Main assumptions

Pros

10.3389/fmars.2025.1567001

(Caruso et al., 2015)

(Li et al., 2021)

(Klinck and Mellinger, 2011)

Estimating sperm whale size
via acoustic measurements

Monitoring sperm whale
population post-spill via
passive acoustics

ERMA for echolocation click
detection of odontocetes

Stable IPI indicates size;
Minimal environmental
influence on sound speed

Reliable click-based detection
of presence; Consistent
acoustic patterns in sperm
whales

Species-specific spectral
features - Effective noise and
interference filtering

Processes large data volumes -
Aids in conservation

Assesses environmental
stressor impacts; Non-
invasive, broad area coverage

High identification accuracy;
Suitable for low-resource
computing

Critical assumptions may not
hold; Environmental factors
can affect measurements

Ambient noise interference;
Partial manual data analysis
dependency

Variability in performance;
May miss informative aspects
like temporal patterns

(Kandia and Stylianou, 2006)

Detecting sperm whale clicks
with the TKEO

Regular clicks have a multi-
pulse structure; Background
noise is Gaussian

Effective in low SNR; Robust
against noise

Challenges with multi-pulse
clicks; Sensitive to parameter
settings

(Frouin-Mouy et al., 2017)

Using AMARs to distinguish
between narwhal and beluga
clicks

Unique acoustic signatures
per species; Sea ice cycle
influences marine mammal
presence

Improves species specific
detection accuracy; Extensive
distribution data

Classification difficulty; Focus
on sea ice without considering
other factors

(Baumann-Pickering et al., 2010b)

(Kandia and Stylianou, 2008b)

Identifying an unknown
beaked whale species via
echolocation signals

Automatically detecting
beaked whale clicks with
group delay function

Presence of an unidentified
beaked whale species; FM
pulses indicate foraging

Signals have minimum phase
characteristics; High noise
presence in recordings

Detailed signal
characterization; Non-invasive
method

Effective noise reduction;
High detection rate and
accuracy

Uncertainty about exact
species; Assumes behaviors
without confirmation

Dependent on signal phase
characteristics; Manual
labeling for efficacy

assessment

be used in real-time applications. On the other hand, many valid
clicks are overlooked to keep the false detection rate low, making the
method unsuitable for individual click detection tasks.

2.1.2 Inter-click interval

The temporal pattern of the multipulses within the click is often
combined with the inter-click interval (ICI) to capture the rhythmic
patterns of click trains. The time difference as a recognition
criterion is presented in (Bot et al, 2015) and focuses on the
rhythmic characteristics of the click trains of beluga whales. It
aims at detecting rhythmic pulse trains, separating click trains from
multiple simultaneously clicking odontocetes and characterizing the
ICI pattern. This approach handles sub-harmonics in the
autocorrelation by rhythmic analysis. The multi-step algorithm
starts by converting Time of Arrivals (TOAs) into a time-ICI
map, then calculates a threshold to identify peaks corresponding
to click trains, and then determines the threshold of the time-ICI
map to create a binary map for analysis. This process leads to a
detailed understanding of the rhythmic pattern over time. The
authors also present the recognizably of a click sequence and the
minimum ICI ratio required to separate two interleaved click
sequences. The strength of this method lies in its robustness to
the overlapping and mixing of click sequences from multiple
sources. It efficiently distinguishes between individual click
sequences embedded in a complex underwater acoustic
environment. However, it assumes a rhythmic pattern of

Frontiers in Marine Science

odontocetes clicks that may not cover all variations in
acoustic emissions.

We see a similar approach in (Baggenstoss and Kurth, 2014),
where a method for recognizing burst pulses that resemble click-like
events with a certain ICI is presented, which is the key to their
identification. The method introduces the shift autocorrelation
method (Shift-ACF), a novel approach that emphasizes repetitive
events within an input signal to estimate the ICI, and is shown to be
particularly effective in impulsive noise environments where
conventional methods may struggle. The method is compared to
the classic Cepstrum method, a frequency domain approach
traditionally used for period estimation. While Cepstrum is
effective in identifying temporal trajectories in a time-lag
representation, Shift-ACF outperforms this method in impulsive
noise environments and provides superior detection performance of
burst pulses. Shift-ACF significantly improves detection
performance in impulsive noise compared to the Cepstrum
method, while Cepstrum performs better in Gaussian noise and
low signal-to-noise ratio. However, the dependence of the Shift-
ACF method on an accurate estimate of the ICI imposes limitations,
particularly in the detection of burst pulses with highly variable
ICIs. The method assumes that burst pulses consist of sequences of
click-like events with a reasonably consistent repetition rate, which
may not be universally applicable. Shift-ACF offers a more robust
approach to background noise and reduces false positives,
increasing accuracy and reliability.
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TABLE 2 Summary of machine learning detection techniques.

Detection of clicks: machine learning-based click detection

Main idea

Main assumptions

Pros

10.3389/fmars.2025.1567001

(Luo et al,, 2019)

(Buchanan et al., 2021)

Automatic detection of
odontocetes clicks using CNN

Detects bottlenose dolphin
clicks using ResNet-18 CNN

Clicks distinct from other
sounds; Consistent acoustic
data quality.

Accurate click sound
representation; Effective
spectrogram conversion

Robust across species;
Automates data processing

Automatic feature learning;
Scalable for large datasets

Requires significant computing
resources

Time-consuming data
preparation; High computing
resources needed

(Frasier et al., 2022)

(Islam Ariful, 2021)

(Bermant et al., 2019)

PAM with stereophonic
sonotrode and NN for sperm
whale detection

CNNss to classify whales and
dolphins from acoustic data

CNNs and RNNs (LSTM,
GRU) for sperm whale sound
analysis

Accurate detection via
stereophonic recordings;
Effective discrimination by NN.

Effective sound representation
in spectrograms; Broad
vocalization data coverage

Effective click classification by
CNNs; Suitable RNNs for
complex classifications

Non-intrusive method;
Comprehensive data on
behavior and noise effects

High detection accuracy;
Robust to test data variations

High classification accuracy;
Efficient large dataset
processing

Quality of recordings critical;
Potential miss of non-pattern
whales

Lower performance under real
noise; Extensive labeled data
required

High-quality labeled data
needed; Significant
computational resources

(Sanchez-Garcia et al., 2010)

(Saffari et al., 2022)

(Bergler et al., 2019)

Automated sperm whale click
detection using neural
networks

ANNSs with chimp optimization
for marine sound classification

DNNs for detecting killer
whale sounds

Suitable spectrogram analysis
for sound ID; Neural networks
accurately classify

Effective ambient noise
reduction; Dynamic adjustment
by fuzzy logic

Deep learning distinguishes
vocalizations; Models
generalize well

Low computational effort;
Accurate click type detection

Faster convergence; High-
dimensional classification
efficiency

High precision in sound
detection; Scalable approach

Questions on generalizability;
Energy threshold may miss
detections

Dependent on effective noise
reduction; Large datasets
needed

Relies on large, labeled datasets;
Significant computational
requirements

(White et al., 2022)

(Jarvis et al., 2022)

(Cohen et al., 2022)

(L et al., 2024)

CNNs for analyzing marine
soundscape

CS-SVM for distinguishing
beaked whale clicks

Machine learning with spatio-
temporal analysis for click
identification

Dual-feature fusion CNN with
LMS denoising for low SNR
clicks

Spectrograms for sound ID;
Training data variability
covered

Recognizable buzzing sounds;
Effective CS-SVM classification

Species-specific clicks; Reliable
acoustic data from HARPs

Both MFCC and DD features
jointly discriminative; LMS
filter boosts SNR

Efficient for large-scale use;
Adaptable to different sounds

Real-time detection; Adaptable
to hydrophone settings

Large dataset analysis; Known
and new click types identified

Robust under low SNR;
improved generalization

Depends on diverse training
data; Complex soundscapes
challenging

Under-detection in noise; false
positives from low threshold

Sighting data biases; Overlooks
behavioral variability

High compute due to two
streams; careful LMS tuning
required

(Vishnu et al., 2024)

VGG-based CNN + end-to-end
shrimp-noise denoiser
(DEVMAN)

Shrimp noise can be learned
and filtered; VGG features
discriminate clicks

A Outperforms standard
denoisers; site-adaptable

Site-specific retraining;
denoiser adds complexity

(Cotillard et al., 2024)

(Hamard et al., 2024)

ROI + DETR transformer for
overlapping beluga pulse
detection in spectrograms

Faster R-CNN + FPN on
spectrograms for multi-species
detection

Resolves overlaps; minimal
manual tuning

Clicks appear as distinct time-
freq boxes; confidence
thresholds generalize

High data requirement; heavy
training

Precise time-freq localization;
multi-species in one pass

inference cost

Quality of recordings critical;
Very computational; sensitive
to threshold choice

(Frasier, 2021)

(Schifer-Zimmermann et al.,
2024)
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End-to-end wav2vec-style
Transformer fine-tuned on
odontocete clicks

self-supervised Transformer
pre-trained on terrestrial
mammals, zero-shot transfer to
sperm-whale clicks

Self-supervised pre-train corpus
captures click structure; labeled
subset available for fine-tuning

Attention blocks are modality-
agnostic; few whale labels
required

07

Cuts per-click error vs. CNN
under strong cavitation;
reusable embeddings for other
tasks

High accuracy in few-shot and
zero-shot settings; ideal when
labels are scarce

Very compute-heavy;
impractical for real-time
embedded hardware; needs
huge storage

Performance still lower than
fully fine-tuned models; still
research-grade, not deployed
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TABLE 3 Summary of detection techniques based on statistical analysis of databases.

Detection of clicks: adaptive detection methods

Main idea

Main assumptions

Pros

10.3389/fmars.2025.1567001

(Harland, 2008)

(Siddagangaiah et al., 2020)

TRUD system for marine
mammal click classification

Entropy-based metrics for
dolphin vocalizations detection

High-quality data stream;
Minimal degradation from
system

Biophonies reduce noise
complexity; Clicks introduce
periodicity

Classifies multiple species;
Efficient processing

High accuracy without prior
training; Efficient for large
datasets

Depends on high-quality input;
Sensitive to signal distortions

Sensitive to certain noises;
Focuses on detection, not
classification

(Jang et al., 2023)

(Caudal and Glotin, 2008)

(Altaher et al., 2023)

TDOA measurements for
odontocetes tracking

SMF and TKM filter for
tracking sperm whales

TDOA and adaptive MF for
low-frequency sound
localization

Whales stationary over short
intervals; Known noise
statistics

Constant or linear sound
speed; Specific whale click
pattern

Clear identifiable calls; Stable
speed of sound

Automates tracking of multiple
odontocetes; Handles false
positives effectively

Real-time tracking; Effective
removal

High precision in localization;
Adapts to variable noise levels

Requires accurate sound
statistics; Complex data
mapping

Significant computational
resources required; Dependent
on high-quality data

Heavy reliance on hydrophone
synchronization; May
misidentify similar sounds

(Lopatka et al., 2006)

(Wu et al., 2016)

(Nosal and Frazer, 2007)

Recursive time-variant filter for
sperm whale click analysis

‘WP-Page test for detecting
underwater transient signals

Algorithm for marine mammal
click detection

Non-stationary signals;
Temporal click patterns

Improvement in SNR increases
detection; Complex noise
manageable

Stable acoustic
environment;
recordings

High-quality

Robust in noisy environments;
Fast adaptive filter performance

Improves detection at low SNR;
Effectively reduces noise

High precision in detection;
Adaptable to various species

Sensitive to parameter settings;
Limited to signals well
represented by statistics

Increases computational
complexity; Performance varies
in untested conditions

Decreased performance with
environmental changes;
Depends on recording quality

(Skarsoulis et al., 2022)

(Morrissey et al., 2006)

Real-time acoustic observatory
for sperm whale detection

MB3R algorithms for marine
mammal detection and
localization

Predictable sound spread
underwater; Stable buoy
positions

Broadband clicks detection;
Stable click patterns

Immediate whale localization;
High accuracy with large
hydrophone distances

Real-time detection and
localization; Handles complex
environments

Localization issues with
directional clicks;
Synchronization challenges

Requires precise
synchronization; Complex
optimal setup

(Gervaise et al., 2010)

Kurtosis-based algorithm for
clicks detection in Gaussian
noise

Click trains in Gaussian noise;
Ambient noise is Gaussian

Works well in low SNR
conditions; Adapts to variable
click frequencies

Performance affected by non-
Gaussian noise; Limited
effectiveness at very low SNR

(Hamilton et al., 2021)

(Lohrasbipeydeh et al., 2015)

(Madhusudhana et al., 2015)

(Jarvis et al., 2014)

Improved method for
estimating echolocating
odontocetes

Adaptive energy-based method
for sperm whale click
identification

Automatic echolocation click
detection with TKEO

M3R technology for marine
mammal monitoring using
Navy hydrophones

Gradual change in click
characteristics; Background
noises rare

Signals are broadband; Fixed
TEO thresholds ineffective

Clicks modeled as Gaborlike
functions; TKEO outputs
approximate a Gaussian
function

Effective time-frequency
analysis; Loud vocalizations for
recognition

Improved noise handling;
Customizable user settings

Adjusts detection threshold for
accuracy; Efficient without
prior signal knowledge

Efficient and fast; Works faster
than real-time

Comprehensive real-time
monitoring; Automated
detection and localization

Overestimation of animals
possible; Manual adjustments
may lead to bias

Additional computational
complexity; Dependent on
specific click characteristics

Dependent on accurate click
modeling; Susceptible to
background noise

Struggles with background
noise; Requires extensive
hydrophone network

(Di Nardo et al., 2023)

Study of bottlenose dolphins’
acoustic emissions in the
Adriatic Sea

Comprehensive and high-
quality dataset

Non-invasive monitoring; Does
not interfere with dolphin
activity

Limitations due to sampling
rate; Signal distortion possible

(Jang et al., 2022)

Bayesian click detection and 3-
D tracking

Clicks are stationary over GCC
window; noise PSDs can be
pre-estimated

Joint detection + tracking; high
robustness to low SNR

Sensitive to noise model
accuracy; computationally
heavy
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TABLE 3 Continued

Detection of clicks: adaptive detection methods

Main idea Pros

Main assumptions

Double-check via autocorr and
cepstrum lowers false positives

(Barile et al., 2024) Dual-IPI validation Page-test in

CABLE software

Sperm-whale clicks have
consistent multi-pulse IPI;
TDOA estimates agree within
0.05 ms

Very low acceptance rate; fixed
tolerance may reject valid clicks

TABLE 4 Table of publicly available databases and key characteristics.

Detection of clicks: Summary of databases

Archive name Link Collection site Tagged Number of recordings
MobySound (Mellinger, 2006) | various studies on Yes wav 14,000 vocalizations from eight species
marine mammals of baleen whales
Fisheries-Oceanography Coordinated (NOAA, 1990- Bering Sea Yes flac different depending on the recording
Investigations 2014) session
Cal-COFI Marine Mammal Data (CalCOFI, 2005) California, USA Partially y.wav different depending on the recording
session
Watkins Marine Mammal Sound Database (Watkins, 1998) wide range of geographic = Yes wav different depending on the recording
areas session
DECAF - AUTEC Sperm Whales - Multiple (Fujioka, 2007) AUTEC in the Tongue Yes wav 675 specimens
Sensors - Complete Dataset of the Ocean, Bahamas
Orcasound - bioacoustic data for marine (Orcasound, US/Canada Yes .wav (2018-present)
conservation, live-streamed and archived audio 2018)
data
DeepAL fieldwork data 2017/2018 (Bergler, 2017) Northern British Yes wav 31,928 audio clips; 5,740 (18.0%) killer
Columbia (Vancouver whale and 26,188 (82.0%) noise labels.
Island)
Voice in the sea (in the Sea V, All over the world Yes wav 31 cetacean and 12 pinnipeds
2007)
Dosits (Rhode Island All over the world Yes .wav 30 Baleen Whales, 33 Toothed Whales,
and Center, 25 Pinnipeds and 11 Sirenians
2002)
NOAA fisheries (NOAA, 2017a) Hawaii, USA Yes WAV varies differently depending on the
species
DCLDE 2022 Raw Passive Acoustic Data (NOAA, 2017b) Hawaii, USA Yes .wav. flac least represented species 2, most more
than 10000
Zenodo (Francesco, 2015) | Ionian Sea Yes .png 7,977 Files
SABIOD (SABIOD, 2014) south of Port-Cros No wav 11 recordings of different length
National Parc/Cote Azur
Ocean glider observations in Greater Cook Strait, the Greater Cook Strait
Walters, 2008 . i f diffe length
New Zealand (Walters ) shelf sea, New Zealand No nc 7 recordings of different lengt
CIBRA of the University of Pavia (CIBRA, 2005) the Greater Cook Strait wavand. ) recordings (in both formats)
orthe tyo ’ shelf sea, New Zealand ° mp3 ecordings O formats
39 files of 5-minute recordings with
sperm whale clicks and 43 files of 5-
The Dominica database (CETI, 2020) The Dominica island Yes .wav minute recordings with ambient
sounds, ship noise and dolphin clicks
and whistles.
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TABLE 5 Table of challenges the detection methods overcame.

Challenges considered in the literature

Related literature

Challenges

Low signal-to-noise (Johansson, 2004; Lopatka et al., 2005; Adam, 2006; Kandia and Stylianou, 2006; Lopatka et al., 2006; Morrissey et al., 2006; Nosal and Frazer,
ratio 2007; Caudal and Glotin, 2008; Kandia and Stylianou, 2008a; Kandia and Stylianou, 2008b; Baumann-Pickering et al., 2010b; Gervaise et al., 2010;
Sanchez-Garcia et al., 2010; Zaugg et al., 2010; Klinck and Mellinger, 2011; Roch et al,, 2011; Baggenstoss and Kurth, 2014; Jarvis et al., 2014; Bot
et al., 2015; Caruso et al., 2015; Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Wu et al., 2016; Lia et al., 2017; Beslin et al., 2018; Bergler
et al., 2019; Bermant et al., 2019; Caruso et al., 2019; Luo et al.,, 2019; Siddagangaiah et al., 2020; Buchanan et al., 2021; Frasier, 2021; Hamilton
et al., 2021; Islam Ariful, 2021; Marzetti et al., 2021; Cohen et al., 2022; Frasier et al., 2022; Jang et al., 2022; Jarvis et al., 2022; Saffari et al., 2022;
Skarsoulis et al., 2022; White et al., 2022; Altaher et al., 2023; Di Nardo et al., 2023; Gubnitsky and Diamant, 2023; Barile et al., 2024; Cotillard
et al,, 2024; Schifer-Zimmermann et al., 2024; Gubnitky and Diamant, 2024; Hamard et al., 2024; Lii et al., 2024; Vishnu et al., 2024)
Time-varying noise (Johansson, 2004; Lopatka et al., 2005; Lopatka et al., 2006; Morrissey et al., 2006; Caudal and Glotin, 2008; Kandia and Stylianou, 2008b; Gervaise
et al,, 2010; Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Lia et al., 2017; Beslin et al., 2018; Bermant et al., 2019; Caruso et al., 2019;
Luo et al,, 2019; Siddagangaiah et al., 2020; Islam Ariful, 2021; Li et al., 2021; Marzetti et al., 2021; Cohen et al., 2022; Frasier et al., 2022; Jang
et al., 2022; Jarvis et al., 2022; Saffari et al., 2022; Skarsoulis et al., 2022; Jang et al., 2023; Barile et al., 2024; Gubnitky and Diamant, 2024; Vishnu
et al,, 2024)

Simultaneous (Johansson, 2004; Lopatka et al., 2005; Adam, 2006; Morrissey et al., 2006; Caudal and Glotin, 2008; Harland, 2008; Kandia and Stylianou, 2008a;
detection of multiple Kandia and Stylianou, 2008b; Baumann-Pickering et al., 2010b; Baggenstoss, 2011; Klinck and Mellinger, 2011; Jarvis et al., 2014; Bot et al., 2015;
targets Caruso et al,, 2015; Madhusudhana et al., 2015; Beslin et al., 2018; Seger et al., 2018; Bergler et al., 2019; Luo et al., 2019; Siddagangaiah et al.,

2020; Hamilton et al., 2021; Islam Ariful, 2021; Li et al.,, 2021; Cohen et al., 2022; Frasier et al., 2022; Jang et al., 2022; Jarvis et al., 2022; Skarsoulis

et al., 2022; Tian et al,, 2022; White et al., 2022; Di Nardo et al., 2023; Jang et al., 2023; Cotillard et al., 2024; Gubnitky and Diamant, 2024;

Hamard et al., 2024)

Non-stereotyped
clicks

Zimmermann et al., 2024; Gubnitky and Diamant, 2024)

(Lopatka et al., 2006; Morrissey et al., 2006; Kandia and Stylianou, 2008b; Baggenstoss and Kurth, 2014; Jarvis et al., 2014; Bot et al., 2015;
Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Lia et al., 2017; Seger et al., 2018; Luo et al., 2019; Frasier, 2021; Hamilton et al., 2021; Li
et al., 2021; Cohen et al., 2022; Jarvis et al., 2022; Tian et al,, 2022; Gubnitsky and Diamant, 2023; Jang et al., 2023; Barile et al., 2024; Schifer-

The study in (Giorli and Goetz, 2019) presents a method for
offline detecting and classifying sperm whale echolocation signals
using ICI characteristics. The method relies on an adaptive
detection threshold adjusted to the ambient noise level. For
detected regions of interests, the ICI and peak frequency are
calculated and grouped into click sequences. Only click sequences
with more than five signals of valid ICI pattern are considered for a
second filtering that determines that the detected signals are valid
clicks based on the peak frequency and duration. One of the main
strengths of this approach is its adaptability to different acoustic
environments due to the adaptive threshold, but the method relies
much on thresholds for the ICI pattern and signal duration
and spectra.

2.2 Phase

Since amplitude-based cues (duration, IPI and ICI) can fail
under very low SNR, we next turn to phase-derived features. The
phase of the signal includes information on the temporal change of
the signal. The phase is used in (Kandia and Stylianou, 2008a) to
detect clicks by finding a zero crossing of the phase slope function of
the signal. The phase slope function is a measure calculated by
moving an analysis window over the signal and tracking the change
in the slope of the phase spectrum at each shift (Kandia and
Stylianou, 2008b). The derivative of the undistorted phase
spectrum of the signal is calculated and indicates how the phase
of the signal changes over time. By analyzing the slope of the phase
spectrum, potential clicks are identified by finding the points where
the function value changes from negative to positive. The authors
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also introduce the notion of centroid for clicks, i.e., the point at
which the signal is “balanced” on the time axis, taking into account
the phase or amplitude of the signal over time. This concept is
valuable for tasks such as Time Difference of Arrival (TDOA)
estimation, where the precise timing of these clicks is critical to
determine the position of the source, and can be used as a reference
point for multiple pulsed clicks, such as the regular clicks of sperm
whales. Robustness to click source level and noise ratio is
demonstrated using manually labeled data from regular beaked
whale clicks and sperm whale clicks. The potential of phase jumps
to represent a transient signal is also utilized by the
wavelet transform.

2.2.1 Wavelet transformations

Wavelet transforms combine phase and amplitude in a joint
time-frequency analysis. The wavelet transform involves the
decomposition of a signal into its individual frequencies using
small oscillatory functions that are localized in both time and
frequency, the so-called wavelets - small waves that grow and
decay in a limited period of time. The method in (Lopatka et al.,
2005) combines the wavelet transform and a parameter called
Short-Time Windowed Energy (STWE) to detect clicks. This
parameter captures the unique shape of the click sounds that
distinguishes them from other signals in the recordings and is
calculated using the Short-Time Windowed Energy (STWE) is
defined in Equation 1.

k-
STWEyyyls ITe) = S, & 50 IT.] (1)
K=k,
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TABLE 6 Table of types of data the detection methods were tested on.

10.3389/fmars.2025.1567001

Data source for performance evaluation

Evaluation Related literature

Real data - data not
shared

Hamard et al., 2024; Lii et al.,, 2024; Vishnu et al., 2024)

(Johansson, 2004; Lopatka et al., 2006; Caudal and Glotin, 2008; Kandia and Stylianou, 2008a; Soldevilla et al., 2008; Baumann-Pickering et al.,
2010b; Baggenstoss, 2011; Roch et al., 2011; Baumann-Pickering et al., 2013; Baggenstoss and Kurth, 2014; Jarvis et al., 2014; Wu et al,, 2016;
Beslin et al,, 2018; Seger et al., 2018; Giorli and Goetz, 2019; Siddagangaiah et al., 2020; Frasier, 2021; Hamilton et al., 2021; Frasier et al., 2022;
Jang et al., 2022; Saffari et al., 2022; Skarsoulis et al., 2022; Altaher et al., 2023; Di Nardo et al., 2023; Barile et al., 2024; Cotillard et al., 2024;

Real data - data
available publicly or
on demand

(Zaugg et al., 2010; Jones et al., 2022; Gubnitky and Diamant, 2024) (Kandia and Stylianou, 2006; Nosal and Frazer, 2007; Harland, 2008; Kandia
and Stylianou, 2008b; Gervaise et al., 2010; Sanchez-Garcia et al., 2010; Klinck and Mellinger, 2011; Caruso et al., 2015; Lohrasbipeydeh et al.,
2015; Bergler et al., 2019; Bermant et al., 2019; Caruso et al., 2019; Buchanan et al., 2021; Li et al., 2021; Marzetti et al., 2021; Jarvis et al., 2022;
Tian et al,, 2022; White et al., 2022; Gubnitsky and Diamant, 2023)

Combining real and

(Lopatka et al., 2005; Adam, 2006; Bot et al., 2015; Madhusudhana et al., 2015; Lia et al., 2017; Luo et al., 2019; Islam Ariful, 2021; Cohen et al.,

synthetic data 2022; Jang et al., 2023; Schifer-Zimmermann et al., 2024)

with c,, the wavelet transform coefficient, s, the scale, k; and k,
the scale range of the wavelet transform of the click, T, the sampling
period and 1, which defines the time resolution. First, the wavelet
transform is performed over a specific buffer of potential clicks,
followed by a calculation of the STWE parameter. The result is used
to identify individual clicks by analyzing the peak of the STWE
curves, which represents the exact time at which the sperm whale
click was recorded, and the width of this peak, which correlates with

noise, particularly at low SNR. However, the properties of STWE
analysis should be adapted to the specific marine environment and
are expected to be sensitive to changes in the structure of clicks due
to multipath effects. Such temporal changes in the structure of the
click can be tracked by temporal modeling (Lopatka et al., 2006).

2.2.2 Methods that use empirical mode
decomposition

the duration of the click. The ICI between identified clicks is used to
verify detection and discard echoes. The results for both the

While wavelets rely on predefined kernel functions, empirical
mode decomposition offers an flexible way to isolate broadband
simulation and the real collected data of sperm whale clicks show  transients. EMD decomposes the signal x(t) into intrinsic mode
that the method is insensitive to noise transients. This method is  functions as in Equation 2. Empirical mode decomposition (EMD)
then compared with a method that uses the Fourier transform  breaks down a signal into a series of eigenmode functions (IMFs)
instead of the wavelet transform. As demonstrated in (Lopatka  and is usually used to represent temporal variations in the signal

et al,, 2005) the Fourier version of the method is less resistant to  (Wu and Huang, 2009).

TABLE 7 Table of possible method applications.

Applications

Related literature

Application

(near) Real-time (Johansson, 2004; Lopatka et al., 2005; Adam, 2006; Kandia and Stylianou, 2006; Lopatka et al., 2006; Morrissey et al., 2006; Caudal and Glotin, 2008;
Harland, 2008; Sanchez-Garcia et al., 2010; Klinck and Mellinger, 2011; Jarvis et al., 2014; Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Lia
et al,, 2017; Seger et al., 2018; Luo et al., 2019; Siddagangaiah et al., 2020; Li et al., 2021; Marzetti et al., 2021; Cohen et al., 2022; Jarvis et al., 2022;

Skarsoulis et al., 2022; Tian et al., 2022; White et al., 2022; Altaher et al., 2023; Gubnitsky and Diamant, 2023; Gubnitky and Diamant, 2024)

Offline (Nosal and Frazer, 2007; Kandia and Stylianou, 2008a; Kandia and Stylianou, 2008b; Soldevilla et al., 2008; Baumann-Pickering et al., 2010b; Gervaise
et al.,, 2010; Zaugg et al,, 2010; Baggenstoss, 2011; Roch et al., 2011; Baumann-Pickering et al., 2013; Baggenstoss and Kurth, 2014; Bot et al., 2015;
Caruso et al,, 2015; Wu et al,, 2016; Beslin et al., 2018; Bergler et al., 2019; Bermant et al.,, 2019; Caruso et al., 2019; Giorli and Goetz, 2019; Buchanan
et al., 2021; Frasier, 2021; Hamilton et al., 2021; Islam Ariful, 2021; Frasier et al.,, 2022; Jang et al., 2022; Jones et al., 2022; Saffari et al., 2022; Di
Nardo et al., 2023; Jang et al., 2023; Barile et al., 2024; Cotillard et al., 2024; Schifer-Zimmermann et al., 2024; Gubnitky and Diamant, 2024; Hamard

et al., 2024; Lii et al., 2024; Vishnu et al., 2024)

Supervised (Kandia and Stylianou, 2006; Harland, 2008; Kandia and Stylianou, 2008b; Soldevilla et al., 2008; Baumann-Pickering et al., 2010b; Sanchez-Garcia

et al., 2010; Zaugg et al,, 2010; Klinck and Mellinger, 2011; Roch et al., 2011; Baumann-Pickering et al., 2013; Jarvis et al., 2014; Wu et al., 2016; Seger
et al., 2018; Bergler et al., 2019; Bermant et al., 2019; Caruso et al., 2019; Luo et al., 2019; Buchanan et al., 2021; Frasier, 2021; Islam Ariful, 2021;
Frasier et al,, 2022; Jang et al., 2022; Jarvis et al., 2022; Jones et al., 2022; Saffari et al., 2022; Tian et al., 2022; White et al., 2022; Di Nardo et al., 2023;

Jang et al., 2023; Barile et al., 2024; Cotillard et al., 2024; Hamard et al., 2024; Lii et al., 2024; Vishnu et al., 2024)

unsupervised (Adam, 2006; Lopatka et al., 2006; Nosal and Frazer, 2007; Baggenstoss and Kurth, 2014; Bot et al., 2015; Madhusudhana et al., 2015; Lia et al., 2017;
Giorli and Goetz, 2019; Siddagangaiah et al., 2020; Li et al., 2021; Marzetti et al., 2021; Cohen et al., 2022; Altaher et al., 2023; Gubnitsky and

Diamant, 2023; Schifer-Zimmermann et al., 2024; Gubnitky and Diamant, 2024)

Available

. . (Beslin et al., 2018; Bermant et al.,, 2019; Frasier et al,, 2022; Di Nardo et al., 2023; Gubnitky and Diamant, 2024)
implementation
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TABLE 8 Table of main tools utilized in click detection methods.

10.3389/fmars.2025.1567001

Detection of clicks: summary of the main tools

Related literature

Clustering Methods

Fourier Analysis
et al., 2021)

TKEO operator

Phase Slope Function (PSF)

Wavelet Transformation (Lopatka et al., 2005; Wu et al., 2016)

(Baggenstoss, 2011; Beslin et al., 2018; Jones et al., 2022; Gubnitky and Diamant, 2024)

(Lopatka et al., 2005; Morrissey et al., 2006; Harland, 2008; Kandia and Stylianou, 2008b; Soldevilla et al., 2008; Zaugg et al., 2010; Li

(Kandia and Stylianou, 2006; Kandia and Stylianou, 2008b; Soldevilla et al., 2008; Baumann-Pickering et al., 2010b; Klinck and
Mellinger, 2011; Roch et al., 2011; Lohrasbipeydeh et al., 2015; Madhusudhana et al., 2015; Luo et al., 2019; Frasier et al., 2022;
Gubnitsky and Diamant, 2023; Gubnitky and Diamant, 2024)

(Kandia and Stylianou, 2008a; Gubnitsky and Diamant, 2023; Gubnitky and Diamant, 2024)

Empirical Mode

Adam, 2006; Seger et al., 2018; Ti t al., 2022
Decomposition (EMD) (Adam cgereta fancta )

Hilbert Transform (HHT)

(Adam, 2006; Caruso et al., 2019; Tian et al., 2022; Barile et al., 2024)

RBF activation (Zaugg et al., 2010)

Convolution neural network
(CNN)

Gabor curve-fitting method (Madhusudhana et al., 2015; Luo et al., 2019)

(Bermant et al., 2019; Luo et al., 2019; Buchanan et al., 2021; Islam Ariful, 2021; Frasier et al., 2022; White et al., 2022; Cotillard et al.,
2024; Hamard et al., 2024; Lii et al., 2024; Vishnu et al., 2024)

Multilayer Perceptron (MLP) (Sanchez-Garcia et al., 2010; Saffari et al., 2022)

SVM (Johansson, 2004; Jarvis et al., 2022)
Matched Filter
Page test

Kurtosis (Gervaise et al., 2010)

Autocorrelation-based ICI

X (Bot et al., 2015)
grouping

CCWEEMDAN (Lia et al,, 2017)

Cross correlation (Jang et al,, 2022; Jang et al., 2023)

(Lopatka et al., 2006; Caudal and Glotin, 2008; Altaher et al., 2023)

(Johansson, 2004; Wu et al., 2016; Beslin et al., 2018; Barile et al., 2024)

Transformer/wav2vec-style self-

A (Frasier, 2021; Schifer-Zimmermann et al., 2024)
attention encoders

N
x(t) = SIMF;(1) + ry(t) 2
i=1
where each Intrinsic Mode Function (IMF) IMF(f) is defined by
the property. Each IMF satisfies the zero-mean envelope condition
in Equation 3.

1 § .

3 [eiifax(t) + ef;’i,,(t)} =0, (3)
0]
min

with €® () and ¢
envelopes obtained by interpolating the local maxima and

(t) representing the upper and lower

minima of IMF(t), respectively. This empirical and adaptive
process of decomposition takes the modes and frequencies
present in the signal. Each IMF represents an oscillatory mode,
and their accumulation encapsulates the information contained in
the original signal. This temporal and spectral representation of the
signal by its IMFs enables the isolation of broadband transient
components, making EMD particularly effective for detecting non-
stationary signals, such as clicks. This observation is utilized in
(Seger et al,, 2018), where the EMD is used for blind detection of
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clicks in a signal. An RMS (Root-Mean-Square) window is then
applied to each IMF to calculate an upper and lower envelope. The
difference between these envelopes is then calculated and used to
calculate the correlation coefficients between successive IMFs to
assess similarity. A partial reconstruction of the signal influenced by
the IMF with the highest correlation is then performed. Finally, a
detection threshold is set based on a predetermined tolerance
threshold and the partially reconstructed signal and any sample
exceeding this threshold is identified, grouped and used for further
analysis and classification. The classification algorithm calculates
the strength of groups of samples that exceed a threshold and
identifies the two groups with the highest strength as unique
identifiers that are used to build an “EMD library” or IMF lookup
table. These tables are then manually verified providing valuable
ground truth. A disadvantage of this method is that it works on the
basis of the local characteristics of the signal rather than on a global
basis that is uniform over time and frequency. Another method
proposed in (Tian et al., 2022) additionally utilizes the estimation of
the direction of arrival (DOA) of signal components for monitoring.

frontiersin.org


https://doi.org/10.3389/fmars.2025.1567001
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Gracic et al.

TABLE 9 Table of features used for click detection.

10.3389/fmars.2025.1567001

Detection of clicks: summary of the main tools

Features Related literature

IPI (Johansson, 2004; Zaugg et al., 2010; Caruso et al., 2015; Beslin et al., 2018; Frasier et al., 2022; Barile et al., 2024; Gubnitky and Diamant,
2024)

ICI (Johansson, 2004; Lopatka et al., 2005; Morrissey et al., 2006; Baggenstoss, 2011; Baggenstoss and Kurth, 2014; Bot et al., 2015; Bergler et al.,
2019; Caruso et al., 2019; Giorli and Goetz, 2019; Hamilton et al., 2021; Marzetti et al., 2021; Jones et al., 2022; Skarsoulis et al., 2022; Di
Nardo et al., 2023; Gubnitsky and Diamant, 2023; Gubnitky and Diamant, 2024)

TDOA (Bot et al,, 2015; Frasier et al., 2022; Jang et al., 2022; Skarsoulis et al., 2022; Altaher et al., 2023; Gubnitsky and Diamant, 2023; Jang et al.,
2023; Gubnitky and Diamant, 2024)

Peak Amplitude (Morrissey et al., 2006; Baumann-Pickering et al., 2013; Hamilton et al., 2021; Di Nardo et al., 2023; Gubnitky and Diamant, 2024)

Duration (Lopatka et al., 2006; Nosal and Frazer, 2007; Soldevilla et al., 2008; Marzetti et al., 2021; Gubnitky and Diamant, 2024)

Spectral Bandwidth

(Baggenstoss, 2011; Beslin et al., 2018; Hamilton et al., 2021; Cohen et al., 2022)

Phase (Kandia and Stylianou, 2008a; Kandia and Stylianou, 2008b)

Energy (Lopatka et al., 2005; Kandia and Stylianou, 2006; Morrissey et al., 2006; Kandia and Stylianou, 2008b; Baumann-Pickering et al., 2010b;
Klinck and Mellinger, 2011; Roch et al., 2011; Jarvis et al., 2014; Madhusudhana et al., 2015; Lia et al., 2017; Li et al., 2021; Cohen et al., 2022;
Jones et al., 2022; Tian et al., 2022)

Frequency (Adam, 2006; Nosal and Frazer, 2007; Harland, 2008; Kandia and Stylianou, 2008b; Madhusudhana et al., 2015; Li et al., 2021; Cohen et al.,

2022),

Standard deviation and

. (Sanchez-Garcia et al., 2010)
dynamic range of energy

Average Cepstral

(Roch et al., 2011; Saffari et al., 2022; Lii et al., 2024)
Features

Entropy (Siddagangaiah et al., 2020)

Not specified

(Caudal and Glotin, 2008; Wu et al., 2016; Bermant et al., 2019; Luo et al., 2019; Buchanan et al., 2021; Islam Ariful, 2021; White et al., 2022)

Self-supervised audio
embeddings (wav2vec/
HuBERT)

(Frasier, 2021; Schifer-Zimmermann et al., 2024)

Raw waveform attention L .
(Schifer-Zimmermann et al., 2024)
tokens

The method is applied to a mixed model containing different signals
that form the basis for DOA estimation. The individual signals are
then isolated based on their unique characteristics. After extraction,
the method performs endpoint detection on the signal components,
using a “method of average energy”. This process is crucial for
identifying the exact start and end points of the signal components.
SNR is also taken into account as it is critical to the clarity of the
signal and the accuracy of analysis, such as DOA estimation, by
measuring signal strength relative to background noise. The method
uses EMD in combination with multi-layer adaptive
decomposition, which increases computational complexity. The
authors assume that the signals are oversampled or continuous, a
condition that may not always be present in practical underwater
environments. In (Lia et al., 2017) an upgrade is proposed, where a
method combining the Complete Complementary Wavelet
Ensemble Empirical Mode Decomposition with Adaptive Noise
(CCWEEMDAN) and Power-Law Detector is presented. The
method advanced beyond traditional EMD to handle modal
aliasing and energy loss, which are particularly problematic for
non-stationary, non-linear signals. The method includes iterative
noise addition to improve scale continuity, wavelet decomposition
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to deal with noisy signals and EMD decomposition to extract
residual components. The CCWEEMDAN method is combined
with a power-law detector for transient signals, which analyzes the
DFT sequence of the signal under two hypotheses - presence or
absence of a signal in the midst of Gaussian noise. For this purpose,
a non-parametric approach is used that analyzes the sum of squares
of the power amplitudes of the DFT sequence. The method is shown
to be effective in low signal-to-noise ratio scenarios, as
demonstrated by simulated and real data. However, relying on
iterative refinement and decomposition process, it leads to high
computational complexity, which limits its application in practice.
A time-frequency generalization of the EMD is the Hilbert-Huang
transformation (Huang et al., 1998).

The method in (Caruso et al, 2019) offers click analysis of
rough-toothed dolphins. In this method, the raw acoustic data is
first pre-processed to remove irrelevant low-frequency background
noise. A Hilbert transform is then performed to create an energy
envelope of the signal. An automatic click detector, focusing
primarily on the ICI of echolocation clicks, incorporates a strict
SNR criterion and a careful peak detection algorithm, significantly
reducing the number of false positives. The algorithm identifies
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potential click noise by looking for peaks in the energy envelope
that meet certain criteria, including height and distance from other
peaks, to distinguish them from random noise by checking the
signal-to-noise ratio (SNR) to validate detection of echolocation
clicks and not background noise. The strength of the approach lies
in the rigorous assessment of the signal-to-noise ratio, which
ensures the selection of potential echolocation signals. However,
the method is sensitive to varying noise, since a uniformity of click
characteristics is assumed. However, relying heavily on the SNR
criteria can eliminate valid clicks, potentially underestimating the
actual click rate. Furthermore, the assumption that clear peaks
always represent single echolocation clicks may not hold true in
scenarios with overlapping clicks or similarly loud sounds. For
more dynamic environments, the Hilbert-Huang transformation
(HHT) may be a solution.

To capture instantaneous frequency and energy, the Hilbert-
Huang transform (HHT) extends EMD resulting in an adaptive
time-frequency representation of a signal. The HHT process
combines EMD and Hilbert spectral analysis (HSA). Specifically,
the IMFs generated by EMD are used as input to HSA to obtain a
time-frequency-energy representation of the signal, known as a
Hilbert spectrum. Unlike the wavelet transform, the HHT does not
require adjustment vectors for signal decomposition and is
therefore considered more robust. By examining the Hilbert
spectrum, transient echolocation clicks can be identified as
components with concentrated, time-limited energy, characterized
by their instantaneous frequency. In (Adam, 2006) the HHT is used
to recognize sperm whale sounds. The clicks are identified by
analyzing the first six modes of the Hilbert spectrum, arguably
containing the key information of the click. A ‘relevance/
complexity’ criterion is determined by calculating the ratio of the
squared error between the original and the recovered signal (to the
number of modes obtained) and used to evaluate the quality of the
signal reconstruction. The paper discusses the advantages of using
the HHT compared to the signal spectra. Next we discuss methods
that focus on the latter analysis.

2.3 Frequency

2.3.1 Spectral analysis

The above works rely on either temporal or joint time-
frequency analysis. We now turn to a set of methods that rely on
spectral cues—peaks, notches and broadband energy—that
distinguish species and sound sources. In spectral analysis, a
signal is broken down into its fundamental frequency
components in order to search for dominant features such as
broadband transients. We distinguish between three feature types:
spectral power, amplitude and phase spectrum. In (Soldevilla et al.,
2008), the text describes a three-tiered approach to classifying
dolphin echolocation clicks: the supraspecies tier distinguishes
based on the presence or absence of spectral peaks and notches;
the second tier, the species tier, categorizes based on the frequency
values of these peaks and notches; and the subspecies tier
distinguishes two unique click types within Pacific white-sided
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dolphins. The first step of the click detection algorithm identifies
potential clicks in the frequency domain using a fast Fourier
transform (FFT) with spectral mean subtraction. The candidates
were selected based on specific frequency and amplitude criteria,
where the ‘candidates’ refers to potential click detections. In the
second step, the identified candidates were analyzed in more detail
in the time domain. A high-pass filter and the TKEO (explained in
2.4.1) were used to track energy peaks indicative of clicks. The
strongest click noises within a given time frame were selected for
further analysis. The spectral characteristics of the click sounds are
then quantified with another FFT. The noise spectra are averaged
and a subtraction of the spectral averages is applied to isolate the
click spectrum, followed by statistical analysis to characterize the
clicks of each species. To evaluate the utility of spectral features of
clicks for classifying data, long-term spectral averages were
examined for distinct patterns. The method was tested for
recognizing and classifying the clicks of five dolphin species.
However, recordings from the surveys were only included if they
were single species schools and were excluded if other species were
detected within 3 km or could not be identified due to low SNR.
Handling multiple sources, in (Zaugg et al., 2010), spectral analysis
is used to distinguish between the clicking sounds of sperm whales
and the impulsive cavitation sounds of ships. After initial energy-
based thresholding, spectral features are extracted from the
potential click. Five statistical measures — mean, standard
deviation, skewness, kurtosis and a normalized Shannon entropy
— are used to analyze the features followed by a feed-forward neural
network with a hidden layer of radial basis function units. And a
logistic output function is used to classify the impulses into two
categories: sperm whale clicks and ship sounds.

Processing gain is expected when combining spectral and
temporal analysis. A joint spectral and temporal analysis is used
to classify clicks in (Roch et al., 2011). First, Fourier transforms of
signal frames are observed to identify clicks with high SNR.
Echolocation clicks are then identified based on their TKEO
energy, with noise level estimation and region magnification
techniques to determine the start and end of the click. Clicks that
were too close together are considered reflections. The cepstrum of
each potential click is calculated to obtain a low-dimensional
representation of the signal. Only the cepstral coefficients from 1
to 14 were used for classification, as higher order coefficients did not
necessarily improve classification performance. Finally, the acoustic
data of each species is modeled with a 16-fold mixed Gaussian
Mixture Model (GMM) for classification. The GMM is consisting of
16 different mixture components, where each component
represents a different subpopulation of the data. This approach
allows the modeling of complex spectra with few data points.
Spectral information can also be used through long-term analysis
to detect periodicities in the signal.

2.3.2 Long-term spectral average

When individual spectra vary too much, Long-Term Spectral
Average (LTSA) reveal stable patterns and rare events over hours or
days. LSTA is used to detect sporadic or rare biological sounds by
identifying patterns, recurring events or anomalies in the frequency
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range of the signal. The LTSA visualization calculates the spectral
average of acoustic signals over longer periods of time, identifying
patterns, trends and anomalies that differ from the surrounding
sounds. In the context of click detection, LTSA can help to
recognize recurring patterns, such as trains of clicks.

The method in (Jones et al., 2022), uses LTSAs from averaged
sound pressure levels with specific frequency bins. In this semi-
automated process, energy detection criteria are used to identify
impulsive signals within a sampling window centered on the peak.
The inter-click intervals (ICIs) between these detections are
estimated, and signals with peak frequencies at bounded intervals
are considered. These are then classified using an unsupervised
learning method in which similar spectral shapes and ICIs are
grouped within 5-minute bins and across time using clustering. For
each group member, parameters such as click duration, ICI,
spectrum, peak and center frequency and bandwidth are
thresholded. Click duration was estimated by fitting an envelope
to the absolute value of the waveform in the sample window. A
combination of manual and automated analysis is also offered in
(Baumann-Pickering et al., 2013). The process involves the
operation of the Triton software (Damborsky et al., 2001). The
signals were characterized by features such as long duration, stable
interpulse intervals (IPI) and frequency modulation. The LTSAs
were calculated for visual analysis. To facilitate manual analysis for
the case of beaked whale type frequency-modulated (FM)
echolocation pulses, the echolocation pulses were sorted by peak
frequency and peak-to-peak reception level to display high-
quality signals.

2.4 Energy

The energy of a signal can be used for detection based on power
threshold or high order statistics.

2.4.1 Energy detection

Temporal and spectral cues are complemented by simple
energy-threshold techniques that enable computationally
lightweight detectors. In (Baggenstoss, 2011), an algorithm for
eliminating multipath effects from sperm whale click sequences
received from a single sensor is proposed. First, the clicks are
detected using a moving average to find local maxima above a
certain threshold. The study also included an analysis of the ICIs.
The median ICI was calculated, with variations in ICI reflecting
different behaviors or states of the whales. The consistency of ICIs
over the entire click series was also analyzed. Next, a click
separation algorithm is presented to identify and pair clicks.
Potential click pairs are selected by time difference and SNR
compatibility. Pairing is based on a similarity metric that uses
statistical measures to determine whether or not two clicks are from
the same click train. The algorithm uses Gaussian Mixture Models
(GMM) for likelihood functions trained on validated click pairs for
related clicks and random pairs for unrelated clicks. The similarity
of the clicks is evaluated using features extracted from the clicks,
including spectral and temporal information, which are categorized
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into three groups: spectral information, temporal information and
inter-click interval (ICI) estimation. Feature selection aims to
improve classification performance by adding the most
informative features and reducing dimensionality. The method
proceeds by finding the best subset of valid click pairs from all
possible pairings. The clicks are then grouped into click trains,
which are further categorized as direct path, surface path or
reverberation. Gaussian Mixture Models (GMMs) were finally
used to estimate the probability density function (PDF). Cross-
correlation is performed to distinguish between direct and
multipath click-trains at a sensor. Click trains that are assumed to
originate from the same source but have different paths that show a
high correlation are rejected as multipath. Click trains with a
significant percentage of clicks identified as reverberation are
also eliminated.

Energy is also used for characterizing the click’s structure. The
method in (Caruso et al., 2015) recognizes sperm whale clicks,
where an adaptive threshold based on the median value of the total
signal energy within a 5-minute recording is used to select potential
clicks. The next phase involves cepstrum analysis, applied to both
the amplitude and squared amplitude (energy) of the potential
clicks to distinguish the stable interpulse interval (IPI) from the
variable IPIs within the click structure. The average of the cepstral
peaks identified within the delays is then calculated from at least 50
clicks within the same 5-minute recording. Similarly, in (Li et al.,
2021), the authors present a detection method that analyzes data
across low, medium and high frequency bands using a short-time
Fourier transform to reduce data size and align detection with
expert analysis. The detection process calculates the spectral sum
for each frequency band in each time window and identifies clicks as
periodic peaks. By calculating the averages and standard deviations
of these spectral sums over 10-minute intervals, the algorithm sets
dynamic thresholds to distinguish potential sperm whale clicks
from other sounds. The click detection criterion is considered to be
met if the spectral sum exceeds a certain threshold in the low
frequency band while remaining below the thresholds in the mid
and high bands. The authors also focus on factors that influence the
probability of detection, such as source level, directional loss,
transmission loss and ambient noise level. An alternative way of
calculating energy for transient detection is the TKEO.

2.4.2 Teager-Kaiser energy operator

The TKEO refines raw energy detection by estimating
instantaneous energy, which works well even in noisy
backgrounds. The TKEO estimates the “mechanical” energy of
the signal, which is a representation of the energy required to
generate the signal (Kaiser, 1990). This estimate of the
instantaneous energy of the signal is useful for detection because
it provides insight into the dynamics and variability of the acoustic
signal. The TKEO is particularly useful for detecting transient
events such as clicks in recordings even in noisy environments.
This is the case in (Klinck and Mellinger, 2011), where detection of
odontocete echolocation clicks of toothed whales is presented by
developing an Energy Ratio Mapping Algorithm (ERMA). This
scheme relies on species-specific features, such as increasing energy
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at certain frequencies. The ERMA scheme is used to create energy
ratio maps for the target and non-target species. The study also
describes the development of an energy ratio detector for suspected
frequency bands identified by ERMA. A normalized TKEO is then
applied to the series of energy ratios to detect transients. Due to the
high false positive rate, it is proposed to use ERMA as the first step
in a two-step detection process, with a more sophisticated classifier
as the second step to reduce the computational load. For the
detection of clicks, a dynamically calculated threshold adapted to
the noise is used. In (Kandia and Stylianou, 2006) the TKEO is
applied to analyze the given signal. The algorithm attempts to detect
sperm whale clicks by identifying p0 and p1 pulses. To emphasis the
click sounds, a matching filter is applied. This can prove challenging
if the p0 pulse is much weaker than the p1 pulse, which can lead to
detection errors as the algorithm is designed to recognize the
highest peak within a click as the starting point. A skewness
criterion is then applied to the output of the TKEO to help detect
the presence of a click and avoid false positives. The length of the
analysis window is one of the critical parts of this algorithm and a
window size must be chosen that contains few click sounds, on the
one hand, and is short enough to respond to rapid changes in click
periodicity, on the other. A forward-backward search is then
performed over the peaks of the signal, separating them from all
other signal values that have exceeded the threshold, with reference
to the time of the highest peak, to locate the click. The forward and
backward searches start at the highest peak and move forward and
backward in time, respectively, until it reaches a point where the
signal value falls below a certain threshold. It is assumed that the
time interval between the two points contains the click sound. It has
been shown that the same TKEO also works well under low SNR
conditions [cf (Kandia and Stylianou, 2006)].

A similar pre-processing is performed with the acoustic analysis
software developed by JASCO in (Frouin-Mouy et al., 2017), where
three classification features are calculated: the number of zero
crossings, the mean time between zero crossings and the slope of
the time change between zero crossings. Since clicks of different
species have different frequency components, the number of zero
crossings can be a discriminating feature, while the mean time
between zero crossings is related to the dominant frequency of the
click sound. Since different species produce clicks at different
frequencies, this measure helps to distinguish between these species-
specific frequencies. The third feature represents the rate at which the
time between zero crossings changes, which can be related to the
frequency modulation of the click. The Mahalanobis distance metric is
used to compare the features to a template created from manually
labeled clicks. The choice of Mahalanobis distance is explained by its
ability to account for the covariance between features.

The method in (Baumann-Pickering et al,, 2010b) detects
echolocation pulses and buzz clicks by identifying peaks in the
TKEO. The complete click sound, including the reverberation, is
identified based on its energy profile. Accounting for the lower
attenuation within the signal’s lower frequencies, which can
potentially distort the spectral characteristics of the signals, the
median signal parameters are calculated using only the signals with
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the highest amplitude. The strength of this method lies in the
combination of the broad spectrum of cross-correlation with the
precision of TKEO. However, the reliance on manual scanning after
initial detection could lead to human error or bias, and the efficiency
of the method may be limited by the amount of data processed.

The combined works in (Kandia and Stylianou, 2008b) uses the
TKEO as a preliminary step to enhance the signal and improve the
SNR; The algorithm uses the phase slope function to detect the clicks
and sets the length of the analysis window based on the average
interval between clicks. The click sounds are detected by localizing the
positive zero crossings of the phase slope function. Surprisingly, the
structure of the clicks could also be detected when the phase slope
function was applied directly to the non-optimized recording. Pre-
detection based on the slope of the phase spectrum with respect to the
center of the potential click. This center is calculated as the mean of
the group delay function and a click is detected by searching for a
positive zero crossing for the slope of the phase spectrum. The
method requires statistics of at least one minute of recording. If
more statistics are available, the high-potential machine learning can
be adopted to recognize clicks.

The summary of the feature extraction method is presented
in Table 1.

2.5 Advantages and disadvantages of
feature analysis methods

IPI-based approaches (Section 2.1.1) extract information from
the timing between the pulses within a click train. As shown by the
results of e.g., (Gubnitky and Diamant, 2024), this method is good at
capturing the underlying rhythmic patterns that distinguish different
species, providing useful diagnostic features. The downside is that if
the inter-pulse intervals are highly variable or if multiple click trains
overleap stability of the measurements series is effected leading to
miss-detections in methods such as the ones presented in (Marzetti
et al, 2021) and (Gubnitsky and Diamant, 2023). Detection accuracy
may decrease, potentially missing valid signals.

ICI-based methods, described in Section 2.1.2, focus on the
interval between successive clicks to group and confirm valid click
sequences. These techniques are robust in maintaining temporal
regularity and reducing false detections, which is particularly useful
for structured click sequences. An example for this is evident in (Bot
etal, 2015), in which the authors show that by analyzing the regularity
of inter-click intervals, they can effectively segment overlapping click
trains and distinguish valid click sequences from noise. Conversely,
ICI-based detectors can miss legitimate clicks when the intervals
between clicks become inconsistent, as in the common case of
multipath arrivals when the animal’s depth is significant.

Phase-based methods (Section 2.2) use the phase properties of
click signals to improve detection accuracy. Their strength lies in
the ability to detect a click by rapid changes in the phase, which can
be performed also in low signal to noise ratio, as the results in
(Kandia and Stylianou, 2008a) imply. This ability comes at the cost
of complexity as the phase calculation is performed per sample.
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The wavelet transform techniques presented in Section 2.2.1
decompose signals into their time-frequency components and
searches for wide band transients, which is particularly effective
for impulsive signals like clicks. However, the variation on wavelet
transformations as proposed in (Lopatka et al., 2005) implies that
there may not be a best wavelet decomposition, thus raising the
question of robustness to different click sources.

In Section 2.2.2, EMD-based methods adaptively decompose
signals into intrinsic mode functions that capture various oscillatory
patterns. Such an approach is highly effective in analyzing non-
linear and non-stationary signals, often revealing subtle temporal
details. A key drawback, however, is that EMD can suffer from
mode mixing, and the interpretation of its components sometimes
requires manual intervention as discussed in (Seger et al., 2018),
thus limiting its overall automation and reliability.

Frequency-based methods (Section 2.3) analyze the spectral
content of click signals to highlight important frequency
components. They provide important insights into species-specific
frequency features that are essential for effective classification. An
example is the constraint on the resonant frequency in (Roch et al.,
2011). On the other hand, frequency analysis can be affected by
background noise, especially of transient nature such as from
snapping shrimps, and miss transient signal features that are
sometimes crucial for accurate detection.

Energy-based methods (Section 2.4) focus on the power or
amplitude of click signals as the primary metric for detection. Their
advantage lies in the fast response to significant energy changes, the fast
response to. The disadvantage is their susceptibility to background
noise, which can necessitate the use of adaptive thresholding
techniques to avoid false detections as proposed in (Caruso et al,
2015), especially in challenging acoustic environments.

Energy detection methods (section 2.4.1) identify clicks by
detecting local maxima in the energy profile of the signal. These
methods are efficient and well suited for real-time detection due to
their simplicity. However, in a changing environment, they can lead to
false positives in case of mismatches in the assumed noise model to set
the detection threshold. This is evident by the results in (Li et al., 2021)
that shows high false positive in environment full of noise transients.

The TKEO, discussed in section 2.4.2, estimates the
instantaneous energy of a signal by emphasizing rapid changes.
This makes it particularly effective at low SNR, where transient
events are subtle. This allows detection for a wide dynamic range
as demonstrated in (Frouin-Mouy et al., 2017). However,
performance can depend on the choice of analysis window, which
leads to a non-stable tradeoff between the false positive and the
detection rate, and can suffer if the structure of the signal is highly
variable (Frouin-Mouy et al., 2017).

3 Machine learning-based click
detection

Machine learning (ML) techniques have been proposed to
capture the variability in the structure of the click by learning a
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model for a valid click from datasets containing such signals as well
as noise and perturbation intensities. These techniques are known
for their ability to process and analyze large amounts of data quickly
and are useful for detecting patterns in the data. One ML technique
that has proven useful for automatic click detection is the Multilayer
Perceptron (MLP). The MLP approach is a type of feed forward
artificial neural network (ANN) (Lek et al., 2008). An MLP consists
of at least three layers, including an input layer, at least one hidden
layer and an output layer. Each of these layers is are generally fully
connected to the previous and subsequent layers. The weights of
these connections are usually trained by backpropagation, an
iterative supervised learning technique in which the differences
between the given output and the desired output are calculated as an
error and the calculated error is then used to determine the new
weight (Portal, 2024). In the context of click detection, MLP is
useful due to its low computational cost, high performance and
simple structure (Saffari et al., 2022).

Convolutional neural networks (CNNs) are another type of
ANN. In contrast to MLPs, the layers of the CNN are sparse. This
benefits the generalization of the network, as overfitting is reduced.
It also allows the network to focus on the important features of the
input data while ignoring irrelevant or redundant information,
which in turn leads to automatic feature learning from raw audio
data without the need for manual feature extraction. A CNN is
characterized by its convolutional layers and pooling layers. The
former represents a set of kernels that learn and extract features
from the input data and create the feature map that represents the
presence or absence of a particular feature at each location in the
input data. Pooling layers are often placed between the
convolutional layers to reduce the spatial dimensions of the data.
CNNss are considered parameter efficient and are better suited for
recognizing spatial hierarchies than MLPs. This is achieved through
a concept known as local connectivity, where each neuron is
connected to its local region. This technique reduces the number
of parameters by allowing different parts of the network to
specialize in high-level features such as a texture or a repeating
pattern (Kurama, 2018). For click detection, CNN offers the
advantages associated with the small size of the network.

While CNNs can handle spatial hierarchies in gridded data, the
Recurrent Neural Network (RNN) is better suited to the task of
analyzing sequential data sets such as time series with sampling
dependencies. The reason for this is the ability of RNNs to recognize
patterns in sequences and learn from them. RNNs maintain a
hidden state from one step in the sequence to the next. In this
way, they maintain a memory for previous inputs in their internal
structure. This memory is used to recognize causality within the
dataset and is therefore useful for applications such as speech
recognition, natural language processing, and video activity
recognition. For click recognition, RNNs can use their memory to
draw information from a series of clicks. One of the main problems
in using RNNs is overcoming the vanishing gradient problem, a
phenomenon that occurs during the network training. In this case,
the gradient approaches zero, which leads to a loss of information
and makes it difficult for the network to learn and update its
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weights. A special type of RNNs that takes this problem into
account are Long Short-Term Memory (LSTM) networks. In
contrast to RNNs, LSTM networks are characterized by their
gating mechanisms, namely input, forget and output gates. The
use of these gates enables the network to remember or forget
observation inputs, making it more resilient to the vanishing and
exploding gradient problem. In the context of click detection, the
LSTM can be useful by adaptively distinguishing between clicks and
other linear impulse noises from spectrograms.

A simple but sometimes effective learning method is the
Support Vector Machine (SVM). An SVM finds a hyperplane that
best separates different classes of data with the maximum margin.
The margin is defined by the data points (support vectors) that are
closest to the decision boundary. The so-called kernel trick allows
SVMs to support high-dimensional spaces, which is why they often
use kernel functions to map input data into a higher-dimensional
space. The main advantage of SVMs, as opposed to deep learning
models, is the lower risk of overfitting, which is especially important
when the training data is limited. This is particularly important
when the training data is limited. For click detection, this is relevant
when there are only a few acoustic recordings on which to develop
a detector.

While SVMs focus on maximizing the marginal distribution,
which is limited by their ability to set constraints for classification,
the Gaussian Mixture Model (GMM) learning approach is an
alternative for probabilistic modeling of data distributions.
Assuming that the data can be clustered into classes of Gaussian
distributed samples, GMM aims to determine the distribution
parameters of each class by likelihood maximization. The result
can be applied to click detection by using GMMs to model the
distribution of relevant extracted click features or to detect
anomalies that differ from the “normal” distribution of clicks. The
structure of GMMs offers a soft, probabilistic assignment of data
points, allowing constraints to be set as part of the clustering
process. This can be a restriction on the distribution parameters
between classes, samples that must or must not be clustered
together, and a minimum number of samples within the class.
This proves useful for the detection of clicks by identifying and
modeling background noise of the recording with GMMs, which
increases the click-to-noise ratio. Another form of generalization
model is the Generalized additive model (GAMs), which develops a
statistical model for the relationship between the input variables to
represent the probability density function of the predictor’s
variables. This negates the need to create a single global model
while handling non-linear relationships. For click detection, this is
very handy as they can be used to find temporal patterns for the
presence or absence of clicks.

In the following, we categorize the papers according to the
classification into ML techniques, specifically supervised
convolutional neural networks, alternative supervised neural
networks and unsupervised learning models. The contributions are
further categorized according to the type of input they are best
suited for, the underlying architecture they use and their
adaptability to click detection.
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3.1 Supervised convolutional neural
networks

3.1.1 CNNs with raw audio as input

Convolutional Neural Networks (CNNs) are utilized because
their sparse, locally connected filters excel at learning broadband-
click patterns, which makes them commonly used deep-learning
detectors for marine mammals. CNNs are deep learning models
that recognize a non-linear hierarchical order in the features of a
valid click. CNNs use layers of convolution to learn spatial
hierarchies of features from input images. In the case of click
detection, the inputs are usually raw temporal acoustic data or
spectrograms. When CNNs are applied to spectrograms, they can
detect patterns in both the time and frequency domains.
Convolutional layers allow the network to focus on localized
features, ensuring that slight variations or shifts in the position of
the click in the spectrogram (relative to the start of the input) do not
affect recognition accuracy. By progressively abstracting
information through its layers, a CNN captures both the broader
context of echolocation signals and the fine-grained details of a
particular click. By applying these principles, CNNs have already
been successfully used for click detection.

Since clicks are short signals, using one-dimensional audio
signals as a base layer offers the CNN the opportunity to learn
important features of the signals that distinguish them from noise,
cavitation or SSN. The work in (Luo et al.,, 2019) uses CNNs to
automatically detect echolocation clicks of odontocetes from
acoustic data recordings. The proposed method involves two-step
detection in which a deep CNN is trained on both synthetic and real
data to discriminate between click and non-click clips at different
SNR values. Subsequently, the trained CNN is converted into a full
convolutional network to minimize computation time and
overcome the restriction to fixed-size inputs. This approach
enables fast data processing. An energy normalization procedure
allows the management of variable input lengths. In post-
processing, the authors use the TKEO to search for a transient
and then the Gabor curve fitting method to fit a discrete Gabor
signal to the acoustic data of a click to obtain a more accurate time
synchronization of the start and end points of the click. The use of
CNN has been further developed using the spectral representation
of the signal.

The CNN architecture is well suited to recognizing patterns in
grid-like topologies such as the spectrogram of audio signals. The
work in (Buchanan et al., 2021) presents a comprehensive study on
the use of Deep CNNs to recognize porpoise clicks from acoustic
data. The authors investigate different CNN architectures and the
performance of different CNN models on this task and compare the
methods in terms of their accuracy. Six CNN architectures,
including LeNet, LeNet variants and ResNet-18, are developed
and tested on a dataset of bottlenose dolphin clicks. “Traditional”
texture feature extraction classification is also explored. Both the
spectrogram pixels and the extracted LBP features are used as input.
The results show that CNN outperforms these methods for
echolocation clicks belonging to one species. The article
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concludes that ResNet-18 performs the best of all the architectures
tested. This can be explained by ResNet’s ability to ignore layer
connections that bypass one or more layers, ensuring low sensitivity
to additional layers. Results of SVM and MLP classifiers are
compared with raw pixel values of the spectrogram images to
evaluate the effectiveness of CNNs. The success in recognizing the
clicks is attributed to the distinct pattern that is evident in the time-
frequency domain. For the manual analysis of sperm whale clicks in
acoustic recordings, a customized annotation interface was used in
(Frasier et al, 2022) combining with a click detector and the
calculation of arrival times, IPI and background noise levels.
These metrics are used in (Frasier et al., 2022) to analyze the
behavior of sperm whales in the presence of anthropogenic noise.
For the detection of clicks, spectrograms are used as input to the
CNN to utilize the broadband characteristics of the signal as well as
temporal features such as IPIs and ICIs.

3.1.2 CNNs with spectrograms as input

The spectrum of the signal enables the identification of
stationary patterns in the signal. Using spectrogram images as the
input to a CNN (Islam Ariful, 2021) explores these patterns to
recognize sperm whale or dolphin vocalizations. These signals
include clicks, whistle and whale song signals of different whale
species. For performance evaluation, three types of measures are
used: Original Test Data (OTD) that serves as a baseline to evaluate
the effectiveness of the CNN under ideal conditions, Synthetic Test
Data (STD), which tests the robustness and adaptability of the CNN
model, and Practical Test Data (PTD), that evaluates the
performance of the CNN in real-world conditions. The former is
derived directly from the dataset; the STD is generated by artificially
modifying OTD; and PTD is created to simulate real-world
conditions by combining original whale sounds with oceanic
ambient noise. Together with the detection accuracy, precision,
recall and F1-score, these metrics demonstrate the efficiency of the
CNN model in detecting and classifying signals.

A combination of CNNs with other deep learning methods is
demonstrated in (Bermant et al., 2019). The clicks of sperm whales
are detected and classified using deep machine learning techniques.
A CNN is used for click detection while recurrent LSTMs are used
for classifying clicks into categorical types and to recognize dialects
of vocal clans. In addition, the principal component analysis (PCA)
and t-Distributed Stochastic Neighbor Embedding (t-SNE)
algorithms are used to calibrate the models parameters. Transfer
learning is used for training on codas from the Eastern Tropical
Pacific (ETP) dataset.

Another example of such combination of CNN and other deep
learning methods can be found in (Hamard et al., 2024) for a
detection method that converts raw recordings into 15-s
spectrogram images and applies a faster R-CNN model with a
feature pyramid network as a backbone to localize and classify
marine mammal acoustic events. The model is trained using
manually annotated spectrograms that identify different sound
types such as dolphin click trains, hums, whistles, and porpoise
vocalizations, and it outputs time-frequency bounding boxes that
use adjustable confidence and non-maximum suppression
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thresholds to control overlapping detections. The advantages of
this approach include precise localization in time and frequency, the
ability to detect multiple species and sounds in a single frame, and
the reduction in manual annotation workload. Disadvantages
include high computational cost, sensitivity to fluctuations in the
training data, and the need for careful tuning of detection
thresholds to balance false positives and missed detections.

Another great example of using CNN and other neural
networks can be found in (Vishnu et al., 2024). A neural
network-based detection method that addresses the challenge of
high ambient noise from snapping shrimp; the system, called
DEVMAN (detector for vocalizations of marine-mammals using
neural networks), uses a Visual Geometry Group (VGG)-based
CNN architecture with six convolutional layers followed by two
fully-connected layers and implements several denoising
techniques, including simple non-linear denoising methods and a
sophisticated ML-based denoising method trained end-to-end with
the detector to maximize performance in shrimp-dominated noise.
The combined denoiser-detector approach showed superior
performance compared to other methods. It was successfully used
to analyze ten sites. Advantages include the ability to overcome the
ubiquitous noise of snapper shrimp without compromising
detection performance, while disadvantages include the
computational complexity of the ML-based denoiser and the need
for site-specific training data.

The work in (Lii et al, 2024) present a dual-feature fusion
learning method for marine mammal acoustic signal detection that
extracts both Mel-Frequency Cepstral Coefficient (MFCC) features
and Delay-Doppler (DD) features from acoustic signals and
processes them through a user-defined convolutional neural
network model with nine convolutional layers and two fully
concatenated layers. The features are pre-processed by adaptive
Least Mean Square (LMS) filtering, which improves the signal-to-
noise ratio before extraction. This approach offers advantages such
as improved detection accuracy, improved generalization ability,
and robust performance under low SNR. Disadvantages include the
computational complexity resulting from the simultaneous
processing of two features, the dependence on precise parameter
tuning in the LMS filtering phase, and the potential complexity of
the model during training.

3.2 Other neural network based solutions

Architectures such as MLPs and LSTMs are additional choice
for a detection pipeline. The detection of click sounds has been
demonstrated using MLP, RNN and Transformers. The authors of
(Cotillard et al., 2024) present an automatic method for beluga
whale calls using two complementary strategies: a region-of-interest
(ROI) approach and a detection transformer (DETR). The ROI
method processes spectrogram images by applying a Gaussian blur
followed by a double threshold algorithm to isolate high-energy
regions. A minimum area constraint defined with respect to the
typical call dimensions is used. In parallel, DETR, a transformer-
based object detection model pre-trained on COCO and -tuned to
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3-s spectrogram images, generates bounding boxes around the calls
even when temporal or spectral overlap occurs. The advantages of
these methods include the flexibility to adjust sensitivity and the
ability of DETR to resolve overlapping calls. Disadvantages include
ROT’s tendency to overestimate detections when call density is low,
and DETR’s high demands on training data and computing power.
The usage of MLP is more suitable when this limit is not acceptable.

The use of MLP is motivated by its success in speech
recognition, environmental noise classification and seismic signal
analysis. The method in (Sanchez-Garcia et al,, 2010) uses a
combination of different MLPs and statistical analysis to
distinguish between regular clicks, creaks or noises. The statistical
features used as input are the standard deviation of the energy
values within each time window and the dynamic range, which is
defined by a ratio between the maximum level and the background
noise level within the time window. The detection is performed over
short time buffers of 2 seconds and can therefore be considered real-
time, but the achievable misclassification rate is high. This could be
due to the strong assumption that a large number of identical click
structures exist in the time window analyzed for statistical accuracy.
Another MLP-based approach can be found in (Saffari et al., 2022).
The authors use the Chimp optimization Algorithm (ChOA) to
train an artificial neural network and to set a fuzzy logic for
parameter adjusting. The input is a pre-processed spectrogram
from which the features are extracted by averaging the cepstral
values and applying cepstral liftering. The control parameters of the
ChOA algorithm are adjusted in three stages: Fuzzification, fuzzy
inference and de-fuzzification. The method uses membership
functions to convert the input into fuzzy sets. The results of the
fuzzy inference are then converted into quantitative data using the
defuzzification process using two membership functions.
Comparison without Fuzzy logic as well as with the coronavirus
optimization algorithm, Harris-Hawks optimization, the Black
Widow optimization algorithm and a Kalman filter shows an
advantage in both classification rate and convergence. However,
the method performance depends on the quality of the input data.
This can be avoided by utilizing the sequential properties of
echolocation clicks to learn from high-dimensional data using the
residual neural networks (ResNet).

The ResNet’s ability to effectively learn hierarchical features
makes it suitable for learning from image-like representations, such
as spectrograms, so that it can exploit both temporal and spatial
information. The ResNet model proposed in (Bergler et al., 2019) is
used for segmenting, recognizing and classifying audio segments as
killer whale sounds or noise. The method used is a modification of the
ResNet architecture. The data is divided by a sliding window into
short segments that are used as input to the ResNet-based neural
network. The network performs binary classification for presence
detection to determine if the segment contains clicks. For evaluation
metric, a measure for the time-based precision is offered to measure
the accuracy of click detection over time. This is shown to be useful
for generalization of time-dependent processes. Nevertheless, the
performance is sensitive to the choice of detection threshold. To
solve this robustness problem, data augmentation has been proposed.
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Data augmentation is used to expand the database for training
using simulated clicks. Data augmentation is used in (White et al.,
2022), where the EfficientNet BO model is used as the backbone of
the CNN pipeline to distinguish between environmental noise,
dolphin sounds, biological clicks and ship noise. This model
scales the depth, width and resolution of the network for robust
detection. The input for the CNN is a multi-channel spectrogram.
Audio enhancement in the time domain includes time shifting,
pitch shifting and changing the SNR. This is followed by a squeeze
and excitation (SE) block to selectively emphasize informative
features. A global average pooling layer is applied to the output of
the SE block to generate a feature vector, which is then passed
through a fully concatenated layer with four neurons per sound
source category (ambient sounds, dolphin sounds, biological click
sounds and ship noise). This is followed by a softmax activation
function to generate a probability distribution across the sound
source categories. The results show that the models should
incorporate elements of the soundscape to achieve the desired
results. The model is pre-trained on the ImageNet database of
1000 classes. Transfer training is performed by adapting the final
layer of the CNN. Another approach for training with small data
sets is the use of Support Vector Machines (SVMs) and
unsupervised learning.

3.3 Support vector machine methods

Support-vector machines are effective when the labeled dataset
is small or when explicit features can be extracted. The class of
SVM-based classifiers is used for binary classification between clicks
and noise segments. For the detection of foraging clicks with low
SNR (Jarvis et al., 2022) has offered a class-specific support vector
machine (CS-SVM). Results are demonstrated for the detection and
classification of dolphin clicks, beaked whale clicks and sperm
whale echolocations. First, an energy detector is used to recognize
regions of interest (ROIs) containing possible click sounds. The
ROIs are then analyzed for feature extraction, i.e., to analyze the
acoustic features of the detected clicks. Extracted features are fed
into the CS-SVM classifier. A noise variable threshold adapts to
different noise levels, ensuring effective detection of clicks. The
Auto-Grouper algorithm is used for detection verification. This
algorithm groups click sequences based on their periodicity, helping
to identify and classify marine mammal vocalizations (Roch
et al, 2011).

Transformer-style encoders are only beginning to permeate
marine-mammal acoustics, yet early results hint at substantial
gains once sufficient labeled audio is available. The authors of
(Frasier, 2021) fine-tuned a wav2vec-style Transformer on a large
data set (24 TB) of Atlantic and Pacific odontocete clicks, cutting
per-click error by 32% relative to a CNN front-end when
background cavitation was strong (Frasier, 2021). Building on
that idea, animal2vec—a cross-domain self-supervised
Transformer originally trained on terrestrial mammals—retains
good accuracy after zero-shot transfer to sperm-whale clicks,
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underscoring the modality-agnostic nature of self-supervised
attention blocks (Schifer-Zimmermann et al., 2024). Despite
these encouraging signs, marine uptake remains sparse. We
believe the main causes are: (i) public labeled underwater corpora
are still orders of magnitude smaller than their terrestrial
counterparts, limiting the scale at which Transformers are best
utilized; (ii) real-time PAM systems impose tight energy budgets,
making heavyweight attention models impractical on embedded
hardware; and (iii) benchmark protocols have yet to converge, so
researchers favor incremental CNN variants because of smooth
integration that using legacy pipelines.

3.4 Unsupervised methods

The difficult in data labeling makes fully unsupervised
clustering a method of choice to reveal recurring click types
directly from long recordings. The method in (Cohen et al., 2022)
is a comprehensive method for identifying and classifying
odontocetes clicks. This method characterizes clicks by their
spectral patterns, such as low amplitude peaks and broad main
peaks. The unsupervised Chinese Whispers (Biemann, 2006)
clustering algorithm is used to identify dominant signal types
based on spectral distances. The clusters are manually inspected
and compared across sites to identify recurring signal types,
focusing on spectral shape, inter-click interval (ICI) distribution
and self-similarity. The method also includes parameter tuning for
clustering to balance temporal resolution with data manageability.
The main assumption in developing this method is the constancy of
the click’s spectral features.

The summary of the machine learning-based click detection
method is presented in Table 2.

3.5 Advantages and disadvantages of
machine learning-based methods

Supervised CNN methods (Section 3.1) use large annotated
datasets to automatically learn features, making them suitable for
pattern recognition. Their strength for click detection lies in their
ability to learn of the important characterization of the click and to
generalize. An example is the results in (Luo et al,, 2019), which
provides good results for whale clicks from the deep-water
environments and coastal regions, illustrating the diversity of the
methods. However, this robustness comes at the need for a large
training dataset.

Approaches based on other neural network architectures
(section 3.2), such as MLPs (Sanchez-Garcia et al, 2010) and
ResNet (Bergler et al, 2019) are designed to process sequential
and non-linear data effectively. These models are capable of
capturing long-term dependencies and complex patterns.
However, they also face challenges such as vanishing gradients
and the need for careful tuning of the architecture, making them
more sensitive to training conditions.
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Support Vector Machines (SVMs) as proposed in (Jarvis et al.,
2022) (Section 3.3) achieve robust classification even with limited
data due to their controlled model complexity. Their main
advantage is the low risk of overfitting. However, they often
require manual feature extraction, which can limit their
effectiveness compared to fully automated deep learning methods.

Unsupervised methods (Section 3.4) use e.g., clustering as in
(Cohen et al., 2022) to detect intrinsic patterns without prior
labeling. These techniques are valuable for exploratory analysis
and discovery of underlying data structures, but their performance
is strongly influenced by the choice of distance metrics and
clustering parameters, which can lead to inconsistent results.

4 Adaptive detection

We call data-dependent methods a family of approaches that
derive their processes from the data itself, similar to machine
learning algorithms, but do not include a learning phase. One
such approach is the template matching approach, which
identifies patterns or features in the data and matches them to a
template of the target signal. Other data-driven approaches use
adaptive filters and the page test. The following is an overview of
such approaches for click detection.

4.1 Template matching

In template matching species-specific click waveforms are
cross-correlated with the data to reject noise transients without
previous training. In (Harland, 2008) details of the Transient
Research Underwater Detector (TRUD), algorithms are presented.
This scheme detects and classifies echolocation clicks through the
spectrogram correlation. The correlation is based on templates of
click patterns of different species. TRUDs based on a General
Wideband Pulse Detector (GWPD), which uses narrowband
energy accumulation and compares it across different time
samples to detect potential whale-like clicks. The detected clicks
are then organized into pulse trains and their statistical properties
are evaluated. The method combines single click analysis with pulse
train, thereby overcoming noise transients.

The method presented in (Siddagangaiah et al, 2020) is a
probabilistic approach that uses the concept of sampling entropy
(SE). The method starts with the selection of an embedded
dimension and constructs an embedding vector for each point in
the time series that is comprised of consecutive samples. The
correlation sum is a normalized count reflecting how many pairs
of states (represented as vectors in the reconstructed phase space)
are similar to each other within a certain level of tolerance
(distance), excluding comparisons of a state with itself. The
detection metric of SE is based on the natural logarithm of the
conditional probability that a data set that has repeated for d
samples within a tolerance r will also repeat for d+1 samples.
Since clicks increase the standard deviation of the ambient noise
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such that the SE approaches to zero, the conditional probability is a
good metric to separate signals from noise. Since no assumption on
the noise distribution is required, the method is robust for different
types of noise, including overlapping dolphin whistles and ship
engine noise, and does not require prior training. However, it is
difficult to distinguish clicks from noise 8transients, such as those
which originate from snapping shrimp.

Another method that relies on a priori information about the
signal is presented in (Jang et al., 2023). The method is geared for
tracking odontocetes (toothed whales) using a refined generalized
cross-correlation (GCC) to adapt to noise environments and detect
echolocation clicks while estimating the TDOA. Noise suppression
is achieved by accumulating echolocation clicks over longer
intervals. This, in turn, requires a clustering procedure to manage
multiple TDOAs. The latter involves clustering of parameters such
as location and speed using a factor graph-based multi-target
tracking (MTT). The sum-product algorithm is used for tracking
in the TDOA range, with a second MTT for 3D tracking by
combining TDOAs from different hydrophone pairs. The method
assumes that the clicks are stationary over a time interval longer
than the GCC length. This, however, may limit its applicability in
complex marine environments.

4.2 Adaptive filters

When pre-defined templates fail under drifting noise, adaptive
filters reshape themselves in real time, maximizing the SNR of
transient clicks without prior training phase. In a matched filter, a
given signal is correlated with a known waveform (the template) of
the target signal in order to obtain the energy of the signal and the
gain during processing for noise cancellation. In (Caudal and
Glotin, 2008), the detection of sperm whale clicks is achieved by a
stochastic matched filter (SMF), which correlates the incoming
signal with a template signal, taking into account the statistical
properties of the noise and echoes. In the SMF, the SNR is
maximized by identifying the eigenvector associated with the
largest eigenvalue in a given matrix equation. The detection
function uses the linear filter applied to a typically small data
window that matches the average length of a sperm whale click to
determine whether the sound in that segment is likely to be a whale
click or just random sea noise. The template is created from an
average of 1,000 whale clicks. In (Altaher et al., 2023) a method for
localizing individual pulse-like underwater sounds using an array of
hydrophones is offered. The localization involves a matched filter
with an adaptive threshold. For each detected pulse, a dynamic
window is applied using the call itself as a template. This dual MF
approach proves to be more accurate than using a single MF.
However, the signal is assumed to be stationary, which may not be
true in all underwater environments.

The method in (Lopatka et al., 2006) detects sperm whale clicks
using a recursive time-varying grid filter. At the heart of the method
is the normalized recursive exact least-square time-variant lattice
filter, which dynamically adapts to the signal’s changing properties.
This filter projects the signal onto a subspace defined by its past
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values. This approach accounts for changes in the second-order
statistics of the signal captured by time-varying Schur coefficients,
rather than relying on amplitude alone. The method does not
require prior knowledge of the arrival time, amplitude or shape of
the click. The algorithm also includes a forgetting factor that helps it
adapt to the non-stationary nature of whale clicks by controlling the
influence of past signal values, making it particularly effective in
noisy environments. However, need for precise parameter
calibration, such as the forgetting factor, could be challenging. An
alternative to clicks correlation is detection by examining deviations
from the expected values of the matched filter using the Page test.

The authors of (Jang et al., 2022) propose a detection method
that uses generalized cross-correlation with noise whitening (GCC-
WIN) to extract TDOA measurements from echolocation clicks
recorded by hydrophone arrays. The data is pre-filtered to isolate
the frequency range of the clicks, then weighting the cross-power
spectral density with a factor derived from pre-calculated noise
power spectral densities is applied, highlighting click-related peaks.
Peaks that exceed a preset threshold (PTDOA) are identified over
short observation intervals and then accumulated over a longer time
window to increase the probability of detection. To avoid false
detections, a clustering algorithm is used to group similar TDOA
measurements and ensure that only stable estimates are retained.
The approach improves detection under low SNR conditions
through effective noise suppression, but depends on accurate
noise modeling and precise threshold selection, and its
performance is sensitive to parameters such as the length of the
accumulation window and the clustering criteria.

4.3 Page test

To catch subtle — abrupt changes that elude correlation filters
— the Page Test can flag cumulative points in energy or variance.
The authors in (Wu et al., 2016) offer a modification of the Page test
for low SNR environments. The approach performs wavelet analysis
to remove noise transients prior to the page test. The Page test, also
known as the cumulative sum test, is a sequential analysis method
that detects changes in a data sequence. The test is based on
comparing the variance and sample mean of a set of data with
the expected mean and variance of a normal distribution. If the
difference between the sample values and the expected values is
significant, the test rejects the null hypothesis that the data is
normally distributed and concludes that a signal is present. The
Page test can also be adapted to detect transients corresponding to a
click sound. The method in (Beslin et al., 2018) uses the Page test for
detecting sperm whale clicks. In this method, the signal is modeled
as a state series and a distinction is made between ‘noise’ (absence of
a click) and ‘signal’ (presence of a click) states. The transition
between these states is determined by a signal strength statistic
relative to two predefined thresholds. A constraint forces a ‘noise’
state if it remains longer than expected in the ‘signal’ state. Signal
strength statistics are derived from estimates of instantaneous signal
and noise power. These are calculated from the envelope of the
waveform, which in turn is calculated using the Hilbert transform.
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After identifying potential clicks using the Page test, these clicks are
categorized using an SVM with a quadratic kernel. The system
verifies the decision by measuring the IPI between successive pulses.
However, setting the detection threshold proves to be a challenge
for robust detection as noise conditions vary in different marine
environments. This is where threshold adjustment can help.

The click detection in (Johansson, 2004) is based on the Page
test. Once a potential click is identified, the algorithm analyzes the
waveform, frequency spectrum and its resonance frequency to
verify detection. A set of features is then extracted for each
potential click, including the click duration, peak/centroid
frequency, bandwidths, pulse zero crossing rate (ZCR) variance
and exponential fit quality. These features are fed into an SVM for
discrimination of near-axis sperm whale clicks from off-axis clicks
and other transient noises.

In (Nosal and Frazer, 2007) a multi-stage method for detecting
sperm whale clicks is presented. The method starts with a page test
for transient detection. This is followed by envelope detection using
the Hilbert transform. Thresholds are adapted by the noise level
estimation. The method also demonstrates the ability to separate
between direct and reflected click pairs based on amplitude
variations and time intervals, which is further used in the
localization part of the method. The method has proven robust to
background noise and is insensitive to subtle variations in click
amplitude and interval. However, it assumes a structure for the
patterns of clicks, which imposes potential limitations.

A method from (Barile et al., 2024) describe uses the CABLE
software to extract the click sounds of sperm whales from passive
acoustic recordings. The method begins with a band-pass filter,
followed by a modified Page test to identify candidate click sounds
that exhibit the multipulse structure. For each candidate, the IPI is
calculated using autocorrelation and cepstrum analyzes, and a
candidate is accepted only if the two IPI estimates agree within
+0.05 ms. The accepted clicks are then further processed. This
method provides robust detection of on-axis clicks, improved
reliability through double IPI estimation, and effective noise
reduction through clustering. However, it suffers from an
extremely low overall acceptance rate and requires precise
parameter tuning with a fixed IPI tolerance that can exclude valid
clicks when natural variability is high.

4.4 Adaptive threshold

In this section, we focus on a group of detectors that adjust their
thresholds to balance sensitivity and false alarms based on ambient
noise and instantaneous SNR. Adaptive threshold allows adjusting
the detector to temporal characteristics of the data. This is
particularly useful when dealing with data that changes spatially
or temporally, such as directional whale clicks. In the context of
click sound recognition, an adaptive threshold was used in
(Skarsoulis et al., 2022) by coupling energy and frequency
features. The clicks are characterized by repetitive arrivals with
constant or slowly varying repetition periods within an assumed
boundary for the ICI for sperm whale clicks. The detector analyzes

Frontiers in Marine Science

10.3389/fmars.2025.1567001

the peaks of the histogram of arrival time differences at each
hydrophone in search for dominant separations within the ICI
range. Detection is declared if the corresponding arrival times show
a regularity within a certain tolerance and their number exceeds a
minimum time-varying threshold. A “detection event” is confirmed
if either at least two detection flags are triggered in the current 1-
minute recording or if one detection flag is triggered in the current
recording and at least one more in one of the two previous 1-minute
recordings. The real-time operation of the system is designed to
process multiple hydrophones in parallel.

In (Morrissey et al., 2006) an energy detector is applied for
identifying frequency bins that exceed a predetermined, time-
averaged power threshold. The threshold is empirically set above
the noise floor. Detection is declared by requiring parallel detection
in a number of bins. This approach is particularly useful to detect
broadband, impulsive signals such as clicks of sperm whales. In
(Gervaise et al.,, 2010), a detection scheme based on the signal’s
kurtosis is offered to identify the expected sharpness in the samples’
distribution in the case of a transient. The threshold is adapted to a
sliding window to manage temporal heavy tail distributions when
noise transients occur. However, the scheme is sensitive to scenarios
with overlapping clicks. To handle such cases, another option for
adjusting the threshold is spectral analysis.

For separating overlapping groups of echolocation clicks the
frequency spectra, peak-to-peak amplitude, and IPI levels are used.
In (Hamilton et al,, 2021) the correlation of frequency spectra
between clicks is used as a grouping metric while assuming that
the characteristics of clicks from the same animal change gradually.
To address the challenge of incorrectly classifying background noise
as echolocation clicks, the algorithm uses the Low Percentage
Removal Limit (LPRL) parameter, which is a critical component
in the Click Group Separation algorithm, addressing the issue of
background noise misclassification. Operating under the premise
that falsely classified noise peaks constitute only a minor fraction of
detected click groups due to their inconsistent Inter-Click Interval
(ICI), amplitude, and frequency spectra, LPRL begins with a 0%
setting. During the initial phase, an operator manually discerns and
adjusts the LPRL to 1% above the percentage of total clicks
identified as noise-related false positives. Subsequently, the
algorithm is re-run, discounting “clicks” from groups below the
set LPRL threshold. This procedure ensures the retention of
authentic ICI values and amplitude thresholds, pivotal for precise
click grouping. The introduction of LPRL significantly enhances the
CGS algorithm’s accuracy by effectively filtering out noise and
reducing misclassification of echolocation clicks, particularly
beneficial in noisy environments. Furthermore, the provision for
manual adjustment of LPRL imparts flexibility to the algorithm,
allowing it to be tailored to the unique noise characteristics of
different datasets, thereby extending the CGS algorithm’s
applicability and robustness across diverse research settings. The
algorithm adapts to the characteristics of the detected clicks.

Another form of adaptive processing is for the spectral energy.
In (Lohrasbipeydeh et al., 2015) the adaptive Teager-Kaiser energy
operator (A-TKEO) is combined with an adaptive matched filter.
The authors use adaptive windowing to account for the time-
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varying characteristics of the signals, and smoothing windowing to
remove signal peaks that arise due to interference. The threshold is
adjusted based on the mean and variance of the signal. In
comparison with the TEO, the rainbow click detector and the
spectral density (SD) detector shows an advantage attributed
mostly to the smoothing processing. The proposed method relies
on an accurate estimation of the ICI, which can be challenging at
low SNR. A similar approach is used in (Madhusudhana et al.,
2015), where the application of TKEO is used in combination with
moving average filters. The TKEO output is further processed by
two short moving average filters, a scaled Gaussian function and a
rectangular averaging filter, to provide near instantaneous spike
detection. The filter difference ratio (FDR), a normalized measure
derived from the outputs of the Gaussian function and the filter, is
critical for identifying spikes corresponding to clicks. This approach
was developed to amplify the energy peaks corresponding to clicks
while suppressing the harmonic components. The method has low
computational complexity and can be used in real time.

The method in (Jarvis et al., 2014) uses spectrogram analysis.
The algorithm uses a per-frequency bin, a dynamic threshold,
which tests the multiplicative factor k over the exponential
average of the power in the frequency bin. The result is a binary-
valued spectrogram, where each bin exceeding the threshold is
marked. As the algorithm processes the full bandwidth, it is able to
capture a wide range of vocalization frequencies. In (Di Nardo et al.,
2023), a method for analyzing dolphin vocalizations in the presence
of background noise such as boat propellers and engines is
presented. The method for detecting peaks involves thresholding
the SNR for suspected clicks. Detected peaks are classified based on
their ICI to distinguish click sequences from noise transients. The
classification filters out reverberation and overlapping clicks and
focuses on identifying different click sequences by an adaptive
ICI threshold.

The summary of the Adaptive detection methods are presented
in Table 3.

4.5 Advantages and disadvantages of
adaptive detection methods

Template matching methods (section 4.1) are based on the
comparison of incoming signals with predefined click templates. As
an example, method described in (Harland, 2008) uses spectrogram
correlation techniques with templates derived from known click
patterns of different odontocete species. Template matching can
achieve high precision if the pattern is well described, but their
rigidity means that they are less adaptable to variations in signal
characteristics, often leading to missed detections if the incoming
signals deviate from the template.

Adaptive filtering methods (section 4.2) dynamically adjust the
filter parameters to track the evolving signal characteristics. This
flexibility allows them to work well under changing noise
conditions. The drawback is that they require precise parameter
tuning and can require significant computational effort in rapidly
changing acoustic environments. For example, the approach
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described in (Lopatka et al, 2006) requires adjustment of two
non-binary parameters—the forgetting factor and the
adaptation gain.

The Page test method (Section 4.3) uses statistical techniques to
detect abrupt changes in the signal, making it useful for identifying
transient click events. Its main advantage is the ability to confirm
the presence of signals by statistical means such as the cumulative
sum (CUSUM) approach implemented in (Wu et al., 2016).
However, the reliance on certain statistical assumptions can cause
the method to falter under conditions that deviate from
these expectations.

Adaptive thresholding methods (Section 4.4) change the
detection thresholds to adapt to noise fluctuations and signal
variations. Their flexibility makes them particularly effective in
environments with variable noise levels. However, determining
the optimal adaptation strategy like choosing between the
ATKEO approach described in (Lohrasbipeydeh et al., 2015), and
the TKEO method combined with moving average filters and a filter
difference ratio (FDR) outlined in (Madhusudhana et al., 2015) can
be a challenge.

5 Remaining challenges

Our discussion about the advantages and disadvantages of each
group of methods reveals some common advantages. First, most
methods rely deeply on real recordings which adds to their
reliability. Second, the current methods are aware of the problem
of changing signal and noise characteristics and aim for a robust
detector. Third, the surveyed works are aware of the need to
perform detection either in real time or over large data volume,
and thus aim for low complexity applications. However, we argue
that some fundamental challenges still exist and the problem of
click detection and annotation is not solved. This can lead to future
research directions.

The first challenge is the detection of clicks when multiple
whales vocalize simultaneously. This overlap disrupts the stability of
the click series and affects methods that depend on the regularity of
inter-click and inter-pulse intervals, which extract spectral and
temporal features from structured click sequences. Addressing
this issue may require integration of source separation techniques
within the detector, similar to a “track-before-detect” approach.

The second challenge lies in accounting for the effects of the
channel impulse response, particularly multipath arrivals and
Doppler shifts. The former can affect the calculation of ICI or IPI,
thus impairing the performance of methods that rely on temporal
metrics. The latter distorts the signal’s spectral content and reduces
the accuracy of frequency-based detection methods. However, the
channel can serve for diversity gain using its feature analysis for
stability test, especially since the whale swims relatively smoothly in
the water. The channel can also enhance the signal-to-noise ratio if
using focusing techniques such as beamforming.

The final challenge is the standardization of datasets. We have
observed that nearly every study uses its own data collection
methods, with only a few works [e.g., (Mellinger, 2006), and
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(Orcasound, 2018)] sharing their datasets. This lack of
standardization hinders the direct comparison of method
performance. In this paper, we have attempted to address this
issue by implementing key benchmarks and comparing different
methods on the same dataset. The publication of standardized
datasets would enable future researchers to compare the
performance of new methods across various marine environments
and differing signal characteristics.

Despite the progress that has been made in the detection of
sperm whale’s or dolphin’s echolocation clicks, we identify
remaining challenges. These are listed in the following along with
potential topics for future research.

5.1 Remaining challenges for feature
analysis

The variability of signal characteristics due to individual
differences between marine mammals, such as different click
patterns and vocalization types, poses a major challenge for
research. The algorithms must be adaptable enough to accurately
analyze a wide range of signal types under different environmental
conditions. Additionally, the presence of background noise,
including natural and anthropogenic sources, complicates signal
processing and feature extraction. The dynamic nature of
underwater environments, characterized by changing temperature
and salinity, affects the sound propagation. This variability requires
algorithms that can adapt to such fluctuations. Another aspect is
real-time processing, which is required for many applications, such
as monitoring shipping traffic and identifying species for nature
conservation. The development of algorithms that are accurate and
efficient in real-time data processing remains a major challenge.

As for future research directions, the development of integrated
solutions combining acoustic properties with oceanography
information and acknowledge of the animal’s activity (e.g.,
vocalizing only upon surfacing) could provide better detection
results. Another potential research avenue could be the
exploration of advanced signal processing techniques such as the
Hilbert-Huang transform, which offers advantages in analyzing
non-linear and non-stationary data prevalent in marine
mammal acoustics.

5.2 Remaining challenges for machine
learning detection

One of the biggest challenges we see in the application of
machine learning algorithms for acoustic detection of bio-fauna
transient signals is the robustness for different underwater
environments and for noise instances such as from snapping
shrimps and vessel cavitation radiated noises (Renilson Marine
Consulting Pty Ltd., 2009). Proposed solutions are usually only
suitable for certain contexts and often struggle with the variability
and unpredictability of different marine soundscapes. These include
the presence of similar-sounding species that are not part of the
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target objects, anthropogenic noise and different acoustic properties
of the ocean. Another challenge is that only a limited amount of
labeled data is available for training many of these algorithms. This
is critical for supervised learning approaches and is exacerbated
when dealing with rare or less studied species.

Future research could explore several promising avenues to fill
these gaps. One approach is to improve feature extraction
techniques to better capture the unique acoustic characteristics of
different species, even in noisy environments. This could involve
attention networks for the application of deep learning which have
shown potential for dealing with limited data in other areas. In
addition, the development of semi-supervised or unsupervised
learning models could alleviate the problem of scarce labeled data
by exploiting the abundant but unlabeled acoustic recordings.
Research could also focus on developing more robust algorithms
that can adapt to different ocean conditions and different noise
profiles. Collaborative efforts to share and annotate data by
researchers around the world could significantly enrich the
datasets available for training and testing and improve the
accuracy and reliability of the models.

5.3 Remaining challenges for adaptive
detection methods

A main challenge that we observe for data-driven techniques is
in the effective processing of time-varying signals. Strong
background noise, complex oceanic soundscapes and varying
SNR can significantly affect the accuracy of species identification
and detection performance. Another critical issue is to measure the
IPI and ICL Signal reverberations and overlapping sources can
easily be mistaken as noise transients leading to misdetections. This
will also occur when the animal’s clicks are directional, causing
time-variation in the SNR, which is often neglected when searching
for constant sequences of pulses. A formal representation of the
problem as a constraint optimization problem can assist in the
rigorous analysis of the signals.

6 Publicly available resources
6.1 Available databases of clicks

An important part of our survey is a list of databases including
echolocations that are openly available for testing. Several projects
have kindly released their collected data. These datasets can serve as
benchmarks to compare detection performance on a common basis,
and to train in case of learning schemes. Publicly accessible and free
databases we found are cataloged in Table 4. The name of the
dataset and a link to access it are given in the first two columns. We
also list the location where the data was collected. The data type and
the data size are listed, as well as an indication whether the data is
labeled or not. There are additional available datasets that were not
used in surveyed papers, collection of which can be found on
(Kloepper, 2018) or (Portal, 2018).

frontiersin.org


https://doi.org/10.3389/fmars.2025.1567001
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Gracic et al.

6.2 Open source click detection methods

As most of the methods we surveyed are complex to implement,
several papers as well as software platforms share their
implementation code. This is very useful for users or as benchmark
schemes. PAMGUARD (Gillespie et al., 2009) is a semi-automated
open-source software framework for passive acoustic detection and
classification of sperm whales or dolphins. PAMGUARD serves as a
platform passive acoustic detection techniques and tools that were
previously available to provide a solution for researchers and users in
the field. The platform is flexibly designed to process data from
multiple sensors in any configuration. The software is highly modular,
meaning it can be customized for different sensing platforms, e.g.,
offline processing of audio files or work in a real time mode. The
supported vocalizations range from low-frequency moans to
ultrasonic echolocation clicks. The user can choose between
detection methods. In particular, the software uses a combination of
pre-filters and trigger filters for click detection, optimizing the
detection in the frequency band of interest and creating short sound
clips for further analysis. Several parameters are required for system
operation. These include the frequency, pattern, and intensity of the
clicks produced by the target species. Performance of PAMGUARD is
often used as an benchmark e.g,, (Baumann-Pickering et al., 2010b;
Madhusudhana et al., 2015; Vachon et al., 2022).

Another popular open source solution is Ishmael (Mellinger,
2002). Ishmael offers several methods for marine bifauna passive
detection, including energy detection, matched filtering and
spectrogram correlation. The processing is performed over the
signal’s spectrogram. Detection thresholds are adaptively set such
that fewer parameters are required from the user. Detection of
signal sequences is also offered, which increases its usefulness for
monitoring biological or mechanical sources with cyclostationary
patterns. Both real time and offline modes of operations are
possible. However, the method assumes a certain level of user
knowledge in interpreting and customizing the detection
function, which could be a limitation for less experienced
individuals. Research papers that compare performance with
Ishmael are (Reyes Reyes et al., 2015) and (Kisel et al., 2016).

The Triton software package (Frasier, 2018) serves as a platform
for analyzing acoustic data. It offers the user a choice between click
and whistle detection, and uses detection features such as power
spectra, spectrograms and Long Term Spectral Averages (LTSA).
The latter is efficient in condensing large data sets for display and
analysis. Triton operates via MATLAB and offers a user-friendly
graphical user interface that enables efficient review of large data
sets. It offers functions such as reading raw data from the High-
Frequency Acoustic Recording Package (HARP) and converting it
into .xwav or .wav files. Users can interactively navigate through
time series, spectrograms and spectra of single and multi-channel
files. It also provides the ability to create and interact with LTSAs
from a collection of files, facilitating long-term monitoring and
detailed investigation of specific acoustic events. In addition, Triton
supports data management by decimating high sample rate files for
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easier analysis of low-frequency sounds and saving data in different
formats. An important aspect of Triton is its extensibility through
remoras, which are user-developed MATLAB routines that can be
integrated into Triton. This allows users to customize the software
to their specific needs without changing the core functionality.
Triton is used as benchmark in (Baumann-Pickering et al., 2014).

6.3 Comparison of key algorithms

As part of our review, we implemented a number of methods
and compared their performance. The methods were selected as
representatives to the categories presented in the survey. Results are
shown for the openly available PAMGUARD (the “click detector”
module) and Triton (the “SPICE detector” remora) platforms, the
method in (Madhusudhana et al., 2015) that applies an adaptive
threshold, the detection scheme in (Sanchez-Garcia et al., 2010) that
employs a neural network, and the method in (Lohrasbipeydeh
et al., 2015) for another representation of the adaptive
threshold approach.

The detection method in (Madhusudhana et al., 2015), referred
to as Gabor, applies the TKEO over Gabor-transformed signals.
Low complexity makes the approach suitable for online scenarios.
The method was cited by 23 papers, and offers an effective usage of
the TKEO for transient detection.

The detection method in (Sanchez-Garcia et al., 2010), referred
to as statistical, introduces a statistics-based approach for the
identification of sperm whale clicks, primarily echolocation clicks
and creaks. This method comprises statistical analysis of features,
presence detection via a neural network, and classification of
individual echolocation clicks and creaks. The paper has been
cited so far by 7 papers, and its network architecture is well
described, making it easy to implement.

The method presented in (Lohrasbipeydeh et al., 2015), termed
ATEO, employs an adaptive energy-detector using the ATKEO,
which utilizes a windowing technique to accommodate the time-
varying characteristics of acoustic signals. The adaptive detection
threshold offers robustness in different marine environments with
little parameter calibration. The method was cited by 7 papers
so far.

We implemented the above schemes and tested their performance
on the AUTEC dataset (Fujioka, 2007). This dataset includes 1364
manually annotated clicks, and was collected in the Tongue of the
Ocean (Bahamas) using a single hydrophone deployed for 44 days. We
chose this dataset since it provides low noise recordings, on top of
which more noise can be synthetically added to test performance in
varying SNR. The results are shown in Figure 3 in terms of detection vs.
false positive rates. The figure highlights that methods such as Triton
and PamGuard achieve higher detection probabilities at lower false
positive rates. This illustrates the trade-oft between sensitivity and noise
rejection. The results shown in Figure 4 are in terms of the detection
rate as a function of the SNR. We observe that the best results are
obtained with the statistical method in (Gubnitky and Diamant, 2024),
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but only at high SNR values. The schema of this method is show in
Figure 5. We report that the method is also easy to implement and only

1 - .
7 / a few parameters need to be adjusted. The adaptive threshold method
<
ol I ATEO in (Lohrasbipeydeh et al, 2015) also requires only a few
g parameters for calibration. This method can work well at low SNR,
but can only detect the presence of a single whale. The detection
- 0.4 method implemented in the Triton platform provides good results at
a high SNR. Its advantage lies in its ease of use with a user-friendly GUI,
0.4 — but it requires many parameters for calibration and is more suitable for
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Gabor processing large files. Compared to the other methods, the Gabor
b o ATEO method in (Madhusudhana et al., 2015) provides low results. However,
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FIGURE 4
Detection rate (Pd) vs. frequency component of the signal (fsignal) to noise ratio (SNR) for 5 click detection schemes over the AUTEC dataset
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FIGURE 5

Schema of the statistical code detector. Figure used from (Gubnitsky et al., 2024).
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6.4 Details of the AUTEC database

The dataset used for comparison of several methods was
collected by the AUTEC Center. The observatory is located in the
Bahamas. This is a deep-sea acoustic site that is equipped with
bottom-mounted hydrophones deployed over an area of
approximately 1,200km* at a water depth of 1630 meters. The
acoustic data in the shared dataset was collected over a 6-day period
(April 26 to May 2, 2005) using a network of 81 broadband
hydrophones. The sampling rate for each hydrophone was 96
kHz. The dataset includes tens of thousands of clicks. The signal-
to-noise ratio (SNR) of the clicks ranged from 5 dB (were the
detection threshold was set) to over 30 dB. An automatic detector
confirmed by manual verification was used.

The dataset also contains detailed metadata (timestamps,
hydrophone IDs, species assignment), curated detection logs and
publicly available tag records. The dataset is distributed through the
OBIS-SEAMAP and DECAF project repositories and has become a
reference resource for passive acoustic monitoring of marine

mammals in low-noise deep-sea environments.

6.5 Summary of click detection algorithms

In this subsection we summarize the detection schemes
surveyed in this paper. Table 4 presents four main challenges that
were considered in the development of click detection methods, and
lists the papers that directly handle these challenges. This table can
support future research by directing authors to papers most relevant
to their focus field. In Table 5 we group detection methods based on
the type of data that was used for performance evaluation. Since
most of the methods used a real dataset, the table further shows the
public availability of the data. While half of the researched literature
embraces openness, offering access to their data, the other half
withholds their datasets from the public. This disparity not only
hinders the validation and reproducibility of scientific findings but
also stifles innovation. The absence of shared data curtails the
potential for collective advancement, as researchers are deprived of
the opportunity to build upon existing work, explore new
hypotheses, or apply advanced analytical techniques to rich, pre-
existing datasets. In this scenario the scientific community, and
ultimately the research itself, loses the most. In Table 8 we identify
common processing tools used by the detection methods. The tools
are also divided by the approaches selected as subsections in our
survey, and allow the reader to identify the type of analysis required
when coming to detect clicks. In Table 7, methods are grouped by
their application. This division can assist the choice of benchmark
based on the considered scenario, e.g., real time analysis or offline
processing of many files. The supervised and unsupervised labels
used in this table refer to the need for manual labeling. In Table 9,
we divide the detectors by the detection features that are used. Some
of the features are used more frequently, while other features are
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used in only one research study. This list reflects the commonalities
of clicks’ attributes.

7 Conclusion

The importance of monitoring echolocation clicks is
demonstrated by the need to analyze behavior changes, explore
population changes, and evaluate environmental impacts of
anthropogenic activities. In this survey we aimed to systematically
categorize and evaluate a broad spectrum of methodologies for
detecting cetacean echolocation clicks. We provided an overview of
feature analysis, machine learning-based detection, and data-
dependent methods. Feature analysis techniques delved into the
intricate characteristics of clicks, such as duration, phase, frequency
and energy, employing signal processing tools to separate clicks
from the ambient noise. Machine learning-based detection emerged
as a promising frontier, with methods like convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) offering
pattern recognition capabilities. Data-dependent methods provided
a structured approach to comparing signals against predefined
templates, harnessing specific characteristics of the target clicks
for detection. Advanced signal processing techniques such as
adaptive filtering and wavelet transforms should be further
explored to improve feature extraction from noisy underwater
environments. The development of semi-supervised and
unsupervised learning models could address the lack of labeled
datasets and take advantage of the vast amounts of unlabeled
acoustic data collected during ocean monitoring. Exploring
methods of transfer learning and domain adaptation may provide
opportunities to adapt models trained for well-studied cetacean
species for lesser known or newly discovered species. We have also
surveyed datasets openly shared for performance evaluation, and
open software platforms. Collaboration between researchers,
biologist and policy makers should establish standardized
protocols for data collection, sharing and analysis that facilitate
the development of universally applicable detection algorithms. To
comment on the suitability of the different approaches, we
implemented representative schemes and tested their detection
performance over a single dataset. Despite the advancements and
the diversity of approaches reviewed, it is imperative to recognize
that no single technique currently suffices to detect and classify the
vocalizations of all known cetacean species in a robust manner. This
reality underscores some of the remaining challenges in the field.
These challenges include dealing with the variability and
unpredictability of marine soundscapes, the scarcity of labeled
data for algorithm training, and the need for algorithms that are
robust against environmental noise, shipping cavitation noise and
interference from other marine fauna. Addressing these limitations
calls for a multifaceted approach: enhancing feature extraction
techniques, embracing the potential of deep learning while
ensuring adaptability to limited data. A particular challenge lies in
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the separation of clicks from simultaneously emitting animals.
Finally, we divided the works surveyed by their application, tools
used, and application to serve for future development of click
detection techniques.
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