? frontiers ‘ Frontiers in Marine Science

@ Check for updates

OPEN ACCESS

EDITED BY
Letitia (tish) Conway-Cranos,

Washington Department of Fish and Wildlife,
United States

REVIEWED BY

W. Judson Kenworthy,

Independent Researcher, Beaufort, NC,
United States

Nicole Knight,

University of British Columbia, Canada

*CORRESPONDENCE
Olivia J. Graham
ojgb@cornell.edu

PRESENT ADDRESS

Lillian R. Aoki,

Department of Environmental Studies,
University of Oregon, Eugene, OR,
United States

Morgan Eisenlord,

Shannon Point Marine Center, Western
Washington University, Anacortes, WA,
United States

RECEIVED 09 December 2024
ACCEPTED 10 September 2025
PUBLISHED 17 October 2025

CITATION

Graham OJ, Aoki LR, Rappazzo B, Eisenlord M
and Harvell CD (2025) Deeper eelgrass
meadows are refugia from disease and
environmental stressors.

Front. Mar. Sci. 12:1542488.

doi: 10.3389/fmars.2025.1542488

COPYRIGHT

© 2025 Graham, Aoki, Rappazzo, Eisenlord and
Harvell. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Marine Science

TYPE Brief Research Report
PUBLISHED 17 October 2025
po110.3389/fmars.2025.1542488

Deeper eelgrass meadows are
refugia from disease and
environmental stressors

Olivia J. Graham™, Lillian R. Aoki', Brendan Rappazzo?,
Morgan Eisenlord™ and C. Drew Harvell*

‘Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States,
2Department of Computer Science, Cornell University, Ithaca, NY, United States

Eelgrass (Zostera marina) creates valuable, biodiverse habitats worldwide, but is
at risk from combined environmental stressors and disease. We surveyed paired
intertidal and subtidal meadows for seagrass wasting disease in the San Juan
Islands, WA, USA in summers 2017-2019 to determine how disease varied with
depth, temperature, and salinity. We expected reduced disease in deeper
meadows with more stable environmental conditions compared to shallower,
intertidal meadows with greater thermal and salinity variation. Leveraging a
machine-learning algorithm to detect and quantify disease, we measured high
disease levels and large changes in meadow densities, particularly in the warmer
2018 summer. Daily mean in situ and remote-sensed temperatures captured
exposure to warming, though in situ temperatures better identified site-specific,
seasonal thermal ranges. Subtidal meadows experienced nearly 14°C cooler
maximum in situ temperatures compared to intertidal meadows. Disease
severity was 2.24 times greater in shallow, intertidal meadows compared to
deeper, subtidal meadows over the 3-year study and 1.39 times greater during
the 2018 warming. Thus, some subtidal meadows can serve as valuable refugia
against environmental and pathogenic stressors. Lower eelgrass densities were
also associated with increased severity, suggesting a link between disease and
meadow patchiness. Temperature and salinity were also key predictors of higher
disease: prevalence and maximum sea surface temperatures covaried, as did
severity and salinity range, suggesting these environmental factors may
differentially influence seagrass wasting disease risk and progression. Our work
highlights the value of both subtidal eelgrass meadows and sites with more stable
environmental conditions as refugia from multiple stressors, which should be
considered as differential drivers of disease.
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1 Introduction

Climate change is dramatically impacting life on land and in our
ocean, directly and via increased disease risk (Altizer et al., 2013).
These environmental impacts trigger biodiversity loss and prominent
changes to chemical and physical properties of coastal habitats,
particularly when they influence foundation species like seagrasses.
A temperate seagrass, eelgrass (Zostera marina) has declined both
globally and regionally due to multiple stressors (Dunic et al., 2021;
Graham et al,, 2024). Environmental stressors can interact with
climate-fueled pathogens (Burge and Hershberger, 2020), including
Labyrinthula zosterae, the protist that causes seagrass wasting disease.
Historic disease outbreaks in the 1930s ravaged eelgrass meadows
along the Atlantic coasts of the USA and Europe (Rasmussen, 1977).
Today, wasting disease continues to jeopardize the health of global
eelgrass meadows, particularly since environmental conditions like
warmer temperature favor L. zosterae.

As with other marine diseases (Harvell et al., 2002, 2019; Burge
and Hershberger, 2020; Vega Thurber et al., 2020), warmer
temperatures are associated with higher wasting disease
prevalence and severity in natural eelgrass meadows (Groner
et al., 2021; Aoki et al., 2022, 2023; Graham et al., 2023). Warmer
temperatures have also been shown to promote faster pathogen
growth in laboratory trials (Dawkins et al., 2018). Warming
temperatures likely influence not only pathogen virulence, but
also eelgrass resistance, as ocean warming has led to reduced
flowering and reproductive output (Qin et al., 2020) and survival
(Sawall et al., 2021; Berger et al.,, 2024). Recent experiments also
showed that a simulated marine heatwave reduced aboveground
eelgrass biomass among plants inoculated with L. zosterae (Egea
et al., 2024). Of course, other environmental conditions like depth
and salinity also influence seagrass wasting disease trajectories
(Jakobsson-Thor et al., 2018) and eelgrass health more generally
(Thom et al,, 2018). For example, acute salinity fluctuations can
stress eelgrass (Sola et al., 2020). Particularly for intertidal eelgrass
meadows exposed during mid-day low tides, desiccation is a major
environmental stressor, in addition to temperature and depth
(Thom et al., 2014). Thus, multiple environmental stressors likely
influence seagrass wasting disease trajectories and eelgrass health.

Eelgrass meadows are arguably the most important and best
represented nearshore habitat in the Salish Sea, the transboundary
waters spanning from British Columbia, Canada to Puget Sound,
Washington, USA. The San Juan Islands stand out as having both
high wasting disease levels and dramatic eelgrass declines (Groner
et al,, 2021; Aoki et al,, 2023; Graham et al., 2024), even among six
geographic regions spanning from Alaska to California (Aoki et al.,
2022). Further, drop camera surveys demonstrated that the San
Juans are anomalous statewide for rapid meadow declines over the
last 20 years (Christiaen et al., 2022). However, initial field surveys
indicated that deeper, subtidal meadows had lower disease levels
and may support eelgrass resilience to multiple stressors, perhaps as
refugia against climate and pathogenic stressors (Graham et al,
2023, 2024). Understanding how environmental stressors interact
with pathogens and influence the health and resilience of marine
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foundation species is critical to effectively monitoring and
conserving these habitats and the ecosystem services they provide.

Here, we aimed to test the following hypotheses: (i) Subtidal
meadows have lower disease prevalence and severity than adjacent
intertidal meadows. (ii) Exposure to thermal ranges varies between
adjacent intertidal and subtidal meadows, influencing their
susceptibility to disease. (iii) Decreased eelgrass densities are
associated with higher disease. (iv) Smaller temperature and
salinity ranges (i.e. more stable environmental conditions) are
associated with lower disease prevalence and severity because
greater environmental variability could physiologically stress
eelgrass more than stable environmental conditions. To address
these, we conducted wasting disease surveys in paired subtidal and
intertidal eelgrass meadows in the San Juan Islands, WA (July 2017-
2019); we also leveraged in situ and remote-sensed temperatures,
modeled salinities, disease (prevalence, severity), and eelgrass
biometric data (density, leaf area).

2 Materials and methods
2.1 Field surveys

Building on previous seagrass wasting disease work in the San
Juan Islands, WA, USA (Groner et al., 2014, 2016, 2021; Aoki et al.,
2022, 2023; Graham et al, 2023, 2024), we surveyed 5 sites
throughout the San Juans for disease, leaf area, and eelgrass
density. Each site had paired intertidal and subtidal meadows and
spanned a range of sea surface and in situ temperatures and salinities
(Figure 1). For each survey, we ran three, 20-m transects parallel to
shore at each depth, targeting the middle of each meadow to avoid
edge effects, such as differences in shoot densities (Harrison and
Durance, 1992). We collected eelgrass at low tide for intertidal
surveys and via snorkeling or SCUBA diving for subtidal surveys.
Using GPS coordinates, compass headings, and field markers, we
returned to the same transects each year. Intertidal meadows were
approximately +1 m and subtidal meadows varied from
approximately -5.0 to -9.8 m mean lower low water. We
standardized eelgrass collections for disease analyses to the third-
rank (third youngest) leaf on each shoot, as disease can vary with leaf
age (Graham et al,, 2021). To measure densities, we counted the total
number of eelgrass shoots in 0.25 m* quadrats along each transect.
We measured densities at 0, 10, and 20 m for all subtidal surveys
(n=9/site). For intertidal surveys, we measured densities at 5, 10, and
20 min 2017 and 2018 (n=9/site), and at 4, 8, 12, 16 m in 2019 (n=12/
site, 0.36 m> quadrat). In 2019, we shifted intertidal survey methods
to align with broader surveys beyond the San Juan Islands. Given that
the intertidal eelgrass was moving seaward at all sites, we had to move
all intertidal transects seaward (i.e. into the lower intertidal) in 2019.
Due to logistical constraints, no density measurements were made at
Fourth of July intertidal in 2018 nor subtidal in 2019. We also
collected 25 mL benthic seawater samples in Falcon tubes from each
site at 0 and 10 m (n=6/site) for single-point snapshots of salinity,
which we measured using a refractometer immediately after each
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(A) Map of intertidal and subtidal eelgrass eld sites in the San Juan Islands, Washington, USA, including: North Cove (NC), Beach Haven (BH), Indian

Cove (IC), False Bay (FB), and Fourth of July

(FB). The star on the left inset map indicates the mouth of the Fraser River, British Columbia, Canada.

Summer daily modeled salinities in (B) 2017, (C) 2018, and (D) 2019. Salinities used in models were restricted to June 1-Aug 31, 2017-2019. (Map

created using Google Earth Pro.).

survey. After collection, we transported all leaves in bags with
seawater on ice until processing in the lab.

2.2 Disease measurements

In lab, we scraped epiphytes from leaves before scanning at 600
dpi resolution with a Canon CanoScan LiDE 220 scanner. We then
analyzed all images using the Eelgrass Lesion Image Segmentation
Analyzer (EeLISA), a robust machine learning algorithm, for
precise disease and leaf area measurements (Rappazzo et al., 2021;
Aoki et al,, 2022; Graham et al., 2023). EeLISA measured disease
prevalence (presence/absence of disease) and severity (proportion
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infected leaf area) for each third-rank leaf. Based on leaf-level
prevalence, we calculated site-level mean prevalence (proportion
of infected leaves) and severity, which was calculated only from
infected leaves. Previous work confirmed the presence of L. zosterae
in eelgrass from these sites using molecular diagnostics (Groner
et al., 2021; Aoki et al.,, 2022).

2.3 Temperature data

To evaluate the linkages between disease and ocean
temperatures, we leveraged remote-sensed sea surface
temperatures and in situ temperature data. Remote-sensed
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temperatures can provide greater spatiotemporal resolution than in
situ temperatures and allow calculation of anomaly metrics but may
not capture fine-scale environmental conditions. By comparing
temperatures measured at multiple scales, we were able to better
evaluate exposure to warming and potentially stressful temperatures
in the intertidal meadows. Following previously published methods
(Aoki et al.,, 2022; Graham et al., 2023), we extracted remote-sensed,
daily sea surface temperatures for each site via the NASA Jet
Propulsion Laboratory OPeNDAP portal at 1-km spatial
resolution (JPL MUR MEaSUREs Project, 2015) for comparison
to in situ temperatures from HOBO TidBit temperature loggers. We
deployed 1-2 intertidal loggers at each site that continuously logged
temperature at 10-min intervals for the duration of the 3-year
surveys. Given the challenges with finding and recovering small
loggers in subtidal meadows, we deployed and recovered 1 subtidal
logger per site at the start and end of each field season. We had the
most complete set of in situ intertidal and subtidal temperatures
from June 22 - July 20, 2017-2019; this period covered roughly the
month prior to the field surveys and provided a snapshot of growing
season conditions. We did not have subtidal in situ temperatures for
Fourth of July (2017-2019) nor North Cove (2019), as we could not
recover these loggers. We calculated in situ daily temperature mean,
minimum, maximum, and range for each depth during the 4-week
period of interest across all 3 summers; we also calculated remote-
sensed daily temperature mean, minimum, maximum, and range
for each site during this timeframe. Subsequently, we compared
remote-sensed and in situ temperatures to see if they accurately
captured within- and between-site thermal variation. We included
temperature metrics in models of environmental and biotic drivers
of disease prevalence and severity, henceforth referred to as “disease
models” (described in the “statistical analyses” section below).

2.4 Salinity data

We utilized daily, modeled salinities for each site from the Salish
Sea LiveOcean Model, which has 500 m horizontal resolution for
most of the Salish Sea (Sobocinski, 2021; MacCready and Geyer,
2024). Ocean buoys off the Washington coast record in situ
environmental parameters like salinity, temperature, and oxygen.
The LiveOcean model integrates these measurements to provide 72-
hr projections of ocean conditions (Newton et al., 2021). In turn,
these robust data inform local and regional marine conservation
decisions, such as when to close coastal shellfish harvests due to
harmful algal blooms (Giddings et al., 2014; Barth et al.,, 2019). We
plotted and visually compared in situ and modeled salinities for
each sampling date to confirm modeled data accurately represented
nearshore salinities. Here, we calculated the maximum, minimum,
mean, and range of modeled salinities at each site from June 22-July
20 each summer to include in disease models. This report integrates
in situ and remote-sensed temperatures across depths, modeled sea
surface salinity, and field survey data for a more comprehensive
analysis of seagrass wasting disease stressors.
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2.5 Statistical analyses

We performed all statistical analyses in Rv. 4.4.1 (R Core Team,
2023) and visualized data using the packages ggplot, ggpubr, and
RcolorBrewer (Neuwirth, 2014; Wickham, 2016; Kassambara,
2020). We calculated site-level mean disease prevalence, severity,
and standard error using the Rmisc package (Hope, 2022). To
compare disease prevalence, severity, density, and in situ
temperatures (mean, max, range) between depths, we ran non-
parametric Wilcoxon tests. We ran non-parametric Kruskal-Wallis
tests to assess site and year differences in temperature and density
separately for subtidal and intertidal meadows. To determine if in
situ temperatures were associated with remote-sensed
temperatures, we ran a simple linear regression and visually
evaluated fitted versus residual plots.

To examine predictor relationships, we assessed collinearity with
the corrplot package (Wei and Simko, 2021) and visualized
correlations among temperature, salinity, eelgrass biometrics, and
disease metrics. Environmental parameters most strongly associated
with disease prevalence and severity included maximum remote-
sensed sea surface temperature, mean in situ temperature, modeled
minimum and range salinity (Supplementary Figure S1).

We used generalized linear mixed models (GLMMs, glmmTMB
package; Brooks et al., 2017) to evaluate predictors of leaf-level
disease prevalence (binomial) and severity (beta regression with
logit link). Predictors included year, temperature, salinity, density,
depth, and biologically relevant interactions like temperature and
leaf area, since eelgrass productivity is closely associated with
temperature; site and transect were random effects. In total, we
ran 84 candidate prevalence and severity models, respectively. We
centered and scaled all numeric predictors and excluded leaves
without density data from one meadow-year combination (Fourth
of July intertidal, 2018; n = 74). Severity analyses focused on
infected leaves using a hurdle model approach (Zuur et al., 2009);
we logit-transformed severity using a link logit function (Warton
and Hui, 2011), as the data were zero-skewed.

We selected the best-fit prevalence and severity models using
corrected Akaike information criterion (AICc, MuMIn package;
Barton, 2022). We assessed model diagnostic plots using the
DHARMa package (Hartig, 2021). For significant predictors, we
calculated the fixed effects variance (marginal R® performance
package; Ludecke, 2021) and estimated marginal means (emmeans
package; Lenth, 2021) to test for depth and year effects. For additional
details on candidate models, transformations, and full diagnostic
results, please see the Supplementary Materials.

3 Results
3.1 Eelgrass disease and density patterns

Disease prevalence and severity were significantly lower in
subtidal meadows than intertidal meadows (prevalence: W =
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please see Supplementary Table S2.

770209, p < 0.0001; severity: W = 876520, p < 0.0001; Figure 2;
Supplementary Table S1). Across three years, intertidal prevalence
averaged 79.58 + 1.09% SE, 1.39 times higher than in subtidal
prevalence (57.27 + 1.63% SE). Disease prevalence peaked in 2018,
especially in intertidal meadows (Figure 2), and remained
consistently high (>50%) across most sites, indicating widespread
disease (Figure 2; Supplementary Table S2).

Disease severity was also higher in intertidal eelgrass, averaging
15.06 + 0.52% SE compared to 6.72 + 0.51% SE in subtidal meadows
(2.2-times higher; Figure 2; Supplementary Table SI). Severity
peaked in 2018 alongside prevalence, with a stronger depth
contrast that year. Most sites had reduced severity in 2019, except
intertidal Beach Haven, which increased further (Supplementary
Table S2). Across all 3 years, the highest intertidal prevalence and
severity were at North Cove and Beach Haven, and the highest
subtidal disease was at North Cove and Fourth of July
(Supplementary Table S2).

Frontiers in Marine Science

Eelgrass density was nearly four times higher in intertidal meadows
(84.5 + 6.27 shoots/m?) than subtidal meadows (23.85 + 3.18; Figure 2;
Supplementary Table S1). Subtidal density varied by site but not year
(site: %*(4) = 38.40, p < 0.0001; year: %*(2) = 2.18, p = 0.34), while
intertidal density varied by both (site: % (4) = 14.31, p = 0.0064; year:
x*(2) = 34.58, p < 0.0001; Supplementary Table S2). False Bay and
North Cove had the highest intertidal densities, and False Bay had the
highest subtidal densities (Supplementary Table S2). Intertidal declines
in 2018 coincided with high severity, highlighting an inverse
relationship between density and disease.

3.2 Environmental characterization:
temperature and salinity

In situ temperatures captured precise thermal variation between
depths and reflected strong thermal buffering in subtidal meadows
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FIGURE 3

Eelgrass meadows in the San Juan Islands, WA experienced variable sea surface and in situ temperatures. Daily sea surface temperatures (blue,
dotted line) and daily mean in situ intertidal (red, solid line) and subtidal (green, dashed line) temperatures at eelgrass meadows in the San Juan
Islands, WA from June 22— July 20, (A) 2017, (B) 2018, and (C) 2019. Sites are arranged from north to south (top to bottom).

(Supplementary Figure S3). Across all years and sites, maximum in
situ subtidal temperatures were 14°C lower than intertidal maxima
(subtidal: 17.1°C, intertidal: 31°C; W = 110994, p < 0.0001;
Supplementary Table S1). Mean subtidal temperatures were also
significantly cooler than intertidal means (W = 104553, p < 0.0001);
intertidal meadows experienced a 13.9°C greater thermal range
(intertidal: 21.2°C, subtidal: 7.3°C; W = 107114, p < 0.0001;
Supplementary Figure S4). These patterns show the thermal
stability of subtidal meadows compared to extreme intertidal
warming during summertime low tides.
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Remote-sensed sea surface temperatures revealed fine-scale
within- and between-site variation and were generally warmer
than in situ temperatures (Figure 3), averaging 0.57°C above
intertidal and 1.04°C above subtidal temperatures (Supplementary
Table S1). Nonetheless, mean daily in situ and remote-sensed
temperatures were strongly correlated (R*> = 0.84, Supplementary
Figure S2; Supplementary Table S3). In contrast, temperature
ranges were not correlated between data sources (correlation
coefficient = -0.11, Supplementary Figure S1), highlighting the
importance of in situ monitoring for capturing local extremes.
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In situ temperature variation was also pronounced between
depths and across space and time (Supplementary Table S4). Mean
intertidal temperatures varied between sites and years (site: x(4) =
14.86, p = 0.005; year: X2 (2) = 55.90, p < 0.0001). Beach Haven
and Fourth of July had the warmest intertidal means (13.1°C and
12.93°C); Fourth of July experienced the highest maximum (31°C;
Supplementary Table S4). Similarly, subtidal in situ temperatures
varied by site and year (site: x2(3) =40.87, p < 0.0001; year: x2(2) =
11.42, p = 0.00331). Averaged across all sites, 2018 was the warmest
summer and 2019 was the coolest (Supplementary Tables S1, S4).

Salinity also reflected dramatic spatiotemporal variation (site:
(4) = 27326, p < 0.0001; year: x*(2) = 75.44, p < 0.0001;
Supplementary Figure S6; Supplementary Table S5). Northern
sites (North Cove and Beach Haven) exhibited the greatest
variability, with ranges of 13.5 and 11.8 parts per thousand (ppt),
respectively (Supplementary Table S1). Southern sites (Indian Cove,
False Bay, Fourth of July) were comparatively stable, with daily
ranges of 2.61-5.6 ppt. These differences were reflected in mean
salinities, which were lower in the north than in the south
(Supplementary Figure S5; Supplementary Tables S1, S2). Across
years, 2019 had the highest mean salinity (29.54 + 0.2 ppt)
compared to 2017 (27.34 + 0.25) and 2018 (27.99 + 0.25),
coinciding with cooler temperatures (Supplementary Table SI).
Minimum salinity and salinity range were strongly correlated
(Supplementary Figure S1), indicating both metrics reflected low
salinity conditions. Modeled salinities generally aligned with
salinity measurements from the field (Supplementary Figure S6).

3.3 Temperature x salinity x density models

Disease prevalence was significantly reduced in subtidal
meadows compared to intertidal meadows (f = -3.13, SE = 0.33,
p < 0.0001), and significantly increased with maximum remote-
sensed sea surface temperatures (Figure 4; 3 = 1.09, SE = 0.18, p <
0.0001) and leaf areas (8 = 0.81, SE = 0.099, p < 0.0001); prevalence
varied significantly between years. Fixed effects explained 43.1% of
the variance in disease prevalence (n = 1935 leaves; Supplementary
Figure S7; Supplementary Table S7).

Severity was significantly reduced in subtidal meadows (§ =
-1.27, SE = 0.18, p < 0.0001), positively associated with salinity
range (B = 0.42, SE =0.13, p = 0.0018), and inversely associated with
mean eelgrass densities ( = -0.14, SE = 0.063, p = 0.021); severity
also significantly varied between years. Fixed effects explained
30.5% of the variance in severity (n = 1351 leaves; Supplementary
Figure S8; Supplementary Table S9). The association between
eelgrass densities and severity was more prominent between
depths (Supplementary Figure S9). Variable salinities at North
Cove and Beach Haven also coincided with high disease levels;
both sites consistently had the highest intertidal disease prevalence
and severity across all 3 years (Figure 4; Supplementary Table S2).
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4 Discussion

With recent large eelgrass declines quantified in the relatively
pristine waters of the San Juan Islands (Aoki et al., 2023), this study
aimed to understand environmental drivers of disease and identify
possible refugia. Our parallel surveys of shallow, intertidal meadows
adjacent to deeper, subtidal ones allowed us to evaluate the
vulnerability of intertidal eelgrass and the potential of subtidal
habitats as refugia from pathogenic and environmental stressors.

4.1 Eelgrass disease and density patterns

Across 2,288 eelgrass leaves surveyed over three years, disease
prevalence and severity were consistently lower in subtidal than
intertidal meadows, supporting our first hypothesis and previous
findings of healthier, deeper eelgrass (Groner et al., 2014;
Jakobsson-Thor et al., 2018; Graham et al., 2023, 2024). In
intertidal meadows, we observed higher disease prevalence and
severity, warmer temperatures, and reduced eelgrass densities in
2018, followed by cooler temperatures, lower disease, and increased
densities in 2019. These patterns underscore links among warming,
disease, and eelgrass declines, highlighting the need to understand
climate impacts on eelgrass health and resilience.

4.2 Environmental characterization:
temperature and salinity

Mean daily in situ temperatures tracked remote-sensed
temperatures, but the former better captured fine-scale thermal
stressors, including air exposure at low tides. Higher disease
prevalence and severity in intertidal meadows supported our
second hypothesis that thermal exposure drives disease
susceptibility. Experimental work has also shown that warmer
temperatures intensify disease (ex: 11-fold increase in disease
severity and aboveground biomass loss; Egea et al., 2024).
Likewise, deeper meadows were more resilient to marine
heatwaves (Aoki et al, 2020) and meadows with tidal cooling
(adjacent to cooler ocean inlets) had higher densities and reduced
heat stress (Berger et al., 2024). Together, these findings
demonstrate temperature is a key driver of eelgrass health
and disease.

Modeled daily salinities were also linked to disease severity. The
broad salinity range (16.4-30.8 ppt) at northern sites likely reflects
Fraser River influence, which intensifies in summer with glacial
melt and carries high nutrient and sediment loads south into the
San Juan Islands (Yin et al., 1997). Incorporating modeled salinities
into our analyses strengthens evidence that freshwater inputs and
reduced salinity shape eelgrass disease risk.
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4.3 Temperature x salinity x density models

Our models identified maximum remote-sensed sea surface
temperature as a key predictor of disease prevalence, consistent
with prior work showing thermal stress increases eelgrass
susceptibility to L. zosterae and facilitates pathogen transmission
(Dawkins et al., 2018; Jakobsson-Thor et al., 2020; Groner et al.,
2021; Aoki et al., 2022, 2023; Graham et al., 2023). In contrast,
salinity range was a strong predictor of disease severity, suggesting
that variable salinity amplifies lesion development once infection is
established. Together, these results suggest a two-stage process: hot
ocean temperatures may trigger disease outbreaks, while salinity
variability could exacerbate disease severity. These findings
emphasize the need to consider multiple environmental stressors

Frontiers in Marine Science 08

that may differentially influence seagrass wasting disease risk
versus progression.

Maximum temperature and salinity range were important
predictors of disease, though both were highly correlated with
related metrics (temperature range and minimum salinity,
respectively). This collinearity made it difficult to fully disentangle
which specific metric drove disease patterns—maximum
temperature or temperature range, minimum salinity or salinity
range. Nonetheless, our analyses consistently pointed to two
stressors—ocean warming (heatwaves or temperature fluctuation)
and salinity fluctuations (freshwater pulses)—as central to meadow-
scale wasting disease.

The association between high disease severity and variable
salinities suggests that stable salinities may support healthier
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eelgrass. While eelgrass tolerates wide salinity ranges, fluctuations
can reduce growth and photosynthesis (Sola et al., 2020) and
seedling establishment (Xu et al., 2016). Salinity variability can
also interact with other stressors: river plumes can deliver nutrients
and sediments that reduce light availability. Low salinity combined
with high nutrients dramatically reduced eelgrass growth and
increased mortality in both mesocosm experiments (Villazan
et al, 2015) and biomass models for Puget Sound, WA (Thom
et al., 2018).

Intertidal meadows may be especially vulnerable, as their
shallower depth exposes them more directly to freshwater inputs
and other stressors (high temperatures, desiccation, wave
turbulence, runoff) than subtidal habitats. As with thermal
stressors, acute salinity fluctuations may affect eelgrass and L.
zosterae differently than chronic exposure, emphasizing the need
to consider the timing and duration of salinity stress (Sola et al.,
2020). Overall, salinity appears to be an important driver of disease
progression and should be incorporated into eelgrass site suitability
assessments for conservation and restoration in the Salish Sea
(Thom et al., 2018).

Unlike temperature, where links to wasting disease are well-
established, salinity-disease associations have been less consistent.
Danish eelgrass in brackish areas were less impacted by historic
disease outbreaks than coastal meadows (Rasmussen, 1977). Lab
and field studies reported smaller lesions and lower disease
prevalence at lower salinities (McKone and Tanner, 2009;
Jakobsson-Thor et al, 2018). Together, these reports indicate
salinity effects vary but should remain a focus in eelgrass stressor
assessments. A recent study also examined the impacts of estimated
minimum sea surface salinity on wasting disease prevalence in
Pacific and Atlantic Ocean eelgrass, but did not find a strong
association between salinity and disease prevalence (Schenk et
al,, 2025).

Eelgrass density was inversely associated with disease severity:
denser meadows had reduced disease severity. Though this
contrasts with disease ecology theory, which predicts that higher
density should increase transmission, it is aligns with prior
Northeast Pacific surveys (Graham et al., 2023). One explanation
is that high disease severity reduces clonal growth and kills shoots,
leaving patchier meadows with fewer, more infected plants.
Experimental work demonstrating disease reduced leaf growth
and belowground starch reserves (Graham et al., 2021) supports
the idea that disease impacts extend from individuals to
entire meadows.

Many (a)biotic conditions influence disease dynamics beyond
those captured here. For example, intertidal eelgrass in the
Northeast Pacific experiences desiccation stress during
summertime low tides (Aoki et al., 2023), and water currents
likely influence the spread of L. zosterae via seawater and direct
contact (Eisenlord et al., 2024). Our work highlights not only the
role of temperature and salinity on seagrass wasting disease
dynamics, but also the need to integrate diverse in situ, remote-
sensed, and modeled data. Tools like the Salish Sea Model provide
insights into how essential marine habitats respond to
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environmental changes and are especially important amidst
shifting ecological baselines. Pairing such models with eelgrass
health metrics could help identify more climate resilient sites
for protection.

This study underscores the lower risk of environmental and
disease stressors in deeper, subtidal meadows than intertidal ones.
Following a heatwave in 2021, intertidal meadows at Beach Haven,
Fourth of July, and Indian Cove declined by over 90%,
demonstrating their extreme vulnerability (Aoki et al., 2023).
Severe losses in the San Juan Islands (Aoki et al., 2023; Graham
et al., 2024) emphasize the need to prioritize factors that support
eelgrass resilience—like depth, light, and shoreline aspect—in future
management. Given the Salish Sea’s transboundary nature, effective
conservation requires sustained collaboration among agencies,
nonprofit organizations, tribes, universities, and others
(Sobocinski, 2021), similar to international efforts like the
Seagrass Consortium (Lilley, 2024).
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