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Accessing ocean velocity data is critical to improving our understanding of ocean
dynamics, which affects our prediction capabilities for a range of services that the
ocean provides. Because ocean current velocity information is scarce, prediction
efforts have mostly relied on numerical models of ocean physics to reconstruct
and predict velocity fields at desired spatial and temporal resolutions. However,
numerical models, by design, are a simplified representation of the physics laws
that govern ocean dynamics, hence error-prone even with data assimilation.
Although accurate measurements of the flow field can be obtained using ocean
drifters along their trajectories, their Lagrangian nature and sparsity make them
unfit to provide direct Eulerian measurements. To address this issue, we apply a
deep learning model called Physics-Informed Neural Networks (PINN) to
reconstruct ocean surface velocity fields using sparse measurements obtained
from drifters. We show that the physics learning part of the network is essential
for the accurate reconstruction of the velocity field. In particular, we show the
poor performance of the same deep neural network without the physics part,
which reveals the ability of the partial differential equations derived by the PINN
to capture the flow features’ dynamics. Our method is evaluated on both virtual
and real drifters datasets. The reconstructed flow fields reveal the role of small-
scale features in improving the representation of mesoscale flow dynamics.

KEYWORDS

physics-informed neural networks, velocity field reconstruction, drifters, sub-
mesoscale, Gulf of Mexico

1 Introduction

Satellite-tracked drifters (Sybrandy, 1991) provide direct measurements of currents
throughout much of the world’s oceans, offering a unique tool to examine processes such as
mean and eddy transport of momentum and heat. In response to the Deepwater Horizon
oil spill in the Gulf of Mexico (GoM), a significant amount of research was conducted
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aimed at better predicting oil dispersion. Tools to better understand
the dispersal properties of GoM waters included the design of new
drifters (Novelli et al., 2017) and drifter release experiments. For
example, the Lagrangian Submesoscale Experiment (LASER)
between January and April 2016; the Submesoscale Processes and
Lagrangian Analysis on the Shelf (SPLASH) between April and June
2017 among others as described in Lilly and Pérez-Brunius (2021).
The latter used a large set of historical surface drifter data from the
GoM - 3770 trajectories spanning 28 years and more than a dozen
data sources - to create a gridded surface current product
called GulfFlow.

While drifters have the unique ability to resolve sea surface
velocity at multiple temporal and spatial scales, they present a
significant drawback: the sparsity of the data collected. Drifters
cannot cover a large area and, most importantly, they only provide
information on their trajectories. On the other hand, having access
to measurements over an entire region such as the GoM at a chosen
time and spatial resolution is crucial for a better understanding of
the dynamics of the ocean. Drifters are often treated as moving
current meters. Most drifter data are used to understand the
transport properties of the flow (Lumpkin and Johnson, 2013)
and the Lagrangian characteristics (Mariano et al., 2016; Miron
etal, 2017; Deyle et al., 2024). Velocity field estimation from drifter
data is mostly used to obtain near-surface velocity climatology for
the global ocean (Lumpkin, 2003).

Assimilating drifter velocities or Lagrangian trajectories in
numerical models to improve their predictive capacity requires
the estimation of the Eulerian velocity field. Two main approaches
have been proposed for the assimilation of Lagrangian data. The
first approach is based on estimating velocities along trajectories as
the ratio between observed position differences and time increments
(e.g,Hernandez et al. (1995)) and directly using these velocities to
correct the model results. The second approach introduces an
observational operator based on the particle advection equation
and corrects the Eulerian velocity field by requiring the
minimization of the difference between observed and modeled
trajectories (e.g. Molcard et al. (2003)).

Other efforts include methods based on augmenting the state
vector of the prognostic variables with the Lagrangian drifter
coordinates at assimilation and compute the evolution of the
error covariance matrix with the extended Kalman filter (Ide
et al.,, 2002; Kuznetsov et al., 2003; Salman et al., 2006).
Lagrangian variational analysis methods allow for statistically
robust reconstructions of velocity fields either directly from
purely Lagrangian observations or from combinations of Eulerian
model/data and Lagrangian datasets. The variational method of
(Taillandier et al., 2006a) has been applied to the assimilation of
Argo float data in the northwestern Mediterranean Sea (Taillandier
et al,, 2006b, 2010) and to the reconstruction of the velocity field in
the Adriatic Sea (Taillandier et al., 2008). In the latter study, the
velocity field reconstruction is only validated through the predicted
trajectories of virtual drifters that are compared to the circulation
features in Moderate Resolution Imaging Spectroradiometer
(MODIS) chlorophyll-a images.
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In recent years, machine learning methods have become popular
in the field of remote sensing data recovery (Sonnewald et al., 2021;
Hu et al., 2021; Park et al., 2019). Previous works have attempted to
reconstruct the surface velocity field by using various types of data
such as velocity, temperature, salinity, and sea surface height (SSH)
(Martin et al., 2023; Thiria et al., 2023). For example, the relationship
between salinity and temperature can be used to reconstruct the
surface velocity field using convolutional neural networks (Isern-
Fontanet et al, 2020). Sinha and Abernathey (2021) leveraged
multiple global variables, specifically SSH, sea surface temperature
(SST), sea surface salinity (SSS), and wind stress, as input to an
artificial neural network to predict surface velocity. Using a local
stencil of neighboring grid points as additional input features, they
train their deep learning models to effectively “learn” spatial gradients
and the physics of surface currents. By using stenciled variables as
input to a convolutional neural network, they showed that the model
could learn spatial gradients, hence some of the physics contained in
the data. In Gongalves et al. (2019), they reconstruct the submesocale
velocity field using a Gaussian Process Regression (GPR) approach
with only drifter data. They used half of the observations from the
drifters to reconstruct the full velocity field with great success while
resolving scales as small as 300 m and 0.6 hours and features
associated with the vorticity and strain dynamics of the flow at the
submesoscale. They used the other half of the observations from the
drifters to validate the reconstructed velocity field.

In the study herein, we propose a new approach that combines
physics and deep learning to reconstruct the velocity field from
drifter trajectories. This method is described as a Physics-Informed
Neural Network or PINN, a deep neural network that learns physics
laws to solve supervised tasks, a relatively new concept introduced
in 2017 by Raissi et al. (2019). PINN has had applications in
hemodynamics and related flow problems, optics and
electromagnetism, molecular dynamics, geosciences, and
elastostatics problems (Cuomo et al, 2022). For hemodynamics,
PINNS are used to study stenotic flow and aneurysmal flow, with
standardized vessel geometries (Sun et al., 2020), patient-specific
three-dimensional blood flow for intracranial aneurysms (Raissi
etal., 2020), or prediction of flow and propagation of pressure waves
from magnetic resonance (Kissas et al., 2020). In the field of solving
fluid dynamics equations, PINNs are used to determine three-
dimensional turbulent fields from two-dimensional electron
pressure data (Mathews et al., 2021) or to approximate Euler
equation solutions for high-speed aerodynamic flows (Mao et al,
2020). For applications in optics and electromagnetism, PINNs are
used to solve the three-dimensional Helmholtz equation, the wave
equation for the electric field (Fang, 2022), the swing equation used
for power systems (Misyris et al., 2019) or inverse scattering
problems in photonic metamaterials and nanooptics technologies
(Chen et al., 2020). Long-range molecular dynamics is addressed in
Islam et al. (2021), and multiscale bubble growth applications are
studied in Lin et al. (20214, b). In the field of seismology, PINN’s are
used to invert the earthquake hypocenter by solving the Eikonal
equation (Smith et al., 2021) and for finite deformation of elastic
plates by solving the Féppl-von Karman equation (Li et al.,, 2021).
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In our study, PINN is combined with Sparse Regression (SR) to
first reconstruct the velocity field from virtual drifter trajectories
generated from a numerical model. We follow the method
implemented by Chen et al. (2021) to address the challenge of
scarce and noisy data for nonlinear spatio-temporal systems to
PINN. PINN with SR (hereafter PINN-SR) seamlessly integrates the
strengths of deep neural networks for rich representation learning,
physics embedding, automatic differentiation, and sparse regression
to approximate the solution of system variables, compute essential
derivatives, and identify the key derivative terms and parameters
that form the structure and explicit expression of the governing
equations. The effect of the number of drifters, which determines
the scarcity of the field to be reconstructed, is evaluated. The
velocity field is also reconstructed via interpolation methods used
in space-time averages as in global drifter-derived velocity
climatologies or to estimate the Lagrangian characteristics of the
flow field Lumpkin (2003). Two interpolation methods are used,
namely the Inverse Distance Weighted (IDW) method (Shepard,
1968) and Kriging (Krige, 1951). The reconstructed field is
compared to the numerical model output using Root Mean
Squared Error (RMSE), Multi-Scale Structural Similarity Index
Measurement (Wang et al., 2004, MS-SSIM), and Correlation
Coefficients (CC). A second evaluation of the PINN-SR method is
conducted with real drifters that are deployed in the GoM for
operational prediction of the flow. To the best of our knowledge,
this is the first time a deep learning neural network such as PINN
has been used to reconstruct a full sea surface velocity field using
only data measured from drifters. Finally, PINN-SR is evaluated
against a simple deep neural network to quantify the effects of
learned physics on the reconstruction of the velocity field.

The remainder of this paper will be organized as follows.
Section 2 presents the drifter dataset and the strategy for
generating it, and introduces the PINN-SR method used to
reconstruct the velocity field, including our data augmentation
approach for Lagrangian data. We will also provide a description
of the real drifters data used to evaluate the real world application of
our method. Section 3 presents the results, including the
reconstructed velocity field from the virtual drifters by the PINN-
SR and the interpolation methods, and the reconstructed field from
the real drifters. The reconstructed velocity fields will also be
evaluated and validated in this section. Conclusions will be
provided in Section 4.

2 Methods

Our region of interest is the GoM, a semi-enclosed basin
connected to the east to the north Atlantic Ocean and to the
south to the Caribbean Sea. It is approximately 1592842km” large,
located between 21°N and 31°N latitude and 79°W and 96°W
longitude. One of the most important circulation features
observed in the GoM is the Loop Current (LC) (Wang et al,
2019). The LC plays a crucial role in the dynamics of natural
phenomena such as hurricanes (Oey et al., 2007), short-term
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weather anomalies and GoM circulation (Larranaga, 2023),
fisheries (Criales et al,, 2019), ecosystem services (Spies et al.,
2016), marine mammal habitats (Wirsig, 2017), and in the
response to anthropogenic and natural disasters (National
Academies of Sciences Engineering, and Medicine, 2018; Walker
et al, 2011).

Our approach to reconstructing the velocity field from drifter
trajectories consists of the implementation of the PINN-SR model
used in Chen et al. (2021) for this oceanographic problem. First, we
create virtual drifter trajectories from a numerical simulation, then
we apply data augmentation to the drifter trajectories, and train the
PINN-SR on the augmented drifter data. The virtual velocity field is
also reconstructed using a Deep Neural Network (DNN) model
(without physics learning) and interpolation methods to show the
benefits of the PINN-SR approach. In a second experiment, we
apply the PINN-SR to real drifter trajectories in the GoM and
compare the reconstructed field velocity features to existing
reanalysis products and satellite imagery.

2.1 Generating the virtual drifter dataset

In the the first application of the PINN-SR model of this study, a
data assimilated (DA) numerical model simulation was used to
generate virtual drifter trajectories. The simulation covers the Intra-
America Seas region and was conducted with the three-dimensional
HYCOM model (Bleck, 2002; Chassignet et al., 2003; Halliwell,
2004). The implementation of HYCOM is similar to configurations
used in other HYCOM-based operational centers such as the Naval
Research Laboratory and National Centers for Environmental
Prediction (Chassignet et al., 2009). For this regional application,
a horizontal Mercator grid with a resolution of approximately 10
km (0.0625°) was used. In the vertical, the model is configured with
30 hybrid (pressure-sigma-isopycnal) layers. Surface atmospheric
forcing was obtained from the ECMWEF Reanalysis v5 dataset
(ERA5) (Hersbach et al,, 2023), and the model was also forced
with monthly climatological river discharge. The data assimilated in
the model include remotely sensed along track sea level anomalies
(SLA) from Collecte Localisation Satellites (CLS), gridded maps of
1/4° Optimally Interpolated Sea Surface Temperature (OISST) from
NOAA, and in-situ temperature/salinity (T/S) profiles from the
ARGO program obtained from USGODAE.org and velocity data
from drifters provided by the Woods Hole Group. The velocity data
from the drifters were filtered with a Gaussian filter with a time
window of 24 hours to filter out the high-frequency oscillations.
Drifter data within a time window of 3 days were binned
and assimilated.

The velocity field of the DA model was also used as ground
truth (Figure 1) to validate the reconstructed velocity field of the
PINN-SR. The variables of the DA model used in this study include
the daily zonal and meridional surface velocities indicated by u and
v, respectively. The DA model field covers the period 01 August - 30
November 2021 and encompasses the geographic zone located
between 5.0559 and 37.0482°N and 53 to 99° W. The longitude
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resolution is 0.0625° and the latitude resolution varies between
0.0499 and 0.0623°. We resampled the velocity field on a uniform
grid with a 0.04° resolution in both directions and within the GoM
region between 98.0 and 76.4°W and 18.09 to 31.96°N. Our model
was trained with data from all regions of the GoM, but was
evaluated in the central LC area of the GoM, one of the most
active regions in terms of circulation, i.e. our region of interest
between 92 and 84° W and 24 and 29°N (Figure 1). To generate
virtual drifters, we used the OpenDrift package, an open-source
Python-based framework for Lagrangian particle modeling based
on a fourth-order Runge-Kutta scheme (Dagestad et al., 2018). All
virtual drifters were initialized on the same day, and the hourly
velocity records of the Lagrangian trajectories were obtained for the
GoM region from 1 to 30 October 2021 (Figure 2). This period was
chosen because it overlaps with the real drifter data trajectories.

At synoptic scales, drifter-based reconstructions of surface
velocity fields (influenced by both geostrophic and ageostrophic
dynamics) are hampered, even over modest spatial regions, by a
lack of contemporaneous drifter measurements with adequate
spatial data density (Berta et al., 2015). Therefore, the number of
drifters used in the reconstruction process will determine the
accuracy of the reconstructed velocity field. A realistic number of
drifters used in previous experiments such as LASER (Gongalves
etal, 2019), SPLASH (Lilly and Pérez-Brunius, 2021) or the Grand
Lagrangian Deployment (Berta et al., 2015, GLAD) was about 300,
which were deployed in a limited area of the GOM. While the
PINN-SR method is first evaluated with 200 drifters (corresponding
to a total of 144000 data points), the effect of the number of drifters
on the accuracy of the reconstructed field was also evaluated by
varying their numbers from 25 to 500 with a 25 increment from 25
to 200 and a 50 increment from 200 to 500. This sensitivity analysis
will provide the number of drifters at which point the performance
of the PINN-SR method plateaus. The initial drifter positions were
randomly selected in the GoM region.

2.0
30.01
1.5
27.51
()
©
225.0; 1.0
T
22.51
0.5
20.01
0.0

—-80
Longitude

FIGURE 1

Velocity magnitude in ms™ snapshot on 1 October 2021 of the data
assimilated numerical model. The red rectangle shows the region of
interest used for the Physics Informed Neural Network evaluation.
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2.2 Drifter deployments in the Gulf of
Mexico for operational purpose

For offshore operators, navigating the GoM and the waters from
Trinidad to Brazil presents unique challenges, especially with strong
ocean currents such as the LC and the North Brazil Current. The
Woods Hole Group EddyWatch® service provides a vital solution,
offering comprehensive monitoring and forecasting of these
powerful currents to ensure safety, reduce nonproductive time,
and support operational efficiency. In particular, advanced data
collection and analysis is conducted with satellite-tracked drifting
buoys. The Far Horizon Drifter (FHD) is an air-deployable,
satellite-tracked buoy composed of a cylindrical canister at the
surface that transmits GPS coordinates hourly and a 45 m tether
connected to a drogue. Ten units are deployed every two weeks in
the central GoM in addition to custom deployments for specific
operators. EddyWatch® provides real-time data on current speed,
direction, and key ocean phenomena. This data provides deep
insight into how currents evolve and affect specific lease areas,
enabling operators to adapt quickly to changing conditions. For the
purpose of this study, Woods Hole Group provided 119 individual
drifter trajectories over the period 31 July 2021 00:00:00-27
November 2021 23:00:00, corresponding to 120 days. This dataset
consists of a total of 150568 records averaging 1265 records per
drifter, equivalent to 52.7 days per drifter. Throughout the time
range, the drifter locations were comprised between 97.22 and
53.68°W and 6.78 and 37.25°N. u and v varied between —4.78 and
4.59m.s”', and between —4.94 and 4.88m.s™' respectively. Only
drifter trajectories located inside the GoM for the entire time
range (Figure 3), which resulted in a total of 98763 records, were
used for this study. In order to provide sufficient data points for the
model to converge, the entire time period of the deployment
was necessary.

2.3 Data augmentation

In order to extend the footprint of each drifter trajectories, both
in time and space, we applied a data augmentation technique. Data
augmentation is a technique to increase the quantity and variability
of the training samples. To do so, we first gridded the drifter
locations on the same grid as the resampled numerical model fields
to have a uniform resolution across the dataset. The velocity in a
grid cell was obtained by averaging the velocity of all the drifter
points in that cell. Then, we performed two types of augmentation,
one in space and one in time. The spatial augmentation is grounded
in the fact that the velocity does not change much within a certain
radius and, in this case, around a drifter position, as suggested by
the integral timescale estimation of Mariano et al. (2016) in the
GoM. Twice the integral time scale is the time for velocity
measurements to become independent; It is fundamental for
estimating the effective degree of freedom in a correlated velocity
data set and determining how long a Lagrangian motion prediction
is reliable. In the northeast GoM, Mariano et al. (2016) estimated an
average integral time scale of 1 day. Let’s consider a point P(xfk , )’ﬁ )
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FIGURE 2

Trajectory of the 200 virtual drifters obtained from OpenDrift model. Green (blue) dots show the initial (final) positions and red dot the stranded position.

Drifter Paths in the Gulf of Mexico
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FIGURE 3

97.5°W 95°W 92.5°W 90°W 87.5°W 85°W 82.5°W 80°W

Distribution of Woods Hole Group's drifters in the Gulf of Mexico over the period 31 July 2021 00:00:00-27 November 2021 23:00:00.

k™ point on the trajectory of a drifter, recorded at time f;. Assuming
an average drifter velocity of 0.1 m.s™" yields the surrounding points
in a radius r = 0.08° have the same velocity as P, resulting in eight
additional points (Figure 4A).

The temporal augmentation is based on the fact that the velocity
does not change much over time for nearby points, as inferred from
the e-folding time scale of less than 12 hours calculated by Mariano
et al. (2016) in the northeast GoM. For the point P(xfk, yi‘k), we
assume that the velocity of the points located in the same position as
N future points (with corresponding time f; 1,1 2....fxsn) On the
drifter’s trajectory is the same as the velocity of those future points

Frontiers in Marine Science

but for the current time t,. We chose N = 9 in our experiments,
which is equivalent to the next 9 hours due to the hourly resolution
of the drifter positions (Figure 4B).

Figure 5 shows a complete example of the augmentation carried
out on a sample point. Figure 5A shows a sample position on a
drifter trajectory. It first goes through temporal augmentation
(Figure 5B) and then through spatial augmentation (Figure 5C).
When applied to the whole trajectory (Figure 5D), the resulting
augmentation is shown in Figure 5E. The colors show the
magnitude of the velocity, which remains consistent with the
original trajectories after the augmentation.
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FIGURE 4

Spatial (A) and temporal (B) augmentation concept. In (A) the spatial augmentation is grounded in the fact that the velocity does not change much

within a certain radius. In (B) the velocity at a given location will be the same over a given time period, hence P(Xﬁ,yf‘) =

ljl()({+1,)/tkK 1) = PLO, it

P(xf, vk ) is the k™ point on the trajectory where xf and yf are the coordinates of the drifter at time t,.
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FIGURE 5

Data augmentation procedure. (A) A point in a drifter's trajectory, (B) the result of its temporal augmentation, and (C) the output of (B)'s spatial
augmentation. (D) shows a drifter trajectory and (E) the augmented data from the trajectory in (D). Colors show the velocity values (m.s™) at each

location. Dots in (A—C) have been enlarged for visibility.

2.4 Physics-informed neural network with
sparse regression

PINN has been proposed as an alternative to classical numerical
methods, such as finite element methods (FEM), to solve ordinary
and partial differential equations (ODE and PDE, respectively).
Raissi et al. (2019) showed that PINN can help solve the forward
and inverse problems of PDEs. PINN can also be used to uncover
differential equations describing a physical phenomenon by adding
a loss that encompasses the residual of the differential equation.
However, SR is a regression technique that reduces the number of
parameters in a model while maintaining a satisfying performance.
In our approach, we apply the PINN-SR method proposed by Chen
et al. (2021) to reconstruct the velocity field and extract the PDE
that governs the movement of water. Chen et al. (2021) used PINN-
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SR to uncover the Navier-Stokes equations, which are the governing
equations of oceanic flows, which govern drifter trajectories. The SR
is crucially important because it promotes sparsity for the
coefficients of the uncovered differential equations. The equations
are encoded in the loss function, which improves the learning
process that is not only data driven but also physics driven, and in
this case by the geophysical fluid dynamics. SR is also designed to
handle the data sparsity and noise inherent to drifter data.

The PINN-SR framework is shown in Figure 6. It relies on a
dense (fully connected) DNN that is chosen here as the Mutli-layer
Perceptron (MLP). MLP is a modern feedforward artificial neural
network, consisting of fully connected neurons with a nonlinear
activation function, organized in at least three layers, notable for
being able to solve problems requiring non-linear solutions
(Cybenko, 1989). The input to the PINN-SR consists of the
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coordinates and time (x,,t) of the drifter positions fed to the MLP.
The output of the MLP is the velocity vector u = (,v). Then u is
passed through the auto-differentiation module that computes the
derivatives w.r.t. x, y, and t. u, v, and their derivatives are used to
form the library of candidate terms that can be constant,
polynomial, or trigonometric functions. The assumption is that
the PDE can be reconstituted by combining those candidate terms.
The matrix A contains the coefficients of the candidate functions. A
is a sparse matrix in which sparsity is promoted using Sparse
Regression. The goal is to reconstitute the PDE with as few
coefficients as possible while maintaining its closeness to the
system’s dynamics. Given the complexity of this optimization
problem, Alternative Direction Optimization (ADO) was applied.
ADO seeks to determine the optimal A values that minimize the
sparse regression loss (achieved by STRidge, Figure 6) and the
optimal 6 weights that minimize the loss (achieved with Adam,
Figure 6). The MLP weights 0 are optimized while the SR weights
are fixed, that is, the elements of A. Then, 0 is frozen and A
optimized. The loss function has three terms. The first term is the
data loss L4(6; D,,), the second the physics loss L,(6, A; D,) and the
third the regularization term ||A]lo '

It is important to note that the data loss is computed using the
measurement data D, (corresponding to drifters data in this case),
while the physics loss uses collocation points > D.. czand 3 represent
weight coefficients (Figure 6). PINN-SR training involves two
stages: the pre-training stage and the ADO stage. The pretraining
stage focuses on giving prior knowledge to the neural network
before engaging in the ADO stage, which allows the improvement
of the neural network and the discovery of the differential equation
alternatively. For pretraining, stochastic optimizers such as
stochastic gradient descent (SGD) Robbins and Monro (1951),
Adam Kingma (2014), and others can be used, followed by a
deterministic algorithm such as limited-memory Broyden-
Fletcher-Goldfarb-Shannon (LBFGS) Liu and Nocedal (1989). In
the ADO stage, only a stochastic optimizer is used to optimize the
weights of the neural network. For a more detailed discussion of the
PINN-SR model, the reader is referred to Chen et al. (2021).

2.5 Training

We used an 80/20 data split for training and validation for all
experiments. The MLP used has 8 hidden layers of 60 nodes each
and 2 nodes for the output layer because the model predicts both u
and v. We used the tanh activation function, which is widely used in
PINN because, contrary to ReLU (Rectified Linear Unit (Nair and
Hinton, 2010)), it has second-order derivatives. The optimizer used
for the PINN-SR pre-training is Adam, with a learning rate of 5.10~

1 |l.llo represents the Lo norm, also called zero norm and ||.||; the L1 norm
also called Manhattan distance

2 Collocation points are the (randomly or adaptively) sampled space-time
coordinates where the PINN evaluates the PDE residual, forcing the network
to satisfy the physics at those points. They are sampled across the entire

prescribed space-time domain.
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for 10 000 iterations, followed by 40 000 LBFGS-B iterations. For
the ADO stage, Adam is maintained but with a learning rate of le-3
for 1000 iterations. Six ADO iterations are performed in total. We
trained the model on a single Nvidia Tesla V100 GPU of 32 GB of
memory for about 6 hours and 15 minutes. We opted for the L1 loss
instead of L2 because the latter tends to produce blurry results
(Mathieu et al., 2015), thus removing the small-scale dynamics from
the reconstructed field. Hyperparameters are summarized
in Table 1.

2.6 Deep neural network and field
interpolation

To show the improvement of the PINN-SR approach, the
velocity field was also reconstructed with a DNN without physics
learning and traditional binning and interpolation methods. The
DNN consisted of an MLP with 6 hidden layers of 60 nodes each,
trained for 50 000 epochs with the same hyperparameters as in the
PINN-SR model (Table 1). The binning and interpolation methods
consist of the universalKriging [U-Kriging - (Krige, 1951)] and the
inverse distance weighted (IDW) methods. They both used the
same number of neighbors, 11, and a radius search of 0.04". IDW
estimates the value at a desired location by computing the weighted
average of the values of the neighboring points, the weights being
the inverse distance between the desired location and the
neighboring points. U-Kriging is also known as the Gaussian
process regression where the spatial distribution of the observed
data, their distance to the point of calculation and their spatial
correlation are taken into account (Goovaerts and Authorid, 2019).
These two methods form the basis for interpolation methods to fill
in missing data (Kostopoulou, 2021) and even to correct spatial
pattern biases in numerical models due to the spatial
autocorrelation property (Chang et al., 2021).

2.7 Evaluation of models performance

We use qualitative and quantitative approaches to assess the
performance of our models. The qualitative assessment consists of a
visual comparison of the velocity field of the PINN-SR model
output and the numerical model. For quantitative assessment, we
used RMSE and CC, and MS-SSIM for image similarity analysis
(Wang et al,, 2003, 2004). RMSE is the point-to-point difference
between the predicted and reference fields. The result is a positive
real number used to estimate how similar in magnitude the two
fields are and is given by:

1o -
RMSE = \/nmzljzl(lj -1y
where 7 is the number of rows, m is the number of columns, I;;
is the element of the reference field I at position (i), I i is the
element of reconstructed field I at position (i,j). Low RMSE values
are indicative of reduced differences in magnitude between
two fields.
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FIGURE 6

PINN-SR framework proposed by Chen et al. (2021). The Multi-Layer Perceptron (MLP - blue block) input is (x,y,t) and outputs are the velocity
components u and v. Then, the auto differentiation (orange block) module computes the derivatives (first, second, third order, etc., depending on
the data’s complexity) of u and v w.r.t. x,y,t. The candidate functions are computed using u, v, and their derivatives. For example, u; and uy represent
the first-order derivatives w.r.t. t and x respectively. The formed candidate functions are regrouped into @, which will be used to reconstruct the

PDE, whose residual, u, —

@A, should tend toward zero (red block). A coefficients are obtained using Sparse Regression (SR green block) on the

collocation points. The formulation of the loss function is provided in the first equation. The formulation of the Alternative Direction Optimization
(ADO) is given in the second equation. N,, and N, represent the number of measurements (data) and collocation points, respectively.

CC measures the phase alignment between the predicted and
reference fields and is expressed as follows:

S0 -y -1)
V=D /S - 1)

where Tand f are the mean values of the arrays I and I,

CC(,1) =

respectively. Phase alignment is reached when CC = 1.

TABLE 1 Hyperparameter values used to train the PINN.

Number of hidden layers 8
Number of hidden nodes (per layer) 60
Activation function tanh
Loss function L1 loss
Learning rate (Pretraining) 5e-3
Adam epochs (pretraining) 10 000
LBFGS-B epochs 40 000
ADO iterations 6
Learning rate le-3
Adam epochs 1000
STRidge Cycles 100
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MS-SSIM is used to quantify the similarity between the velocity
field arrays, considered here as images. This index was originally
developed to assess image quality by quantifying differences
between signals from distorted and reference images and can
simultaneously consider accuracy, precision, and spatial
similarities at multiple scales (Wang et al., 2003, 2004). It can be
written as follows.

MS — SSIM(I, )

o

1L 2, e

-7 2 2
LT\ 4, TH T a

2045, + ¢ Oui, T 6

of + szl +0 0,07, + ¢

L is the number of levels in the decomposition, My, and fi; are the
means of I and I at level [, O'I and 0' are the variances of I and I at
level [, Oy, is the covariance between I and I atlevel ], ¢;, ¢5, and c; are
small constants to prevent division by zero or very small denominators,
0y are weights for the components at level . MS-SSIM varies between 0
and 1 where the latter indicates identical fields.

To evaluate the performance of the real drifters’ reconstructed
field, several datasets were used, including model and observations.
The reconstructed velocity field was first converted to velocity

~1 jsotach, which is the critical velocity

contours of the 0.7 m.s
watched by offshore operators. Those contours were compared to
the location of circulation features in the DA model SSH and 0.7
m.s”" isotach. One kilometer resolution chlorophyll-a imagery from
the MODIS sensor obtained from the Optical Oceanography
Observatory at University of South Florida were use to validate
the presence of small scale circulation features in the flow present in

the reconstructed velocity field.
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3 Results

3.1 Virtual drifters velocity field
reconstruction

The performance of the PINN-SR model is evaluated in terms
of the comparison of the reconstructed velocity field with the DA
model velocity field. The overall metrics assessment is conducted
over the period 1-30 October 2021 and is summarized in Table 2 for
the zonal and meridional components of the velocity vector,
respectively. Overall, the PINN-SR method performs significantly
better than the MLP, IDW, and U-Kriging. The RMSE of the PINN-
SR method is 40% less than that of the U-Kriging and IDW
methods and 33% less than that of the MLP. The CC between the
reference and the PINN-SR reconstructed fields is 18% higher than
with IDW and U-Kriging and 11% higher than with MLP. MS-
SSIM is 11.6% higher for PINN-SR model than the latter three.
Furthermore, the standard deviation of the PINN-SR method is
significantly smaller than that of the other three methods for
all metrics.

The temporal evolution of the three metrics, for each
method, reveals that they vary over time, especially for the U-
Kriging and IDW methods (blue and green lines in Figure 7).
The metrics for the PINN-SR method exhibit smaller relative
variations overall and indicate temporal stability and superior
performance of the method over MLP, U-Kriging and IDW. A
slight increase of the RMSE, decrease of CC and MS-SSIM can
be seen at the end of the testing period, in this particular case.
The MLP’s reconstructed field metrics suggest that MPL alone
is not as efficient at reconstructing the Eulerian velocity field as

10.3389/fmars.2025.1547995

TABLE 2 Mean and standard deviation of the skill metrics RMSE (m.s™),
CC and MS-SSIM for velocity components u and v, respectively,
computed between 1-30 October 2021.

Methods RMSE CcC MS-SSIM
0.8254
PINN-SR (u) 0.1472 + 0.0126 0.9304 + 0.011
+0.0182
0.8362 0.7049
MLP (u) 0.2223 + 0.0565
+ 0.0862 +0.0634
0.7211 0.6886
IDW (u) 0.2735 + 0.0257
+ 0.0697 +0.0324
L. 0.7881 0.7394
Kriging (u) 0.2476 + 0.0263
+0.0560 +0.0311
0.9198 0.8017
PINN-SR (v) 0.1446 + 0.0092
+0.0123 +0.0145
0.8217 0.6718
MLP (v) 0.2274 + 0.0636
+0.0784 + 0.0655
0.7394 0.6832
ID .2456 + 0.022
W 02436 = 0.0225 +0.0433 +0.0271
L. 0.7906 0.7260
Kriging (v) 0.2257 + 0.0234
+0.0450 +0.0275

the PINN-SR method, especially the meridional velocity field
(Figures 7D-F). This result indicates the significant role of the
physics-learning part of the algorithm in the reconstruction of
the velocity field.

Snapshots of the velocity field (Figures 8, 9) show that the
PINN-SR method is capable of reproducing all the features of the
velocity fields for the u# and v components in terms of location,

A B c
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FIGURE 7

Time evolution from 1-30 October 2021 of RMSE (m.s™) (A, D), CC (B, E), and MS-SSIM (C, F) for u and v (first and second row respectively)
calculated on the region of interest (Figure 1) for the PINN-SR (orange line), the MLP (purple line), the IDW (blue line) and, the Kriging methods

(green line). Day 1 is 1 October 2021.
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model field, the PINN-SR, MLP, Universal Kriging, and IDW reconstructed field. Each row represents a day from 1-7 October 2021.The x-axis
represents the longitude and the y-axis the latitude. The date is shown on the y-axis as well.
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shape, and magnitude, unlike the U-Kriging and IDW methods.
The MLP alone is also capable of capturing the same features of the
original velocity field; however, the differences with the PINN-SR
reconstructed fields lie in the misalignment of the flow features by
MLP as shown in Figure 10, which the MS-SSIM suggests (Table 2).
Resolving the underlying physics of the velocity field through its
differential equations appears to significantly improve the flow
feature dynamics captured by the Lagrangian field.
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3.2 Effect of the number of drifters on the
reconstructed field

In this section, we evaluate the performance of the PINN-SR
based on the number of virtual drifters used for training. The
reconstructed field is evaluated in terms of RMSE, CC, and MS-
SSIM for each number of drifters as shown in Table 3, which also
shows the number of drifters per sq. degree.
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Reference and reconstructed velocity fields (m.s™) shown by rows of five for the meridional velocity v. From the left to right, is shown the numerical
model field, the PINN-SR, MLP, Universal Kriging, and IDW reconstructed field. Each row represents a day from 1-7 October 2021. The x-axis
represents the longitude and the y-axis the latitude. The date is shown on the y-axis as well.

—85-95 -90 —-85-95
Universal Krigging

—85-95
Universal Krigging

—85-95 -90

i i 3
—85-95 -90 —85-95
Universal Krigging

—85-95  —90  —85-95
Universal Krigging

-85-95 -90  —85-95
Universal Krigging

—-85-95 —90  —85-95
Universal Krigging

—85-95

Longitude Longitude

The evolution of the three metrics versus the number of drifters is
captured in Figures 11A-C showing the RMSE, the CC, and the MS-
SSIM, respectively. For all three metrics, doubling the number of
drifters from 25 to 50 shows a rapid improvement in the reconstructed
field. As the number of drifters increases, the improvement tends to
slowly plateau. The improvement in RMSE becomes less than 10%
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between 255-300 and 500 drifters versus 60% between 25 and 250
drifters. For the CC, the change is from 1% versus 30%, and for the
MS-SSIM, the change is 3.5% versus 42%, respectively. These results
suggest that for an ocean basin like the GoM, the minimum number of
drifters randomly seeded in the GoM that is necessary to properly
reconstruct the velocity field with the PINN-SR method is between 200
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FIGURE 10

Difference between PINN-SR and MLP reconstructed velocity fields (m.s™) shown by rows of seven for the zonal (meridional) velocity u (v).

Each

column represents a day from 1-7 October 2021.The x-axis represents the longitude and the y-axis the latitude.

and 300, which is the range of the number of drifters used in the most
extensive recent drifter experiments in the GoM such as GLAD,
LASER and CODE (Berta et al., 2015).

3.3 Application to real drifters trajectories

The reconstructed field from the Woods Hole Group drifter
data for the period 6-8 November 2021 is shown in Figure 12,
which falls during the testing period of the real drifter data. To
evaluate the reconstructed field, the circulation features associated
with the 0.7 m.s™" isotach were outlined on the 07 November 2021
velocity field of the DA model (Figure 13a) and on the
reconstructed field (Figure 13b). In addition, the contour
generated by EddyWatch® was also made available to this study
and is shown in Figures 13a, b. The EddyWatch® generated contour
only outlines the external velocity contour of the LC system and
marks the presence of counter-rotating mesoscale eddies around the
LC and the LC ring Eddy Verne in the western GoM. The external
isotach of the DA model is relatively close in position to the
EddyWatch® contour (Figure 13a), which is derived from a
combination of observations and numerical model output that
include the DA model used in this study. The isotachs from the
reconstructed field PINN-SR show a more complex pattern that
encompasses the adjacent counter-rotating structures (Figure 13b)
which are resolved by the DA model as shown by the SSH contours
in Figure 13c. In particular, the cylconic circulation west of the LC is
shown to exhibit higher velocities than what the DA model
achieved. This result would suggest that the DA model
underestimates the velocity field outside the main flow region of
the LC as shown by the drifter location (red dots) that exhibits a
speed at that location equal to 0.7 ms™1. The isotachs of the PINN-
SR reconstructed field outline small-scale energetic features that are
visible in the MODIS chlorophyll-a image on the same day as
shown by the red circles in Figure 13d. The isotaches also outline
velocity contours within existing structures outside the LC that are
visible in the MODIS image.

The agreement between the chlorophyll field features and the
reconstructed circulation is further shown on 10 November 2021,
where a greater number of drifters are present along the contours
and where small-scale circulation features that are present in the
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chlorophyll-a image are also captured by the reconstructed velocity.
Note that the velocity contours are likely to not reveal the closed
contours of every feature because of the asymmetries in the strain
rates and circulation that result in strong deformations of the flow
features (Zhang et al., 2024b). Thus, the velocity contours will
include frontal features that exhibit the same velocity.

This property would explain to some degree the presence of
velocity contours that are offset from the circulation features in the
vicinity of Eddy Verne as the eddy speed fluctuates. However, the
number of drifters present is that region over the three-month
period could have been insufficient to properly capture the eddy
velocities, although features situated near the eddy could exhibit
higher or equal velocities, which the drifter position, on 10
November, west of the Eddy Verne suggests (Figure 13¢). In the
LC region, the MODIS image reveals the presence of a multitude of
small-scale circulation features that are present along the LC front,
north of the LC, some of which appear in the isotach field.

4 Conclusion

Traditionally, surface velocity fields are obtained from
altimetric data by geostrophy, which implies that only the
geostrophic component of the horizontal velocity field is captured
(Wunsch and Stammer, 1998). The increasing interest and need for
estimating surface advective transport at 10-100-km spatial scales
over relatively short, days to weeks, time scales strengthens the need
for velocity observation that resolves submesoscale and mesoscale
dynamics (Berta et al., 2015). In contrast to satellite-based altimetry,
surface drifter observations provide direct estimates of the local
surface velocity field. Although drifter information is routinely used
to infer statistical information on basin-scale velocity (Ohlmann
etal, 2001; LaCasce, 2008), inferring the velocity field surrounding
the drifters has remained challenging due to the sparsity of
its observations.

In this study, we assessed the feasibility of reconstructing the
velocity field in a large area with a relatively small number of drifters
using a deep learning approach. Although we could have used
drifters from the various Lagrangian experiments cited in this study,
we would have been limited by the lack of validation data, namely
the observed velocity field surrounding the drifters. To remedy this
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challenge, we decided to simulate virtual trajectories with a DA
§ wlalwlwlo model and use the Eulerian velocity field as the reference. Our
N 22 2 208 B approach is rooted in the application of the PINN method, which
M S S S S =] S . . . .
has been applied in various fields of flow dynamics, from
© hemodynamics to photonics.
-
g & § § © E % To assess the PINN-SR performance using virtual drifters, we
RS 3 3 S 3 3 compared the reconstructed field generated by the MLP (no physics
® learning) and commonly used interpolation methods such as IDW
= e 3 o8 95 o and Kriging. We used relevant metrics such as the RMSE, which
S = 5 & = 8 3 quantifies the difference between the prediction and a reference
N S S S S S S
field; the CC, which quantifies how similar two signal variations are;
Q and the MS-SSIM, which is best suited to assess the 2D structural
,Q. § 8 § § § § similarity between two images at a patch level and multiple scales.
Al S| S || S| S| The PINN-SR method performed, as expected, significantly better
than the other three methods and showed reduced sensitivity to the
-~
o oz o3z oo o= evolution of the velocity field (Figure 7). Figures 8, 9 illustrate how
2 Z 8 § g § 2 the lack of physical dynamics learning through PDEs affects the
reconstruction of the velocity field by MLP, IDW and kriging,
o although the location of the dominant features is accurately located
;‘; N — © <+ n — .
o EIEIREEEE- AR in the MLP reconstructed field. We also evaluated the PINN-SR
il < | | S| |°|° model with real drifters data, which showed the alignment of the
- reconstructed velocity contours with the SSH contours of the DA
T B ¥ e N o= model, rather than its velocity contours, and the correct estimation
< © < —
2 = § 2 g § 2 of the velocity magnitude. In addition to the main circulation
features being resolved by the reconstructed field, Chl-a satellite
< imagery also confirmed the resolution of small-scale energetic
[Xa) — O =N [ae}
» EREEE R features, further validating the reconstructed velocity field.
il c | |°|°|° Due to the limiting role of the sparsity of drifter data, we also
. examined the effect of the number of drifters on the reconstructed
= 5 % 5 % % g field using the PINN-SR method. Using all three metrics, we
~— — % — .
=N s S 2 S s & . showed that the model skill tends to plateau for a number of
‘g drifters greater than 250, equivalent to 1.9342 drifters per sq.
N g degrees. Although this number is specific to the GoM region and
el 22 8 %8 8 s
% g SR 8 5 8 g 3 is associated with a random seeding of the drifters, our study shows
o o o =3 (=] o =1
E g that it is sufficient to properly capture the daily LC dynamics on a
g N E monthly basis. However, we have not demonstrated that we can
< M z . .
kel N2 8 2 B R 3 g reconstruct the velocity field of the complete evolution of the LC,
- ~ SRR AN A
9 Sl s S S S| S| S |8 which will be the focus of a future study. The effect of the spatial
=1 =
¢ o g distribution of the drifters’ initial position is likely to influence the
?’é = e N I _;: reconstructed velocity field. In a future study, we will address how
5 SN S L 8 5 8 82 deployment locations affect the reconstructed field and identify an
S el © | © S| || S|4
g 2 efficient sampling strategy that minimizes the number of drifters
g 2 § required to properly reconstruct the velocity field at a given
2 2 AR § g _;:3 location. Indeed, the number of drifters needed and the
=] : I ~ 5 - % | =
5 a © S ° S S ° % collocation points for a full velocity field reconstruction impose
i 4 limitations on the measurement and computational costs.
<) N ] o . . . s
b= o EIEER IR Despite its nonlinear function representation capability, an
3 S HEIEERIEIE A :
% o AR RN MLP could not capture the features of the velocity field as
K g efficiently as the PINN-SR did. It highlights the strength of the
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Evolution of the RMSE (A, m.s™%), CC (B), and the MS-SSIM (C) between the PINN-SR reconstructed field and the DA numerical model output as a
function of the number of virtual drifters used for training.
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Same as (d) on 10 November 2021.
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The 0.7 m.s™* velocity contours from the PINN-SR reconstructed field are compared to the circulation features in the data assimilated (DA)
numerical model, EddyWatch® and the satellite MODIS chlorophyll-a (Chl-a) obtained from the Optical Oceanography Observatory at University of
South Florida. (a) 0.7m.s* velocity contours from DA model (grey line) and from EddyWatch® (thick black line with arrows) on 07 November 2021.
CE stands for cyclonic eddy and the red dots show the position of the drifters whose velocity was equal to 0.7m.s™* on that day. (b) 0.7m.s~* velocity
contours from the PINN-SR reconstructed velocity field (grey line) and from EddyWatch® (thick black line with arrows) on 07 November 2021. (c)
DA model SSH contours (colored) overlaid on PINN-SR reconstructed velocity field contours (black line). Positive (negative) heights are shown in
green (blue). (d) MODIS satellite chlorophyll-a image on 07 November 2021 overlaid with PINN-SR reconstructed velocity field contours. Colors
show the Chl-a concentration and the red circles indicate the presence of circulation features in the Chl-a captured by the velocity contours. (e)
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resolution of the mesoscale dynamics. The SR component
maintains the efficacy of the method by reconstituting the PDEs
with as few coefficients as possible. Although the PDEs are not
explicitly provided, they directly contribute to the reconstruction of
the velocity field, as demonstrated in our experiments. As far as we
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know, this is the first attempt to reconstruct the sea surface velocity
field with a deep learning model trained only on drifters’ data.
Another aspect to consider is the computational cost of the
PINN-SR: training takes roughly 6 h 15 min, whereas each inference
completes in just a few milliseconds. Despite this higher upfront
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expense compared with classical interpolators, the negligible run-
time and significantly better accuracy make the network well suited
for rapid spatial field reconstruction beyond the drifter locations
used for training.

Finally, estimating the Eulerian velocity field from Lagrangrian
drifter velocity for data assimilation remains a challenge in
oceanography. The velocity of the drifters depends on the
influence of various forces, including downwind slippage, Stokes
drift, actual surface current, and vertical shear, which is also the
result of several constituents. Changes in geometry due to drogue
loss, biofouling, and design modification can also lead to a
significant variation in observed velocity relative to water speed
(Lee and Maximenko, 2025). Wind/wave effects can be identified
using a combination of geostrophic velocity from altimetry and
wind stress (Lumpkin et al., 2013). However, an important
implication of the PINN model not addressed in this study would
be the estimation of the contributions of each of the above
components through the calculation of the loss function as done
in Schmidt et al. (2024) and Limousin et al. (2025) to estimate the
separate effects of physical constraints. This approach would greatly
enhance the assimilation benefits of drifter velocities by selecting
the component to be assimilated. As shown by the extensive
literature on the application of PINN to resolve any flow
dynamics in various fields and Reynolds flow regime, there
appear to have less and less limitations with respect to the
resolution of complex flows, including highly variables flow such
as tidal currents (Zhang et al., 2024a).
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