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Accessing ocean velocity data is critical to improving our understanding of ocean

dynamics, which affects our prediction capabilities for a range of services that the

ocean provides. Because ocean current velocity information is scarce, prediction

efforts have mostly relied on numerical models of ocean physics to reconstruct

and predict velocity fields at desired spatial and temporal resolutions. However,

numerical models, by design, are a simplified representation of the physics laws

that govern ocean dynamics, hence error-prone even with data assimilation.

Although accurate measurements of the flow field can be obtained using ocean

drifters along their trajectories, their Lagrangian nature and sparsity make them

unfit to provide direct Eulerian measurements. To address this issue, we apply a

deep learning model called Physics-Informed Neural Networks (PINN) to

reconstruct ocean surface velocity fields using sparse measurements obtained

from drifters. We show that the physics learning part of the network is essential

for the accurate reconstruction of the velocity field. In particular, we show the

poor performance of the same deep neural network without the physics part,

which reveals the ability of the partial differential equations derived by the PINN

to capture the flow features’ dynamics. Our method is evaluated on both virtual

and real drifters datasets. The reconstructed flow fields reveal the role of small-

scale features in improving the representation of mesoscale flow dynamics.
KEYWORDS

physics-informed neural networks, velocity field reconstruction, drifters, sub-
mesoscale, Gulf of Mexico
1 Introduction

Satellite-tracked drifters (Sybrandy, 1991) provide direct measurements of currents

throughout much of the world’s oceans, offering a unique tool to examine processes such as

mean and eddy transport of momentum and heat. In response to the Deepwater Horizon

oil spill in the Gulf of Mexico (GoM), a significant amount of research was conducted
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aimed at better predicting oil dispersion. Tools to better understand

the dispersal properties of GoM waters included the design of new

drifters (Novelli et al., 2017) and drifter release experiments. For

example, the Lagrangian Submesoscale Experiment (LASER)

between January and April 2016; the Submesoscale Processes and

Lagrangian Analysis on the Shelf (SPLASH) between April and June

2017 among others as described in Lilly and Pérez-Brunius (2021).

The latter used a large set of historical surface drifter data from the

GoM – 3770 trajectories spanning 28 years and more than a dozen

data sources - to create a gridded surface current product

called GulfFlow.

While drifters have the unique ability to resolve sea surface

velocity at multiple temporal and spatial scales, they present a

significant drawback: the sparsity of the data collected. Drifters

cannot cover a large area and, most importantly, they only provide

information on their trajectories. On the other hand, having access

to measurements over an entire region such as the GoM at a chosen

time and spatial resolution is crucial for a better understanding of

the dynamics of the ocean. Drifters are often treated as moving

current meters. Most drifter data are used to understand the

transport properties of the flow (Lumpkin and Johnson, 2013)

and the Lagrangian characteristics (Mariano et al., 2016; Miron

et al., 2017; Deyle et al., 2024). Velocity field estimation from drifter

data is mostly used to obtain near-surface velocity climatology for

the global ocean (Lumpkin, 2003).

Assimilating drifter velocities or Lagrangian trajectories in

numerical models to improve their predictive capacity requires

the estimation of the Eulerian velocity field. Two main approaches

have been proposed for the assimilation of Lagrangian data. The

first approach is based on estimating velocities along trajectories as

the ratio between observed position differences and time increments

(e.g.,Hernandez et al. (1995)) and directly using these velocities to

correct the model results. The second approach introduces an

observational operator based on the particle advection equation

and corrects the Eulerian velocity field by requiring the

minimization of the difference between observed and modeled

trajectories (e.g. Molcard et al. (2003)).

Other efforts include methods based on augmenting the state

vector of the prognostic variables with the Lagrangian drifter

coordinates at assimilation and compute the evolution of the

error covariance matrix with the extended Kalman filter (Ide

et al., 2002; Kuznetsov et al., 2003; Salman et al., 2006).

Lagrangian variational analysis methods allow for statistically

robust reconstructions of velocity fields either directly from

purely Lagrangian observations or from combinations of Eulerian

model/data and Lagrangian datasets. The variational method of

(Taillandier et al., 2006a) has been applied to the assimilation of

Argo float data in the northwestern Mediterranean Sea (Taillandier

et al., 2006b, 2010) and to the reconstruction of the velocity field in

the Adriatic Sea (Taillandier et al., 2008). In the latter study, the

velocity field reconstruction is only validated through the predicted

trajectories of virtual drifters that are compared to the circulation

features in Moderate Resolution Imaging Spectroradiometer

(MODIS) chlorophyll-a images.
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In recent years, machine learning methods have become popular

in the field of remote sensing data recovery (Sonnewald et al., 2021;

Hu et al., 2021; Park et al., 2019). Previous works have attempted to

reconstruct the surface velocity field by using various types of data

such as velocity, temperature, salinity, and sea surface height (SSH)

(Martin et al., 2023; Thiria et al., 2023). For example, the relationship

between salinity and temperature can be used to reconstruct the

surface velocity field using convolutional neural networks (Isern-

Fontanet et al., 2020). Sinha and Abernathey (2021) leveraged

multiple global variables, specifically SSH, sea surface temperature

(SST), sea surface salinity (SSS), and wind stress, as input to an

artificial neural network to predict surface velocity. Using a local

stencil of neighboring grid points as additional input features, they

train their deep learning models to effectively “learn” spatial gradients

and the physics of surface currents. By using stenciled variables as

input to a convolutional neural network, they showed that the model

could learn spatial gradients, hence some of the physics contained in

the data. In Gonçalves et al. (2019), they reconstruct the submesocale

velocity field using a Gaussian Process Regression (GPR) approach

with only drifter data. They used half of the observations from the

drifters to reconstruct the full velocity field with great success while

resolving scales as small as 300 m and 0.6 hours and features

associated with the vorticity and strain dynamics of the flow at the

submesoscale. They used the other half of the observations from the

drifters to validate the reconstructed velocity field.

In the study herein, we propose a new approach that combines

physics and deep learning to reconstruct the velocity field from

drifter trajectories. This method is described as a Physics-Informed

Neural Network or PINN, a deep neural network that learns physics

laws to solve supervised tasks, a relatively new concept introduced

in 2017 by Raissi et al. (2019). PINN has had applications in

hemodynamics and related flow problems, optics and

electromagnetism, molecular dynamics, geosciences, and

elastostatics problems (Cuomo et al., 2022). For hemodynamics,

PINNs are used to study stenotic flow and aneurysmal flow, with

standardized vessel geometries (Sun et al., 2020), patient-specific

three-dimensional blood flow for intracranial aneurysms (Raissi

et al., 2020), or prediction offlow and propagation of pressure waves

from magnetic resonance (Kissas et al., 2020). In the field of solving

fluid dynamics equations, PINNs are used to determine three-

dimensional turbulent fields from two-dimensional electron

pressure data (Mathews et al., 2021) or to approximate Euler

equation solutions for high-speed aerodynamic flows (Mao et al.,

2020). For applications in optics and electromagnetism, PINNs are

used to solve the three-dimensional Helmholtz equation, the wave

equation for the electric field (Fang, 2022), the swing equation used

for power systems (Misyris et al., 2019) or inverse scattering

problems in photonic metamaterials and nanooptics technologies

(Chen et al., 2020). Long-range molecular dynamics is addressed in

Islam et al. (2021), and multiscale bubble growth applications are

studied in Lin et al. (2021a, b). In the field of seismology, PINNs are

used to invert the earthquake hypocenter by solving the Eikonal

equation (Smith et al., 2021) and for finite deformation of elastic

plates by solving the Föppl–von Kármán equation (Li et al., 2021).
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In our study, PINN is combined with Sparse Regression (SR) to

first reconstruct the velocity field from virtual drifter trajectories

generated from a numerical model. We follow the method

implemented by Chen et al. (2021) to address the challenge of

scarce and noisy data for nonlinear spatio-temporal systems to

PINN. PINN with SR (hereafter PINN-SR) seamlessly integrates the

strengths of deep neural networks for rich representation learning,

physics embedding, automatic differentiation, and sparse regression

to approximate the solution of system variables, compute essential

derivatives, and identify the key derivative terms and parameters

that form the structure and explicit expression of the governing

equations. The effect of the number of drifters, which determines

the scarcity of the field to be reconstructed, is evaluated. The

velocity field is also reconstructed via interpolation methods used

in space-time averages as in global drifter-derived velocity

climatologies or to estimate the Lagrangian characteristics of the

flow field Lumpkin (2003). Two interpolation methods are used,

namely the Inverse Distance Weighted (IDW) method (Shepard,

1968) and Kriging (Krige, 1951). The reconstructed field is

compared to the numerical model output using Root Mean

Squared Error (RMSE), Multi-Scale Structural Similarity Index

Measurement (Wang et al., 2004, MS-SSIM), and Correlation

Coefficients (CC). A second evaluation of the PINN-SR method is

conducted with real drifters that are deployed in the GoM for

operational prediction of the flow. To the best of our knowledge,

this is the first time a deep learning neural network such as PINN

has been used to reconstruct a full sea surface velocity field using

only data measured from drifters. Finally, PINN-SR is evaluated

against a simple deep neural network to quantify the effects of

learned physics on the reconstruction of the velocity field.

The remainder of this paper will be organized as follows.

Section 2 presents the drifter dataset and the strategy for

generating it, and introduces the PINN-SR method used to

reconstruct the velocity field, including our data augmentation

approach for Lagrangian data. We will also provide a description

of the real drifters data used to evaluate the real world application of

our method. Section 3 presents the results, including the

reconstructed velocity field from the virtual drifters by the PINN-

SR and the interpolation methods, and the reconstructed field from

the real drifters. The reconstructed velocity fields will also be

evaluated and validated in this section. Conclusions will be

provided in Section 4.
2 Methods

Our region of interest is the GoM, a semi-enclosed basin

connected to the east to the north Atlantic Ocean and to the

south to the Caribbean Sea. It is approximately 1592842km2 large,

located between 21°N and 31°N latitude and 79°W and 96°W

longitude. One of the most important circulation features

observed in the GoM is the Loop Current (LC) (Wang et al.,

2019). The LC plays a crucial role in the dynamics of natural

phenomena such as hurricanes (Oey et al., 2007), short-term
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weather anomalies and GoM circulation (Larranaga, 2023),

fisheries (Criales et al., 2019), ecosystem services (Spies et al.,

2016), marine mammal habitats (Würsig, 2017), and in the

response to anthropogenic and natural disasters (National

Academies of Sciences Engineering, and Medicine, 2018; Walker

et al., 2011).

Our approach to reconstructing the velocity field from drifter

trajectories consists of the implementation of the PINN-SR model

used in Chen et al. (2021) for this oceanographic problem. First, we

create virtual drifter trajectories from a numerical simulation, then

we apply data augmentation to the drifter trajectories, and train the

PINN-SR on the augmented drifter data. The virtual velocity field is

also reconstructed using a Deep Neural Network (DNN) model

(without physics learning) and interpolation methods to show the

benefits of the PINN-SR approach. In a second experiment, we

apply the PINN-SR to real drifter trajectories in the GoM and

compare the reconstructed field velocity features to existing

reanalysis products and satellite imagery.
2.1 Generating the virtual drifter dataset

In the the first application of the PINN-SRmodel of this study, a

data assimilated (DA) numerical model simulation was used to

generate virtual drifter trajectories. The simulation covers the Intra-

America Seas region and was conducted with the three-dimensional

HYCOM model (Bleck, 2002; Chassignet et al., 2003; Halliwell,

2004). The implementation of HYCOM is similar to configurations

used in other HYCOM-based operational centers such as the Naval

Research Laboratory and National Centers for Environmental

Prediction (Chassignet et al., 2009). For this regional application,

a horizontal Mercator grid with a resolution of approximately 10

km (0.0625°) was used. In the vertical, the model is configured with

30 hybrid (pressure-sigma-isopycnal) layers. Surface atmospheric

forcing was obtained from the ECMWF Reanalysis v5 dataset

(ERA5) (Hersbach et al., 2023), and the model was also forced

with monthly climatological river discharge. The data assimilated in

the model include remotely sensed along track sea level anomalies

(SLA) from Collecte Localisation Satellites (CLS), gridded maps of

1/4°Optimally Interpolated Sea Surface Temperature (OISST) from

NOAA, and in-situ temperature/salinity (T/S) profiles from the

ARGO program obtained from USGODAE.org and velocity data

from drifters provided by the Woods Hole Group. The velocity data

from the drifters were filtered with a Gaussian filter with a time

window of 24 hours to filter out the high-frequency oscillations.

Drifter data within a time window of 3 days were binned

and assimilated.

The velocity field of the DA model was also used as ground

truth (Figure 1) to validate the reconstructed velocity field of the

PINN-SR. The variables of the DA model used in this study include

the daily zonal and meridional surface velocities indicated by u and

v, respectively. The DAmodel field covers the period 01 August - 30

November 2021 and encompasses the geographic zone located

between 5.0559 and 37.0482°N and 53 to 99° W. The longitude
frontiersin.org
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resolution is 0.0625°, and the latitude resolution varies between

0.0499 and 0.0623°. We resampled the velocity field on a uniform

grid with a 0.04° resolution in both directions and within the GoM

region between 98.0 and 76.4°W and 18.09 to 31.96°N. Our model

was trained with data from all regions of the GoM, but was

evaluated in the central LC area of the GoM, one of the most

active regions in terms of circulation, i.e. our region of interest

between 92 and 84° W and 24 and 29°N (Figure 1). To generate

virtual drifters, we used the OpenDrift package, an open-source

Python-based framework for Lagrangian particle modeling based

on a fourth-order Runge-Kutta scheme (Dagestad et al., 2018). All

virtual drifters were initialized on the same day, and the hourly

velocity records of the Lagrangian trajectories were obtained for the

GoM region from 1 to 30 October 2021 (Figure 2). This period was

chosen because it overlaps with the real drifter data trajectories.

At synoptic scales, drifter-based reconstructions of surface

velocity fields (influenced by both geostrophic and ageostrophic

dynamics) are hampered, even over modest spatial regions, by a

lack of contemporaneous drifter measurements with adequate

spatial data density (Berta et al., 2015). Therefore, the number of

drifters used in the reconstruction process will determine the

accuracy of the reconstructed velocity field. A realistic number of

drifters used in previous experiments such as LASER (Gonçalves

et al., 2019), SPLASH (Lilly and Pérez-Brunius, 2021) or the Grand

Lagrangian Deployment (Berta et al., 2015, GLAD) was about 300,

which were deployed in a limited area of the GOM. While the

PINN-SR method is first evaluated with 200 drifters (corresponding

to a total of 144000 data points), the effect of the number of drifters

on the accuracy of the reconstructed field was also evaluated by

varying their numbers from 25 to 500 with a 25 increment from 25

to 200 and a 50 increment from 200 to 500. This sensitivity analysis

will provide the number of drifters at which point the performance

of the PINN-SR method plateaus. The initial drifter positions were

randomly selected in the GoM region.
Frontiers in Marine Science 04
2.2 Drifter deployments in the Gulf of
Mexico for operational purpose

For offshore operators, navigating the GoM and the waters from

Trinidad to Brazil presents unique challenges, especially with strong

ocean currents such as the LC and the North Brazil Current. The

Woods Hole Group EddyWatch® service provides a vital solution,

offering comprehensive monitoring and forecasting of these

powerful currents to ensure safety, reduce nonproductive time,

and support operational efficiency. In particular, advanced data

collection and analysis is conducted with satellite-tracked drifting

buoys. The Far Horizon Drifter (FHD) is an air-deployable,

satellite-tracked buoy composed of a cylindrical canister at the

surface that transmits GPS coordinates hourly and a 45 m tether

connected to a drogue. Ten units are deployed every two weeks in

the central GoM in addition to custom deployments for specific

operators. EddyWatch® provides real-time data on current speed,

direction, and key ocean phenomena. This data provides deep

insight into how currents evolve and affect specific lease areas,

enabling operators to adapt quickly to changing conditions. For the

purpose of this study, Woods Hole Group provided 119 individual

drifter trajectories over the period 31 July 2021 00:00:00–27

November 2021 23:00:00, corresponding to 120 days. This dataset

consists of a total of 150568 records averaging 1265 records per

drifter, equivalent to 52.7 days per drifter. Throughout the time

range, the drifter locations were comprised between 97.22 and

53.68°W and 6.78 and 37.25°N. u and v varied between −4.78 and

4.59m.s−1, and between −4.94 and 4.88m.s−1 respectively. Only

drifter trajectories located inside the GoM for the entire time

range (Figure 3), which resulted in a total of 98763 records, were

used for this study. In order to provide sufficient data points for the

model to converge, the entire time period of the deployment

was necessary.
2.3 Data augmentation

In order to extend the footprint of each drifter trajectories, both

i

l

t

i

t

n time and space, we applied a data augmentation technique. Data

augmentation is a technique to increase the quantity and variability

of the training samples. To do so, we first gridded the drifter

ocations on the same grid as the resampled numerical model fields

o have a uniform resolution across the dataset. The velocity in a

grid cell was obtained by averaging the velocity of all the drifter

points in that cell. Then, we performed two types of augmentation,

one in space and one in time. The spatial augmentation is grounded

n the fact that the velocity does not change much within a certain

radius and, in this case, around a drifter position, as suggested by

he integral timescale estimation of Mariano et al. (2016) in the

GoM. Twice the integral time scale is the time for velocity

measurements to become independent; It is fundamental for

estimating the effective degree of freedom in a correlated velocity

data set and determining how long a Lagrangian motion prediction

is reliable. In the northeast GoM, Mariano et al. (2016) estimated an

average integral time scale of 1 day. Let’s consider a point P(xktk , y
k
tk ),
FIGURE 1

Velocity magnitude in ms−1 snapshot on 1 October 2021 of the data
assimilated numerical model. The red rectangle shows the region of
interest used for the Physics Informed Neural Network evaluation.
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kth point on the trajectory of a drifter, recorded at time tk. Assuming

an average drifter velocity of 0.1 m.s−1 yields the surrounding points

in a radius r = 0.08° have the same velocity as P, resulting in eight

additional points (Figure 4A).

The temporal augmentation is based on the fact that the velocity

does not change much over time for nearby points, as inferred from

the e-folding time scale of less than 12 hours calculated by Mariano

et al. (2016) in the northeast GoM. For the point P(xktk , y
k
tk ), we

assume that the velocity of the points located in the same position as

N future points (with corresponding time tk+1,tk+2,…,tk+N) on the

drifter’s trajectory is the same as the velocity of those future points
Frontiers in Marine Science 05
but for the current time tk. We chose N = 9 in our experiments,

which is equivalent to the next 9 hours due to the hourly resolution

of the drifter positions (Figure 4B).

Figure 5 shows a complete example of the augmentation carried

out on a sample point. Figure 5A shows a sample position on a

drifter trajectory. It first goes through temporal augmentation

(Figure 5B) and then through spatial augmentation (Figure 5C).

When applied to the whole trajectory (Figure 5D), the resulting

augmentation is shown in Figure 5E. The colors show the

magnitude of the velocity, which remains consistent with the

original trajectories after the augmentation.
FIGURE 2

Trajectory of the 200 virtual drifters obtained from OpenDrift model. Green (blue) dots show the initial (final) positions and red dot the stranded position.
FIGURE 3

Distribution of Woods Hole Group’s drifters in the Gulf of Mexico over the period 31 July 2021 00:00:00–27 November 2021 23:00:00.
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2.4 Physics-informed neural network with
sparse regression

PINN has been proposed as an alternative to classical numerical

methods, such as finite element methods (FEM), to solve ordinary

and partial differential equations (ODE and PDE, respectively).

Raissi et al. (2019) showed that PINN can help solve the forward

and inverse problems of PDEs. PINN can also be used to uncover

differential equations describing a physical phenomenon by adding

a loss that encompasses the residual of the differential equation.

However, SR is a regression technique that reduces the number of

parameters in a model while maintaining a satisfying performance.

In our approach, we apply the PINN-SR method proposed by Chen

et al. (2021) to reconstruct the velocity field and extract the PDE

that governs the movement of water. Chen et al. (2021) used PINN-
Frontiers in Marine Science 06
SR to uncover the Navier-Stokes equations, which are the governing

equations of oceanic flows, which govern drifter trajectories. The SR

is crucially important because it promotes sparsity for the

coefficients of the uncovered differential equations. The equations

are encoded in the loss function, which improves the learning

process that is not only data driven but also physics driven, and in

this case by the geophysical fluid dynamics. SR is also designed to

handle the data sparsity and noise inherent to drifter data.

The PINN-SR framework is shown in Figure 6. It relies on a

dense (fully connected) DNN that is chosen here as the Mutli-layer

Perceptron (MLP). MLP is a modern feedforward artificial neural

network, consisting of fully connected neurons with a nonlinear

activation function, organized in at least three layers, notable for

being able to solve problems requiring non-linear solutions

(Cybenko, 1989). The input to the PINN-SR consists of the
FIGURE 4

Spatial (A) and temporal (B) augmentation concept. In (A) the spatial augmentation is grounded in the fact that the velocity does not change much

within a certain radius. In (B) the velocity at a given location will be the same over a given time period, hence P(xktk , y
k
tk ) = P1(xktk+1, y

k
tk+1

) = P1(xk+1tk , yk+1tk ).

P(xktk , y
k
tk ) is the kth point on the trajectory where xktk and yktk are the coordinates of the drifter at time tk.
FIGURE 5

Data augmentation procedure. (A) A point in a drifter’s trajectory, (B) the result of its temporal augmentation, and (C) the output of (B)’s spatial
augmentation. (D) shows a drifter trajectory and (E) the augmented data from the trajectory in (D). Colors show the velocity values (m.s−1) at each
location. Dots in (A–C) have been enlarged for visibility.
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coordinates and time (x,y,t) of the drifter positions fed to the MLP.

The output of the MLP is the velocity vector u = (u,v). Then u is

passed through the auto-differentiation module that computes the

derivatives w.r.t. x, y, and t. u, v, and their derivatives are used to

form the library of candidate terms that can be constant,

polynomial, or trigonometric functions. The assumption is that

the PDE can be reconstituted by combining those candidate terms.

The matrix L contains the coefficients of the candidate functions. L
is a sparse matrix in which sparsity is promoted using Sparse

Regression. The goal is to reconstitute the PDE with as few

coefficients as possible while maintaining its closeness to the

system’s dynamics. Given the complexity of this optimization

problem, Alternative Direction Optimization (ADO) was applied.

ADO seeks to determine the optimal L values that minimize the

sparse regression loss (achieved by STRidge, Figure 6) and the

optimal q weights that minimize the loss (achieved with Adam,

Figure 6). The MLP weights q are optimized while the SR weights

are fixed, that is, the elements of L. Then, q is frozen and L
optimized. The loss function has three terms. The first term is the

data loss Ld(q; Du), the second the physics loss Lp(q, L; Dc) and the

third the regularization term ∥L∥0 1.

It is important to note that the data loss is computed using the

measurement data Du(corresponding to drifters data in this case),

while the physics loss uses collocation points 2 Dc. a and b represent

weight coefficients (Figure 6). PINN-SR training involves two

stages: the pre-training stage and the ADO stage. The pretraining

stage focuses on giving prior knowledge to the neural network

before engaging in the ADO stage, which allows the improvement

of the neural network and the discovery of the differential equation

alternatively. For pretraining, stochastic optimizers such as

stochastic gradient descent (SGD) Robbins and Monro (1951),

Adam Kingma (2014), and others can be used, followed by a

deterministic algorithm such as limited-memory Broyden-

Fletcher-Goldfarb-Shannon (LBFGS) Liu and Nocedal (1989). In

the ADO stage, only a stochastic optimizer is used to optimize the

weights of the neural network. For a more detailed discussion of the

PINN-SR model, the reader is referred to Chen et al. (2021).
2.5 Training

We used an 80/20 data split for training and validation for all

experiments. The MLP used has 8 hidden layers of 60 nodes each

and 2 nodes for the output layer because the model predicts both u

and v. We used the tanh activation function, which is widely used in

PINN because, contrary to ReLU (Rectified Linear Unit (Nair and

Hinton, 2010)), it has second-order derivatives. The optimizer used

for the PINN-SR pre-training is Adam, with a learning rate of 5.10−3
1 ∥.∥0 represents the L0 norm, also called zero norm and ∥.∥1 the L1 norm

also called Manhattan distance

2 Collocation points are the (randomly or adaptively) sampled space-time

coordinates where the PINN evaluates the PDE residual, forcing the network

to satisfy the physics at those points. They are sampled across the entire

prescribed space-time domain.
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for 10 000 iterations, followed by 40 000 LBFGS-B iterations. For

the ADO stage, Adam is maintained but with a learning rate of 1e-3

for 1000 iterations. Six ADO iterations are performed in total. We

trained the model on a single Nvidia Tesla V100 GPU of 32 GB of

memory for about 6 hours and 15 minutes. We opted for the L1 loss

instead of L2 because the latter tends to produce blurry results

(Mathieu et al., 2015), thus removing the small-scale dynamics from

the reconstructed field. Hyperparameters are summarized

in Table 1.
2.6 Deep neural network and field
interpolation

To show the improvement of the PINN-SR approach, the

velocity field was also reconstructed with a DNN without physics

learning and traditional binning and interpolation methods. The

DNN consisted of an MLP with 6 hidden layers of 60 nodes each,

trained for 50 000 epochs with the same hyperparameters as in the

PINN-SR model (Table 1). The binning and interpolation methods

consist of the universalKriging [U-Kriging - (Krige, 1951)] and the

inverse distance weighted (IDW) methods. They both used the

same number of neighbors, 11, and a radius search of 0.04°. IDW

estimates the value at a desired location by computing the weighted

average of the values of the neighboring points, the weights being

the inverse distance between the desired location and the

neighboring points. U-Kriging is also known as the Gaussian

process regression where the spatial distribution of the observed

data, their distance to the point of calculation and their spatial

correlation are taken into account (Goovaerts and Authorid, 2019).

These two methods form the basis for interpolation methods to fill

in missing data (Kostopoulou, 2021) and even to correct spatial

pattern biases in numerical models due to the spatial

autocorrelation property (Chang et al., 2021).
2.7 Evaluation of models performance

We use qualitative and quantitative approaches to assess the

performance of our models. The qualitative assessment consists of a

visual comparison of the velocity field of the PINN-SR model

output and the numerical model. For quantitative assessment, we

used RMSE and CC, and MS-SSIM for image similarity analysis

(Wang et al., 2003, 2004). RMSE is the point-to-point difference

between the predicted and reference fields. The result is a positive

real number used to estimate how similar in magnitude the two

fields are and is given by:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n :mo
n

i=1
o
m

j=1
(Iij − Î ij)

2

s
,

where n is the number of rows, m is the number of columns, Iij
is the element of the reference field I at position (i,j), Î ij is the

element of reconstructed field Î at position (i,j). Low RMSE values

are indicative of reduced differences in magnitude between

two fields.
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CC measures the phase alignment between the predicted and

reference fields and is expressed as follows:

CC(I, Î ) = oi,j(Iij − �I) · (Î ij − Î )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oi,j(Iij − �I)

2
q

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oi,j(Î ij − Î )2

q ,

where �Iand Î are the mean values of the arrays I and Î ,

respectively. Phase alignment is reached when CC = 1.
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MS-SSIM is used to quantify the similarity between the velocity

field arrays, considered here as images. This index was originally

developed to assess image quality by quantifying differences

between signals from distorted and reference images and can

simultaneously consider accuracy, precision, and spatial

similarities at multiple scales (Wang et al., 2003, 2004). It can be

written as follows.

MS − SSIM(I, Î )

=
1
Lo

L

l=1

2mIlmÎ l
+ c1

m2
Il
+ m2

Î l
+ c1

 !
·

2sIl Î l
+ c2

s 2
Il
+ s 2

Î l
+ c2

 !
·

sIl Î l
+ c3

sIlsÎ l
+ c3

 !" #al

L is the number of levels in the decomposition, mIl and mÎ l
are the

means of I and Î at level l, s 2
Il and s 2

Î l
are the variances of I and Î at

level l, sIl Î l
is the covariance between I and Î at level l, c1, c2, and c3 are

small constants to prevent division by zero or very small denominators,

al are weights for the components at level l. MS-SSIM varies between 0

and 1 where the latter indicates identical fields.

To evaluate the performance of the real drifters’ reconstructed

field, several datasets were used, including model and observations.

The reconstructed velocity field was first converted to velocity

contours of the 0.7 m.s−1 isotach, which is the critical velocity

watched by offshore operators. Those contours were compared to

the location of circulation features in the DA model SSH and 0.7

m.s−1 isotach. One kilometer resolution chlorophyll-a imagery from

the MODIS sensor obtained from the Optical Oceanography

Observatory at University of South Florida were use to validate

the presence of small scale circulation features in the flow present in

the reconstructed velocity field.
TABLE 1 Hyperparameter values used to train the PINN.

Hyperparameters Value

Number of hidden layers 8

Number of hidden nodes (per layer) 60

Activation function tanh

Loss function L1 loss

Learning rate (Pretraining) 5e-3

Adam epochs (pretraining) 10 000

LBFGS-B epochs 40 000

ADO iterations 6

Learning rate 1e-3

Adam epochs 1000

STRidge Cycles 100
FIGURE 6

PINN-SR framework proposed by Chen et al. (2021). The Multi-Layer Perceptron (MLP - blue block) input is (x,y,t) and outputs are the velocity
components u and v. Then, the auto differentiation (orange block) module computes the derivatives (first, second, third order, etc., depending on
the data’s complexity) of u and v w.r.t. x,y,t. The candidate functions are computed using u, v, and their derivatives. For example, ut and ux represent
the first-order derivatives w.r.t. t and x respectively. The formed candidate functions are regrouped into F, which will be used to reconstruct the
PDE, whose residual, ut − FL, should tend toward zero (red block). L coefficients are obtained using Sparse Regression (SR green block) on the
collocation points. The formulation of the loss function is provided in the first equation. The formulation of the Alternative Direction Optimization
(ADO) is given in the second equation. Nm and Nc represent the number of measurements (data) and collocation points, respectively.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1547995
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bang et al. 10.3389/fmars.2025.1547995
3 Results

3.1 Virtual drifters velocity field
reconstruction

The performance of the PINN-SR model is evaluated in terms

of the comparison of the reconstructed velocity field with the DA

model velocity field. The overall metrics assessment is conducted

over the period 1–30 October 2021 and is summarized in Table 2 for

the zonal and meridional components of the velocity vector,

respectively. Overall, the PINN-SR method performs significantly

better than the MLP, IDW, and U-Kriging. The RMSE of the PINN-

SR method is 40% less than that of the U-Kriging and IDW

methods and 33% less than that of the MLP. The CC between the

reference and the PINN-SR reconstructed fields is 18% higher than

with IDW and U-Kriging and 11% higher than with MLP. MS-

SSIM is 11.6% higher for PINN-SR model than the latter three.

Furthermore, the standard deviation of the PINN-SR method is

significantly smaller than that of the other three methods for

all metrics.

The temporal evolution of the three metrics, for each

method, reveals that they vary over time, especially for the U-

Kriging and IDW methods (blue and green lines in Figure 7).

The metrics for the PINN-SR method exhibit smaller relative

variations overall and indicate temporal stability and superior

performance of the method over MLP, U-Kriging and IDW. A

slight increase of the RMSE, decrease of CC and MS-SSIM can

be seen at the end of the testing period, in this particular case.

The MLP’s reconstructed field metrics suggest that MPL alone

is not as efficient at reconstructing the Eulerian velocity field as
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the PINN-SR method, especially the meridional velocity field

(Figures 7D–F). This result indicates the significant role of the

physics-learning part of the algorithm in the reconstruction of

the velocity field.

Snapshots of the velocity field (Figures 8, 9) show that the

PINN-SR method is capable of reproducing all the features of the

velocity fields for the u and v components in terms of location,
TABLE 2 Mean and standard deviation of the skill metrics RMSE (m.s−1),
CC and MS-SSIM for velocity components u and v, respectively,
computed between 1–30 October 2021.

Methods RMSE CC MS-SSIM

PINN-SR (u) 0.1472 ± 0.0126 0.9304 ± 0.011
0.8254
± 0.0182

MLP (u) 0.2223 ± 0.0565
0.8362
± 0.0862

0.7049
± 0.0634

IDW (u) 0.2735 ± 0.0257
0.7211
± 0.0697

0.6886
± 0.0324

Kriging (u) 0.2476 ± 0.0263
0.7881
± 0.0560

0.7394
± 0.0311

PINN-SR (v) 0.1446 ± 0.0092
0.9198
± 0.0123

0.8017
± 0.0145

MLP (v) 0.2274 ± 0.0636
0.8217
± 0.0784

0.6718
± 0.0655

IDW (v) 0.2456 ± 0.0225
0.7394
± 0.0433

0.6832
± 0.0271

Kriging (v) 0.2257 ± 0.0234
0.7906
± 0.0450

0.7260
± 0.0275
FIGURE 7

Time evolution from 1–30 October 2021 of RMSE (m.s−1) (A, D), CC (B, E), and MS-SSIM (C, F) for u and v (first and second row respectively)
calculated on the region of interest (Figure 1) for the PINN-SR (orange line), the MLP (purple line), the IDW (blue line) and, the Kriging methods
(green line). Day 1 is 1 October 2021.
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shape, and magnitude, unlike the U-Kriging and IDW methods.

The MLP alone is also capable of capturing the same features of the

original velocity field; however, the differences with the PINN-SR

reconstructed fields lie in the misalignment of the flow features by

MLP as shown in Figure 10, which the MS-SSIM suggests (Table 2).

Resolving the underlying physics of the velocity field through its

differential equations appears to significantly improve the flow

feature dynamics captured by the Lagrangian field.
Frontiers in Marine Science 10
3.2 Effect of the number of drifters on the
reconstructed field

In this section, we evaluate the performance of the PINN-SR

based on the number of virtual drifters used for training. The

reconstructed field is evaluated in terms of RMSE, CC, and MS-

SSIM for each number of drifters as shown in Table 3, which also

shows the number of drifters per sq. degree.
FIGURE 8

Reference and reconstructed velocity fields (m.s−1) shown by rows of five for the zonal velocity u. From the left to right, is shown the numerical
model field, the PINN-SR, MLP, Universal Kriging, and IDW reconstructed field. Each row represents a day from 1–7 October 2021.The x-axis
represents the longitude and the y-axis the latitude. The date is shown on the y-axis as well.
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The evolution of the three metrics versus the number of drifters is

captured in Figures 11A–C showing the RMSE, the CC, and the MS-

SSIM, respectively. For all three metrics, doubling the number of

drifters from 25 to 50 shows a rapid improvement in the reconstructed

field. As the number of drifters increases, the improvement tends to

slowly plateau. The improvement in RMSE becomes less than 10%
Frontiers in Marine Science 11
between 255–300 and 500 drifters versus 60% between 25 and 250

drifters. For the CC, the change is from 1% versus 30%, and for the

MS-SSIM, the change is 3.5% versus 42%, respectively. These results

suggest that for an ocean basin like the GoM, the minimum number of

drifters randomly seeded in the GoM that is necessary to properly

reconstruct the velocity field with the PINN-SRmethod is between 200
FIGURE 9

Reference and reconstructed velocity fields (m.s−1) shown by rows of five for the meridional velocity v. From the left to right, is shown the numerical
model field, the PINN-SR, MLP, Universal Kriging, and IDW reconstructed field. Each row represents a day from 1–7 October 2021. The x-axis
represents the longitude and the y-axis the latitude. The date is shown on the y-axis as well.
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and 300, which is the range of the number of drifters used in the most

extensive recent drifter experiments in the GoM such as GLAD,

LASER and CODE (Berta et al., 2015).
3.3 Application to real drifters trajectories

The reconstructed field from the Woods Hole Group drifter

data for the period 6–8 November 2021 is shown in Figure 12,

which falls during the testing period of the real drifter data. To

evaluate the reconstructed field, the circulation features associated

with the 0.7 m.s−1 isotach were outlined on the 07 November 2021

velocity field of the DA model (Figure 13a) and on the

reconstructed field (Figure 13b). In addition, the contour

generated by EddyWatch® was also made available to this study

and is shown in Figures 13a, b. The EddyWatch® generated contour

only outlines the external velocity contour of the LC system and

marks the presence of counter-rotating mesoscale eddies around the

LC and the LC ring Eddy Verne in the western GoM. The external

isotach of the DA model is relatively close in position to the

EddyWatch® contour (Figure 13a), which is derived from a

combination of observations and numerical model output that

include the DA model used in this study. The isotachs from the

reconstructed field PINN-SR show a more complex pattern that

encompasses the adjacent counter-rotating structures (Figure 13b)

which are resolved by the DA model as shown by the SSH contours

in Figure 13c. In particular, the cylconic circulation west of the LC is

shown to exhibit higher velocities than what the DA model

achieved. This result would suggest that the DA model

underestimates the velocity field outside the main flow region of

the LC as shown by the drifter location (red dots) that exhibits a

speed at that location equal to 0.7 ms−1. The isotachs of the PINN-

SR reconstructed field outline small-scale energetic features that are

visible in the MODIS chlorophyll-a image on the same day as

shown by the red circles in Figure 13d. The isotaches also outline

velocity contours within existing structures outside the LC that are

visible in the MODIS image.

The agreement between the chlorophyll field features and the

reconstructed circulation is further shown on 10 November 2021,

where a greater number of drifters are present along the contours

and where small-scale circulation features that are present in the
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chlorophyll-a image are also captured by the reconstructed velocity.

Note that the velocity contours are likely to not reveal the closed

contours of every feature because of the asymmetries in the strain

rates and circulation that result in strong deformations of the flow

features (Zhang et al., 2024b). Thus, the velocity contours will

include frontal features that exhibit the same velocity.

This property would explain to some degree the presence of

velocity contours that are offset from the circulation features in the

vicinity of Eddy Verne as the eddy speed fluctuates. However, the

number of drifters present is that region over the three-month

period could have been insufficient to properly capture the eddy

velocities, although features situated near the eddy could exhibit

higher or equal velocities, which the drifter position, on 10

November, west of the Eddy Verne suggests (Figure 13e). In the

LC region, the MODIS image reveals the presence of a multitude of

small-scale circulation features that are present along the LC front,

north of the LC, some of which appear in the isotach field.
4 Conclusion

Traditionally, surface velocity fields are obtained from

altimetric data by geostrophy, which implies that only the

geostrophic component of the horizontal velocity field is captured

(Wunsch and Stammer, 1998). The increasing interest and need for

estimating surface advective transport at 10–100-km spatial scales

over relatively short, days to weeks, time scales strengthens the need

for velocity observation that resolves submesoscale and mesoscale

dynamics (Berta et al., 2015). In contrast to satellite-based altimetry,

surface drifter observations provide direct estimates of the local

surface velocity field. Although drifter information is routinely used

to infer statistical information on basin-scale velocity (Ohlmann

et al., 2001; LaCasce, 2008), inferring the velocity field surrounding

the drifters has remained challenging due to the sparsity of

its observations.

In this study, we assessed the feasibility of reconstructing the

velocity field in a large area with a relatively small number of drifters

using a deep learning approach. Although we could have used

drifters from the various Lagrangian experiments cited in this study,

we would have been limited by the lack of validation data, namely

the observed velocity field surrounding the drifters. To remedy this
FIGURE 10

Difference between PINN-SR and MLP reconstructed velocity fields (m.s−1) shown by rows of seven for the zonal (meridional) velocity u (v). Each
column represents a day from 1–7 October 2021.The x-axis represents the longitude and the y-axis the latitude.
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challenge, we decided to simulate virtual trajectories with a DA

model and use the Eulerian velocity field as the reference. Our

approach is rooted in the application of the PINN method, which

has been applied in various fields of flow dynamics, from

hemodynamics to photonics.

To assess the PINN-SR performance using virtual drifters, we

compared the reconstructed field generated by the MLP (no physics

learning) and commonly used interpolation methods such as IDW

and Kriging. We used relevant metrics such as the RMSE, which

quantifies the difference between the prediction and a reference

field; the CC, which quantifies how similar two signal variations are;

and the MS-SSIM, which is best suited to assess the 2D structural

similarity between two images at a patch level and multiple scales.

The PINN-SR method performed, as expected, significantly better

than the other three methods and showed reduced sensitivity to the

evolution of the velocity field (Figure 7). Figures 8, 9 illustrate how

the lack of physical dynamics learning through PDEs affects the

reconstruction of the velocity field by MLP, IDW and kriging,

although the location of the dominant features is accurately located

in the MLP reconstructed field. We also evaluated the PINN-SR

model with real drifters data, which showed the alignment of the

reconstructed velocity contours with the SSH contours of the DA

model, rather than its velocity contours, and the correct estimation

of the velocity magnitude. In addition to the main circulation

features being resolved by the reconstructed field, Chl-a satellite

imagery also confirmed the resolution of small-scale energetic

features, further validating the reconstructed velocity field.

Due to the limiting role of the sparsity of drifter data, we also

examined the effect of the number of drifters on the reconstructed

field using the PINN-SR method. Using all three metrics, we

showed that the model skill tends to plateau for a number of

drifters greater than 250, equivalent to 1.9342 drifters per sq.

degrees. Although this number is specific to the GoM region and

is associated with a random seeding of the drifters, our study shows

that it is sufficient to properly capture the daily LC dynamics on a

monthly basis. However, we have not demonstrated that we can

reconstruct the velocity field of the complete evolution of the LC,

which will be the focus of a future study. The effect of the spatial

distribution of the drifters’ initial position is likely to influence the

reconstructed velocity field. In a future study, we will address how

deployment locations affect the reconstructed field and identify an

efficient sampling strategy that minimizes the number of drifters

required to properly reconstruct the velocity field at a given

location. Indeed, the number of drifters needed and the

collocation points for a full velocity field reconstruction impose

limitations on the measurement and computational costs.

Despite its nonlinear function representation capability, an

MLP could not capture the features of the velocity field as

efficiently as the PINN-SR did. It highlights the strength of the

PINN method, which, by design, learns the underlying physical

processes, greatly improving the reconstruction of flow dynamics

through learning of the governing PDEs, hence the flow

reconstruction as shown in Figures 8, 9. The physics learning

component was shown to be essential for the capture of the

circulation features dynamics by the PDEs, which improved the
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FIGURE 11

Evolution of the RMSE (A, m.s−1), CC (B), and the MS-SSIM (C) between the PINN-SR reconstructed field and the DA numerical model output as a
function of the number of virtual drifters used for training.
FIGURE 12

Reconstructed field for the period 6–8 November 2021 over three rows. The left (right) column shows the zonal (meridional) velocity.The x-axis
represents the longitude and the y-axis the latitude.
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resolution of the mesoscale dynamics. The SR component

maintains the efficacy of the method by reconstituting the PDEs

with as few coefficients as possible. Although the PDEs are not

explicitly provided, they directly contribute to the reconstruction of

the velocity field, as demonstrated in our experiments. As far as we
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know, this is the first attempt to reconstruct the sea surface velocity

field with a deep learning model trained only on drifters’ data.

Another aspect to consider is the computational cost of the

PINN-SR: training takes roughly 6 h 15 min, whereas each inference

completes in just a few milliseconds. Despite this higher upfront
FIGURE 13

The 0.7 m.s−1 velocity contours from the PINN-SR reconstructed field are compared to the circulation features in the data assimilated (DA)
numerical model, EddyWatch® and the satellite MODIS chlorophyll-a (Chl-a) obtained from the Optical Oceanography Observatory at University of
South Florida. (a) 0.7m.s−1 velocity contours from DA model (grey line) and from EddyWatch® (thick black line with arrows) on 07 November 2021.
CE stands for cyclonic eddy and the red dots show the position of the drifters whose velocity was equal to 0.7m.s−1 on that day. (b) 0.7m.s−1 velocity
contours from the PINN-SR reconstructed velocity field (grey line) and from EddyWatch® (thick black line with arrows) on 07 November 2021. (c)
DA model SSH contours (colored) overlaid on PINN-SR reconstructed velocity field contours (black line). Positive (negative) heights are shown in
green (blue). (d) MODIS satellite chlorophyll-a image on 07 November 2021 overlaid with PINN-SR reconstructed velocity field contours. Colors
show the Chl-a concentration and the red circles indicate the presence of circulation features in the Chl-a captured by the velocity contours. (e)
Same as (d) on 10 November 2021.
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expense compared with classical interpolators, the negligible run-

time and significantly better accuracy make the network well suited

for rapid spatial field reconstruction beyond the drifter locations

used for training.

Finally, estimating the Eulerian velocity field from Lagrangrian

drifter velocity for data assimilation remains a challenge in

oceanography. The velocity of the drifters depends on the

influence of various forces, including downwind slippage, Stokes

drift, actual surface current, and vertical shear, which is also the

result of several constituents. Changes in geometry due to drogue

loss, biofouling, and design modification can also lead to a

significant variation in observed velocity relative to water speed

(Lee and Maximenko, 2025). Wind/wave effects can be identified

using a combination of geostrophic velocity from altimetry and

wind stress (Lumpkin et al., 2013). However, an important

implication of the PINN model not addressed in this study would

be the estimation of the contributions of each of the above

components through the calculation of the loss function as done

in Schmidt et al. (2024) and Limousin et al. (2025) to estimate the

separate effects of physical constraints. This approach would greatly

enhance the assimilation benefits of drifter velocities by selecting

the component to be assimilated. As shown by the extensive

literature on the application of PINN to resolve any flow

dynamics in various fields and Reynolds flow regime, there

appear to have less and less limitations with respect to the

resolution of complex flows, including highly variables flow such

as tidal currents (Zhang et al., 2024a).
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