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Appropriate decision making for ecosystem conservation is contingent on
understanding the ecosystem. To evaluate the effect of offshore wind farms
(OWFs) and predict future changes in benthic ecosystems, data on influencing
factors must be collected. We aimed to assess the effect of OWF in a study area
located off the central west coast of Korea. Based on the diversity and biomass
anomaly criteria established for the west coast of Korea, we classified 28 survey
rounds from 2014 to 2022 as anomalous or normal based on the number of
anomalous samples. Regression analyses were performed to determine the
sources of diversity/biomass variation. In any given period, the biomass
anomalous samples/rounds were more dominant than those related to
diversity. Significant factors identified during regression analyses included
sediment, depth, suspended particulate matter, and weather-related variables,
such as monthly averages of wind speed and significant wave heights, mainly
measured at land-based weather stations. Biomass exhibited stronger
correlations with weather variables than diversity. Binary logistic regression
predicted anomaly occurrence at wind speeds >2.84 or >1.60 m/s for diversity
and at >2.70 or >1.86 m/s for biomass, depending on the mild or harsh conditions
of significant wave heights or maximum wind speed. Thus, our study showed that
wave-induced processes and other natural factors influence macrobenthic
diversity and biomass, and these predictions were potentially improved by
measurements from land-based weather stations. The expected reduction in
wave energy owing to wake effects from the OWF is expected to increase the
productivity of benthic ecosystems.
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1 Introduction

As key components of marine ecosystems, macrobenthos
inhabiting sediments are crucial in degrading organic matter and
transferring energy to higher trophic levels (Snelgrove et al., 1997;
Coates et al., 2014). The metabolism of the macrobenthic
community, influenced by primary production, contributes
significantly to the biogeochemical cycling of carbon, nitrogen,
and pollutants via processes such as transport, transformation,
concentration, and burial. Through secondary production,
macrobenthic organisms not only serve as valuable food sources
for human consumption but also provide essential nourishment for
demersal fish, which are integral to commercial fisheries (Snelgrove
et al., 1997; Nilsen et al., 2006).

The species diversity, abundance, and biomass of macrobenthic
communities are crucial biological parameters that provide insights
into the health and changes in the ecosystem (Pearson and
Rosenberg, 1978). Diversity serves as an indicator of changes in the
ecosystem structure and stability, whereas biomass reflects alterations
in ecosystem functions. Together, these metrics indicate the damage
and succession that occurs following disturbances in both terrestrial
and aquatic systems (Bradshaw, 2002). Diversity loss and abundance
redistribution owing to anthropogenic causes result in
disproportionate loss of species that provide critical and specific
services. This loss can affect the entire food web by altering trophic
interactions, leading to an imbalance in ecosystem services (Snelgrove
et al., 1997; Hiscock et al., 2002; Coates et al., 2014). Biomass is a
function of the quantity and quality of food entering a particular
habitat and is utilized as a surrogate for biomass production and
carbon flow to and through an ecosystem (Wei et al., 2010). Biomass-
based secondary production in sediments is a key parameter for
quantitatively understanding ecosystem functions and an indicator of
ecosystem health (Brey, 2012). Hence, understanding the spatial
distribution and regional characteristics of macrobenthic
communities is increasingly necessary for assessing ecosystem
health on a broader scale.

Anthropogenic activities affect benthic biodiversity and cause
the degradation of marine benthic ecosystems (Snelgrove and
Butman, 1994; Coates et al., 2014; Froehlich et al., 2015). Hence,
appropriate management and mitigation strategies must be adopted
and developmental strategies must be determined based on various
indicators and available information. In addition, assessing the
ecological consequences of environmental changes using models
and projections is urgently needed (Ferguson et al., 2008; Willis-
Norton et al., 2024).

To date, physical and biogeochemical factors of the water
column and bottom substrate, such as temperature, salinity,
depth, and sediment textures, as well as nutrient, chlorophyll, and
organic matter content were regarded as the abiotic causative or
correlative factors of diversity and biomass distribution in marine
benthic community studies (Chardy and Clavier, 1988; Snelgrove
and Butman, 1994; Snelgrove et al., 1997; Wei et al., 2010; Yoo et al.,
2013). However, hydrodynamic changes induced by coastal
development, anthropogenic structures, and natural reefs are also
accompanied by alterations in sediment types and organic
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enrichment, which in turn affect benthic communities (Coosen
et al., 1994; Rheinhardt and Brinson, 2007; Donadi et al., 2015).
Weather conditions such as wind and rainfall also affect
macroinvertebrates through waves, wind-driven currents, and
sediment transport (Thrush et al., 2003; Armonies et al., 2014).

Thus, prevailing winds and waves significantly affect
macrobenthic communities in the intertidal zones that have hard
or soft substrata, such as rocky shores, tidal flats, and sandy beaches,
including the surf zone at shallower depths (Brown and McLachlan,
1990; Ricciardi and Bourget, 1999). Paavo et al. (2011) and
Armonies et al. (2014) reported that these physical factors affect
not only the intertidal but also the subtidal zone of sandy coasts.
Nevertheless, relatively little research has addressed the significant
influences of these factors on coastal benthic ecology, especially in
subtidal macrobenthic communities.

Korean coasts, which have the highest levels of biodiversity and
primary production, have experienced severe habitat and
biodiversity losses due to environmental threats and stress from
large-scale reclamation, oil spills, organic enrichment/hypoxia, and
overfishing (Yoo et al,, 2022 and references therein).

Ecological studies in the wave-dominant areas along the Korean
coast, such as those by Paik et al. (2007) and Jeong and Shin (2018),
have shown that variations in target parameters can be sufficiently
explained by analyzing only the depth and sediment type, without
considering other variables. However, as the same area is also
affected by prevailing seasonal winds, examining the effects of
such weather-related variables is important for understanding
seasonal variations in benthic communities.

Oceans experience stronger and more consistent winds than
land (Maxwell et al., 2022). Hence, offshore wind farms (OWFs) are
being developed worldwide, with new projects planned along the
west coast of Korea. The study area designated for large-scale OWFs
and benthic ecosystems is thus expected to be significantly
influenced by wind. Specifically, OWFs are typically developed in
areas with favorable wind resources and are characterized by higher
wind speeds and power densities (Kim and Kang, 2012).

The turbine foundations and scour protection systems of OWFs
replace soft sediment areas with artificial hard substrates, thus
inducing changes in wave and current hydrodynamics, chemical
pollution status (e.g., heavy metals), sediment properties (e.g., grain
size and organic matter content), and biological interactions
(Christensen et al., 2014; Coates et al., 2014; Wang et al., 2019,
Wang et al,, 2023; Watson et al., 2025). However, Li et al. (2023)
predicted no net adverse effects in soft bottom communities because
the hard substrates created by the foundations lead to an increase in
species richness and abundance despite the conversion of soft
bottom dwellers to sessile animals and minor biodiversity loss of
occupants. Thus, wind farm development has direct, indirect, and
both negative and positive effects on marine ecosystems (Bergstrom
etal., 2014; Li et al., 2023). To assess the effect of OWFs and predict
future changes in benthic ecosystems in the study area, data on
factors that determine the variability of biological parameters,
particularly those regarding natural controlling agents such as
wind, must be collected (Armonies et al., 2014; Paskyabi, 2015;
Ricciardi and Bourget, 1999).
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Hence, this study aimed to understand whether the factors
acting on macrobenthic communities including wind, mud, and
mixed sand and mud sediments in the subtidal zone differ from
those in protected bays and surrounding waters. This study is part
of a monitoring program aimed at assessing the future effects of
wind farm development on benthic ecosystems. We expect that the
study findings will offer necessary insights for improving ecological
predictions and prioritizing future research directions.

2 Materials and methods

2.1 Study area

Figure 1 shows the selected study area in the eastern central
Yellow Sea, located off the west coast of Buan, Gochang County in
North Jeolla Province, and Yeonggwang County in South Jeolla
Province of the Republic of Korea. The Yellow Sea is a continental
shelf sea (average depth of 44 m) surrounded by the western Korean
and northeastern Chinese coasts. The Korean coast of the Yellow

10.3389/fmars.2025.1552274

Sea is characterized by a macrotidal regime with mean maximum
spring tides ranging between 8 and 9 m, depending on the region.
The Korean coast landscape features highly indented coastlines,
with the tidal current-induced sedimentation caused by these
complex coastlines resulting in extensively developed tidal flats
that are 4-5 km wide (Frey et al., 1987; Choi, 2014).

Korea has four distinct seasons and is influenced by the strong East
Asian monsoonal climate. The East Asian monsoon is characterized by
a distinct seasonal reversal of the monsoon wind flow driven by
temperature differences between the Pacific Ocean and the East
Asian continent (Ha et al, 2012). Along with the tidal regime, the
seasonal variability of the monsoon system affects variations in
hydrology and oceanographic processes, including sediment dispersal
and deposition. Strong northwesterly winds prevail in winter
(maximum wind speed of ~10 m/s), whereas relatively mild
southeasterly winds occur during spring/summer accompanied by
heavy rains (Frey et al, 1987; Yoo et al, 2010). Although summer
storms are relatively shorter in duration than those in winter, strong
winds occur in summer, with an average of two to three typhoons
passing through the Yellow Sea per year (Hwang et al., 2014).
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Index map depicting the sampling points in the preliminary effect assessment survey of the wind farm (2014-2015; blue squares), marine survey for
industrial convergence facilities (2015-2016; red circles), and marine spatial environmental effect analysis of the wind farm and database
construction (2017-2022, green triangles). The yellow and purple crosses indicate the location of the land weather station and coastal wave buoys
(CWBSs) where the wind speeds and significant wave heights, respectively, were measured. The 20 wind turbines are marked with black empty
circles. The contour lines indicate bathymetric information based on the 1:25,000 scale coastal information map, referenced to datum level

(approximately the lowest low water).
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The Incheon coast, located in the northernmost part of the west
coast of Korea, records a maximum monthly mean wind speed of >4
m/s in February and May (Frey et al., 1987). From 2014 to 2022, the
maximum monthly mean wind speeds in the study area were
recorded at Gochang weather station at 3.5 m/s in February 2016;
at Yeonggwang weather station located 25 km further southwest,
the maximum reading was 3.3 m/s in July 2013. However, these
values were lower than the maximum recorded in Incheon (4.1 m/s
in December 2014) during the same period (Korea Weather Web
Portal, https://www.weather.go.kr/w/index.do).

The west coast of Korea has a flat seafloor topography with a
continuous series of gently sloping tidal flats (Frey et al., 1987).
Based on the coastal map issued by the Ministry of Oceans and
Fisheries of Korea (scale 1:25 000), the depth of the Incheon coast,
referenced to the datum level (approximately the lowest low water),
was ~50 m within 40 km from land. For the Boryeong coast, located
halfway between our study area and Incheon, where the wind farm
is planned, the depth at 40 km offshore was ~56.3 m, with an
average depth of approximately 30 m. Conversely, the study area
was located within 30 km from the coast, with a depth of ~23 m and
an average depth of 9.6 m, that is, shallower and narrower than
other areas along the west coast (Figure 1).

Ocean bottom temperature data for the survey area, measured
seasonally from 2002 to 2023, were retrieved from the Marine
Environmental Information Web Portal (MEIS, https://
www.meis.go.kr/mei/observe/port.do). The mean temperature was
15.4°C, with seasonal means of 4.0°C in February and 26.9°C in
August. During the same period, the mean bottom salinity was 31.4
psu. The seasonal average was the highest in winter (31.7 psu),
whereas the lowest in summer (30.8 psu), reflecting the influence of
the summer monsoon on the bottom water. The surface sediment
along the Korean west coast was primarily characterized by a broad
distribution of fine to very fine sand (2-4 ¢). However, the
sediments in the study area were characterized by a grain size
ranging at 3-7 ¢, with silt sediment extending broadly
southwestward from the very fine sand near the Geum estuary,
located to the north of the study area (Cho et al.,, 1993).

Surface suspended particulate matter (SPM) concentrations
along the Incheon coast were strongly influenced by tidal and
wind-driven currents and ranged from 15 to 332 mg/L, with an
average of 68.5 mg/L. The maximum and minimum seasonal
averages were observed in February and June, respectively (Choi
and Shim, 1986; Frey et al., 1987). According to the MEIS data from
2005 to 2023, the bottom SPM concentration in the study area
showed similar trends over the years. The mean concentration was
34.9 mg/L, with highest and lowest seasonal averages observed in
February (44.0 mg/L) and August (23.0 mg/L), respectively. During
the given period, the minimum concentration was 1.6 mg/L in
August 2014, whereas the maximum was 240.6 mg/L in
November 2018.

The bottom dissolved oxygen (DO) saturation (%) is a
parameter included in the five-grade evaluation system for
Korean water quality index (WQI), with the thresholds for Grade
II (good) and Grade III (moderate) being >80% and >67.5%,
respectively (Park et al., 2019). The average and minimum values
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of the bottom DO saturation measured in the survey area were 95%
and 65%, respectively. The 95% prediction lower bound, calculated
as the mean minus two times the standard deviation, within which
95% of the observations lay, was 73%. Based on these results, the
bottom DO saturation in the survey area could be classified, on
average, as Grade I (very good), with 95% of the observations
meeting at least a moderate status or better.

The maximum sediment total organic carbon (TOC) content in
the study area was 1.17%, which was below the 1.5% threshold
distinguishing “good” (Grade I) from “moderate” (Grade II)
statuses in the four-grade criteria for assessing shellfish farm
environments in Korea (Cho et al., 2013). The maximum
sediment acid-volatile sulfide (AVS) concentration was 0.047 mg
S/g dry weight, which was substantially lower than the optimal level
of 0.25 mg S/g dry weight (Uede, 2008).

Although the maximum concentrations of most heavy metals in
the sediment were below the effects range low (ERL) levels set by the
United States Environmental Protection Agency, the maximum
levels of cadmium, chromium, and nickel exceeded their
corresponding ERL values of 1.2, 81.0, and 20.9 ppm, respectively.
The average and 95% upper bound (upper two standard deviation)
concentrations were 0.12 and 0.33 ppm, respectively, for cadmium;
52.2 and 83.6 ppm, respectively, for chromium; and 18.0 and 28.7
ppm, respectively, for nickel. The upper bound concentrations were
approximately close to or below the ERL limits and well below the
effects range median (ERM; 9.6, 370, and 51.6 ppm, respectively)
levels. Thus, the study area was minimally contaminated by organic
matter or heavy metals.

2.2 Field surveys and laboratory analysis

As shown in Figure 1, our survey points were established
around the testbed of the Southwest Offshore Wind Farm project
(Korea Offshore Wind Power Co. Ltd., KOWP; http://
www.kowp.co.kr), located at the center of the study area. The
area had 20 wind turbines. The OWF construction began in May
2017 and was completed in January 2020, after which the OWF has
been continuously operating to date. Multiple pre- and post-project
assessments were carried out for assessing environmental effects
around the OWF.

The first monitoring program was the preliminary effect
assessment survey of the wind farm, which was conducted at a
total of 19 sampling points in four seasonal rounds from November
2014 to August 2015. The marine survey for industrial convergence
facilities was performed at 12 points in three rounds from
December 2015 to March 2016, before the installation of the
structure. The marine spatial environmental effect analysis of the
wind farm and database construction project, which covered both
the construction and operation periods of the offshore wind
structure, was conducted at 15 points in 21 rounds from June
2017 to October 2022.

For environmental data collection, we arrived at the sampling
points by vessel. We measured the Secchi depth (m), bottom
temperature (°C), salinity (psu), pH, DO (mg/L), and DO
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saturation (%) using a conductivity temperature depth (CTD)
instrument (Ocean7 305, Idronaut, SRL, Brugherio, Italy). The
depth (m) measurements varied depending on the time of
observation because of the wide tidal range in the survey area;
therefore, we utilized the measurements from the coastal map (scale
1:25 000) described above. For evaluating bottom-water
environmental data, we collected samples at each point using a
Niskin water sampler and transported them to the laboratory. In the
laboratory, we measured the bottom SPM concentration (mg/L,
filtering apparatus), chlorophyll-a content (Chl-a, pg/L,
Fluorometer 10-AU, Turner Designs, San Jose, CA, USA), and
chemical oxygen demand (COD, mg O,/L, potassium
permanganate, titration method).

The top 1 cm of the sediment was sampled for textural and
chemical analyses using a van Veen grab sampler at each sampling
point. For the sedimentary textural analysis, the sediment sample
was pretreated with hydrochloric acid and hydrogen peroxide to
remove carbonate and organic matter, respectively.

Particle size analysis was performed by sieving and pipetting.
Dry sand particles were analyzed using a hand-held sieve at 1.0 ¢
intervals, while mud particles were analyzed by pipetting at 1.0 ¢
intervals. The gravel, sand, silt, and clay contents (%) were
calculated from the sediment grain size classification. Statistical
parameters, such as mean grain size and sorting values, were
calculated as described in the study by Folk and Ward (1957).

For the sediment organic matter content, ignition loss (%,
Daehan Sci. Inc., Muffle Furnace FX-27, Wonju, Gangwon,
Korea), TOC (mg/g, Thermo Fisher Scientific Inc., FLASH 2000,
Waltham, MA, USA), total organic nitrogen (mg/g, Thermo Fisher
Scientific Inc., FLASH 2000), and COD (mg/g, alkaline potassium
permanganate method) were measured. Heavy metal (aluminum,
iron, arsenic, cadmium, chromium, lithium, nickel, lead, copper,
and zinc) concentrations (mg/kg) in the sediments were measured
using the ELAN DRC II ICP-MS (Perkin-Elmer Inc., Shelton, CT,
USA), and the derived metal concentrations, such as normalized
copper and zinc levels, were calculated. In addition, the sediment
AVS (mg S/g dry, hydrogen sulfide detector tube), which indicates
organic matter content and sulfide toxicity, was measured.

At each sampling point, macrobenthos was collected twice using a
van Veen grab sampler (surface sampling area, 0.1 m?). The sediment
was filtered through a 1 mm mesh sieve using seawater, and the residue
was transferred to a collection container and fixed with a 10% neutral
formalin solution for transportation to the laboratory. In the
laboratory, the samples were sorted and identified to the species or
lowest possible taxonomic level using a stereomicroscope (Leica
MZ125; Leica Microsystems, Wetzlar, Germany) and an optical
microscope (Olympus BAC-313; Olympus Corporation, Tokyo,
Japan). The abundance and wet weight of the biomass were
measured for the identified taxonomic groups and expressed as
values per unit area (m?®). The scientific names of the identified taxa
were standardized according to the World Register of Marine Species
(WoRMS, https://www.marinespecies.org).

To incorporate weather-related variables into this study, we
obtained weather data from the Data Service Center of the Korea
Meteorological Administration (KMA, https://data.kma.go.kr/
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cmmn/main.do) at the Gochang weather station (marked by a
yellow cross in Figure 1). This station was located near the study
area, and data collection was performed using an automated
synoptic observation system (ASOS). Monthly averages of daily
significant wave heights were obtained from marine weather data
provided by the KMA, recorded using three coastal wave buoys
(CWBs) near the study area. As these three CWBs were located in
Wido, Byeonsan, and Yeonggwang, the observations from the
nearest CWB were assigned to each sampling point. The
observation start date for the CWBs varied with location.
Observations from Yeonggwang from November 2014 to March
2016 were assigned to all sampling points, whereas those from
Byeonsan began in April 2017 and those from Wido in
September 2018.

2.3 Data analysis

2.3.1 Data processing

Forty-two environmental factors were measured in this study.
However, as missing values were present in the data matrix, we
deleted variables or even whole data records (for example, the 2014
survey data) in the event of missing values. After addressing the
missing value problem, the total number of database records
consisting of community and environmental variables (described
below) was reduced from 427 to 351, while that of environmental
variables was reduced to 24.

A single widely used method for collecting weather-related
variables and measurements of spatial variations in wind and
waves could not be identified. The weather data, especially the
wind data, used in this study were also measured at a limited
number of locations. Thus, we used a quantitative but simple value
in case of an unavailable survey round value to compare sampling
points or distinguish spatial variations with different wave fetches.
Ricciardi and Bourget (1999) adopted a similar approach.

The weather data included MeanWind and MaxWind (current
monthly averages of daily mean and maximum wind speed,
respectively; m/s), Hs (current monthly averages of daily
significant wave height, m), HD (Hs/depth ratio; see below for
further explanation), and Prev.Mean, Prev.Max, Prev.Hs, and
Prev.HD (previous monthly averages of the four variables above).
Previous monthly averages were used because the current monthly
average included trailing data recorded after biological sampling;
therefore, it was not causative. In addition, we assumed that
previous monthly averages up to a month prior to biological
sampling could be effective for the resulting response of the
biological parameters observed in the current month.

We estimated and utilized the HD (Hs/depth ratio) as a
composite variable for assessing the wave-induced forces affecting
the bottom sediment. We followed the method by Seelam and
Baldock (2012), who showed that the total shear stress (sum of form
drag and bed shear) of a solitary wave is linearly related to the wave
height/water depth.

To identify and quantify the effects of environmental factors on
biological parameters, we targeted the diversity and wet weight of
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macrobenthic communities. We used Whittaker’s d, which allows
for comparing the diversity to our past database with different
surface sampling areas. The formula for the index was as follows:

Whittaker'd = SRs/logyA,

where SRs is the total number of species in the sample, and A is
the sample area in cm? (Whittaker, 1975).

2.3.2 Benthic habitat mapping - sediment and
biological parameters

We generated habitat maps that included bathymetric data,
quantitative data on sediment distribution, and data on biological
parameters of macrobenthic communities observed during the
survey, using the 1:25,000 scale map described earlier. The
bathymetric data referenced to the datum level consisted of 1559
points within the survey area. We used Surfer 25.1.220 (Golden
Software, LLC, Golden, CO, USA) to integrate these data and create
a digital elevation model (DEM), using the kriging algorithm as the
interpolation method. The raster grid resolution of the bathymetric
DEM was set to 25 m.

For analyzing the sediment and biological parameters, we used
the inverse distance weighted (IDW) interpolation algorithm, which
is more suitable than the kriging algorithm for sparse or irregular
data distributions (Munyati and Sinthumule, 2021). The weighting
factor (P), which determines the influence of nearby sampling
points on the interpolation values, was set to 2.0, and the raster
grid resolution was set to 25 m.

The habitat maps with bathymetric information included 12-19
sampling points per survey round using the: (1) sediment mean
grain size data (¢), (2) Whittaker’s index for diversity, and (3)
logarithmically transformed wet weight biomass, b (log b+1,
basel0) for the biomass.

Regarding the assessment of macrobenthic community
biomass, unlike Whittaker’s d or species number, which lack
previously established criteria for categorizing diversity levels in
Korea, various criteria are available for distinguishing low levels of
biomass. Jeong et al. (2019) estimated the log-transformed Q1 value
to be 1.0 (9.10 g/m?), indicating low biomass on the west Coast of
Korea. In this study, we estimated the Q1 of Whittaker’s d from the
same data set (n = 372, surface sampling area = 0.3 m” per sampling
point) to be 6.6 and used this value for the same purpose.

We examined the spatial patterns of diversity and biomass by
classifying the areas as anomalous if any value was lower than the
abovementioned threshold and as normal if not. To categorize the
survey rounds as normal or anomalous, we counted the number of
sampling points with diversity and biomass anomalies and classified
each round as anomalous if the proportion was 33.3% or higher.
Although this threshold was not derived from a formal ecological
standard, it was selected as a conservative empirical criterion to
identify survey rounds in which anomalies were not confined to a
few isolated stations but instead occurred across a broader spatial
extent. Sensitivity analyses across a range of cutoft values (0.05-
0.70) confirmed the robustness of this criterion, as it consistently
distinguished anomalous from normal rounds with statistically
significant differences (p< 0.001) and large effect sizes (Cliff’s
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delta > ]0.5|) in the station-level distributions of diversity
and biomass.

2.3.3 Multiple regression analysis

Given the high variability and nonlinearity of biological
parameters, Whittaker’s d and wet weight biomass were
transformed using square root (v/d) and consecutive logarithmic
transformations (log ((log b + 1) + 1)), respectively. As anticipated,
the 24 aforementioned environmental factors were highly
correlated. To address the multicollinearity problem that may
arise from these high correlations among the predictors in the
multiple regression analysis, we conducted a Pearson’s correlation
analysis prior to model estimation. If the absolute correlation values
between two variables were greater than 0.5 (|r] > 0.5), we
eliminated the variable that had a lower correlation with the
biological parameters (Yoo et al., 2013). We then prepared a set
of variables for the regression analysis and performed the best
subsets regression to identify a useful subset of predictors using
Minitab 21 (Minitab, LLC, State College, PA, USA).

While exploring various models from the output of the best
subsets regression, we focused on Mallows’” Cp, which helps select a
model that is both accurate and unbiased by looking for the smallest
difterence between the Cp value and total number of predictors plus
a constant. In addition, we considered the predicted R?, which
indicates the predictive ability of the model. We identified two or
more models that satisfied these two criteria, and ultimately, chose
the regression model with the highest R* value. Most models
selected based on these criteria had few predictors and
demonstrated either a high predicted R* or a value close to it.
This was also true for the adjusted R?, which provides insights into
potential overfitting.

For the selected models, each predictor was standardized by
subtracting the mean and dividing it by the standard deviation. This
method allowed us to easily compare the sizes of the coefficient
estimates and determine the predictors with a large effect. We used
these standardized predictors to fit the model and compared the
regression coefficients among the predictors using graphs.
Unstandardized regression coefficients and additional statistics,
such as the F-test, variance inflation factors, R* and model
equations, are presented in the ANOVA tables.

We examined the Pearson correlation between the
macrobenthic community parameters and weather-related
variables (hereafter referred to as air predictors). This was
performed (1) to assess the validity of the estimated effects of air
predictors in the regression analysis by checking the consistency
between the sign and size of beta estimates and the correlation in
case of no prior information on the effects of air predictors and (2)
to distinguish air predictors that were effective but eliminated
during the variable selection process because of high correlation
with other predictors.

We classified the environmental factors into marine
environmental predictors (hereafter referred to as sea predictors)
and weather-related air predictors and prepared two types of
datasets, one consisting of sea predictors and the other consisting
of both air and sea predictors, to conduct a step-by-step regression
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analysis. We investigated whether the additive inclusion of air
predictors in the model resulted in statistical improvements and
ecological significance. Model estimation based on air-sea
predictors was also conducted separately for two types of data:
individual sampling point and survey round-averaged data.
Averaged data were used to leverage the central tendency of the
environmental data and biological parameters and to eliminate the
effect of spatial variation.

To assess the performance of the regression models, we calculated
the Pearson correlation coefficient between the observed and
predicted values and examined the changes in the correlation
coefficients associated with the addition of air predictors. The
categories for the correlation coefficients were based on the findings
by Chen et al. (2021), where |r| < 0.3 was considered negligible, 0.3< |
r| £ 0.5 was weak, 0.5< |r| < 0.7 was moderate, 0.7< |r| < 0.9 was

strong, and 0.9< |r| < 1 was fully correlated.

2.3.4 Seasonal mean model and logistic
regression analysis

To understand the seasonal variations in biological parameters,
we selected one of the air predictors based on the results of the
regression analysis and estimated the seasonality of the predictor
and biological parameters. We categorized the survey rounds into
four seasons (spring = 1, summer = 2, fall = 3, and winter = 4), and
applied a seasonal mean model, expressed as follows:

y=SLBLM+ =12 ..

where I; (t) is the indicator variable defined as

I;(t) =1, whent =i, i+4, ... or

0,whent #1i,i+4,.. wherei=1, 2, .., 4.

Employing the indicator variables, we estimated the seasonal

> T)

model using regression analysis with no intercept option for the
residual average as 0 (Choi, 1992) and then identified seasonality
using beta estimates corresponding to the seasonal mean. Linear
trends were fitted to the deseasonalized residuals, and Pearson
correlations between the environmental factor and biological
parameter residuals were analyzed.

We predicted the conditions of occurrence for the anomaly
survey round (proportion of anomaly samples per a survey round
>33%) using multiple logistic regression with air predictors. In the
analysis, the response variables, namely, survey rounds, were coded
as 1 for anomalies and 0 for normal responses. Prior to analysis, the
linear relationship between the proportion of anomalous samples
per survey round of diversity and biomass was estimated.
Thereafter, we examined the differences in the proportions of
anomaly samples in a survey round based on diversity vs.
biomass and the differences of each parameter between anomaly
vs. normal using a Spear style boxplot without upper and lower
fence (upper and lower quartile + 1.5 interquartile range). The
Levene’s test for equal variances and f-test for equal means were
performed to test for statistical differences.

We employed a stepwise procedure and selected the final set of
predictors and models based on the significance of the Wald test.
We examined the deviance R?, which indicates the variations
explained by the model, and the area under the ROC curve
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(AUC) to determine the fitting of the data in the model. The
AUC indicates the efficiency by which the binary model can
separate the classes and ranges between 0.5 and 1. A value of 0.5
indicated that the model could not separate the classes better than a
random assignment. The Wald test was used to test the hypothesis
that the set of beta coefficients is equal to zero.

3 Results
3.1 Benthic habitat map

The mean sediment grain size distribution in the study area is
presented in a benthic habitat map (Figure 2). Mixed sand-silt to silt
sediments were primarily present, with grain sizes ranging from 4-5
to 7 ¢. Exceptionally, fine sand (approximately 3 ¢) and fine silt
sediments (approximately 7 ¢) were observed temporarily in the
southern and northern parts of the area, respectively, in October
and November 2018. SPM data from November 2018 coincided
with the maximum bottom SPM concentration from the web portal
(MEIS) data and our SPM observation over the 97" percentile at the
southeastern sampling point (St. 15, 176.4 mg/L).

Initially, the sediment grain size ranged at 4-5 ¢ (sand-silt
mixed sediment), but as the survey progressed, the spatial
occupancy/frequency of muddy sediments (greater than 5.5 ¢)
became predominant in the shallower southeastern part of the
surveyed area. Temporary changes in the mean sediment grain size
were observed in the middle of the survey. In October and
November, 2018, sediment fining (red hues) was observed in the
northwestern part of the surveyed area, whereas coarsening (blue
hues) was observed in the southern part, with distinct sediment
distribution patterns detected before and after this period. After this
period, a strengthening of the red hues was observed in the
sediment distribution in this area, indicating that the sediments
in the shallower southeastern part became muddier over time.

Macrobenthic diversity (Whittaker’s d) is presented in a benthic
habitat map (Figure 3). Blue/darker hues, which generally appeared
between February 2015 and June 2017, correspond to anomalous
diversity (d = 6.6). In addition, a consistently low diversity was
observed in the shallower southeastern part of the surveyed area at
times and locations of occurrence of mud bottoms (Figure 2). From
August 2017, the diversity increased compared with that in previous
years, with that in June 2022 being an exception. Anomaly rounds
accounted for 28.6% of all survey rounds (left inset of the bar graph
in Figure 3).

The log-transformed wet-weight biomass of the macrobenthic
communities present in the benthic habitat map is shown in
Figure 4. Relatively high biomass was observed during the early
survey periods of November 2014 and August 2015; however, dark
green/darker hues, indicating biomass anomalies, were
predominantly observed until June 2017. Following this period, a
bright green color, representing biomass in the range of
approximately 25-100 g/m’® (log scale bar, approximately 1.4-
2.0), became predominant, reflecting an increase in biomass.
Toward the later stages of the survey, dark green/dark hues
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FIGURE 2

Benthic habitat map showing topography and spatiotemporal variation of the mean grain size (¢) of the bottom sediment of the study area from
November 2014 to October 2022. The color palette on the left shows the mean grain size range from 2.0 to 7.0 ¢.

reappeared, suggesting a gradual decline in biomass. This pattern
appeared to roughly align with the fluctuations observed
in diversity.

Biomass anomalies showed little regularity. The occurrence of
anomalies partially coincided with periods of low diversity (e.g.,
February 2015 to June 2017 and June 2022) and times at which the
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spatial distribution of sediment changed from that in previous
surveys. During such changes, for instance, after the predominant
distribution of mixed sediments, sand bottoms emerged in some
areas, resulting in a color change on the map from green to blue
(e.g., February 2015, October and November 2018). Mud bottoms
(red hues in the map) sometimes expanded in the shallower
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Benthic habitat map showing the topography, spatiotemporal variation in the diversity of macrobenthic communities (Whittaker’s d), and ratio of
normal (red circle) vs. anomalous (blue circle) survey rounds observed in the study area from November 2014 to October 2022. The color palette on
the left side shows the range of Whittaker's d from 0 to 28, while the bar graph above it represents the proportion of normal to anomaly survey

rounds.

southeastern part (e.g., December 2015 and June 2017) or when the
previously homogeneous sediment distribution became
heterogeneous (e.g., October and November 2018 and June,
August, and October 2022), all of which aligned with the
emergence of anomalies. Anomaly rounds accounted for 46.4% of
all survey rounds (left inset of the bar graph in Figure 4).
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3.2 Linear regression using sea predictors

Square root-transformed Whittaker’s d (Sqrt d) was positively
correlated with log-transformed sand content (log sand)
(Figure 5A). Log sand was highly correlated with mean grain size
(MGS, r = -0.84, p< 0.001). Sqrt d was also positively correlated with
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FIGURE 4

Benthic habitat map showing the topography, spatiotemporal variation of log-transformed wet weight, biomass of macrobenthic communities, and
ratio of normal (red circles) vs. anomaly survey rounds (blue circles) observed in the study area from November 2014 to October 2022. The color
palette on the left side shows the range of log-transformed biomass from 0 to 3.5, while the bar graph above it represents the proportion of normal
to anomaly survey rounds.

depth and negatively correlated with DO (r = -0.76, p< 0.001 with  coefficient between the observed and predicted values was moderate
temperature), salinity (r = -0.50, p< 0.001 with Chl-a; r = 0.19, p<  (r = 0.68, p< 0.001) (Figure 5C).

0.001 with depth; and r = 0.18, p = 0.001 with temperature) and log SPM and sediment copper (Cu) had significant negative effects
SPM (r = 0.286, p< 0.001 with sediment log TOC). The correlation  on consecutive log-transformed biomass (CL biomass) (Figure 5B).
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Regression plots of macrobenthic diversity with Sqrt d (square root-transformed Whittaker's d) and CL biomass (consecutively log-transformed wet
weight, g/m?) using sea predictors (bottom water/sediment variables). Beta estimates of the coded equations (A, B) and observed-predicted plots for
the diversity and biomass regression models (C, D). Log indicates log-transformation for variable x (log (x + 1), base = 10), Al (sediment aluminum
concentration), Sand (sand content), SPM (suspended particulate matter), pH (power of hydrogen), DO (dissolved oxygen), Cu (copper in sediment),
Cd (cadmium in sediment), and Sorting (sediment sorting). Asterisks indicate statistical significance (*p < 0.05; **p < 0.01; *p < 0.001).

Cu exhibited a high correlation with substratum properties, such as
log sand (r =-0.42, p< 0.001), MGS (r = 0.37, p< 0.001), ignition loss
(r = 0.60, p< 0.001), and sediment TOC (r = 0.51, p< 0.001). The
correlation between the observed and predicted biomass values was
weak (r = 0.47, p< 0.001) (Figure 5D).

Table 1 presents a summary of the regression analysis results.
The diversity of the macrobenthic communities in the surveyed area
was adequately explained by seven predictors, all of which were
significant at a p-value of 0.05. The coefficient of determination R*
was 0.47, with significance set at p< 0.001. The collinearity statistics,
represented by variance inflation factors (VIFs), were all
satisfactory, below 1.3. The R* value for the biomass regression
model was 0.22, which was statistically significant (p< 0.001).
Among the eight predictors, log-transformed bottom pH (log
pH), sediment sorting, and log-transformed sediment Cd (log Cd)
were insignificant, whereas the remaining five predictors showed
statistical significance (p< 0.05). All VIFs were satisfactory.
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3.3 Linear regression using air—sea
predictors

The air predictors that exhibited significant correlations with
diversity were MeanWind, MaxWind, Hs, Prev.Hs, and Prev.HD
(Figure 6A). Prev.Hs and Prev.HD showed high correlation
coefficients with Hs (r = 0.65, p< 0.001) and HD (r = 0.88, p<
0.001). The variables that demonstrated significant correlations
with the biomass were MeanWind, MaxWind, Hs, Prev.Mean,
and Prev.Hs. Among them, MeanWind exhibited a notable
correlation (r = -0.41, p< 0.001) with diversity (Figure 6B). Most
air predictors were significant and displayed negative relationships
with the biological parameters.

The diversity regression model shown in Figure 6C revealed
that significant sea predictors were log sand, depth, salinity, and log
SPM. In this regard, the results shown in Figure 6C are similar to
those in Figure 5A. DO, included in Figure 5A, was excluded from
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TABLE 1 Analysis of variance for the diversity and biomass regression models based on sea predictors (bottom water/sediment variables).

Regression for Sqrt d

Source Adj SS Adj MS F-value
Regression 7 88.141 12.592 43.19 0.000 -
Depth 1 12.625 12.625 433 0.000 112
Salinity 1 7.667 7.667 26.3 0.000 1.19
DO 1 9.627 9.627 33.02 0.000 1.26
pH 1 1.330 1.330 4.56 0.033 1.12
Log SPM 1 2.037 2.037 6.99 0.009 1.27
Log Sand 1 29.298 29.298 100.49 0.000 118
Log Al 1 2.506 2.506 8.6 0.004 113
Error 343 100.003 0.292 - - -
Total 350 188.144 - - - -
S R? R? (adj) R? (pred)
Model Summary
0.539956 0.4685 0.4576 0.4446
Regression equation in uncoded units:
Sqrt d = 3.984 + 0.03437 Depth - 0.1036 Salinity - 0.1333 DO + 0.1226 pH - 0.2308 Log SPM + 1.032 Log Sand + 1.057 Log Al

Regression for CL biomass

Source Adj MS F-value
Regression 8 0.74995 0.09374 11.98 0.000 -
Salinity 1 0.03466 0.03466 4.43 0.036 1.05
Log DO 1 0.03839 0.03839 491 0.027 1.24
Log pH 1 0.02872 0.02872 3.67 0.056 1.1
SPM 1 0.19164 0.19164 24.5 0.000 1.21
Sorting 1 0.02275 0.02275 291 0.089 1.16
Log Sand 1 0.03598 0.03598 4.6 0.033 1.34
Log Cd 1 0.01914 0.01914 2.45 0.119 1.07
Cu 1 0.07903 0.07903 10.1 0.002 1.3
Error 342 2.67528 0.00782 - - -
Total 350 3.42522 - - - -
S R? R? (adj) R? (pred)
Model Summary
0.0884446 0.2189 0.2007 0.168
Regression equation in uncoded units:
CL Biomass = 0.337 - 0.00655 Salinity - 0.1693 Log DO + 0.339 Log pH - 0.000542 SPM + 0.0216 Sorting + 0.0387 Log Sand + 0.222 Log Cd - 0.00363 Cu

Log indicates log-transformation for variable x (log (x + 1), base = 10), DO (dissolved oxygen, mg/L), pH (power of hydrogen), SPM (suspended particulate matter, mg/L), Sand (sand content, %),
Al (sediment aluminum concentration, mg/Kg), Sorting (sediment sorting, ¢), Cd (cadmium in sediment, mg/Kg), and Cu (copper in sediment, mg/Kg).

the analysis because of its high correlation with the air predictor Among the sea predictors in the biomass regression model,
Prev.Hs (r = 0.64, p< 0.001). Although air predictors had lower =~ SPM demonstrated the most significant effect, with Cu and log sand
effects than sea predictors (i.e., log sand, salinity, and depth), the  also included as significant variables, indicating a similarity with the

mean and Prev.Hs had significant negative effects on diversity. results of the sea predictor-based model shown in Figure 5B and
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Table 1. Log DO was excluded from the variable selection because of
its significant correlations with several factors, including SPM (r =
0.30, p< 0.001), MeanWind (r = 0.43, p< 0.001), and Prev.Mean (r =
0.31, p< 0.001). The only air predictor included was MeanWind,
whose effect was estimated to be greater than that of Cu (Figure 6D).

The correlation coefficients between the observed and predicted
values in the diversity and biomass prediction models that included
air predictors were 0.72 (p< 0.001) and 0.48 (p< 0.001), respectively.
The numbers of predictors in these models were eight and seven,
respectively, similar to those in the sea predictor-based models
(seven and eight, respectively) (Tables 1, 2). Although not
substantial, an increase was observed in the correlation
coefficients between the observed and predicted values of the
models. The correlation coefficient range for the diversity model
shifted from moderate to strong (Figures 6E, F).

The predictors of diversity for macrobenthic communities in
the surveyed area were mostly significant (p< 0.001), with all VIFs
being below 1.5, indicating good multicollinearity. This model was
statistically significant (p< 0.001; Table 2). In addition, the biomass
regression model was also significant (p< 0.001), with SPM and
MeanWind appearing significant (p< 0.001) and VIFs being at a
very satisfactory level (Table 2).

3.4 Averaged parameters and air—sea
predictors

The air predictors that were significantly correlated with survey-
averaged diversity included MeanWind (r = -0.51, p = 0.006),
Prev.Hs (r = -0.54, p = 0.003), and Prev.HD (r = -0.41, p = 0.029)
(Figure 7A). The predictors that exhibited significant correlations
with survey-averaged biomass were the same as those for diversity,
namely MeanWind (r = -0.71, p< 0.001), Prev.Hs (r = -0.39, p =
0.038), and Prev.HD (r = -0.42, p = 0.028) (Figure 7B).

In the average diversity regression model, salinity (r = -0.67, p<
0.001 with Chl-a) and DO had relatively large effects among sea
predictors. Prev.Mean was the only significant variable among air
predictors, showing a lower effect than that of other predictors
(Figure 7C). MeanWind, which was only moderately correlated
with Sqrt d (Figure 7A), was replaced by DO, which was highly
correlated with Sqrt d (r = -0.63, p< 0.001), during the variable
selection prior to the regression analysis. In the average biomass
regression model, MeanWind was the only significant air predictor
(p< 0.001) of biomass (Figure 7D).

DO showed higher correlations with most air predictors (e.g., r
= 0.56, p = 0.002 with MeanWind; r = 0.67, p< 0.001 with Hs; r
=0.83, p< 0.001 with Prev.Hs; r = 0.56, p = 0.002 with HD; r = 0.74,
p< 0.001 with Prev.HD). In contrast, salinity showed seasonal
variability, correlating best with MaxWind (r = 0.361, p = 0.059),
whereas none of the other air predictors were significantly
correlated with salinity.

The Pearson correlation coefficients between the observed and
predicted values of the survey-averaged diversity and biomass
regression models were r = 0.83 (p< 0.001) and r = 0.77 (p<
0.001), respectively. The model predicting diversity, which
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included four predictors, was significant (p< 0.001), with all VIFs
being satisfactory at 1.6 or below. The biomass regression model,
which included three predictors, was also significant (p< 0.001),
with VIFs close to 1, indicating an excellent level for avoiding
multicollinearity (Figures 7E, F; Table 3). The correlation coefficient
for the diversity model remained within a strong range, whereas
that for the biomass model varied from weak to strong
(Figures 7E, F).

3.5 Seasonality of air predictors and
parameters

Among the air predictors, MeanWind had the most significant
effect and was selected for further analysis. The seasonal patterns of
MeanWind and biological parameters are presented in Figure 8.
The seasonal model for MeanWind showed higher values in spring
and winter, with a maximum beta estimate of 2.9 m/s in winter,
whereas lower values were observed in summer and fall, with a
minimum beta estimate of 2.3 m/s in fall. The model R* was 99.44%
(p< 0.001), indicating that most of the variance in the MeanWind
data was explained by seasonality (Figure 8A).

Sqrt d was fitted to a seasonal model with R* = 98.89% (p<
0.001), showing increased diversity in the summer and fall
(Figure 8B). A minimum beta estimate of Sqrt d of 2.834 was
observed in the spring, corresponding to 8.0, which was higher than
the diversity anomaly. The CL biomass showed a similar seasonal
98.89%, p< 0.001) with a minimum beta estimate of
0.3052 in winter, corresponding to 8.9 g/m?, which was lower than

pattern (R* =
the biomass anomaly (Figure 8C). The deseasonalized residuals of
MeanWind showed a significant positive trend (p = 0.022),
negatively correlating with the CL biomass residuals (r = -0.46, p
= 0.014), highlighting a difference from Sqrt d, however, with no
significant relationship (Figure 8D).

3.6 Prediction of anomaly rounds

Figure 9A shows a comparison of the proportions of anomalous
samples in a survey round between Sqrt d and CL biomass. The
mean and median proportions of anomalies for Sqrt d (22.7% and
16.7%, respectively) were lower than those for the CL biomass
(29.3% and 23.3%, respectively). However, Levene’s and f-test
results confirmed that the differences in variances and means
were insignificant (p = 0.204 and 0.224, respectively). Figure 9B
illustrates a significant linear relationship between the proportions
of both parameters, with R*> = 0.7201 (p< 0.001). The covarying
patterns of anomalous samples in diversity and biomass suggested a
shared disturbance source.

Figure 9C illustrates the variation in Sqrt d between normal and
anomalous rounds. The variances between the groups were equal
(standard deviation, 0.31 vs. 0.17; Levene test, p = 0.081) but the
means were significantly different (3.43 vs. 2.74; t-test, p< 0.001).
The variances in the CL biomass between normal and anomalous
rounds were also equal (standard deviation, 0.040 vs. 0.038;
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TABLE 2 Analysis of variance for the diversity and biomass regression models based on air—sea predictors (bottom water/sediment and wind/

wave variables).

Regression for Sqrt d

Source F-value P-value
Regression 8 96.241 12.030 44.77 0.000 -
Depth 1 15.043 15.043 55.98 0.000 1.10
Salinity 1 10.496 10.496 39.06 0.000 1.27
Log SPM 1 2.530 2.530 9.41 0.002 1.23
Log Sand 1 27.795 27.795 103.43 0.000 1.10
Log Al 1 2.899 2.899 10.79 0.001 112
MeanWind 1 7.243 7.243 26.95 0.000 1.16
Prev.Mean 1 2.989 2.989 11.12 0.001 1.45
Prev.Hs 1 1.511 1.511 5.62 0.018 1.43
Error 342 91.904 0.269 - - -
Total 350 188.144 - - - -
S R? R* (adj) R* (pred)
Model Summary
0.518386 0.5115 0.5001 0.4857
Regression equation in uncoded units:
Sqrt d = 6.932 + 0.03726 Depth - 0.1253 Salinity - 0.2530 Log SPM + 0.9730 Log Sand + 1.129 Log Al - 0.541 MeanWind - 0.3108 Prev.Mean - 0.313 Prev.Hs

Regression for CL biomass

Source Adj MS F-value P-value
Regression 7 0.79061 0.11295 14.7 0.000 -
Salinity 1 0.02859 0.02859 3.72 0.055 1.11
SPM 1 0.21322 0.21323 27.76 0.000 1.14
Sorting 1 0.02302 0.02302 3.00 0.084 1.08
Log Sand 1 0.04314 0.04314 5.62 0.018 1.31
Al 1 0.01689 0.01689 2.20 0.139 1.11
Cu 1 0.06256 0.06256 8.15 0.005 1.3
MeanWind 1 0.12821 0.12821 16.69 0.000 1.11
Error 340 2.44871 0.00720 - - -
Total 350 3.42522 - - - -
S R? R* (adj) R* (pred)
Model Summary
0.0876418 0.2308 0.2151 0.1882
Regression equation in uncoded units:
CL Biomass = 0.632 - 0.00610 Salinity - 0.000555 SPM + 0.0210 Sorting + 0.0418 Log Sand + 0.00486 Al - 0.00324 Cu - 0.0703 MeanWind

Log indicates log-transformation for variable x (log (x + 1), base = 10), SPM (suspended particulate matter, mg/L), Sand (sand content, %), Al (sediment aluminum concentration, mg/Kg),
Sorting (sediment sorting, ¢), Cu (copper in sediment, mg/Kg), MeanWind (current monthly averages of daily mean wind speed; m/s), Prev.Mean (previous monthly MeanWind; m/s), and
Prev.Hs (previous averages of daily significant wave height; m).

Levene’s test, p = 0.637), yet the means were significantly disparate
(0.371 vs. 0.321; t-test, p< 0.001) (Figure 9D).
We constructed logistic models to predict the probability of an

selected using a stepwise procedure and Wald tests. The three-
dimensional wireframe surface plots for the occurrence
probabilities predicted by the significant models are shown in

anomaly round based on air predictors. The final models were  (Figures 9E, F). The deviation R? values were 47.18% and 33.39%
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Regression plots of macrobenthic diversity with Sqrt d (square root-transformed Whittaker's d) and CL biomass (consecutively log-transformed wet
weight, g/m?) using air—sea predictors (bottom water/sediment and wind/wave variables). Correlations of macrobenthic diversity and biomass with
air predictors, namely, MeanWind, MaxWind, Hs, and HD (current monthly averages of daily mean, maximum wind speed, significant wave height,
and Hs/depth ratio), and Prev.Mean, Prev.Max, Prev.Hs, and Prev.HD (previous monthly MeanWind, MaxWind, Hs, and HD) (A, B). Beta estimates of
the coded equations (C, D) and observed-predicted plots for the diversity and biomass regression models (E, F). Asterisks indicate statistical

significance (*p < 0.05; **p < 0.01; *p < 0.001).

for the diversity and biomass models, respectively. The Wald tests
confirmed the significance of the beta values of the model equations
(p = 0.029 and 0.020). The AUC values, representing the overall
performance of the binary classification model, were satisfactory
(AUC = 0.90 and 0.86).
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The occurrence probability of a diversity anomaly round
increased with MeanWind (p< 0.05) and Prev.Hs (p > 0.05).
When Prev.Hs was close to 0.5 m, a MeanWind close to 2.84 m/s
could induce a diversity anomaly round, while when Prev.Hs
exceeded 1.5 m, a MeanWind >1.59 m/s was required to ensure a
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Regression plots of average macrobenthic diversity from survey rounds with Sqrt d (square root-transformed Whittaker's d) and CL biomass
(consecutively log-transformed wet weight, g/m?) using air—sea predictors (bottom water/sediment and wind/wave variables). Correlations of
macrobenthic diversity and biomass with air predictors, namely, MeanWind, MaxWind, Hs, and HD (current monthly averages of daily mean,
maximum wind speed, significant wave height, and Hs/depth ratio), and Prev.Mean, Prev.Max, Prev.Hs, and Prev.HD (previous monthly MeanWind,
MaxWind, Hs, and HD) (A, B). Beta estimates of the coded equations (C, D) and observed-predicted plots for the diversity and biomass regression

models (E, F). Asterisks indicate statistical significance (*p < 0.05; **p < 0.01;

*p < 0.001).

diversity anomaly round (Figure 9E). The probability of a biomass
anomaly round exhibited a trend similar to that of a diversity
anomaly, increasing with MeanWind (p< 0.05) and MaxWind (p >
0.05). When MaxWind was as low as 10 m/s, a MeanWind >2.70 m/
s could induce a biomass anomaly round. When MaxWind reached
18 m/s, a MeanWind >1.86 m/s could cause a biomass anomaly
round (Figure 9F).
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4 Discussion
4.1 Validation

To understand the variation in macrobenthic community
parameters, we selected a model from all possible 2% subset
regression models using k predictors by means of general model
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TABLE 3 Analysis of variance for the survey round-averaged diversity and biomass regression models based on air—sea predictors (bottom water/
sediment and wind/wave variables).

Regression for Sqrt d

Source F-value
Regression 4 3.3925 0.84814 13.18 0.000 -
MaxWind 1 0.1485 0.14851 2.31 0.142 1.4
Prev.Mean 1 0.2856 0.28557 4.44 0.046 1.57
DO 1 0.3992 0.39918 6.2 0.020 1.48
Salinity 1 1.0644 1.06439 16.54 0.000 1.26
Error 23 1.48 0.06435 - - -
Total 27 4.8726 - - - -
S R? R? (adj) ‘ R? (pred)
Model Summary
0.25367 0.6963 0.6434 ‘ 0.5585
Regression equation in uncoded units:
Sqrt d = 10.67 - 0.0400 Max Wind - 0.360 Prev.Mean - 0.1063 DO - 0.1691 Salinity

Regression for CL biomass

Source
Regression 3 0.055624 0.018541 11.88 0.000 -
MeanWind 1 0.032097 0.032097 20.56 0.000 1.11
Salinity 1 0.002651 0.002651 1.7 0.205 1.05
SPM 1 0.004381 0.004381 2.81 0.107 1.15
Error 24 0.037468 0.001561 - - -
Total 27 0.093092 - - - -
S R? R? (adj) R? (pred)
Model Summary
0.0395116 0.5975 0.5472 0.4684
Regression equation in uncoded units:
CL Biomass = 0.894 - 0.1171 MeanWind - 0.00772 Salinity - 0.000333 SPM

MaxWind (current monthly averages of daily maximum wind speed; m/s), MeanWind and Prev.Mean (current and previous monthly averages of daily mean wind speed, respectively; m/s), DO

(dissolved oxygen, mg/L), and SPM (suspended particulate matter, mg/L).

selection criteria, such as Mallows  Cp, R% and predjcted—Rz. We
accordingly found that macrobenthic community diversity and
biomass had a multifactorial relationship with these predictors. The
weather-related predictor variables (e.g., wind speed and significant
wave height) used in this study have not been previously used to
subtidal macrobenthic communities. Most variations in macrobenthic
distribution, diversity, and biomass have been explained by salinity,
depth, temperature, organic matter, current, sediment properties, larval
supply, and biological interactions (Reise, 1985; Chardy and Clavier,
1988; Snelgrove and Butman, 1994; Snelgrove et al.,, 1997; Ysebaert
et al,, 2003; Nilsen et al., 2006; Golubkov, 2008; Fuhrmann et al., 2015).
In addition to insufficient background information regarding
unfamiliar variables, as recommended by Heinze et al. (2018) and
Chen (2022), correlation and regression analyses are statistical methods
for analyzing data containing errors. Hence, the results obtained using
these methods must be rigorously validated.

Frontiers in Marine Science

The main interest of researchers in field survey studies utilizing
empirical models such as ours is to find causally related factors (Reed
and Slade, 2008). For a given confined length of data and selected
variable subsets from a large number of environmental variables, the
unbiasedness of the regression coefficients of predictors may be
compromised, resulting in spurious relationships (Sparks and
Tryjanowski, 2010; Heinze et al, 2018). As such, we must review
whether the estimated regression equation is a realization of the correct
source-response relationship, whether it is a result of subset selection
from a simple correlation, or whether it is a regression model with
biased coefficients (George, 2000; Heinze et al., 2018; Chen, 2022).

Therefore, we believe that issues, such as model robustness or
coefficient instability, which determine the reliability of the
regression model, deserve examination in this study. According to
Kessler et al. (2017), high VIFs are linked to extreme coefficient
instability; accordingly, the low VIFs in our study indicated the low
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Year and season

Seasonal mean model analysis showing the seasonal variation of MeanWind (A), macrobenthic diversity, Sqrt d (B), biomass, CL Biomass (C), and a
trend fitted on the deseasonalized residuals of MeanWind (D). Inset figures in (A—C) are beta estimates of the seasonal mean model, while those in D
are residual plots and correlations between MeanWind and biological parameters, Sqrt d and CL biomass.

coefficient instability of regression models. Bootstrap resampling is
a valuable approach for quantifying model stability according to
Heinze et al. (2018). However, in its absence, examining the changes
in the size and signs of the regression coefficients of the same
predictors across models becomes meaningful. Moreover, assessing
the predictor inclusion frequencies between different subsets within
the same dataset is important for evaluating the unbiasedness or
stability of regression model estimates.

The significant regression coefficients of characteristic
predictors (e.g., log-transformed sand, depth, and salinity for the
diversity model; SPM, copper, and salinity for the biomass model)
showed consistent signs across the models, with the exception of
DO, which was removed from the air-sea predictor-based model
because of its high correlation with other variables. Weather-related
predictors also showed negative signs in the regression model,
which was consistent with the correlation coefficients presented in
Figures 6A, B and 7A, B. Significant predictors such as DO in the
diversity model and monthly averages of wind speed (hereafter
referred to as wind speed) in the biomass model were estimated to
have negative signs. This reflected the relationship between diversity
and biomass, which was characterized by a seasonal pattern of
higher values in summer and fall, whereas showed an inverse
pattern for those of predictors. The relationships predicted by the
regression models were also consistent with the seasonality
independently estimated from the seasonal mean models.

The inclusion frequencies of the selected predictors across
subsets were significantly different from those of the unselected

Frontiers in Marine Science

predictors. For example, in the sea predictor-based diversity
regression analysis, the inclusion frequencies of log-transformed
sand, depth, and salinity were 76-97%, whereas those of unselected
predictors varied at 10-76% (no. of subsets, n = 21). In the air-sea
predictor-based regression, the same predictors had inclusion
frequencies of 83-97%. In addition, the newly included air-related
predictor, wind speed, demonstrated a high inclusion frequency of
83%, with those of the remaining predictors ranging from 7% to
69% (n = 29). In the sea predictor-based biomass regression model,
the predictors estimated to have the most significant effects (i.e.,
SPM and sediment Cu) had inclusion frequencies of 95% and 84%,
respectively, whereas the unselected predictors had frequencies of
11-79% (n = 19). The same predictors were also included in the air-
sea predictor-based regression model, with inclusion frequencies of
96% and 85%, respectively, while the added air predictor, wind
speed, had an inclusion frequency of 93%. In contrast, the frequency
of unselected predictors in this model ranged from 7% to 78% (n
=27).

Thus, regression coefficient signs and predicted biological
parameter responses among the different models showed
consistency, which allowed us to evaluate the overall model
stability as positive. High inclusion frequencies also suggested that
these predictors have high explanatory power, majorly contributing
to the improvement in model prediction performance (Heinze et al.,
2018). The use of predictor inclusion frequency seems appropriate
according to the concept of Granger Causality, which says that
variable X “Granger-causes” Y if the predictability of Y declines
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Spear style boxplot depicting the proportions of anomaly samples in a survey round between Sqgrt d and CL biomass (A). The linear relationship
between the proportions of diversity and biomass (B). Boxplots of Sqrt d and CL biomass between normal and anomaly rounds (C, D). Logistic
regression models fitted on the classes of normal (0) and anomaly rounds (1) for diversity and biomass (E, F). The occurrence probability in z-axis
was calculated using the equation P(1) = exp(Y)/(1+exp(Y)). The symbol * in the x-axis label denotes a p-value less than 0.05.

when X is removed from all possible causative variables, U
(Sugihara et al.,, 2012). In addition, we selected models with the
highest predicted R and a set of predictors with the highest
inclusion frequencies.

Based on the assumption of linearity and additivity, which
suggests that the effects of predictors can be additive, the
significance of the weather-related predictors as additional
explanatory variables and a modest increase in r between sea
predictor- and air-sea predictor-based regression can be
considered a significant improvement, resulting in a better model
(Sparks and Tryjanowski, 2010; Heinze et al., 2018). Therefore, in
contrast to previous studies, our findings can be considered a basis
for concluding that air predictors have significant explanatory

power for variations in biological parameters.
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4.2 Ecological significance of the observed
relationships

The underlying causes of the observed characteristics are
challenging to ascertain using a field survey approach without
conducting experiments. In this context, the acquisition of
biological knowledge must be prioritized to elucidate the
mechanisms responsible for the observed biological responses.
This knowledge is instrumental in selecting variables and
interpreting models (Sparks and Tryjanowski, 2010). To address
this, we examined the significance of the relationships between
predictors and biological parameters from an ecological perspective.
We believe that this approach allowed us to distinguish between
relationships that are correlative or causal.
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In this study, the known controllers of macrobenthic diversity
and biomass (Section 4.1) were not significantly different from the
selected sea predictors; however, some of them (e.g., mean sediment
grain size and salinity) showed different or opposite directions from
the existing relationships. Regarding the grain size effects of a
unimodal pattern on biodiversity in Korean tidal flats at a
nationwide spatial scale, Yoo et al. (2013) demonstrated a peak of
diversity at 4¢ in the range of -2-9¢, with a decrease in both
directions. Thus, the linear relationship between log-transformed
sand and diversity in this study did not contradict the previous
relationship, considering that the mean grain size in this study
ranged from 4 to 7.

Salinity, traditionally known to have a positive causal
relationship with diversity and biomass (Ysebaert et al., 2003),
showed a negative correlation in this study. The 95% prediction
interval range of the salinity data used in this study was 28-34 psu.
This was more limited than the 68% salinity range (14-34 psu)
reported by Yoo et al. (2013), which showed a positive effect. The
negative effect observed in this study was likely attributed to the
restricted data range. Given that much of the temporal variation in
biological parameters is seasonal, the negative effect on both
parameters reflected an effect similar to that of predictors such as
DO, in that lower salinity was also observed in summer and fall.
Thus, it can be considered seasonal and correlative rather than a
causal relationship. This is supported by the fact that the salinity
effect was stronger in the predictions of the average parameters
when the spatial variation was removed.

The occurrence and sinking of SPM cause mortality of benthic
fauna and severe loss of diversity and biomass through blanketing
and resuspension (Clark, 2001; Yoo et al., 2018). Gorlich et al.
(1987) reported macrobenthic biomass variation from<1 to ~180 g/
m” as a function of SPM, ranging from 10-15 to >1000 mg/L, in the
Hornsund Fjord, Spitsbergen, Norway, independent of depth and
bottom sediment properties. On the west coast of Korea, locally
high concentrations of SPM are responsible for significantly lower
species richness, density, and biomass in mudflats and subtidal
areas (MLTM, 2009). A neural network simulation estimated that
an increase in SPM from 5 to 70 mg/L resulted in a 13% decrease in
macrobenthic diversity and >90% decrease in biomass in mudflats
when environmental factors other than SPM were fixed at mean
values (Yoo et al., 2013; unpublished data for biomass simulation).
In the Southeastern Yellow Sea mud (SEYSM), in the southern part
of the study area, the benthic habitat quality index, ISEP (Yoo et al.,
2010) fluctuated owing to the wide seasonal range of bottom SPM
(6.1-845.1 mg/L), with a high SPM value leading to a low-quality
status. Yoo et al. (2022) reported that SPM is one of the primary
influential factors determining benthic habitat quality on the west
coast. The bottom SPM observed in this study ranged from 2.2 to
410.5 mg/L, which is a narrower range of variation than that of the
SEYSM. However, this range was sufficiently effective to cause
variations in both parameters, based on the simulation results
mentioned above. The significance of SPM in explaining the
variability of biological parameters reflected the adequacy of the
predictor selection and model estimation.
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The species-abundance-biomass (SAB) diagram by Pearson and
Rosenberg (1978) shows that the response of each SAB parameter to
a stressor can vary according to stress intensity. In this study, beta
estimates from seasonality analysis were converted to anti-log
diversity and biomass, and the maximum/minimum ratio for
each parameter was calculated. This ratio was 68% for diversity
(Whittaker’s d, spring = 8.03 and fall = 11.90) and 42% for biomass
(wet weight, winter = 9.45 and fall = 22.46 g/m?), respectively.
According to these ratios, biomass had a relatively larger seasonal
variation range than diversity, with the winter beta estimate of
biomass being close to the biomass anomaly of 9.10 g/m?, whereas
the spring beta estimate of diversity was higher than the diversity
anomaly of 6.6. As the impact of SPM mentioned above was greater
for biomass than for diversity, a potential disturbance agent with
seasonality might have exerted a greater effect on biomass.

The symmetrical seasonality between the biological parameters
and wind speed (Figure 8) suggested that both diversity and
biomass were affected by wind speed or other covariates with
similar seasonal patterns. The deseasonalized residuals of wind
speed showed a linearly increasing trend. However, the residuals
of diversity were independent of the deseasonalized residuals of
wind speed, whereas those of biomass showed a significant negative
correlation. Independent estimation of seasonal patterns for the two
variables may match; however, if the deseasonalized residuals of
both are uncorrelated, this may suggest (1) a lack of a bidirectional
or unidirectional relationship between them (Sugihara et al., 2012)
or (2) different ecological characteristics, such as different
sensitivities to specific disturbances (Dong et al., 2021). In
contrast to the survey-averaged diversity model (Figure 7 and
Table 3), in which it was removed because of its high correlation
with DO, wind speed had a more pronounced effect on the survey-
averaged biomass model. The proportion of total variance (R?) in
biomass explained solely by wind speed was greater than 50%, based
on the one-to-one relationship between wind speed and biomass (r
= 0.71, p< 0.001; Figure 7B). A relatively low correlation does not
necessarily indicate lack of causation. Despite the observed
disparate response levels, wind speed may serve as a proximate
cause for both parameters. KOWP (2015) argued that wind in the
study area is a potential factor for sediment disturbance. A detailed
description of the possible reasons for this factor to be more closely
related to biomass is provided in Section 4.3.

4.3 Impact of wind on coastal
macrobenthic communities

Low wind speeds have been identified as a possible cause of
coral bleaching, because they favor localized heating and high
penetration of solar radiation (Glynn, 1993). However, wind
speed affects pelagic ecosystems in the following ways. (1) Wind
generates upward transport of nutrients from deep waters,
promoting primary production, and affects the whole ecosystem
globally and at all scales from plankton to birds and mammals
(Sakshaug et al., 2000). (2) High wind speeds suppress bloom
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occurrence by altering water column stability and creating a
shallower mixed layer, particularly due to melting ice and the
associated release of iron in the marginal ice zone of the Southern
Ocean (Fitch and Moore, 2007). (3) Wind-driven turbulent mixing
during the spawning season hinders the generation of sufficient
food concentrations, affecting the survival variability of young fish
larvae more than cannibalism or offshore transport (Peterman and
Bradford, 1987).

The use of hydrodynamic and climatic variables as predictors of
macrobenthic community parameters is common in intertidal and
adjacent shallow zones. Ricciardi and Bourget (1999) predicted the
global patterns of macrobenthos biomass in sedimentary shores
using variables such as the mean wave height, intertidal slope, and
wave exposure and found that wave exposure had a significant
negative effect, attributed to the susceptibility of soft bottom fauna
to wave stress. Comparing macrobenthic communities in diverse
types of sandy beaches, from reflective to dissipative and tidal flats,
in the order of diminishing physical control, revealed that diversity
and biomass increased with decreasing wave energy (Brown and
McLachlan, 1990; Defeo and McLachlan, 2005). Paavo et al. (2011)
and Armonies et al. (2014) showed that, on sandy coasts, these
wave-related processes that determine community shape extended
into shallow subtidal areas in the ~30 m depth range, resulting in
increased macrobenthic species richness and abundance as wave-
induced turbulence and sediment instability decreased, followed by
their stabilization at depths where the processes were not effective.

The study area, an open coast with exposed shorelines and a
sheltered bay, experiences tidal mixing across all water bodies due to
strong tidal currents, even in summer when stratification can
develop (Baeck and Moon, 2019). The Geum River estuary,
Saemangeum reclaimed land, and Gunjang National Industrial
Complex, located approximately 50 km north of the wind farm,
are potential sources of pollution. The annual average DO on the
Gunsan coast has been neutral since the 80s, while the COD has
averaged at approximately 2 mg/L since the 70s. The annual
averages of DIN (0.114 mg/L) and phosphate (0.014 mg/L) in
Gomso Bay, which is on the eastern side of the study area, were
significantly lower than those on the western and southern coasts of
Korea (Park et al., 2009). Recently, there have been concerns raised
about the potential risks to human health due to the release of heavy
metals from OWFs, which may lead to changes in the benthic
microbial community and accumulation in seafood (Wang et al,
2023; Watson et al,, 2025). The water quality of the study area was
generally good, and moderate or lower environmental quality status
in the study area was observed at a very low frequency. Vigilant
monitoring for heavy metals is necessary, however, as previously
mentioned, the maximum concentration of copper in the study area
was below the ERL, as with other heavy metals (see environmental
descriptions in Section 2.1).We inferred that sediment Cu and DO,
which were selected as effective predictors, were correlative agents
(e.g.,» mean sediment grain size and organic matter content for Cu;
temperature for DO), rather than being pollution-related.

On the south coast, with its complex coastline and bays, the
recurring marked seasonality is caused by a hypoxia-induced
decline in SAB parameters (Seo et al., 2015). Seasonality, driven
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by the emergence of poor macrobenthic assemblages, is associated
with regression/recovery patterns attributed to the presence of
disturbance sources (Froehlich et al., 2015; Magni et al, 2015).
Although natural variability in food availability and reproduction/
recruitment is an important component of seasonality, interannual
variability is often more pronounced in pristine areas (Nasi et al,
2017). Despite its generally good status, the macrobenthic biomass
in this area is lower in winter than that in other areas on the west
coast of Korea, a characteristic feature of seasonality (Jeong et al.,
2019). Currently, on the west coast of Korea, relatively poor
assemblages caused by natural disturbance agents are mainly
observed during the summer monsoon in tidal flats due to heavy
rainfall, and in subtidal areas due to oceanic floods (Wheatcroft,
2000), indicating the impact of buried sediments from rivers on
coastal benthic ecosystems in summer (Hong and Yoo, 1996; Yoo
and Hong, 1996; Yoo et al., 2016).

Frequent storm surges and extremely heavy snow under high-
energy states occur extensively on the west coast of Korea during
winter owing to northwesterly winds (Chong and Seol, 2007). The
monthly average of storm days with wind speeds greater than 13.9 m/
s is 23 d in winter and<1 d in summer (Cho et al,, 2001). Significant
wave heights of >4 m were reported in the study area during the
winter of 2014-15. This was likely the cause of the massive burial of
1-2 m in thickness, as measured by pressure sensor data obtained
after the acoustic Doppler current profiler (ADCP) was buried and
recovered (KOWP, 2015). The event suggested that sediment
deposition at scales larger than those of oceanic floods (e.g., ~10
cm thick; Thrush et al.,, 2003), occurs due to winter storms, affecting
the benthic communities in the study area. The overall significant
negative correlations between the weather-related predictors and
biological parameters, the relatively strong wind speeds in winter
and spring, and the sedimentation events due to winter storms in the
study area could indicate that weather and related wave conditions
influence the benthic ecosystem and are responsible for the
differences in the seasonality of macrobenthic community
parameters compared with that in other parts of the west coast.

Despite the dominance of northwesterly winds along the entire
west coast, wind speed was responsible for the (1) negative effect on
macrobenthic community parameters, (2) unusual occurrence of
biomass anomalies in the study area, and (3) seasonality, which was
contradictory to that of other areas. Which are the reasons for wind
triggering an ecological response that was only prominent in this
region, and for the limited influence of the Hs/depth ratio, which
reflects the depth effect and is applicable to wide depth ranges,
compared with that of other weather-related predictors? Wind-
generated waves strongly influence sediment erosion or stability,
and one of the variables that characterize waves is depth (Nelson
and Fringer, 2018). The spatial confinement of the wind effect and
neutralization of the Hs/depth ratio effect are apparently attributed
to the shallow and relatively narrow depth range of the study area
(see environmental descriptions in Section 2.1). In our previous
study (Yoo, unpublished data) conducted on a larger spatial scale
with a different depth range, the explanatory power of the Hs/depth
ratio was significant; therefore, the effectiveness of this variable
should be further tested.
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The predictions of our study based on observations from
weather stations close to the shore are not applicable to other
areas. In our study, offshore measurements from CWBs, such as
offshore wind speed and significant wave height, were unrelated to
biological parameters; the underlying reasons for this remain
unclear. The measurement conditions of land weather stations
vary considerably according to factors such as altitude,
topography, and distance from shore. Hence, the data from
several nearby land and offshore weather stations must be
collected and compared prior to making any predictions. The
effects of wind speed are unlikely to reach the deep seafloor
beyond the shallow area; therefore, estimates such as the anomaly
occurrence threshold ranges for diversity and biomass are probably
limited to our study domain.

Given the different phenomenon of soft-bottom
macroinvertebrate diversity increase and biomass decrease at the
southeastern part of wind turbine foundations in an OWF in
Pinghai Bay, China (Lu et al,, 2020), a careful approach for the
generalization of the observed patterns in the study area are
required. As previously described, we did not use an experimental
approach to demonstrate whether air predictors have a causal effect.
An empirical analysis could be conducted to test the statistical
differences in community parameters between the areas divided by
considering the dominant wind power, wind frequency or spatial
projection from wind-wave model. To demonstrate a cause of
biomass increase/decrease, it is important to determine where reef
effect or wind-induced sediment disturbance prevails through a
coupled approach of natural experiment and trophic modeling. For
the former effect, Wang et al. (2019) used energy flow model to
prove that increased organic matter resulting in increased anchovies
and some benthic fish biomass. At present, capturing the exact
timing, possible lagged response, or persistence of an anomalous
event is difficult due to the irregular surveys. Despite these caveats,
our results highlight the need to use a range of air predictors,
including wind speed, as potential causative agents to explain the
variations in macrobenthic communities in coastal waters.
Furthermore, they suggest that strategically located land-based
weather stations near coastlines can be effective in predicting the
rich or poor status of macrobenthic production.

Which are the reasons for wind affecting biomass variation
more, or for having a differential effect between the two parameters?
The recovery time after mass mortality of marine benthic
communities due to catastrophic disturbances varies from a few
days to several months and years, depending on the biota (e.g.,
diatoms, nematodes, and macrobenthos), body size, and life strategy
(Odum, 1969; Dittmann et al., 1999). Low diversity and reduced
mean body size, biomass, and productivity are typically observed
when sediment disturbances occur (Thrush et al., 2003). In this
process, biomass recovery takes longer (weeks or months vs. years)
than numerical recoveries, such as those of diversity and abundance
(Beukema et al., 1999).

It is a common understanding in ecology that the significant
contribution of large-bodied organisms, which have a slow growth,
to the macrobenthic biomass is responsible for the extended
recovery time for reaching the same levels as those of the

Frontiers in Marine Science

10.3389/fmars.2025.1552274

predisturbance and unaffected ambient levels of biomass. For
example, the species with the highest contribution in terms of
macrobenthic biomass in this study was the heart urchin,
Echinocardium cordatum (9% frequency, and 26% of total
biomass), and the species’ per capita wet weight reached 32.9 g.
Nakamura (2001) reported that the species became 120 mg ash free
dry weight at the third year (5.2 g in wet weight by multiplying
conversion ratio, 43.5 for Irregularia, Echinoidea; Dr. Thomas Brey,
http://www.thomas-brey.de/science/virtualhandbook/navlog/
index.html). Opportunistic species including Capitellidae,
Spionidae and Cirratulidae polychaetes dominated abundance
during most of the study period. These opportunistic species took
only a few tens of days to go from zero to peak abundance, and
within about 200 days the community structure and composition
became similar (Rhoads et al., 1978; Hashimoto and Sato-Okoshi,
2022). This type of recovery may cause increased seasonal variation
as described above or lead to a more pronounced response than that
of diversity. Moreover, biomass anomaly/recovery could lead to the
declining production of higher trophic levels, suggesting that
climatic variables should also be considered as potential factors
regulating fishery stocks in coastal areas.

Our study provides further insights into the potential wind
mechanisms that control diversity and biomass variation in coastal
areas. Since the 1970s, a phenomenon known as global stilling has been
observed, which refers to decreasing trends in global wind speeds over
several decades (Azorin-Molina et al., 2017). Nevertheless, increasing
trends in wind speed and wave height have also been reported recently
(Young et al,, 2011; Zheng et al., 2016, Zheng et al., 2022). We observed
an increasing trend in wind speed in the study area over a short period
of approximately a decade. If the increase in wind speed in the area is
consistent with the global trend and continues to be so, the decline in
macrobenthic biomass production may also continue, even in the
absence of negative effects of pollution or construction/operation of
wind farm structures.

Wind farms and other marine facilities, such as wave energy
converters, fish cages, and even seaweed production areas, influence
waves and current fields, and thus sediment transport and shoreline
development (Christensen et al., 2014). Based on modeling, wind
farms can affect the en