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Appropriate decision making for ecosystem conservation is contingent on

understanding the ecosystem. To evaluate the effect of offshore wind farms

(OWFs) and predict future changes in benthic ecosystems, data on influencing

factors must be collected. We aimed to assess the effect of OWF in a study area

located off the central west coast of Korea. Based on the diversity and biomass

anomaly criteria established for the west coast of Korea, we classified 28 survey

rounds from 2014 to 2022 as anomalous or normal based on the number of

anomalous samples. Regression analyses were performed to determine the

sources of diversity/biomass variation. In any given period, the biomass

anomalous samples/rounds were more dominant than those related to

diversity. Significant factors identified during regression analyses included

sediment, depth, suspended particulate matter, and weather-related variables,

such as monthly averages of wind speed and significant wave heights, mainly

measured at land-based weather stations. Biomass exhibited stronger

correlations with weather variables than diversity. Binary logistic regression

predicted anomaly occurrence at wind speeds ≥2.84 or ≥1.60 m/s for diversity

and at ≥2.70 or ≥1.86m/s for biomass, depending on themild or harsh conditions

of significant wave heights or maximumwind speed. Thus, our study showed that

wave-induced processes and other natural factors influence macrobenthic

diversity and biomass, and these predictions were potentially improved by

measurements from land-based weather stations. The expected reduction in

wave energy owing to wake effects from the OWF is expected to increase the

productivity of benthic ecosystems.
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1 Introduction

As key components of marine ecosystems, macrobenthos

inhabiting sediments are crucial in degrading organic matter and

transferring energy to higher trophic levels (Snelgrove et al., 1997;

Coates et al., 2014). The metabolism of the macrobenthic

community, influenced by primary production, contributes

significantly to the biogeochemical cycling of carbon, nitrogen,

and pollutants via processes such as transport, transformation,

concentration, and burial. Through secondary production,

macrobenthic organisms not only serve as valuable food sources

for human consumption but also provide essential nourishment for

demersal fish, which are integral to commercial fisheries (Snelgrove

et al., 1997; Nilsen et al., 2006).

The species diversity, abundance, and biomass of macrobenthic

communities are crucial biological parameters that provide insights

into the health and changes in the ecosystem (Pearson and

Rosenberg, 1978). Diversity serves as an indicator of changes in the

ecosystem structure and stability, whereas biomass reflects alterations

in ecosystem functions. Together, these metrics indicate the damage

and succession that occurs following disturbances in both terrestrial

and aquatic systems (Bradshaw, 2002). Diversity loss and abundance

redistribution owing to anthropogenic causes result in

disproportionate loss of species that provide critical and specific

services. This loss can affect the entire food web by altering trophic

interactions, leading to an imbalance in ecosystem services (Snelgrove

et al., 1997; Hiscock et al., 2002; Coates et al., 2014). Biomass is a

function of the quantity and quality of food entering a particular

habitat and is utilized as a surrogate for biomass production and

carbon flow to and through an ecosystem (Wei et al., 2010). Biomass-

based secondary production in sediments is a key parameter for

quantitatively understanding ecosystem functions and an indicator of

ecosystem health (Brey, 2012). Hence, understanding the spatial

distribution and regional characteristics of macrobenthic

communities is increasingly necessary for assessing ecosystem

health on a broader scale.

Anthropogenic activities affect benthic biodiversity and cause

the degradation of marine benthic ecosystems (Snelgrove and

Butman, 1994; Coates et al., 2014; Froehlich et al., 2015). Hence,

appropriate management and mitigation strategies must be adopted

and developmental strategies must be determined based on various

indicators and available information. In addition, assessing the

ecological consequences of environmental changes using models

and projections is urgently needed (Ferguson et al., 2008; Willis-

Norton et al., 2024).

To date, physical and biogeochemical factors of the water

column and bottom substrate, such as temperature, salinity,

depth, and sediment textures, as well as nutrient, chlorophyll, and

organic matter content were regarded as the abiotic causative or

correlative factors of diversity and biomass distribution in marine

benthic community studies (Chardy and Clavier, 1988; Snelgrove

and Butman, 1994; Snelgrove et al., 1997; Wei et al., 2010; Yoo et al.,

2013). However, hydrodynamic changes induced by coastal

development, anthropogenic structures, and natural reefs are also

accompanied by alterations in sediment types and organic
Frontiers in Marine Science 02
enrichment, which in turn affect benthic communities (Coosen

et al., 1994; Rheinhardt and Brinson, 2007; Donadi et al., 2015).

Weather conditions such as wind and rainfall also affect

macroinvertebrates through waves, wind-driven currents, and

sediment transport (Thrush et al., 2003; Armonies et al., 2014).

Thus, prevailing winds and waves significantly affect

macrobenthic communities in the intertidal zones that have hard

or soft substrata, such as rocky shores, tidal flats, and sandy beaches,

including the surf zone at shallower depths (Brown and McLachlan,

1990; Ricciardi and Bourget, 1999). Paavo et al. (2011) and

Armonies et al. (2014) reported that these physical factors affect

not only the intertidal but also the subtidal zone of sandy coasts.

Nevertheless, relatively little research has addressed the significant

influences of these factors on coastal benthic ecology, especially in

subtidal macrobenthic communities.

Korean coasts, which have the highest levels of biodiversity and

primary production, have experienced severe habitat and

biodiversity losses due to environmental threats and stress from

large-scale reclamation, oil spills, organic enrichment/hypoxia, and

overfishing (Yoo et al., 2022 and references therein).

Ecological studies in the wave-dominant areas along the Korean

coast, such as those by Paik et al. (2007) and Jeong and Shin (2018),

have shown that variations in target parameters can be sufficiently

explained by analyzing only the depth and sediment type, without

considering other variables. However, as the same area is also

affected by prevailing seasonal winds, examining the effects of

such weather-related variables is important for understanding

seasonal variations in benthic communities.

Oceans experience stronger and more consistent winds than

land (Maxwell et al., 2022). Hence, offshore wind farms (OWFs) are

being developed worldwide, with new projects planned along the

west coast of Korea. The study area designated for large-scale OWFs

and benthic ecosystems is thus expected to be significantly

influenced by wind. Specifically, OWFs are typically developed in

areas with favorable wind resources and are characterized by higher

wind speeds and power densities (Kim and Kang, 2012).

The turbine foundations and scour protection systems of OWFs

replace soft sediment areas with artificial hard substrates, thus

inducing changes in wave and current hydrodynamics, chemical

pollution status (e.g., heavy metals), sediment properties (e.g., grain

size and organic matter content), and biological interactions

(Christensen et al., 2014; Coates et al., 2014; Wang et al., 2019,

Wang et al., 2023; Watson et al., 2025). However, Li et al. (2023)

predicted no net adverse effects in soft bottom communities because

the hard substrates created by the foundations lead to an increase in

species richness and abundance despite the conversion of soft

bottom dwellers to sessile animals and minor biodiversity loss of

occupants. Thus, wind farm development has direct, indirect, and

both negative and positive effects on marine ecosystems (Bergström

et al., 2014; Li et al., 2023). To assess the effect of OWFs and predict

future changes in benthic ecosystems in the study area, data on

factors that determine the variability of biological parameters,

particularly those regarding natural controlling agents such as

wind, must be collected (Armonies et al., 2014; Paskyabi, 2015;

Ricciardi and Bourget, 1999).
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Hence, this study aimed to understand whether the factors

acting on macrobenthic communities including wind, mud, and

mixed sand and mud sediments in the subtidal zone differ from

those in protected bays and surrounding waters. This study is part

of a monitoring program aimed at assessing the future effects of

wind farm development on benthic ecosystems. We expect that the

study findings will offer necessary insights for improving ecological

predictions and prioritizing future research directions.
2 Materials and methods

2.1 Study area

Figure 1 shows the selected study area in the eastern central

Yellow Sea, located off the west coast of Buan, Gochang County in

North Jeolla Province, and Yeonggwang County in South Jeolla

Province of the Republic of Korea. The Yellow Sea is a continental

shelf sea (average depth of 44 m) surrounded by the western Korean

and northeastern Chinese coasts. The Korean coast of the Yellow
Frontiers in Marine Science 03
Sea is characterized by a macrotidal regime with mean maximum

spring tides ranging between 8 and 9 m, depending on the region.

The Korean coast landscape features highly indented coastlines,

with the tidal current-induced sedimentation caused by these

complex coastlines resulting in extensively developed tidal flats

that are 4–5 km wide (Frey et al., 1987; Choi, 2014).

Korea has four distinct seasons and is influenced by the strong East

Asian monsoonal climate. The East Asian monsoon is characterized by

a distinct seasonal reversal of the monsoon wind flow driven by

temperature differences between the Pacific Ocean and the East

Asian continent (Ha et al., 2012). Along with the tidal regime, the

seasonal variability of the monsoon system affects variations in

hydrology and oceanographic processes, including sediment dispersal

and deposition. Strong northwesterly winds prevail in winter

(maximum wind speed of ~10 m/s), whereas relatively mild

southeasterly winds occur during spring/summer accompanied by

heavy rains (Frey et al., 1987; Yoo et al., 2010). Although summer

storms are relatively shorter in duration than those in winter, strong

winds occur in summer, with an average of two to three typhoons

passing through the Yellow Sea per year (Hwang et al., 2014).
FIGURE 1

Index map depicting the sampling points in the preliminary effect assessment survey of the wind farm (2014–2015; blue squares), marine survey for
industrial convergence facilities (2015–2016; red circles), and marine spatial environmental effect analysis of the wind farm and database
construction (2017–2022, green triangles). The yellow and purple crosses indicate the location of the land weather station and coastal wave buoys
(CWBs) where the wind speeds and significant wave heights, respectively, were measured. The 20 wind turbines are marked with black empty
circles. The contour lines indicate bathymetric information based on the 1:25,000 scale coastal information map, referenced to datum level
(approximately the lowest low water).
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The Incheon coast, located in the northernmost part of the west

coast of Korea, records a maximummonthly mean wind speed of >4

m/s in February and May (Frey et al., 1987). From 2014 to 2022, the

maximum monthly mean wind speeds in the study area were

recorded at Gochang weather station at 3.5 m/s in February 2016;

at Yeonggwang weather station located 25 km further southwest,

the maximum reading was 3.3 m/s in July 2013. However, these

values were lower than the maximum recorded in Incheon (4.1 m/s

in December 2014) during the same period (Korea Weather Web

Portal, https://www.weather.go.kr/w/index.do).

The west coast of Korea has a flat seafloor topography with a

continuous series of gently sloping tidal flats (Frey et al., 1987).

Based on the coastal map issued by the Ministry of Oceans and

Fisheries of Korea (scale 1:25 000), the depth of the Incheon coast,

referenced to the datum level (approximately the lowest low water),

was ~50 m within 40 km from land. For the Boryeong coast, located

halfway between our study area and Incheon, where the wind farm

is planned, the depth at 40 km offshore was ~56.3 m, with an

average depth of approximately 30 m. Conversely, the study area

was located within 30 km from the coast, with a depth of ~23 m and

an average depth of 9.6 m, that is, shallower and narrower than

other areas along the west coast (Figure 1).

Ocean bottom temperature data for the survey area, measured

seasonally from 2002 to 2023, were retrieved from the Marine

Environmental Information Web Portal (MEIS, https://

www.meis.go.kr/mei/observe/port.do). The mean temperature was

15.4°C, with seasonal means of 4.0°C in February and 26.9°C in

August. During the same period, the mean bottom salinity was 31.4

psu. The seasonal average was the highest in winter (31.7 psu),

whereas the lowest in summer (30.8 psu), reflecting the influence of

the summer monsoon on the bottom water. The surface sediment

along the Korean west coast was primarily characterized by a broad

distribution of fine to very fine sand (2–4 f). However, the

sediments in the study area were characterized by a grain size

ranging at 3–7 f , with silt sediment extending broadly

southwestward from the very fine sand near the Geum estuary,

located to the north of the study area (Cho et al., 1993).

Surface suspended particulate matter (SPM) concentrations

along the Incheon coast were strongly influenced by tidal and

wind-driven currents and ranged from 15 to 332 mg/L, with an

average of 68.5 mg/L. The maximum and minimum seasonal

averages were observed in February and June, respectively (Choi

and Shim, 1986; Frey et al., 1987). According to the MEIS data from

2005 to 2023, the bottom SPM concentration in the study area

showed similar trends over the years. The mean concentration was

34.9 mg/L, with highest and lowest seasonal averages observed in

February (44.0 mg/L) and August (23.0 mg/L), respectively. During

the given period, the minimum concentration was 1.6 mg/L in

August 2014, whereas the maximum was 240.6 mg/L in

November 2018.

The bottom dissolved oxygen (DO) saturation (%) is a

parameter included in the five-grade evaluation system for

Korean water quality index (WQI), with the thresholds for Grade

II (good) and Grade III (moderate) being >80% and >67.5%,

respectively (Park et al., 2019). The average and minimum values
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of the bottom DO saturation measured in the survey area were 95%

and 65%, respectively. The 95% prediction lower bound, calculated

as the mean minus two times the standard deviation, within which

95% of the observations lay, was 73%. Based on these results, the

bottom DO saturation in the survey area could be classified, on

average, as Grade I (very good), with 95% of the observations

meeting at least a moderate status or better.

The maximum sediment total organic carbon (TOC) content in

the study area was 1.17%, which was below the 1.5% threshold

distinguishing “good” (Grade I) from “moderate” (Grade II)

statuses in the four-grade criteria for assessing shellfish farm

environments in Korea (Cho et al., 2013). The maximum

sediment acid-volatile sulfide (AVS) concentration was 0.047 mg

S/g dry weight, which was substantially lower than the optimal level

of 0.25 mg S/g dry weight (Uede, 2008).

Although the maximum concentrations of most heavy metals in

the sediment were below the effects range low (ERL) levels set by the

United States Environmental Protection Agency, the maximum

levels of cadmium, chromium, and nickel exceeded their

corresponding ERL values of 1.2, 81.0, and 20.9 ppm, respectively.

The average and 95% upper bound (upper two standard deviation)

concentrations were 0.12 and 0.33 ppm, respectively, for cadmium;

52.2 and 83.6 ppm, respectively, for chromium; and 18.0 and 28.7

ppm, respectively, for nickel. The upper bound concentrations were

approximately close to or below the ERL limits and well below the

effects range median (ERM; 9.6, 370, and 51.6 ppm, respectively)

levels. Thus, the study area was minimally contaminated by organic

matter or heavy metals.
2.2 Field surveys and laboratory analysis

As shown in Figure 1, our survey points were established

around the testbed of the Southwest Offshore Wind Farm project

(Korea Offshore Wind Power Co. Ltd., KOWP; http://

www.kowp.co.kr), located at the center of the study area. The

area had 20 wind turbines. The OWF construction began in May

2017 and was completed in January 2020, after which the OWF has

been continuously operating to date. Multiple pre- and post-project

assessments were carried out for assessing environmental effects

around the OWF.

The first monitoring program was the preliminary effect

assessment survey of the wind farm, which was conducted at a

total of 19 sampling points in four seasonal rounds from November

2014 to August 2015. The marine survey for industrial convergence

facilities was performed at 12 points in three rounds from

December 2015 to March 2016, before the installation of the

structure. The marine spatial environmental effect analysis of the

wind farm and database construction project, which covered both

the construction and operation periods of the offshore wind

structure, was conducted at 15 points in 21 rounds from June

2017 to October 2022.

For environmental data collection, we arrived at the sampling

points by vessel. We measured the Secchi depth (m), bottom

temperature (°C), salinity (psu), pH, DO (mg/L), and DO
frontiersin.org
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saturation (%) using a conductivity temperature depth (CTD)

instrument (Ocean7 305, Idronaut, SRL, Brugherio, Italy). The

depth (m) measurements varied depending on the time of

observation because of the wide tidal range in the survey area;

therefore, we utilized the measurements from the coastal map (scale

1:25 000) described above. For evaluating bottom-water

environmental data, we collected samples at each point using a

Niskin water sampler and transported them to the laboratory. In the

laboratory, we measured the bottom SPM concentration (mg/L,

filtering apparatus), chlorophyll-a content (Chl-a, μg/L,

Fluorometer 10-AU, Turner Designs, San Jose, CA, USA), and

chemical oxygen demand (COD, mg O2/L, potassium

permanganate, titration method).

The top 1 cm of the sediment was sampled for textural and

chemical analyses using a van Veen grab sampler at each sampling

point. For the sedimentary textural analysis, the sediment sample

was pretreated with hydrochloric acid and hydrogen peroxide to

remove carbonate and organic matter, respectively.

Particle size analysis was performed by sieving and pipetting.

Dry sand particles were analyzed using a hand-held sieve at 1.0 f
intervals, while mud particles were analyzed by pipetting at 1.0 f
intervals. The gravel, sand, silt, and clay contents (%) were

calculated from the sediment grain size classification. Statistical

parameters, such as mean grain size and sorting values, were

calculated as described in the study by Folk and Ward (1957).

For the sediment organic matter content, ignition loss (%,

Daehan Sci. Inc., Muffle Furnace FX-27, Wonju, Gangwon,

Korea), TOC (mg/g, Thermo Fisher Scientific Inc., FLASH 2000,

Waltham, MA, USA), total organic nitrogen (mg/g, Thermo Fisher

Scientific Inc., FLASH 2000), and COD (mg/g, alkaline potassium

permanganate method) were measured. Heavy metal (aluminum,

iron, arsenic, cadmium, chromium, lithium, nickel, lead, copper,

and zinc) concentrations (mg/kg) in the sediments were measured

using the ELAN DRC II ICP-MS (Perkin-Elmer Inc., Shelton, CT,

USA), and the derived metal concentrations, such as normalized

copper and zinc levels, were calculated. In addition, the sediment

AVS (mg S/g dry, hydrogen sulfide detector tube), which indicates

organic matter content and sulfide toxicity, was measured.

At each sampling point, macrobenthos was collected twice using a

van Veen grab sampler (surface sampling area, 0.1 m²). The sediment

was filtered through a 1mmmesh sieve using seawater, and the residue

was transferred to a collection container and fixed with a 10% neutral

formalin solution for transportation to the laboratory. In the

laboratory, the samples were sorted and identified to the species or

lowest possible taxonomic level using a stereomicroscope (Leica

MZ125; Leica Microsystems, Wetzlar, Germany) and an optical

microscope (Olympus BAC-313; Olympus Corporation, Tokyo,

Japan). The abundance and wet weight of the biomass were

measured for the identified taxonomic groups and expressed as

values per unit area (m²). The scientific names of the identified taxa

were standardized according to the World Register of Marine Species

(WoRMS, https://www.marinespecies.org).

To incorporate weather-related variables into this study, we

obtained weather data from the Data Service Center of the Korea

Meteorological Administration (KMA, https://data.kma.go.kr/
Frontiers in Marine Science 05
cmmn/main.do) at the Gochang weather station (marked by a

yellow cross in Figure 1). This station was located near the study

area, and data collection was performed using an automated

synoptic observation system (ASOS). Monthly averages of daily

significant wave heights were obtained from marine weather data

provided by the KMA, recorded using three coastal wave buoys

(CWBs) near the study area. As these three CWBs were located in

Wido, Byeonsan, and Yeonggwang, the observations from the

nearest CWB were assigned to each sampling point. The

observation start date for the CWBs varied with location.

Observations from Yeonggwang from November 2014 to March

2016 were assigned to all sampling points, whereas those from

Byeonsan began in April 2017 and those from Wido in

September 2018.
2.3 Data analysis

2.3.1 Data processing
Forty-two environmental factors were measured in this study.

However, as missing values were present in the data matrix, we

deleted variables or even whole data records (for example, the 2014

survey data) in the event of missing values. After addressing the

missing value problem, the total number of database records

consisting of community and environmental variables (described

below) was reduced from 427 to 351, while that of environmental

variables was reduced to 24.

A single widely used method for collecting weather-related

variables and measurements of spatial variations in wind and

waves could not be identified. The weather data, especially the

wind data, used in this study were also measured at a limited

number of locations. Thus, we used a quantitative but simple value

in case of an unavailable survey round value to compare sampling

points or distinguish spatial variations with different wave fetches.

Ricciardi and Bourget (1999) adopted a similar approach.

The weather data included MeanWind and MaxWind (current

monthly averages of daily mean and maximum wind speed,

respectively; m/s), Hs (current monthly averages of daily

significant wave height, m), HD (Hs/depth ratio; see below for

further explanation), and Prev.Mean, Prev.Max, Prev.Hs, and

Prev.HD (previous monthly averages of the four variables above).

Previous monthly averages were used because the current monthly

average included trailing data recorded after biological sampling;

therefore, it was not causative. In addition, we assumed that

previous monthly averages up to a month prior to biological

sampling could be effective for the resulting response of the

biological parameters observed in the current month.

We estimated and utilized the HD (Hs/depth ratio) as a

composite variable for assessing the wave-induced forces affecting

the bottom sediment. We followed the method by Seelam and

Baldock (2012), who showed that the total shear stress (sum of form

drag and bed shear) of a solitary wave is linearly related to the wave

height/water depth.

To identify and quantify the effects of environmental factors on

biological parameters, we targeted the diversity and wet weight of
frontiersin.org
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macrobenthic communities. We used Whittaker’s d, which allows

for comparing the diversity to our past database with different

surface sampling areas. The formula for the index was as follows:

Whittaker0d = SRs=log10A,

where SRs is the total number of species in the sample, and A is

the sample area in cm2 (Whittaker, 1975).

2.3.2 Benthic habitat mapping - sediment and
biological parameters

We generated habitat maps that included bathymetric data,

quantitative data on sediment distribution, and data on biological

parameters of macrobenthic communities observed during the

survey, using the 1:25,000 scale map described earlier. The

bathymetric data referenced to the datum level consisted of 1559

points within the survey area. We used Surfer 25.1.220 (Golden

Software, LLC, Golden, CO, USA) to integrate these data and create

a digital elevation model (DEM), using the kriging algorithm as the

interpolation method. The raster grid resolution of the bathymetric

DEM was set to 25 m.

For analyzing the sediment and biological parameters, we used

the inverse distance weighted (IDW) interpolation algorithm, which

is more suitable than the kriging algorithm for sparse or irregular

data distributions (Munyati and Sinthumule, 2021). The weighting

factor (P), which determines the influence of nearby sampling

points on the interpolation values, was set to 2.0, and the raster

grid resolution was set to 25 m.

The habitat maps with bathymetric information included 12–19

sampling points per survey round using the: (1) sediment mean

grain size data (f), (2) Whittaker’s index for diversity, and (3)

logarithmically transformed wet weight biomass, b (log b+1,

base10) for the biomass.

Regarding the assessment of macrobenthic community

biomass, unlike Whittaker’s d or species number, which lack

previously established criteria for categorizing diversity levels in

Korea, various criteria are available for distinguishing low levels of

biomass. Jeong et al. (2019) estimated the log-transformed Q1 value

to be 1.0 (9.10 g/m²), indicating low biomass on the west Coast of

Korea. In this study, we estimated the Q1 of Whittaker’s d from the

same data set (n = 372, surface sampling area = 0.3 m² per sampling

point) to be 6.6 and used this value for the same purpose.

We examined the spatial patterns of diversity and biomass by

classifying the areas as anomalous if any value was lower than the

abovementioned threshold and as normal if not. To categorize the

survey rounds as normal or anomalous, we counted the number of

sampling points with diversity and biomass anomalies and classified

each round as anomalous if the proportion was 33.3% or higher.

Although this threshold was not derived from a formal ecological

standard, it was selected as a conservative empirical criterion to

identify survey rounds in which anomalies were not confined to a

few isolated stations but instead occurred across a broader spatial

extent. Sensitivity analyses across a range of cutoff values (0.05–

0.70) confirmed the robustness of this criterion, as it consistently

distinguished anomalous from normal rounds with statistically

significant differences (p< 0.001) and large effect sizes (Cliff’s
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delta ≥ |0.5|) in the station-level distributions of diversity

and biomass.
2.3.3 Multiple regression analysis
Given the high variability and nonlinearity of biological

parameters, Whittaker’s d and wet weight biomass were

transformed using square root (
ffiffiffi

d
p

) and consecutive logarithmic

transformations (log ((log b + 1) + 1)), respectively. As anticipated,

the 24 aforementioned environmental factors were highly

correlated. To address the multicollinearity problem that may

arise from these high correlations among the predictors in the

multiple regression analysis, we conducted a Pearson’s correlation

analysis prior to model estimation. If the absolute correlation values

between two variables were greater than 0.5 (|r| > 0.5), we

eliminated the variable that had a lower correlation with the

biological parameters (Yoo et al., 2013). We then prepared a set

of variables for the regression analysis and performed the best

subsets regression to identify a useful subset of predictors using

Minitab 21 (Minitab, LLC, State College, PA, USA).

While exploring various models from the output of the best

subsets regression, we focused on Mallows’ Cp, which helps select a

model that is both accurate and unbiased by looking for the smallest

difference between the Cp value and total number of predictors plus

a constant. In addition, we considered the predicted R², which

indicates the predictive ability of the model. We identified two or

more models that satisfied these two criteria, and ultimately, chose

the regression model with the highest R² value. Most models

selected based on these criteria had few predictors and

demonstrated either a high predicted R² or a value close to it.

This was also true for the adjusted R², which provides insights into

potential overfitting.

For the selected models, each predictor was standardized by

subtracting the mean and dividing it by the standard deviation. This

method allowed us to easily compare the sizes of the coefficient

estimates and determine the predictors with a large effect. We used

these standardized predictors to fit the model and compared the

regression coefficients among the predictors using graphs.

Unstandardized regression coefficients and additional statistics,

such as the F-test, variance inflation factors, R², and model

equations, are presented in the ANOVA tables.

We examined the Pearson correlation between the

macrobenthic community parameters and weather-related

variables (hereafter referred to as air predictors). This was

performed (1) to assess the validity of the estimated effects of air

predictors in the regression analysis by checking the consistency

between the sign and size of beta estimates and the correlation in

case of no prior information on the effects of air predictors and (2)

to distinguish air predictors that were effective but eliminated

during the variable selection process because of high correlation

with other predictors.

We classified the environmental factors into marine

environmental predictors (hereafter referred to as sea predictors)

and weather-related air predictors and prepared two types of

datasets, one consisting of sea predictors and the other consisting

of both air and sea predictors, to conduct a step-by-step regression
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analysis. We investigated whether the additive inclusion of air

predictors in the model resulted in statistical improvements and

ecological significance. Model estimation based on air–sea

predictors was also conducted separately for two types of data:

individual sampling point and survey round-averaged data.

Averaged data were used to leverage the central tendency of the

environmental data and biological parameters and to eliminate the

effect of spatial variation.

To assess the performance of the regression models, we calculated

the Pearson correlation coefficient between the observed and

predicted values and examined the changes in the correlation

coefficients associated with the addition of air predictors. The

categories for the correlation coefficients were based on the findings

by Chen et al. (2021), where |r| ≤ 0.3 was considered negligible, 0.3< |

r| ≤ 0.5 was weak, 0.5< |r| ≤ 0.7 was moderate, 0.7< |r| ≤ 0.9 was

strong, and 0.9< |r| ≤ 1 was fully correlated.

2.3.4 Seasonal mean model and logistic
regression analysis

To understand the seasonal variations in biological parameters,

we selected one of the air predictors based on the results of the

regression analysis and estimated the seasonality of the predictor

and biological parameters. We categorized the survey rounds into

four seasons (spring = 1, summer = 2, fall = 3, and winter = 4), and

applied a seasonal mean model, expressed as follows:

yt =  o4
i=1biIi (t) +  et  (t = 1,  2,  … :,  T)

where Ii (t) is the indicator variable defined as

Ii (t) = 1, when t = i,  i + 4,  … or

0, when t  ≠ i,  i + 4,… where i = 1,  2,   : :,  4.

Employing the indicator variables, we estimated the seasonal

model using regression analysis with no intercept option for the

residual average as 0 (Choi, 1992) and then identified seasonality

using beta estimates corresponding to the seasonal mean. Linear

trends were fitted to the deseasonalized residuals, and Pearson

correlations between the environmental factor and biological

parameter residuals were analyzed.

We predicted the conditions of occurrence for the anomaly

survey round (proportion of anomaly samples per a survey round

≥33%) using multiple logistic regression with air predictors. In the

analysis, the response variables, namely, survey rounds, were coded

as 1 for anomalies and 0 for normal responses. Prior to analysis, the

linear relationship between the proportion of anomalous samples

per survey round of diversity and biomass was estimated.

Thereafter, we examined the differences in the proportions of

anomaly samples in a survey round based on diversity vs.

biomass and the differences of each parameter between anomaly

vs. normal using a Spear style boxplot without upper and lower

fence (upper and lower quartile ± 1.5 interquartile range). The

Levene’s test for equal variances and t-test for equal means were

performed to test for statistical differences.

We employed a stepwise procedure and selected the final set of

predictors and models based on the significance of the Wald test.

We examined the deviance R2, which indicates the variations

explained by the model, and the area under the ROC curve
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(AUC) to determine the fitting of the data in the model. The

AUC indicates the efficiency by which the binary model can

separate the classes and ranges between 0.5 and 1. A value of 0.5

indicated that the model could not separate the classes better than a

random assignment. The Wald test was used to test the hypothesis

that the set of beta coefficients is equal to zero.
3 Results

3.1 Benthic habitat map

The mean sediment grain size distribution in the study area is

presented in a benthic habitat map (Figure 2). Mixed sand-silt to silt

sediments were primarily present, with grain sizes ranging from 4–5

to 7 f. Exceptionally, fine sand (approximately 3 f) and fine silt

sediments (approximately 7 f) were observed temporarily in the

southern and northern parts of the area, respectively, in October

and November 2018. SPM data from November 2018 coincided

with the maximum bottom SPM concentration from the web portal

(MEIS) data and our SPM observation over the 97th percentile at the

southeastern sampling point (St. 15, 176.4 mg/L).

Initially, the sediment grain size ranged at 4–5 f (sand-silt

mixed sediment), but as the survey progressed, the spatial

occupancy/frequency of muddy sediments (greater than 5.5 f)
became predominant in the shallower southeastern part of the

surveyed area. Temporary changes in the mean sediment grain size

were observed in the middle of the survey. In October and

November, 2018, sediment fining (red hues) was observed in the

northwestern part of the surveyed area, whereas coarsening (blue

hues) was observed in the southern part, with distinct sediment

distribution patterns detected before and after this period. After this

period, a strengthening of the red hues was observed in the

sediment distribution in this area, indicating that the sediments

in the shallower southeastern part became muddier over time.

Macrobenthic diversity (Whittaker’s d) is presented in a benthic

habitat map (Figure 3). Blue/darker hues, which generally appeared

between February 2015 and June 2017, correspond to anomalous

diversity (d = 6.6). In addition, a consistently low diversity was

observed in the shallower southeastern part of the surveyed area at

times and locations of occurrence of mud bottoms (Figure 2). From

August 2017, the diversity increased compared with that in previous

years, with that in June 2022 being an exception. Anomaly rounds

accounted for 28.6% of all survey rounds (left inset of the bar graph

in Figure 3).

The log-transformed wet-weight biomass of the macrobenthic

communities present in the benthic habitat map is shown in

Figure 4. Relatively high biomass was observed during the early

survey periods of November 2014 and August 2015; however, dark

green/darker hues, indicating biomass anomalies, were

predominantly observed until June 2017. Following this period, a

bright green color, representing biomass in the range of

approximately 25–100 g/m² (log scale bar, approximately 1.4–

2.0), became predominant, reflecting an increase in biomass.

Toward the later stages of the survey, dark green/dark hues
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reappeared, suggesting a gradual decline in biomass. This pattern

appeared to roughly align with the fluctuations observed

in diversity.

Biomass anomalies showed little regularity. The occurrence of

anomalies partially coincided with periods of low diversity (e.g.,

February 2015 to June 2017 and June 2022) and times at which the
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spatial distribution of sediment changed from that in previous

surveys. During such changes, for instance, after the predominant

distribution of mixed sediments, sand bottoms emerged in some

areas, resulting in a color change on the map from green to blue

(e.g., February 2015, October and November 2018). Mud bottoms

(red hues in the map) sometimes expanded in the shallower
FIGURE 2

Benthic habitat map showing topography and spatiotemporal variation of the mean grain size (f) of the bottom sediment of the study area from
November 2014 to October 2022. The color palette on the left shows the mean grain size range from 2.0 to 7.0 f.
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southeastern part (e.g., December 2015 and June 2017) or when the

previously homogeneous sediment distribution became

heterogeneous (e.g., October and November 2018 and June,

August, and October 2022), all of which aligned with the

emergence of anomalies. Anomaly rounds accounted for 46.4% of

all survey rounds (left inset of the bar graph in Figure 4).
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3.2 Linear regression using sea predictors

Square root-transformed Whittaker’s d (Sqrt d) was positively

correlated with log-transformed sand content (log sand)

(Figure 5A). Log sand was highly correlated with mean grain size

(MGS, r = -0.84, p< 0.001). Sqrt d was also positively correlated with
FIGURE 3

Benthic habitat map showing the topography, spatiotemporal variation in the diversity of macrobenthic communities (Whittaker’s d), and ratio of
normal (red circle) vs. anomalous (blue circle) survey rounds observed in the study area from November 2014 to October 2022. The color palette on
the left side shows the range of Whittaker’s d from 0 to 28, while the bar graph above it represents the proportion of normal to anomaly survey
rounds.
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depth and negatively correlated with DO (r = -0.76, p< 0.001 with

temperature), salinity (r = -0.50, p< 0.001 with Chl-a; r = 0.19, p<

0.001 with depth; and r = 0.18, p = 0.001 with temperature) and log

SPM (r = 0.286, p< 0.001 with sediment log TOC). The correlation
Frontiers in Marine Science 10
coefficient between the observed and predicted values was moderate

(r = 0.68, p< 0.001) (Figure 5C).

SPM and sediment copper (Cu) had significant negative effects

on consecutive log-transformed biomass (CL biomass) (Figure 5B).
FIGURE 4

Benthic habitat map showing the topography, spatiotemporal variation of log-transformed wet weight, biomass of macrobenthic communities, and
ratio of normal (red circles) vs. anomaly survey rounds (blue circles) observed in the study area from November 2014 to October 2022. The color
palette on the left side shows the range of log-transformed biomass from 0 to 3.5, while the bar graph above it represents the proportion of normal
to anomaly survey rounds.
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Cu exhibited a high correlation with substratum properties, such as

log sand (r = -0.42, p< 0.001), MGS (r = 0.37, p< 0.001), ignition loss

(r = 0.60, p< 0.001), and sediment TOC (r = 0.51, p< 0.001). The

correlation between the observed and predicted biomass values was

weak (r = 0.47, p< 0.001) (Figure 5D).

Table 1 presents a summary of the regression analysis results.

The diversity of the macrobenthic communities in the surveyed area

was adequately explained by seven predictors, all of which were

significant at a p-value of 0.05. The coefficient of determination R²

was 0.47, with significance set at p< 0.001. The collinearity statistics,

represented by variance inflation factors (VIFs), were all

satisfactory, below 1.3. The R² value for the biomass regression

model was 0.22, which was statistically significant (p< 0.001).

Among the eight predictors, log-transformed bottom pH (log

pH), sediment sorting, and log-transformed sediment Cd (log Cd)

were insignificant, whereas the remaining five predictors showed

statistical significance (p< 0.05). All VIFs were satisfactory.
Frontiers in Marine Science 11
3.3 Linear regression using air–sea
predictors

The air predictors that exhibited significant correlations with

diversity were MeanWind, MaxWind, Hs, Prev.Hs, and Prev.HD

(Figure 6A). Prev.Hs and Prev.HD showed high correlation

coefficients with Hs (r = 0.65, p< 0.001) and HD (r = 0.88, p<

0.001). The variables that demonstrated significant correlations

with the biomass were MeanWind, MaxWind, Hs, Prev.Mean,

and Prev.Hs. Among them, MeanWind exhibited a notable

correlation (r = -0.41, p< 0.001) with diversity (Figure 6B). Most

air predictors were significant and displayed negative relationships

with the biological parameters.

The diversity regression model shown in Figure 6C revealed

that significant sea predictors were log sand, depth, salinity, and log

SPM. In this regard, the results shown in Figure 6C are similar to

those in Figure 5A. DO, included in Figure 5A, was excluded from
FIGURE 5

Regression plots of macrobenthic diversity with Sqrt d (square root-transformed Whittaker’s d) and CL biomass (consecutively log-transformed wet
weight, g/m²) using sea predictors (bottom water/sediment variables). Beta estimates of the coded equations (A, B) and observed-predicted plots for
the diversity and biomass regression models (C, D). Log indicates log-transformation for variable x (log (x + 1), base = 10), Al (sediment aluminum
concentration), Sand (sand content), SPM (suspended particulate matter), pH (power of hydrogen), DO (dissolved oxygen), Cu (copper in sediment),
Cd (cadmium in sediment), and Sorting (sediment sorting). Asterisks indicate statistical significance (*p < 0.05; **p < 0.01; *p < 0.001).
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the analysis because of its high correlation with the air predictor

Prev.Hs (r = 0.64, p< 0.001). Although air predictors had lower

effects than sea predictors (i.e., log sand, salinity, and depth), the

mean and Prev.Hs had significant negative effects on diversity.
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Among the sea predictors in the biomass regression model,

SPM demonstrated the most significant effect, with Cu and log sand

also included as significant variables, indicating a similarity with the

results of the sea predictor-based model shown in Figure 5B and
TABLE 1 Analysis of variance for the diversity and biomass regression models based on sea predictors (bottom water/sediment variables).

Regression for Sqrt d

Source DF Adj SS Adj MS F-value P-value VIF

Regression 7 88.141 12.592 43.19 0.000 –

Depth 1 12.625 12.625 43.3 0.000 1.12

Salinity 1 7.667 7.667 26.3 0.000 1.19

DO 1 9.627 9.627 33.02 0.000 1.26

pH 1 1.330 1.330 4.56 0.033 1.12

Log SPM 1 2.037 2.037 6.99 0.009 1.27

Log Sand 1 29.298 29.298 100.49 0.000 1.18

Log Al 1 2.506 2.506 8.6 0.004 1.13

Error 343 100.003 0.292 – – –

Total 350 188.144 - - - -
Model Summary
S R2 R2 (adj) R2 (pred)

0.539956 0.4685 0.4576 0.4446

Regression equation in uncoded units:

Sqrt d = 3.984 + 0.03437 Depth - 0.1036 Salinity - 0.1333 DO + 0.1226 pH - 0.2308 Log SPM + 1.032 Log Sand + 1.057 Log Al
frontiersin.org
Regression for CL biomass

Source DF Adj SS Adj MS F-value P-value VIF

Regression 8 0.74995 0.09374 11.98 0.000 –

Salinity 1 0.03466 0.03466 4.43 0.036 1.05

Log DO 1 0.03839 0.03839 4.91 0.027 1.24

Log pH 1 0.02872 0.02872 3.67 0.056 1.1

SPM 1 0.19164 0.19164 24.5 0.000 1.21

Sorting 1 0.02275 0.02275 2.91 0.089 1.16

Log Sand 1 0.03598 0.03598 4.6 0.033 1.34

Log Cd 1 0.01914 0.01914 2.45 0.119 1.07

Cu 1 0.07903 0.07903 10.1 0.002 1.3

Error 342 2.67528 0.00782 – – –

Total 350 3.42522 - - - -
Model Summary
S R2 R2 (adj) R2 (pred)

0.0884446 0.2189 0.2007 0.168

Regression equation in uncoded units:

CL Biomass = 0.337 - 0.00655 Salinity - 0.1693 Log DO + 0.339 Log pH - 0.000542 SPM + 0.0216 Sorting + 0.0387 Log Sand + 0.222 Log Cd - 0.00363 Cu
Log indicates log-transformation for variable x (log (x + 1), base = 10), DO (dissolved oxygen, mg/L), pH (power of hydrogen), SPM (suspended particulate matter, mg/L), Sand (sand content, %),
Al (sediment aluminum concentration, mg/Kg), Sorting (sediment sorting, f), Cd (cadmium in sediment, mg/Kg), and Cu (copper in sediment, mg/Kg).
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Table 1. Log DOwas excluded from the variable selection because of

its significant correlations with several factors, including SPM (r =

0.30, p< 0.001), MeanWind (r = 0.43, p< 0.001), and Prev.Mean (r =

0.31, p< 0.001). The only air predictor included was MeanWind,

whose effect was estimated to be greater than that of Cu (Figure 6D).

The correlation coefficients between the observed and predicted

values in the diversity and biomass prediction models that included

air predictors were 0.72 (p< 0.001) and 0.48 (p< 0.001), respectively.

The numbers of predictors in these models were eight and seven,

respectively, similar to those in the sea predictor-based models

(seven and eight, respectively) (Tables 1, 2). Although not

substantial, an increase was observed in the correlation

coefficients between the observed and predicted values of the

models. The correlation coefficient range for the diversity model

shifted from moderate to strong (Figures 6E, F).

The predictors of diversity for macrobenthic communities in

the surveyed area were mostly significant (p< 0.001), with all VIFs

being below 1.5, indicating good multicollinearity. This model was

statistically significant (p< 0.001; Table 2). In addition, the biomass

regression model was also significant (p< 0.001), with SPM and

MeanWind appearing significant (p< 0.001) and VIFs being at a

very satisfactory level (Table 2).
3.4 Averaged parameters and air–sea
predictors

The air predictors that were significantly correlated with survey-

averaged diversity included MeanWind (r = -0.51, p = 0.006),

Prev.Hs (r = -0.54, p = 0.003), and Prev.HD (r = -0.41, p = 0.029)

(Figure 7A). The predictors that exhibited significant correlations

with survey-averaged biomass were the same as those for diversity,

namely MeanWind (r = -0.71, p< 0.001), Prev.Hs (r = -0.39, p =

0.038), and Prev.HD (r = -0.42, p = 0.028) (Figure 7B).

In the average diversity regression model, salinity (r = -0.67, p<

0.001 with Chl-a) and DO had relatively large effects among sea

predictors. Prev.Mean was the only significant variable among air

predictors, showing a lower effect than that of other predictors

(Figure 7C). MeanWind, which was only moderately correlated

with Sqrt d (Figure 7A), was replaced by DO, which was highly

correlated with Sqrt d (r = -0.63, p< 0.001), during the variable

selection prior to the regression analysis. In the average biomass

regression model, MeanWind was the only significant air predictor

(p< 0.001) of biomass (Figure 7D).

DO showed higher correlations with most air predictors (e.g., r

= 0.56, p = 0.002 with MeanWind; r = 0.67, p< 0.001 with Hs; r

=0.83, p< 0.001 with Prev.Hs; r = 0.56, p = 0.002 with HD; r = 0.74,

p< 0.001 with Prev.HD). In contrast, salinity showed seasonal

variability, correlating best with MaxWind (r = 0.361, p = 0.059),

whereas none of the other air predictors were significantly

correlated with salinity.

The Pearson correlation coefficients between the observed and

predicted values of the survey-averaged diversity and biomass

regression models were r = 0.83 (p< 0.001) and r = 0.77 (p<

0.001), respectively. The model predicting diversity, which
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included four predictors, was significant (p< 0.001), with all VIFs

being satisfactory at 1.6 or below. The biomass regression model,

which included three predictors, was also significant (p< 0.001),

with VIFs close to 1, indicating an excellent level for avoiding

multicollinearity (Figures 7E, F; Table 3). The correlation coefficient

for the diversity model remained within a strong range, whereas

that for the biomass model varied from weak to strong

(Figures 7E, F).
3.5 Seasonality of air predictors and
parameters

Among the air predictors, MeanWind had the most significant

effect and was selected for further analysis. The seasonal patterns of

MeanWind and biological parameters are presented in Figure 8.

The seasonal model for MeanWind showed higher values in spring

and winter, with a maximum beta estimate of 2.9 m/s in winter,

whereas lower values were observed in summer and fall, with a

minimum beta estimate of 2.3 m/s in fall. The model R² was 99.44%

(p< 0.001), indicating that most of the variance in the MeanWind

data was explained by seasonality (Figure 8A).

Sqrt d was fitted to a seasonal model with R² = 98.89% (p<

0.001), showing increased diversity in the summer and fall

(Figure 8B). A minimum beta estimate of Sqrt d of 2.834 was

observed in the spring, corresponding to 8.0, which was higher than

the diversity anomaly. The CL biomass showed a similar seasonal

pattern (R² = 98.89%, p< 0.001) with a minimum beta estimate of

0.3052 in winter, corresponding to 8.9 g/m², which was lower than

the biomass anomaly (Figure 8C). The deseasonalized residuals of

MeanWind showed a significant positive trend (p = 0.022),

negatively correlating with the CL biomass residuals (r = -0.46, p

= 0.014), highlighting a difference from Sqrt d, however, with no

significant relationship (Figure 8D).
3.6 Prediction of anomaly rounds

Figure 9A shows a comparison of the proportions of anomalous

samples in a survey round between Sqrt d and CL biomass. The

mean and median proportions of anomalies for Sqrt d (22.7% and

16.7%, respectively) were lower than those for the CL biomass

(29.3% and 23.3%, respectively). However, Levene’s and t-test

results confirmed that the differences in variances and means

were insignificant (p = 0.204 and 0.224, respectively). Figure 9B

illustrates a significant linear relationship between the proportions

of both parameters, with R2 = 0.7201 (p< 0.001). The covarying

patterns of anomalous samples in diversity and biomass suggested a

shared disturbance source.

Figure 9C illustrates the variation in Sqrt d between normal and

anomalous rounds. The variances between the groups were equal

(standard deviation, 0.31 vs. 0.17; Levene test, p = 0.081) but the

means were significantly different (3.43 vs. 2.74; t-test, p< 0.001).

The variances in the CL biomass between normal and anomalous

rounds were also equal (standard deviation, 0.040 vs. 0.038;
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Levene’s test, p = 0.637), yet the means were significantly disparate

(0.371 vs. 0.321; t-test, p< 0.001) (Figure 9D).

We constructed logistic models to predict the probability of an

anomaly round based on air predictors. The final models were
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selected using a stepwise procedure and Wald tests. The three-

dimensional wireframe surface plots for the occurrence

probabilities predicted by the significant models are shown in

(Figures 9E, F). The deviation R2 values were 47.18% and 33.39%
TABLE 2 Analysis of variance for the diversity and biomass regression models based on air–sea predictors (bottom water/sediment and wind/
wave variables).

Regression for Sqrt d

Source DF Adj SS Adj MS F-value P-value VIF

Regression 8 96.241 12.030 44.77 0.000 –

Depth 1 15.043 15.043 55.98 0.000 1.10

Salinity 1 10.496 10.496 39.06 0.000 1.27

Log SPM 1 2.530 2.530 9.41 0.002 1.23

Log Sand 1 27.795 27.795 103.43 0.000 1.10

Log Al 1 2.899 2.899 10.79 0.001 1.12

MeanWind 1 7.243 7.243 26.95 0.000 1.16

Prev.Mean 1 2.989 2.989 11.12 0.001 1.45

Prev.Hs 1 1.511 1.511 5.62 0.018 1.43

Error 342 91.904 0.269 – – –

Total 350 188.144 – - - -
Model Summary
S R2 R2 (adj) R2 (pred)

0.518386 0.5115 0.5001 0.4857

Regression equation in uncoded units:

Sqrt d = 6.932 + 0.03726 Depth - 0.1253 Salinity - 0.2530 Log SPM + 0.9730 Log Sand + 1.129 Log Al - 0.541 MeanWind - 0.3108 Prev.Mean - 0.313 Prev.Hs
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Regression for CL biomass

Source DF Adj SS Adj MS F-value P-value VIF

Regression 7 0.79061 0.11295 14.7 0.000 –

Salinity 1 0.02859 0.02859 3.72 0.055 1.11

SPM 1 0.21322 0.21323 27.76 0.000 1.14

Sorting 1 0.02302 0.02302 3.00 0.084 1.08

Log Sand 1 0.04314 0.04314 5.62 0.018 1.31

Al 1 0.01689 0.01689 2.20 0.139 1.11

Cu 1 0.06256 0.06256 8.15 0.005 1.3

MeanWind 1 0.12821 0.12821 16.69 0.000 1.11

Error 340 2.44871 0.00720 – – –

Total 350 3.42522 - - - -
Model Summary
S R2 R2 (adj) R2 (pred)

0.0876418 0.2308 0.2151 0.1882

Regression equation in uncoded units:

CL Biomass = 0.632 - 0.00610 Salinity - 0.000555 SPM + 0.0210 Sorting + 0.0418 Log Sand + 0.00486 Al - 0.00324 Cu - 0.0703 MeanWind
Log indicates log-transformation for variable x (log (x + 1), base = 10), SPM (suspended particulate matter, mg/L), Sand (sand content, %), Al (sediment aluminum concentration, mg/Kg),
Sorting (sediment sorting, f), Cu (copper in sediment, mg/Kg), MeanWind (current monthly averages of daily mean wind speed; m/s), Prev.Mean (previous monthly MeanWind; m/s), and
Prev.Hs (previous averages of daily significant wave height; m).
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for the diversity and biomass models, respectively. The Wald tests

confirmed the significance of the beta values of the model equations

(p = 0.029 and 0.020). The AUC values, representing the overall

performance of the binary classification model, were satisfactory

(AUC = 0.90 and 0.86).
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The occurrence probability of a diversity anomaly round

increased with MeanWind (p< 0.05) and Prev.Hs (p > 0.05).

When Prev.Hs was close to 0.5 m, a MeanWind close to 2.84 m/s

could induce a diversity anomaly round, while when Prev.Hs

exceeded 1.5 m, a MeanWind >1.59 m/s was required to ensure a
FIGURE 6

Regression plots of macrobenthic diversity with Sqrt d (square root-transformed Whittaker’s d) and CL biomass (consecutively log-transformed wet
weight, g/m²) using air–sea predictors (bottom water/sediment and wind/wave variables). Correlations of macrobenthic diversity and biomass with
air predictors, namely, MeanWind, MaxWind, Hs, and HD (current monthly averages of daily mean, maximum wind speed, significant wave height,
and Hs/depth ratio), and Prev.Mean, Prev.Max, Prev.Hs, and Prev.HD (previous monthly MeanWind, MaxWind, Hs, and HD) (A, B). Beta estimates of
the coded equations (C, D) and observed-predicted plots for the diversity and biomass regression models (E, F). Asterisks indicate statistical
significance (*p < 0.05; **p < 0.01; *p < 0.001).
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diversity anomaly round (Figure 9E). The probability of a biomass

anomaly round exhibited a trend similar to that of a diversity

anomaly, increasing with MeanWind (p< 0.05) and MaxWind (p >

0.05). When MaxWind was as low as 10 m/s, a MeanWind >2.70 m/

s could induce a biomass anomaly round. When MaxWind reached

18 m/s, a MeanWind >1.86 m/s could cause a biomass anomaly

round (Figure 9F).
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4 Discussion

4.1 Validation

To understand the variation in macrobenthic community

parameters, we selected a model from all possible 2k subset

regression models using k predictors by means of general model
FIGURE 7

Regression plots of average macrobenthic diversity from survey rounds with Sqrt d (square root-transformed Whittaker’s d) and CL biomass
(consecutively log-transformed wet weight, g/m2) using air–sea predictors (bottom water/sediment and wind/wave variables). Correlations of
macrobenthic diversity and biomass with air predictors, namely, MeanWind, MaxWind, Hs, and HD (current monthly averages of daily mean,
maximum wind speed, significant wave height, and Hs/depth ratio), and Prev.Mean, Prev.Max, Prev.Hs, and Prev.HD (previous monthly MeanWind,
MaxWind, Hs, and HD) (A, B). Beta estimates of the coded equations (C, D) and observed-predicted plots for the diversity and biomass regression
models (E, F). Asterisks indicate statistical significance (*p < 0.05; **p < 0.01; *p < 0.001).
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selection criteria, such as Mallows’ Cp, R2, and predicted-R2. We

accordingly found that macrobenthic community diversity and

biomass had a multifactorial relationship with these predictors. The

weather-related predictor variables (e.g., wind speed and significant

wave height) used in this study have not been previously used to

subtidal macrobenthic communities. Most variations in macrobenthic

distribution, diversity, and biomass have been explained by salinity,

depth, temperature, organic matter, current, sediment properties, larval

supply, and biological interactions (Reise, 1985; Chardy and Clavier,

1988; Snelgrove and Butman, 1994; Snelgrove et al., 1997; Ysebaert

et al., 2003; Nilsen et al., 2006; Golubkov, 2008; Fuhrmann et al., 2015).

In addition to insufficient background information regarding

unfamiliar variables, as recommended by Heinze et al. (2018) and

Chen (2022), correlation and regression analyses are statistical methods

for analyzing data containing errors. Hence, the results obtained using

these methods must be rigorously validated.
Frontiers in Marine Science 17
The main interest of researchers in field survey studies utilizing

empirical models such as ours is to find causally related factors (Reed

and Slade, 2008). For a given confined length of data and selected

variable subsets from a large number of environmental variables, the

unbiasedness of the regression coefficients of predictors may be

compromised, resulting in spurious relationships (Sparks and

Tryjanowski, 2010; Heinze et al., 2018). As such, we must review

whether the estimated regression equation is a realization of the correct

source-response relationship, whether it is a result of subset selection

from a simple correlation, or whether it is a regression model with

biased coefficients (George, 2000; Heinze et al., 2018; Chen, 2022).

Therefore, we believe that issues, such as model robustness or

coefficient instability, which determine the reliability of the

regression model, deserve examination in this study. According to

Kessler et al. (2017), high VIFs are linked to extreme coefficient

instability; accordingly, the low VIFs in our study indicated the low
TABLE 3 Analysis of variance for the survey round-averaged diversity and biomass regression models based on air–sea predictors (bottom water/
sediment and wind/wave variables).

Regression for Sqrt d

Source DF Adj SS Adj MS F-value P-value VIF

Regression 4 3.3925 0.84814 13.18 0.000 –

MaxWind 1 0.1485 0.14851 2.31 0.142 1.4

Prev.Mean 1 0.2856 0.28557 4.44 0.046 1.57

DO 1 0.3992 0.39918 6.2 0.020 1.48

Salinity 1 1.0644 1.06439 16.54 0.000 1.26

Error 23 1.48 0.06435 – – –

Total 27 4.8726 – – – –
Model Summary
S R2 R2 (adj) R2 (pred)

0.25367 0.6963 0.6434 0.5585

Regression equation in uncoded units:

Sqrt d = 10.67 - 0.0400 Max Wind - 0.360 Prev.Mean - 0.1063 DO - 0.1691 Salinity
frontiersin.or
Regression for CL biomass

Source DF Adj SS Adj MS F-value P-value VIF

Regression 3 0.055624 0.018541 11.88 0.000 –

MeanWind 1 0.032097 0.032097 20.56 0.000 1.11

Salinity 1 0.002651 0.002651 1.7 0.205 1.05

SPM 1 0.004381 0.004381 2.81 0.107 1.15

Error 24 0.037468 0.001561 – – –

Total 27 0.093092 – – – -
Model Summary
S R2 R2 (adj) R2 (pred)

0.0395116 0.5975 0.5472 0.4684

Regression equation in uncoded units:

CL Biomass = 0.894 - 0.1171 MeanWind - 0.00772 Salinity - 0.000333 SPM
g

MaxWind (current monthly averages of daily maximum wind speed; m/s), MeanWind and Prev.Mean (current and previous monthly averages of daily mean wind speed, respectively; m/s), DO
(dissolved oxygen, mg/L), and SPM (suspended particulate matter, mg/L).
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coefficient instability of regression models. Bootstrap resampling is

a valuable approach for quantifying model stability according to

Heinze et al. (2018). However, in its absence, examining the changes

in the size and signs of the regression coefficients of the same

predictors across models becomes meaningful. Moreover, assessing

the predictor inclusion frequencies between different subsets within

the same dataset is important for evaluating the unbiasedness or

stability of regression model estimates.

The significant regression coefficients of characteristic

predictors (e.g., log-transformed sand, depth, and salinity for the

diversity model; SPM, copper, and salinity for the biomass model)

showed consistent signs across the models, with the exception of

DO, which was removed from the air–sea predictor-based model

because of its high correlation with other variables. Weather-related

predictors also showed negative signs in the regression model,

which was consistent with the correlation coefficients presented in

Figures 6A, B and 7A, B. Significant predictors such as DO in the

diversity model and monthly averages of wind speed (hereafter

referred to as wind speed) in the biomass model were estimated to

have negative signs. This reflected the relationship between diversity

and biomass, which was characterized by a seasonal pattern of

higher values in summer and fall, whereas showed an inverse

pattern for those of predictors. The relationships predicted by the

regression models were also consistent with the seasonality

independently estimated from the seasonal mean models.

The inclusion frequencies of the selected predictors across

subsets were significantly different from those of the unselected
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predictors. For example, in the sea predictor-based diversity

regression analysis, the inclusion frequencies of log-transformed

sand, depth, and salinity were 76–97%, whereas those of unselected

predictors varied at 10–76% (no. of subsets, n = 21). In the air–sea

predictor-based regression, the same predictors had inclusion

frequencies of 83–97%. In addition, the newly included air-related

predictor, wind speed, demonstrated a high inclusion frequency of

83%, with those of the remaining predictors ranging from 7% to

69% (n = 29). In the sea predictor-based biomass regression model,

the predictors estimated to have the most significant effects (i.e.,

SPM and sediment Cu) had inclusion frequencies of 95% and 84%,

respectively, whereas the unselected predictors had frequencies of

11–79% (n = 19). The same predictors were also included in the air–

sea predictor-based regression model, with inclusion frequencies of

96% and 85%, respectively, while the added air predictor, wind

speed, had an inclusion frequency of 93%. In contrast, the frequency

of unselected predictors in this model ranged from 7% to 78% (n

= 27).

Thus, regression coefficient signs and predicted biological

parameter responses among the different models showed

consistency, which allowed us to evaluate the overall model

stability as positive. High inclusion frequencies also suggested that

these predictors have high explanatory power, majorly contributing

to the improvement in model prediction performance (Heinze et al.,

2018). The use of predictor inclusion frequency seems appropriate

according to the concept of Granger Causality, which says that

variable X “Granger-causes” Y if the predictability of Y declines
FIGURE 8

Seasonal mean model analysis showing the seasonal variation of MeanWind (A), macrobenthic diversity, Sqrt d (B), biomass, CL Biomass (C), and a
trend fitted on the deseasonalized residuals of MeanWind (D). Inset figures in (A–C) are beta estimates of the seasonal mean model, while those in D
are residual plots and correlations between MeanWind and biological parameters, Sqrt d and CL biomass.
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when X is removed from all possible causative variables, U

(Sugihara et al., 2012). In addition, we selected models with the

highest predicted R2 and a set of predictors with the highest

inclusion frequencies.

Based on the assumption of linearity and additivity, which

suggests that the effects of predictors can be additive, the

significance of the weather-related predictors as additional

explanatory variables and a modest increase in r between sea

predictor- and air–sea predictor-based regression can be

considered a significant improvement, resulting in a better model

(Sparks and Tryjanowski, 2010; Heinze et al., 2018). Therefore, in

contrast to previous studies, our findings can be considered a basis

for concluding that air predictors have significant explanatory

power for variations in biological parameters.
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4.2 Ecological significance of the observed
relationships

The underlying causes of the observed characteristics are

challenging to ascertain using a field survey approach without

conducting experiments. In this context, the acquisition of

biological knowledge must be prioritized to elucidate the

mechanisms responsible for the observed biological responses.

This knowledge is instrumental in selecting variables and

interpreting models (Sparks and Tryjanowski, 2010). To address

this, we examined the significance of the relationships between

predictors and biological parameters from an ecological perspective.

We believe that this approach allowed us to distinguish between

relationships that are correlative or causal.
FIGURE 9

Spear style boxplot depicting the proportions of anomaly samples in a survey round between Sqrt d and CL biomass (A). The linear relationship
between the proportions of diversity and biomass (B). Boxplots of Sqrt d and CL biomass between normal and anomaly rounds (C, D). Logistic
regression models fitted on the classes of normal (0) and anomaly rounds (1) for diversity and biomass (E, F). The occurrence probability in z-axis
was calculated using the equation P(1) = exp(Y’)/(1+exp(Y’)). The symbol * in the x-axis label denotes a p-value less than 0.05.
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In this study, the known controllers of macrobenthic diversity

and biomass (Section 4.1) were not significantly different from the

selected sea predictors; however, some of them (e.g., mean sediment

grain size and salinity) showed different or opposite directions from

the existing relationships. Regarding the grain size effects of a

unimodal pattern on biodiversity in Korean tidal flats at a

nationwide spatial scale, Yoo et al. (2013) demonstrated a peak of

diversity at 4f in the range of -2–9f, with a decrease in both

directions. Thus, the linear relationship between log-transformed

sand and diversity in this study did not contradict the previous

relationship, considering that the mean grain size in this study

ranged from 4 to 7f.
Salinity, traditionally known to have a positive causal

relationship with diversity and biomass (Ysebaert et al., 2003),

showed a negative correlation in this study. The 95% prediction

interval range of the salinity data used in this study was 28–34 psu.

This was more limited than the 68% salinity range (14–34 psu)

reported by Yoo et al. (2013), which showed a positive effect. The

negative effect observed in this study was likely attributed to the

restricted data range. Given that much of the temporal variation in

biological parameters is seasonal, the negative effect on both

parameters reflected an effect similar to that of predictors such as

DO, in that lower salinity was also observed in summer and fall.

Thus, it can be considered seasonal and correlative rather than a

causal relationship. This is supported by the fact that the salinity

effect was stronger in the predictions of the average parameters

when the spatial variation was removed.

The occurrence and sinking of SPM cause mortality of benthic

fauna and severe loss of diversity and biomass through blanketing

and resuspension (Clark, 2001; Yoo et al., 2018). Görlich et al.

(1987) reported macrobenthic biomass variation from<1 to ~180 g/

m2 as a function of SPM, ranging from 10–15 to >1000 mg/L, in the

Hornsund Fjord, Spitsbergen, Norway, independent of depth and

bottom sediment properties. On the west coast of Korea, locally

high concentrations of SPM are responsible for significantly lower

species richness, density, and biomass in mudflats and subtidal

areas (MLTM, 2009). A neural network simulation estimated that

an increase in SPM from 5 to 70 mg/L resulted in a 13% decrease in

macrobenthic diversity and >90% decrease in biomass in mudflats

when environmental factors other than SPM were fixed at mean

values (Yoo et al., 2013; unpublished data for biomass simulation).

In the Southeastern Yellow Sea mud (SEYSM), in the southern part

of the study area, the benthic habitat quality index, ISEP (Yoo et al.,

2010) fluctuated owing to the wide seasonal range of bottom SPM

(6.1–845.1 mg/L), with a high SPM value leading to a low-quality

status. Yoo et al. (2022) reported that SPM is one of the primary

influential factors determining benthic habitat quality on the west

coast. The bottom SPM observed in this study ranged from 2.2 to

410.5 mg/L, which is a narrower range of variation than that of the

SEYSM. However, this range was sufficiently effective to cause

variations in both parameters, based on the simulation results

mentioned above. The significance of SPM in explaining the

variability of biological parameters reflected the adequacy of the

predictor selection and model estimation.
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The species-abundance-biomass (SAB) diagram by Pearson and

Rosenberg (1978) shows that the response of each SAB parameter to

a stressor can vary according to stress intensity. In this study, beta

estimates from seasonality analysis were converted to anti-log

diversity and biomass, and the maximum/minimum ratio for

each parameter was calculated. This ratio was 68% for diversity

(Whittaker’s d, spring = 8.03 and fall = 11.90) and 42% for biomass

(wet weight, winter = 9.45 and fall = 22.46 g/m2), respectively.

According to these ratios, biomass had a relatively larger seasonal

variation range than diversity, with the winter beta estimate of

biomass being close to the biomass anomaly of 9.10 g/m2, whereas

the spring beta estimate of diversity was higher than the diversity

anomaly of 6.6. As the impact of SPM mentioned above was greater

for biomass than for diversity, a potential disturbance agent with

seasonality might have exerted a greater effect on biomass.

The symmetrical seasonality between the biological parameters

and wind speed (Figure 8) suggested that both diversity and

biomass were affected by wind speed or other covariates with

similar seasonal patterns. The deseasonalized residuals of wind

speed showed a linearly increasing trend. However, the residuals

of diversity were independent of the deseasonalized residuals of

wind speed, whereas those of biomass showed a significant negative

correlation. Independent estimation of seasonal patterns for the two

variables may match; however, if the deseasonalized residuals of

both are uncorrelated, this may suggest (1) a lack of a bidirectional

or unidirectional relationship between them (Sugihara et al., 2012)

or (2) different ecological characteristics, such as different

sensitivities to specific disturbances (Dong et al., 2021). In

contrast to the survey-averaged diversity model (Figure 7 and

Table 3), in which it was removed because of its high correlation

with DO, wind speed had a more pronounced effect on the survey-

averaged biomass model. The proportion of total variance (R²) in

biomass explained solely by wind speed was greater than 50%, based

on the one-to-one relationship between wind speed and biomass (r

= 0.71, p< 0.001; Figure 7B). A relatively low correlation does not

necessarily indicate lack of causation. Despite the observed

disparate response levels, wind speed may serve as a proximate

cause for both parameters. KOWP (2015) argued that wind in the

study area is a potential factor for sediment disturbance. A detailed

description of the possible reasons for this factor to be more closely

related to biomass is provided in Section 4.3.
4.3 Impact of wind on coastal
macrobenthic communities

Low wind speeds have been identified as a possible cause of

coral bleaching, because they favor localized heating and high

penetration of solar radiation (Glynn, 1993). However, wind

speed affects pelagic ecosystems in the following ways. (1) Wind

generates upward transport of nutrients from deep waters,

promoting primary production, and affects the whole ecosystem

globally and at all scales from plankton to birds and mammals

(Sakshaug et al., 2000). (2) High wind speeds suppress bloom
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occurrence by altering water column stability and creating a

shallower mixed layer, particularly due to melting ice and the

associated release of iron in the marginal ice zone of the Southern

Ocean (Fitch and Moore, 2007). (3) Wind-driven turbulent mixing

during the spawning season hinders the generation of sufficient

food concentrations, affecting the survival variability of young fish

larvae more than cannibalism or offshore transport (Peterman and

Bradford, 1987).

The use of hydrodynamic and climatic variables as predictors of

macrobenthic community parameters is common in intertidal and

adjacent shallow zones. Ricciardi and Bourget (1999) predicted the

global patterns of macrobenthos biomass in sedimentary shores

using variables such as the mean wave height, intertidal slope, and

wave exposure and found that wave exposure had a significant

negative effect, attributed to the susceptibility of soft bottom fauna

to wave stress. Comparing macrobenthic communities in diverse

types of sandy beaches, from reflective to dissipative and tidal flats,

in the order of diminishing physical control, revealed that diversity

and biomass increased with decreasing wave energy (Brown and

McLachlan, 1990; Defeo and McLachlan, 2005). Paavo et al. (2011)

and Armonies et al. (2014) showed that, on sandy coasts, these

wave-related processes that determine community shape extended

into shallow subtidal areas in the ~30 m depth range, resulting in

increased macrobenthic species richness and abundance as wave-

induced turbulence and sediment instability decreased, followed by

their stabilization at depths where the processes were not effective.

The study area, an open coast with exposed shorelines and a

sheltered bay, experiences tidal mixing across all water bodies due to

strong tidal currents, even in summer when stratification can

develop (Baek and Moon, 2019). The Geum River estuary,

Saemangeum reclaimed land, and Gunjang National Industrial

Complex, located approximately 50 km north of the wind farm,

are potential sources of pollution. The annual average DO on the

Gunsan coast has been neutral since the 80s, while the COD has

averaged at approximately 2 mg/L since the 70s. The annual

averages of DIN (0.114 mg/L) and phosphate (0.014 mg/L) in

Gomso Bay, which is on the eastern side of the study area, were

significantly lower than those on the western and southern coasts of

Korea (Park et al., 2009). Recently, there have been concerns raised

about the potential risks to human health due to the release of heavy

metals from OWFs, which may lead to changes in the benthic

microbial community and accumulation in seafood (Wang et al.,

2023; Watson et al., 2025). The water quality of the study area was

generally good, and moderate or lower environmental quality status

in the study area was observed at a very low frequency. Vigilant

monitoring for heavy metals is necessary, however, as previously

mentioned, the maximum concentration of copper in the study area

was below the ERL, as with other heavy metals (see environmental

descriptions in Section 2.1).We inferred that sediment Cu and DO,

which were selected as effective predictors, were correlative agents

(e.g., mean sediment grain size and organic matter content for Cu;

temperature for DO), rather than being pollution-related.

On the south coast, with its complex coastline and bays, the

recurring marked seasonality is caused by a hypoxia-induced

decline in SAB parameters (Seo et al., 2015). Seasonality, driven
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by the emergence of poor macrobenthic assemblages, is associated

with regression/recovery patterns attributed to the presence of

disturbance sources (Froehlich et al., 2015; Magni et al., 2015).

Although natural variability in food availability and reproduction/

recruitment is an important component of seasonality, interannual

variability is often more pronounced in pristine areas (Nasi et al.,

2017). Despite its generally good status, the macrobenthic biomass

in this area is lower in winter than that in other areas on the west

coast of Korea, a characteristic feature of seasonality (Jeong et al.,

2019). Currently, on the west coast of Korea, relatively poor

assemblages caused by natural disturbance agents are mainly

observed during the summer monsoon in tidal flats due to heavy

rainfall, and in subtidal areas due to oceanic floods (Wheatcroft,

2000), indicating the impact of buried sediments from rivers on

coastal benthic ecosystems in summer (Hong and Yoo, 1996; Yoo

and Hong, 1996; Yoo et al., 2016).

Frequent storm surges and extremely heavy snow under high-

energy states occur extensively on the west coast of Korea during

winter owing to northwesterly winds (Chong and Seol, 2007). The

monthly average of storm days with wind speeds greater than 13.9 m/

s is ≥3 d in winter and<1 d in summer (Cho et al., 2001). Significant

wave heights of >4 m were reported in the study area during the

winter of 2014-15. This was likely the cause of the massive burial of

1–2 m in thickness, as measured by pressure sensor data obtained

after the acoustic Doppler current profiler (ADCP) was buried and

recovered (KOWP, 2015). The event suggested that sediment

deposition at scales larger than those of oceanic floods (e.g., ~10

cm thick; Thrush et al., 2003), occurs due to winter storms, affecting

the benthic communities in the study area. The overall significant

negative correlations between the weather-related predictors and

biological parameters, the relatively strong wind speeds in winter

and spring, and the sedimentation events due to winter storms in the

study area could indicate that weather and related wave conditions

influence the benthic ecosystem and are responsible for the

differences in the seasonality of macrobenthic community

parameters compared with that in other parts of the west coast.

Despite the dominance of northwesterly winds along the entire

west coast, wind speed was responsible for the (1) negative effect on

macrobenthic community parameters, (2) unusual occurrence of

biomass anomalies in the study area, and (3) seasonality, which was

contradictory to that of other areas. Which are the reasons for wind

triggering an ecological response that was only prominent in this

region, and for the limited influence of the Hs/depth ratio, which

reflects the depth effect and is applicable to wide depth ranges,

compared with that of other weather-related predictors? Wind-

generated waves strongly influence sediment erosion or stability,

and one of the variables that characterize waves is depth (Nelson

and Fringer, 2018). The spatial confinement of the wind effect and

neutralization of the Hs/depth ratio effect are apparently attributed

to the shallow and relatively narrow depth range of the study area

(see environmental descriptions in Section 2.1). In our previous

study (Yoo, unpublished data) conducted on a larger spatial scale

with a different depth range, the explanatory power of the Hs/depth

ratio was significant; therefore, the effectiveness of this variable

should be further tested.
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The predictions of our study based on observations from

weather stations close to the shore are not applicable to other

areas. In our study, offshore measurements from CWBs, such as

offshore wind speed and significant wave height, were unrelated to

biological parameters; the underlying reasons for this remain

unclear. The measurement conditions of land weather stations

vary considerably according to factors such as altitude,

topography, and distance from shore. Hence, the data from

several nearby land and offshore weather stations must be

collected and compared prior to making any predictions. The

effects of wind speed are unlikely to reach the deep seafloor

beyond the shallow area; therefore, estimates such as the anomaly

occurrence threshold ranges for diversity and biomass are probably

limited to our study domain.

Given the d i ff e rent phenomenon of so f t -bot tom

macroinvertebrate diversity increase and biomass decrease at the

southeastern part of wind turbine foundations in an OWF in

Pinghai Bay, China (Lu et al., 2020), a careful approach for the

generalization of the observed patterns in the study area are

required. As previously described, we did not use an experimental

approach to demonstrate whether air predictors have a causal effect.

An empirical analysis could be conducted to test the statistical

differences in community parameters between the areas divided by

considering the dominant wind power, wind frequency or spatial

projection from wind-wave model. To demonstrate a cause of

biomass increase/decrease, it is important to determine where reef

effect or wind-induced sediment disturbance prevails through a

coupled approach of natural experiment and trophic modeling. For

the former effect, Wang et al. (2019) used energy flow model to

prove that increased organic matter resulting in increased anchovies

and some benthic fish biomass. At present, capturing the exact

timing, possible lagged response, or persistence of an anomalous

event is difficult due to the irregular surveys. Despite these caveats,

our results highlight the need to use a range of air predictors,

including wind speed, as potential causative agents to explain the

variations in macrobenthic communities in coastal waters.

Furthermore, they suggest that strategically located land-based

weather stations near coastlines can be effective in predicting the

rich or poor status of macrobenthic production.

Which are the reasons for wind affecting biomass variation

more, or for having a differential effect between the two parameters?

The recovery time after mass mortality of marine benthic

communities due to catastrophic disturbances varies from a few

days to several months and years, depending on the biota (e.g.,

diatoms, nematodes, and macrobenthos), body size, and life strategy

(Odum, 1969; Dittmann et al., 1999). Low diversity and reduced

mean body size, biomass, and productivity are typically observed

when sediment disturbances occur (Thrush et al., 2003). In this

process, biomass recovery takes longer (weeks or months vs. years)

than numerical recoveries, such as those of diversity and abundance

(Beukema et al., 1999).

It is a common understanding in ecology that the significant

contribution of large-bodied organisms, which have a slow growth,

to the macrobenthic biomass is responsible for the extended

recovery time for reaching the same levels as those of the
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predisturbance and unaffected ambient levels of biomass. For

example, the species with the highest contribution in terms of

macrobenthic biomass in this study was the heart urchin,

Echinocardium cordatum (9% frequency, and 26% of total

biomass), and the species’ per capita wet weight reached 32.9 g.

Nakamura (2001) reported that the species became 120 mg ash free

dry weight at the third year (5.2 g in wet weight by multiplying

conversion ratio, 43.5 for Irregularia, Echinoidea; Dr. Thomas Brey,

http://www.thomas-brey.de/science/virtualhandbook/navlog/

index.html). Opportunistic species including Capitellidae,

Spionidae and Cirratulidae polychaetes dominated abundance

during most of the study period. These opportunistic species took

only a few tens of days to go from zero to peak abundance, and

within about 200 days the community structure and composition

became similar (Rhoads et al., 1978; Hashimoto and Sato-Okoshi,

2022). This type of recovery may cause increased seasonal variation

as described above or lead to a more pronounced response than that

of diversity. Moreover, biomass anomaly/recovery could lead to the

declining production of higher trophic levels, suggesting that

climatic variables should also be considered as potential factors

regulating fishery stocks in coastal areas.

Our study provides further insights into the potential wind

mechanisms that control diversity and biomass variation in coastal

areas. Since the 1970s, a phenomenon known as global stilling has been

observed, which refers to decreasing trends in global wind speeds over

several decades (Azorin-Molina et al., 2017). Nevertheless, increasing

trends in wind speed and wave height have also been reported recently

(Young et al., 2011; Zheng et al., 2016, Zheng et al., 2022).We observed

an increasing trend in wind speed in the study area over a short period

of approximately a decade. If the increase in wind speed in the area is

consistent with the global trend and continues to be so, the decline in

macrobenthic biomass production may also continue, even in the

absence of negative effects of pollution or construction/operation of

wind farm structures.

Wind farms and other marine facilities, such as wave energy

converters, fish cages, and even seaweed production areas, influence

waves and current fields, and thus sediment transport and shoreline

development (Christensen et al., 2014). Based on modeling, wind

farms can affect the energy transfer from wind to waves, as follows:

(1) the significant wave height Hs is reduced by up to ~5% close to a

wind farm, (2) the wave energy is reduced by up to 10% on the lee

side of a wind farm, (3) the area with an Hs reduction of >1% can

reach 15–888 km2, and (4) the effect of wind farms on waves can

results in shoreline progression of 30 m/100 years for 10 km from

the lee side (Christensen et al., 2013, 2014; Fischereit et al., 2022).

Wave attenuators or energy converters that shield aquaculture

facilities or habitats from wave disturbances contribute to

increased offshore fish production and promote vegetation

growth, improving the supply of ecosystem services (Silva et al.,

2018; Sreeranga et al., 2021).

Wave attenuators may have ecologically detrimental effects

such as trapping sediment between the shore and attenuator

(Rheinhardt and Brinson, 2007). Studies on offshore wind energy

installations in the North Sea reported that anthropogenic

structures have caused a significant increase in macrobenthic
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diversity and abundance on a large scale. In the wake of the turbine

foundations of OWFs, hydrodynamic changes from reduced tidal

currents lead to finer sediment grain sizes and increased sediment

organic matter. Environmental changes are further complemented

by the contribution of organic matter input from the sedimentation

of feces and detritus produced by hard substrate epifauna and by the

foundation effects creating sheltered habitats and enhancing larval

settlement, resulting in the enrichment of abundance and biomass

of macrobenthic communities (Maar et al., 2009; Coates et al.,

2014). In a high wave-energy environment, the expansion of OWFs

can act as a driver of positive changes in the ecosystem, including an

increase in macrobenthic and fisheries production. Owing to

intermittent monitoring and a lack of consistent survey data, we

were unable to validate the wake effect in our study. We recommend

a long-term natural experimental approach to validate the effect of

OWFs on macrobenthic communities in the future.
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