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In the context of Industry 4.0, autonomous and data-driven manufacturing
processes are advancing rapidly, with wire arc additive manufacturing (WAAM)
emerging as a promising technique for producing large-scale metal components.
Ensuring quality control and part traceability in WAAM remains an area of active
research, as existing process monitoring systems often require operator
intervention and are tailored to specific machine setups and camera
configurations, limiting adaptability across industrial environments. This study
addresses these challenges by developing an angle-invariant melt pool analysis
pipeline capable of recognising bead features in wire-based directed energy
deposition from monitoring images captured using various camera qualities,
positions, and angles. A new benchmark dataset, WAAM-VID, is also introduced to
support future research. The proposed pipeline integrates two deep learning
models: Deeplabv3, fine-tuned through active learning for precise melt pool
segmentation (Dice similarity coefficient of 95.90%), and WAAM-ViDNet, a
regression-based multimodal model that predicts melt pool width using the
segmented images and camera calibration data, achieving 88.71% accuracy. The
results demonstrate the pipeline’s effectiveness in enabling real-time process
monitoring and control in WAAM, representing a step toward fully autonomous
and adaptable additive manufacturing systems.

KEYWORDS

wire arc additive manufacturing, melt pool, vision-based analysis, angle invariance,
deep learning

1 Introduction

With the rise of Industry 4.0 and recent technological advancements, additive
manufacturing (AM), commonly referred to as 3D printing, has gained significant
attention. This is largely due to its ability to produce customisable and complex parts at
a lower cost compared to traditional manufacturing methods (Dilberoglu et al., 2017;
Pereira et al., 2019). AM dates back to the 1960s, when it was first introduced as a rapid
prototyping technology (Wohlers et al, 2016). Unlike conventional subtractive
manufacturing methods, where a product is manufactured by drilling or milling away
materials (Esmaeilian et al., 2016), AM builds objects by printing materials layer-by-layer
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(Wong and Hernandez, 2012; Abdulhameed et al., 2019), allowing
for intricate designs and efficient material usage.

Among its various applications, the aerospace industry has been
a leading adopter of metal AM due to the ability to manufacture
complex, customisable components (Blakey-Milner et al., 2021;
Radhika et al., 2024). Metal AM can be categorised as follows
(Armstrong et al., 2022): metal extrusion, binder jetting, powder
bed fusion, and direct energy deposition, where powder bed fusion
(PBF) and direct energy deposition (DED) are most commonly
adopted in the aerospace industry (Uriondo et al., 2015). PBF-based
metal AM uses a laser as the heat source to selectively melt powdered
metal on a powder bed (Ladani and Sadeghilaridjani, 2021). In
contrast, DED-based methods typically use an electric arc, laser, or
electron beam to melt metal wire or powder, depositing the molten
material directly onto a substrate (Svetlizky et al., 2021). PBF-based
metal AM is more suitable for manufacturing small, complex
components due to its high precision, whereas DED-based
approaches are better suited for producing larger components
due to higher deposition rates (Uriondo et al., 2015).

In recent years, research on DED-based metal additive
manufacturing has grown significantly, particularly in wire arc
additive manufacturing (WAAM), formally classified under ISO/
ASTM 52900 as DED-Arc (Treutler and Wesling, 2021; ISO/ASTM
52900, 2021). WAAM leverages conventional welding techniques,
employing a plasma or electric arc torch as a heat source to melt
metal wire feedstock (Chen et al., 2024). This approach enables high
deposition rates, making it suitable for fabricating large-scale
components layer by layer. However, maintaining consistent bead
geometry remains a key challenge, as the deposition process is highly
sensitive to variations in process parameters (Srivastava et al., 2023).
For structural applications, continuous process monitoring and
quality assurance are essential to ensure dimensional accuracy
and build integrity, as process instabilities can lead to layer
misalignment and residual stress accumulation.

Defects in WAAM can be attributed to three primary factors:
material cleanliness, material reactions, and process instability.
Material cleanliness relates to the presence of impurities in the
feedstock wire, which may promote the formation of porosity and
other internal flaws. Material reactions describe the interaction
between the wire and the arc, where variations in cooling rate
and solidification behaviour can introduce porosity, cracking, and
microstructural irregularities. These internal defects are typically
challenging to detect during production and often require advanced
non-destructive  evaluation techniques such as computed
tomography imaging (Stavropoulos, 2023). Process instability, in
contrast, can often be observed in situ, providing a practical means
of monitoring potential defects. Instabilities, including humping,
machine suspension, overlapping, collapse, and spatter, can disrupt
uniform material deposition, resulting in a lack of fusion and
misalignment between successive layers (Stavropoulos et al., 2024;
Franke et al., 2025).

To address process instabilities, various real-time monitoring
strategies have been developed, utilising electrical (Li et al., 2022),
acoustic (Rahman et al,, 2024), and thermal (Baier et al., 2022)
signals for defect detection. Among these, vision-based monitoring
has emerged as a particularly promising approach, as evidenced by
Vision-based

the growing number of recent publications.

monitoring enables efficient, non-invasive continuous observation
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of the deposition process, ensuring traceability in quality control.
However, WAAM presents specific challenges for machine vision-
based systems: the intense illumination generated by the electric or
plasma arc often causes occlusion and image saturation, reducing
visibility of critical features. To address this, researchers have
explored the use of optical filters (Xia et al., 2022; Li et al., 2023)
and active cameras (Halisch et al., 2020; Franke et al., 2025) to
suppress glare and enhance image quality.

A key focus in vision-based WAAM monitoring is the
geometrical analysis of the melt pool, as the geometrical
properties directly reflect the quality of WAAM (Dong et al,
2024).
immediate detection of anomalies, reducing response time and

Real-time analysis of melt pool geometry enables
improving process control. Despite progress in this area, existing
methods often rely on specialised imaging hardware and fixed
viewing angles, which limit generalisability and robustness.
Moreover, the high cost of such equipment further reduces
adaptability in practical settings.

1.1 Related works

Real-time process monitoring is essential for mitigating defects
during WAAM, and a variety of sensing modalities have been
investigated to enable accurate defect detection. For instance, Li
et al. (2022) proposed a defect detection algorithm based on arc
current and voltage data, achieving an F1-score of 90%. The study
employed an incrementally trained support vector machine (SVM)
to detect melt pool shifts, which are indicative of layer misalignment.
Similarly, Rahman et al. (2024) utilised acoustic signal analysis to
monitor deposition quality continuously, while Baier et al. (2022)
demonstrated that interlayer temperature measurements could
defects, highlighting the
correlation between interlayer temperature dissipation and weld

effectively  identify  geometrical
bead geometry. Although thermal sensor-based monitoring can be

considered a vision-based approach, it introduces specific

challenges. Thermal cameras rely on the assumption of
blackbody emission, yet the emissivity of molten metal is
which

measurements. Consequently, thermal cameras are primarily

uncertain, complicates accurate temperature
useful for detecting easier boundaries, since arc glare has
minimal impact. However, high cost limits industrial applicability.

In contrast to electrical, acoustic, or thermal sensors, which
typically measure proxy signals, vision-based process monitoring
offers direct insight into process stability, geometrical features, and,
indirectly, melt pool temperature, providing a more interpretable
and informative sensing method. Tang et al. (2017) proposed a deep
learning-based approach for surface defect detection by capturing
visual data using a complementary metal-oxide-semiconductor
(CMOS) welding camera. The camera was positioned behind the
welding torch to minimise arc glare and obtain a clear top-down
view of the weld bead. Image features were extracted using a
convolutional neural network (CNN) and subsequently classified
into defect categories using an SVM model. This method achieved
an accuracy of 95.29%, accurately classifying five defect types,
including the normal welding state.

A similar camera setup was adopted by Li et al. (2023), where
surface defects were detected using YOLOv4 (Bochkovskiy et al.,

frontiersin.org


https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2025.1676365

Kim et al.

2020) with a modified DarkNet53 backbone. The authors
introduced a  novel  variation  of  the  original
DarkNet53 architecture proposed by Redmon and Farhadi (2018)
by incorporating a channel-wise attention mechanism, enhancing
feature representation. This modification, dubbed DarkNet53-
attention, improved detection accuracy, with the model achieving
a mean average precision of 94.5% for defect identification in
WAAM. Although this rear-mounted camera configuration
demonstrated high performance across both approaches, a key
limitation remains: the positioning behind the torch introduces a
detection delay, as defects are observed only after deposition.

To mitigate detection delays, several studies focused on visual
melt pool analysis. The geometrical characteristics of melt pools are
significantly influenced by WAAM process parameters (Srivastava
et al,, 2023); therefore, analysing the melt pool can serve as an
indicator for predicting potential defects during material deposition.
However, as the melt pools are located under the arc, glare from the
arc light introduces challenges during analysis. Lee et al. (2021)
proposed analysing three distinct regions of interest in the WAAM
process: (1) the wire feeder region, (2) the melt pool and arc region,
and (3) the weld bead immediately following the melt pool. Visual
data were acquired using a high dynamic range (HDR) camera
mounted on the side of the robotic arm. A pre-trained VGGNet
(Simonyan and Zisserman, 2014) was employed for abnormality
classification, achieving accuracies of 99.7% and 96.5% for the first
and third regions, respectively. However, no evidence of high
accuracy was reported for the second region, highlighting the
challenges associated with melt pool analysis.

Building on this, Xia et al. (2022) investigated several deep
learning models for defect classification by analysing melt pool
images captured using an HDR camera equipped with a 650 nm
central-wavelength filter. This filtering setup enabled the acquisition
of visual data while suppressing the intense arc light. Four deep
learning architectures were evaluated: GoogleNet (Szegedy et al.,
2015), VGGNet, ResNet (He et al., 2016), and EfficientNet (Tan and
Le, 2019). All models achieved classification accuracies above 97%,
with ResNet performing the best at 97.62%. The models were fine-
tuned to classify four defect types in WAAM: normal, humping,
pores, and machine suspend. Similarly, Zhang et al. (2023) examined
the application of VGGNet, EfficientNet, ResNet, and ResNeXt (Xie
et al., 2017) for classifying defects commonly observed during the
material layering process in WAAM, including overlapping,
collapse, and spatter. The WAAM process was monitored using a
charge-coupled device (CCD) camera equipped with filters in the
850-1,100 nm range. Among the models evaluated, the highest

achieved by the ResNeXt model (98.56%).
the output of the classification model was

accuracy was
Additionally,
integrated into an early-warning system to support real-time
process monitoring.

While these studies demonstrated the effectiveness of deep
learning applied to melt pool analysis as a promising approach
for process instability detection in WAAM, the investigation of
geometrical analysis was not addressed. Zhao et al. (2019) utilised
melt pool geometry as input features to monitor the stability of weld
speed in the WAAM process. Melt pool images were captured using
a CCD camera equipped with an 850 nm high-pass filter and a 10%
neutral dimmer film, effectively reducing glare from the arc light. A
segmentation algorithm proposed by Otsu (1975) was applied,
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followed by morphology-based post-processing and the Canny
edge detection algorithm (Canny, 1986) to extract the contour of
the segmentation mask. Geometrical properties of the melt pool
were derived from the contour curve and used as input features for a
k-nearest neighbour model to assess weld speed stability.
Furthermore, a multi-modal approach was adopted by integrating
spectral  analysis, which further enhanced the quality
monitoring process.

Halisch et al. (2020) performed a dimensional analysis of the
melt pool using a high-speed camera and an HDR two-colour
pyrometric camera equipped with a laser illumination source. To
isolate the melt pool region in the visual data, a thresholding
technique was applied. The melt pool dimensions were then
quantified by calibrating the pixel resolution to millimetres using
a reference ruler placed within the camera’s field of view. The
authors acknowledged several limitations in their study. One
significant constraint was the use of a fixed threshold value for
melt pool detection, which limits the generalisability and
adaptability of the method to other WAAM systems with varying
lighting conditions and process dynamics. Additionally, the study
did not compare the measured melt pool dimensions against a
physical ground truth, limiting the ability to assess the absolute
accuracy of the melt pool size measurements.

To achieve higher accuracy in dimensional analysis, Xiong et al.
(2020) proposed a 3D reconstruction-based method using a single
camera. The study introduced a virtual binocular system comprising
a single CCD camera equipped with a narrowband filter and a
biprism, enabling the capture of 3D geometrical properties in a 2D
image. The captured melt pool was then reconstructed into a 3D
scene using a novel machine learning-based reconstruction
algorithm developed by the authors. Dimensional measurements
were obtained by analysing the reconstructed melt pool, achieving a
diameter estimation error of 3.02%. While Xiong et al. (2020)
focused on precise dimensional reconstruction, Veiga et al.
(2022) proposed analysing the symmetry of the melt pool as an
alternative, eliminating the need to extract explicit dimensional
measurements. The proposed method was integrated into a real-
time process monitoring system, highlighting the effectiveness of
melt pool analysis.

Dong et al. (2024) achieved an accurate measurement of weld
pool dimensions with an error of 0.55%. A CMOS camera equipped
with a 670 nm narrowband filter, a 10% transmittance attenuator,
and an ultraviolet lens filter was used to capture the melt pool. The
segmentation was performed through thresholding, followed by
Canny edge detection to extract the contour, a method similar to
that introduced by Zhao et al. (2019). The geometrical dimensions
were then calculated by calibrating pixel measurements to physical
units, resulting in high accuracy in weld dimension estimation.

Despite demonstrated success in applying deep learning and
vision-based methods to WAAM process monitoring, several
limitations persist in the current body of research. Many studies
have concentrated on defect classification, while limited attention
has been given to the geometrical analysis of the melt pool during
deposition. Where geometry is considered, significant dependence is
placed on specialised image acquisition setups, with models typically
tested on the same configurations. This introduces bias into the
evaluation process and limits the adaptability of the system to
different This hardware

environments. dependence on
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configurations reduces the adaptability of such approaches, as
replicating exact camera placements across different WAAM
systems may not be feasible due to variations in machine design
and constraints. In addition, numerous studies have positioned the
camera at the rear of the system facing the melt pool, which restricts
the observable angle and complicates adaptation or integration into
alternative WAAM setups.

Furthermore, most approaches relied on threshold-based
segmentation and contour extraction, which are sensitive to
environmental variations such as inconsistent lighting and arc
interference. This limits the ability to generalise models across
with  different
orientations. Overall, a lack of research focusing on developing

systems sensor configurations and camera
an adaptable melt pool dimension analysis pipeline is present in
current literature, and the absence of publicly available datasets
further constrains the progress in process monitoring systems.
These challenges highlight the need for a robust, adaptable
vision-based analysis pipeline focused on melt pool dimensions,
supported by accessible datasets to facilitate reproducibility and

broader adoption.

1.2 Aims and objective

This study aims to address a key gap in the current literature: the
limited transferability and adaptability of existing process
different
configurations, and viewing conditions. This is achieved by

monitoring  systems  across machines, camera
presenting a novel, angle-invariant vision-based pipeline for
accurate melt pool dimensional analysis in WAAM. The main
objective is to develop a vision-based pipeline which achieves
state-of-the-art performance for melt pool segmentation while
achieving relative accuracy for melt pool analysis. In contrast to
existing methods, the proposed approach eliminates the need for
optical filters or active imaging equipment, improving adaptability
in standard WAAM environments. By facilitating practical
deployment without the reliance on specialised hardware, the
proposed method also contributes to reducing the overall setup
cost of WAAM systems.

An additional aim of the study is to improve data availability
and address the lack of benchmark datasets in the current
literature. The secondary objective of the study is to introduce
a new benchmark dataset, featuring melt pool recordings
captured from multiple camera orientations, to support the
development of more generalised vision-based analysis
techniques. The dataset includes recordings from both a
passive HDR camera and an active laser illumination camera,
enabling broader applicability across varied imaging conditions.
The benchmark dataset is intended to support and stimulate
further research into more robust and generalisable vision-based
melt pool analysis methods.

While the main objective of this study is to develop a vision-
based pipeline for angle-invariant melt pool dimension analysis. It is
important to note that the objective of this study is not to claim the
optimality of the proposed pipeline for process monitoring, nor to
benchmark its performance against existing melt pool analysis
approaches. Rather, the primary aim is to introduce a potential

pipeline for angle-invariant melt pool analysis, thereby encouraging
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TABLE 1 List of camera orientations and number of videos in WAAM-ViD.

Orientation Camera No. Videos
Top-backwards Xiris XVC-1000 20
CAVITAR C400-H 10
Top-central Xiris XVC-1000 20
CAVITAR C400-H 10
Top-forward Xiris XVC-1000 20
CAVITAR C400-H 10
Side-central Xiris XVC-1000 10
Side-forward Xiris XVC-1000 10

further exploration into enhancing the adaptability of process
monitoring systems.

The paper is structured as follows. Section 1 introduced the
background of AM systems and reviews the current state-of-the-art
in process monitoring for WAAM. In Section 2, a novel benchmark
dataset, WAAM-ViD, is presented for angle-invariant melt pool
dimension analysis in WAAM. Section 3 details the development of
an angle-invariant, vision-based pipeline for accurate melt pool
dimensional analysis. A new multi-modal deep learning model,
WAAM-ViDNet, is proposed for robust melt pool width
prediction and is integrated into the pipeline. In Section 4, a
comprehensive investigation is conducted into the impact of
various camera orientations on melt pool dimension analysis
performance, leading to the identification of the optimal camera
configuration. Concluding remarks are provided in Section 5, and a
segmentation assessment form for qualitative analysis is included in
the supplementary material.

2 WAAM-VID dataset

This section introduces a new benchmark dataset, dubbed Wire
Arc Additive Manufacturing Video Dataset (WAAM-ViD), and
outlines the data collection procedures. The dataset comprises
110 videos, each with an average duration of 26.5 s, captured at
25-30 frames per second (FPS). The videos were filmed using two
types of cameras at varying orientations with a passive HDR camera
(n = 80) and an active laser illumination camera (n = 30). Table 1
lists the number of videos filmed at each orientation. Additionally,
the dataset includes detailed metadata, such as the camera matrix,
distortion coefficients, rotation matrix, translation vector, presence
of external lighting, arc current, travel speed, and weld bead
dimensions.

The WAAM-ViD dataset has been made publicly available to
support and encourage further research on angle-invariant, vision-
based melt pool analysis in WAAM. It contains manually annotated
segmentation masks for each video frame used in the active learning
training process (as described in Section 3), formatted in the
standard COCO JSON structure for compatibility with widely
used computer vision frameworks. The fine-tuned parameters of
the deep learning models developed in this study are also included.
Metadata is provided in CSV format, and all video files are stored in
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TABLE 2 WAAM parameters used in the experiment.

Parameter Value

Shielding gas 100% Ar
Gas flow rate 8 L/min
Plasma gas flow rate 0.8 L/min
Travel speed 2.5-2.7 mm/s
Stand-off distance 8 mm

Wire material ER70S-6 steel

Wire height 1 mm
Wire diameter 1.2 mm
Wire feed speed 2 m/min
Arc current 200 A

MP4 format. This dataset is particularly suitable for benchmarking
semantic segmentation and angle-invariant melt pool analysis for
WAAM. The dataset can be accessed at: https://doi.org/10.57996/
cran.ceres-2763.

2.1 System setup

Data were collected using a computer numerical control (CNC)-
based WAAM system equipped with two weld pool monitoring
cameras: the Xiris XVC-1000 and the CAVITAR C400-H. The
experiments were conducted using plasma transferred arc
WAAM with ER70S-6 steel wire (& 1.2 mm). The plasma torch
was mounted on the CNC machine, and the full set of process
parameters is provided in Table 2, and Figure 1 presents the
system overview.

The Xiris XVC-1000 is a mono HDR CMOS camera capable of
imaging at 55 FPS with a resolution of 1280 x 1024 pixels. It features
a 6.8 um pixel size and a wide dynamic range exceeding 140 dB,
enabling effective imaging under high-intensity arc conditions.
While the Cavitar C400-H offers high-resolution imaging at
1440 x 1080 pixels and frame rates up to 100 FPS when using
integrated pulsed laser illumination. The built-in 645£10 nm
narrow-band laser suppresses arc light interference, significantly
enhancing melt pool visibility. The camera is optimised for a
200 mm working distance and offers around 40 mm x 30 mm
field of view at that range.
with  different
technologies and optical configurations, a dataset for a

By employing two cameras sensing
generalisable monitoring pipeline was developed. This setup
enabled the capture of a diverse image dataset under a broad
range of viewing angles, illumination conditions, and spatial
primary
orientations relative to the plasma torch and wire feeder: top-

resolutions. Cameras were positioned at five
backwards, top-central, top-forward, side-central, and side-
forward, as shown in Figure 2. Within each orientation, the
camera angle and distance were systematically varied to
further enrich the dataset and improve model robustness. In
addition, external lighting was introduced to simulate varying

ambient conditions and enhance the heterogeneity of the
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FIGURE 1

WAAM system setup. (a) Overview of the CNC-based WAAM

setup; (b) Xiris XVC-1000 weld pool monitoring camera; (c) CAVITAR
C400-H weld pool monitoring camera.

captured scenes, ensuring the models were trained and
validated under realistic and challenging conditions.

Weld bead dimensions were measured using the Micro-
Epsilon optoNCDT 2300-100 which
captured high-resolution 3D scans of the weld surfaces. The

laser profile sensor,

sensor operates with a 670 nm red laser (Class 2) and offers a
measuring range of 100 mm, a resolution of 1.5 ym, and a linearity
of + 20 ym. Point cloud data were extracted from these scans to
compute the weld bead dimensions in millimetres. The measured
widths were temporally aligned with each frame of the video,
allowing each frame to be associated with a corresponding

frontiersin.org


https://doi.org/10.57996/cran.ceres-2763
https://doi.org/10.57996/cran.ceres-2763
https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2025.1676365

Kim et al.

FIGURE 2
[llustration of camera orientations relative to the plasma torch

and wire feeder, along with a sample frame captured using the Xiris
XVC-1000. (a) Top-backwards; (b) Top-central; (c) Top-forward; (d)
Side-central; (e) Side-forward.

dimensional value in the metadata. This mapping enabled both the
training and validation of the proposed pipeline for vision-based
melt pool dimension analysis.
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2.2 Camera calibration data

To ensure consistent spatial measurements and image alignment
at varying camera orientations, camera calibration data were
extracted for each respective angle to account for perspective
variations. Camera calibration is a crucial process during data
curation to accurately map the 3D scene to the 2D digital image
(Remondino and Fraser, 2006; Qi et al.,, 2010). A 6 mm X 6 mm
checkerboard pattern and OpenCV library (Bradski, 2000) were
used for camera calibration, as illustrated in Figure 3. For images
with low resolution or limited focus areas, OpenCV’s automatic
corner detection occasionally failed, introducing bias into the
calibration results. To address this, a manual corner selection
method was implemented to improve detection reliability and
enhance calibration accuracy. During this process, the camera
matrix, distortion coefficients, rotation matrix, and translation
vector were extracted to enable precise analysis of melt pool
dimensions. The extracted data can be found as part of the
metadata in the WAAM-ViD dataset.

2.3 Data annotation

Training and testing data were annotated independently by two
raters, with final confirmation by a senior expert with over 10 years
of experience in additive manufacturing and WAAM. Segmentation
ground truth was generated using the RoboFlow software (Dwyer
et al, 2024), where the RoboFlow-v3 segmentation model
(Gallagher, 2023) was employed for initial annotations. The
resulting segmentation masks were then reviewed and manually
corrected to ensure accuracy. Frame-by-frame annotations were
made, where 3024 frames were annotated for training and
1650 frames for the testing dataset.

3 Methodology

The proposed methodology addresses a gap in the current
literature by introducing angle-invariant melt pool analysis,
designed for easier integration with other WAAM systems and
improved adaptability and generalisability. An overview of the
methodology is illustrated in Figure 4, where an active learning
paradigm was employed to train the segmentation model, mitigating
the challenge of limited labelled data.

Both the segmentation and dimension analysis models were
implemented using the Python programming language (Van
Rossum and Drake, 2009) and the PyTorch deep learning
framework (Paszke et al., 2019), and were trained on Intel Xeon
CPU cluster nodes and NVIDIA Tesla V100 GPUs. The Adam
optimiser (Kingma and Ba, 2014) was implemented for both models,
along with an early stopper mechanism to terminate training once
model convergence was detected, increasing computational
efficiency. To further enhance training efficiency, a decaying
learning rate (You et al, 2019) was implemented, where the
learning rate is reduced by a factor of 0.1 when the validation
loss does not improve for five epochs. Additionally, to mitigate
overfitting, model parameters such as weights and bias were only
saved when an improvement in validation loss was observed,
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FIGURE 3
Manual corner selection-based camera calibration approach.
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discarding any updates that negatively affected performance.
Additionally, L2-norm regularisation with a weight decay of
1 x 10~ was implemented for the dimension analysis model to
improve generalisation and training stability (Cortes et al., 2012). All
other hyperparameters not explicitly specified were kept at
PyTorch’s default values to ensure reproducibility.

An ablation study revealed that combining gamma correction
for image enhancement with Dice + BCE loss yielded the best
segmentation performance for the angle-invariant
DeepLabv3 model. WAAM-ViDNet was optimised using the
mean squared error (MSE) loss function (Yang et al., 2019; Jadon
et al., 2024). Initial learning rates of 1 x 107% and 1 x 107> was
implemented for the DeepLabv3 and WAAM-ViDNet models,
respectively. These values were selected based on observed
the
involving the DeepLabv3 model, the same initial learning rate

optimisation performance. For active learning cycles
was used at the start of each cycle and did not carry over from
the decayed learning rate of the previous cycle. A batch size of 32 was

used for both models; the effect of batch size on model performance
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was not investigated in this study. Furthermore, random seeding was
applied during model implementation to ensure consistency and
reproducibility throughout the study. The implemented codes can
be found at: https://github.com/IFRA-Cranfield/ WAAM-ViD.

3.1 Semantic segmentation

A deep learning-based semantic image segmentation approach
was implemented to accurately segment the melt pools at varying
angle orientations. For this study, the DeepLabv3 model with
ResNet-50 as the backbone was trained and deployed for
segmentation. Transfer learning and active learning paradigms
were adopted.

3.1.1 Data preprocessing

All videos were standardised to the MPEG-4 format (ISO/IEC,
2003) using the H.264 video codec (ITU-T, 2019). Additionally,
corrupted frames were identified and discarded during the encoding
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stage. The videos were resized to 256 x 256 pixels, and Equation 1
shows the Z-score normalisation applied to each pixel channel:

ixel —
Zpixel = u
o
_ ( pixel, — 0.485 pixel; — 0.456 pixel, — 0.406 1)
- 0229 0224 °  0.225 ’

where 4 and ¢ denote mean and standard deviation, respectively.
The normalisation parameters were set to the standard mean and
standard deviation values derived from the ImageNet dataset (Deng
et al, 2009), to ensure compatibility with the pre-trained
DeepLabv3 model. Furthermore, gamma reduction was applied
to enhance the image quality, as the ablation study has shown
that the gamma reduction increases the segmentation model
performance.

3.1.2 Data augmentation

To address the limited amount of labelled training data, data
augmentation techniques were employed to increase the dataset size
threefold using the RoboFlow software (Dwyer et al., 2024). Data
augmentation is commonly used in deep learning to increase the
dataset size and variability to tackle overfitting and aid model
generalisation (Alomar et al., 2023). Both geometric and
photometric transformations were applied to enhance data
diversity. These included random horizontal flips, rotations (+
45°), changes in saturation (+ 25%), brightness (+ 5%), and
exposure (+ 5%). Data augmentation has significantly improved
the size and variability of the training dataset.

3.1.3 DeeplLabv3

To achieve accurate semantic  segmentation, the
DeepLabv3 model (Chen et al., 2017b) was employed, using a
ResNet-50 backbone (He et al., 2016) pre-trained on the COCO
segmentation dataset (Lin et al., 2014). Introduced by Chen et al.
(2017b), DeepLabv3 builds upon earlier iterations of the DeepLab
model (Chen et al, 2014; 2017a), enhancing multi-scale feature
extraction through further improvements on atrous convolution
and the Atrous Spatial Pyramid Pooling (ASPP) module.

Unlike previous versions that relied on post-processing with
conditional random fields, DeepLabv3 eliminates this dependency
while improving segmentation accuracy. The model initially extracts
low-level features using ResNet-50, then refines them with atrous
convolution, followed by multi-scale sampling via ASPP. This allows
the model to accurately detect and segment regions of interest whilst

maintaining high-resolution features.

3.1.3.1 Atrous convolution

Atrous convolution, also known as dilated convolution, was
originally introduced by Holschneider et al. (1990) and later adapted
in DeepLab models (Chen et al., 2014; Chen et al., 2017a; Chen et al.,
2017b) for semantic segmentation tasks. The atrous convolution
allows for capturing high-level features without sacrificing the
spatial resolution of feature maps at denser layers of the model.
For 2D data with spatial dimensions H x W, the 1D atrous
convolution can be mathematically expressed as shown in
Equation 2 (Chen et al.,, 2017b):

Frontiers in Manufacturing Technology

10.3389/fmtec.2025.1676365

ylil = Y x[i+r- jlw[j], )
j

where y[i] denotes the output feature at location i, x is the input
feature map, w is the convolutional filter, and r is the atrous rate. In
DeepLabv3, cascaded atrous convolutions and a multi-grid strategy
are used to achieve multi-scale feature extraction. ASPP combines
multiple parallel atrous convolutions with spatial pyramid pooling,
enabling the model to effectively capture information at
different scales.

3.1.4 Ablation study

Ablation studies are widely used in deep learning to evaluate the
impact of individual components on overall model performance. In
this study, an ablation approach was employed to assess the effect of
various image enhancement techniques, elastic transformations, and
loss functions on the performance of the DeepLabv3 model. The
DeepLabv3 model was trained using a subset of labelled data from
cycle one, and different preprocessing and training configurations
were systematically tested. Based on the results from the ablation
study, the combination of gamma reduction and Dice Binary Cross-
Entropy loss was selected for integration into the active
learning pipeline.

3.1.4.1 Image enhancement and transformation

Four different image enhancement techniques were evaluated:
gamma correction (Guan et al, 2009), image sharpening
(Schavemaker et al., 2000), HDR filter (Lim et al., 2007), and
contrast-limited adaptive histogram equalisation (CLAHE) (Pizer
et al, 1990). All enhancements were implemented using the
OpenCV library (Bradski, 2000), while elastic transformations
were applied using the Albumentations library (Buslaev et al.,
2020), both on the original and enhanced images.

3.1.4.2 Loss function

The effect of two loss functions, Dice loss (Lpi.) and a
combined Dice + Binary Cross-Entropy loss (Lpicerpce), on
model optimisation was investigated. The Dice loss computes the
overlap between the predicted segmentation mask and the ground
truth (Ma et al., 2021), as defined in Equation 3:

|PM n GT]|

Lpie (PM,GT)=1-2 —————
ie ) [PM]| + |GT]

€)
where GT' denotes the ground truth mask, and PM denotes the
predicted mask. Dice loss ranges from 0 to 1, where 0 represents a
perfect overlap between the predicted mask and ground truth, and
1 represents no overlapping regions. Such a characteristic makes it
ideal for optimising binary semantic segmentation tasks.

As shown in Equation 4, the Binary Cross-Entropy (BCE) loss
compares the predicted and ground truth probability distributions
(Jadon, 2020)

Lyce (PM,GT) = —[GT - log(PM) + (1 - GT) - log (1 — PM)].
(4)

The combined loss function, defined in Equation 5, balances region-
based and probability-based optimisation:
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Lpicersce (PM, GT) = 0.5 - Lpice (PM, GT) + 0.5 - Lycg (PM, GT).
(5)

This combination allows the model to be optimised both for spatial
overlap and pixel-level classification accuracy.

3.1.5 Active learning

Active learning is a training paradigm in which a model is
initially trained on limited labelled data and evaluated using a pool
of unlabelled data. Samples with the highest uncertainty or lowest
accuracy are selected for annotation, which is used to retrain the
model using the expanded dataset. This cycle is repeated iteratively
until the model reaches a satisfactory performance or model
convergence. By allowing the model to prioritise the most
relevant annotation samples, active learning improves training
efficiency and reduces annotation costs, as only a portion of the
data requires manual labelling (Wu et al., 2022). In this study, the
active learning paradigm was adapted, where the DeepLabv3 model
was trained on the initial training dataset and further fine-tuned
with samples with low accuracy and high uncertainty.

Videos with the lowest accuracy were selected through rigorous
qualitative and quantitative evaluations. For qualitative assessment,
segmented melt pools were visually inspected, where a structured
assessment form was developed (see Supplementary Material) to
conduct consistent visual inspection. The assessment form has five
criteria, with each criterion rated on a scale from one (poor) to five
(excellent). To mitigate potential bias, four independent raters
conducted the assessments, and an average score was computed.
Camera orientations corresponding to high average entropy and low
qualitative assessment scores were prioritised, and videos captured
from these viewpoints were selected for annotation in subsequent
training cycles.

Quantitative uncertainty was estimated using the average
entropy calculated per video. By adapting the approach proposed
by Shaar et al. (2024), Shannon entropy (Shannon, 1948) was used to
measure segmentation uncertainty, where higher entropy values
indicate greater uncertainty. The Shannon entropy, defined in
Equation 6, measures the uncertainty in the predicted mask:

H(PM) =~ ) p(x)logp(x), (6)

xePM

where p(x) is the probability distribution over the predicted mask.
The DeepLabv3 model was trained up to the fifth cycle of active
learning to ensure that the model’s performance had reached the
optimal point. To assess the model’s performance after each cycle,
the computed uncertainty in each video was utilised. As training
progressed, the model’s uncertainty began to increase in the fifth
cycle, indicating that the model may have begun overfitting.
Training was terminated, and the model parameters from the
fourth cycle, which exhibited the best performance, were selected
for final evaluation. These parameters were then integrated into the
angle-invariant melt pool dimension analysis pipeline.

3.1.6 Post-processing

To further enhance segmentation accuracy, post-processing was
applied to reduce noise in the predicted masks. The primary
objective was the suppression of unintended segmentation of
other weld beads within the frame whilst retaining the actual
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FIGURE 5
Weld beads with spatter, red circle indicates spatters that

introduced errors during width measurement.

melt pool beneath the plasma torch. A method adapted from
Kim et al. (2024) is implemented, which retains the largest
connected segmentation mask and removes any small, floating
masks that are likely to be noise. This noise reduction method is
an adaptation of the open-area filter introduced by Salembier et al.
(1998), allowing for the production of a clean and accurate
melt pool mask.

3.2 Dimension analysis

3.2.1 Data preprocessing

Consistent with common practice in weld geometry analysis
(Veiga et al., 2021; Veiga et al., 2022), the start and end regions of the
weld beads were excluded from the analysis due to significant
variability in weld dimensions. Additionally, since ground truth
values were obtained after the WAAM process, measurement errors
were introduced due to spatters around the substrate, as illustrated
in Figure 5. To prevent potential bias, data affected by these
measurement errors were excluded from the analysis.
Additionally, input frames were resized to a dimension of

128 x 128 pixels.

3.2.2 Network architecture and design evaluation

A regression-based deep learning model, WAAM-ViDNet, is
proposed for angle-invariant melt pool dimension analysis.
WAAM-ViDNet integrates AlexNet (Krizhevsky et al., 2012) as
its backbone and is designed as a multi-modal architecture that
predicts melt pool width based on two input features: (1) a
segmented melt pool image, and (2) camera calibration metadata.
AlexNet was selected as the feature extractor due to its proven
effectiveness and widespread adoption in image analysis tasks (Ding
et al., 2018; Barbhuiya et al., 2021; Akbar et al., 2022; Sarkar et al.,
2023), as well as its lightweight structure compared to more recent
state-of-the-art vision models.

As illustrated in Figure 6, features are extracted from the
segmented melt pool via AlexNet and concatenated with
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FIGURE 6
An overview of the WAAM-ViDNet architecture.
TABLE 3 Ablation study of WAAM-ViDNet architecture variants.
Model No. FC layers Hidden layer dimension
WAAM-ViDNet vl 5 2330 — 4 x 4660 — 1
WAAM-ViDNet v2 5 2330 — 4660 — 2330 — 1165 — 582 — 1
WAAM-ViDNet v3 4 2330 — 3 x 4660 — 1
WAAM-ViDNet v4 5 2330 — 4660 — 2 x 9320 — 4660 — 1
WAAM-ViDNet v5 6 2330 — 5 x 4660 — 1
calibration metadata obtained in Section 3.2. This combined feature =~ (DSC), precision, and recall. The DSC computes the

vector is passed through a series of fully connected layers, structured
as a regression pipeline, to predict melt pool width. Since the model
outputs continuous values, digits beyond the first decimal place are
discarded to reduce floating-point inconsistencies and align with the
ground truth precision.

the
dimensional analysis, five different artificial neural network

To determine optimal network configuration for
architectures were implemented and evaluated, as shown in
Table 3. All candidate models were trained using the same
datasets and under identical training procedures to ensure a fair
comparison. Based on the evaluation results, the optimal WAAM-
ViDNet configuration was selected.

The final architecture consists of five fully connected (FC) layers
following the input layer. The input vector has a dimension of
1 x 2330, representing the concatenated feature set. The hidden
layers progressively decrease in size: 1 x 4660, 1 x 2330, 1 x 1165,
and 1 x 582. The output layer consists of a single node for
continuous melt pool width prediction. This configuration
demonstrated the best performance in the design evaluation

study and was used in all subsequent experiments.

4 Results and discussion
4.1 Semantic segmentation
The performance of the DeepLabv3 model was computed

using three region-based metrics: Dice similarity coefficient
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percentage of the overlapping region between the predicted
mask and the ground truth (Dice, 1945). The DSC, defined in
Equation 7, quantifies the overlap between the predicted and
ground truth masks:

|PM N GT)|
———— x 100

DSC% =2- §
% |PM| + |GT|

7)
where 100% indicates perfect overlap between the predicted mask
and ground truth. The rate of over- and under-segmentation was
computed using the Precision and Recall metrics (Zhang et al,
2015). The region-based Precision and Recall, defined in Equations
8,9, quantify the accuracy and quality of the predicted segmentation,

respectively:
PM N GT
Precision% = W x 100, (8)
GT n PM
Recall% = % x 100. 9)

4.1.1 Ablation study

Table 4 presents a performance comparison of different
enhancement methods and loss functions, as described in
Section 3.1.4. The configuration combining gamma correction
with the Dice BCE loss function achieved the highest DSC and
recall, indicating superior segmentation performance and
reduced under-segmentation. Although the highest precision
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TABLE 4 Performance comparison of image enhancement methods and loss functions for ablation study.

Enhancement method and loss function DSC (%) Precision (%) Recall (%)
Original Image W Lpjce 88.05 92.12 86.92
Original Image W Lpicesce 86.87 92.10 84.18
Original Image + Elastic Transformation w Lpjce 88.74 91.52 88.02
Original Image + Elastic Transformation W Lpicepce 86.63 91.63 84.43
Gamma Correction W Lpjce 87.78 92.05 85.87
Gamma Correction W Lpjcepce 89.09 91.75 88.35
Gamma Correction + Elastic Transformation w Lpjce 87.33 91.26 85.83
Gamma Correction + Elastic Transformation w Lpicesce 87.50 92.00 85.58
Sharpening w Lpjce 87.93 90.67 87.36
Sharpening W Lpicepce 87.28 92.70 84.77
Sharpening + Elastic Transformation w Lpjce 88.38 91.13 87.76
Sharpening + Elastic Transformation W Lpjcesce 87.04 91.78 85.00
HDR w Lpjce 85.64 91.25 83.18
HDR W Lpjcence 84.87 93.16 80.89
HDR + Elastic Transformation w Lp;ce 86.25 92.48 83.31
HDR + Elastic Transformation w LpjcepcE 85.87 92.16 8291
CLAHE w Lpjce 86.61 91.51 84.68
CLAHE w Lpjicepce 87.31 91.49 85.75
CLAHE + Elastic Transformation w Lpjce 87.79 90.98 86.92
CLAHE + Elastic Transformation w Lpjcepce 87.40 92.22 85.17

The highest performance values are highlighted in bold.

was observed with the sharpening and Dice loss combination, its
lower DSC and recall suggest overall inferior segmentation
performance. Therefore, the gamma correction, combined with
the Dice BCE loss, was identified as the most effective
configuration. The configuration was implemented and fine-
tuned via active learning for melt pool segmentation.

4.1.2 Model convergence analysis

Model convergence during active learning was monitored
through the computation of Shannon entropy (Shannon, 1948),
which was used to estimate uncertainty in the predicted
segmentation masks, as described in Section 3.1.5. Each active
learning cycle was also subject to early termination when no
improvement in validation loss was observed, as outlined in
Section 3. Figure 7a shows the training and validation loss
curves across five active learning cycles. As illustrated, a new
cycle was initiated when the validation loss plateaued. At the start
of cycle four, both training and validation losses exhibited a sharp
increase, and the validation loss plateaued at a higher value than
in previous cycles. This behaviour suggests that the newly added
data in cycle four introduced novel features or distributions not
present in earlier cycles, allowing the model to learn from a more
diverse dataset. The sudden decrease in loss after the first epoch
may indicate that the initial batch contained particularly novel
features or that the model rapidly adapted to the new data by

Frontiers in Manufacturing Technology

11

leveraging transfer learning and active learning mechanisms. No
further analysis was conducted on this behaviour as it was not the
focus of this study.

To further analyse convergence and model generalisation, the
mean Shannon entropy was computed for each unlabelled video and
visualised as box plots in Figure 7b. Due to the limited availability of
labelled data, uncertainty in the predicted mask was quantified.
Although performance could have been evaluated on the test dataset
after each cycle, this approach was avoided to prevent bias, as
repeated evaluation could lead to fine-tuning the model to a
specific subset of data and reduce generalisability. The lowest
median entropy was observed in cycle four, suggesting improved
model confidence. While the rise in entropy during cycle five implies
potential overfitting and reduced generalisation. Based on this
observation, the active learning process was terminated after the
fifth cycle, and the model parameters from the fourth cycle were
selected for integration into the melt pool dimension
analysis pipeline.

4.1.3 Performance analysis

The DeepLabv3 model achieved state-of-the-art performance
in melt pool segmentation, with a median DSC of 95.90%.
Figure 8 presents a box plot illustrating the model’s
performance in percentage terms. While post-processing

slightly improved the segmentation results, the improvement
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(a) Training loss across active learning cycles. (b) Uncertainty (Shannon entropy) distribution in the unlabelled pool.

was not statistically significant, indicating that the model already
performs at a high level without additional refinement. In
post-processing  helped the
predicted masks, leading to a 0.09% increase in precision,

particular, reduce noise in
while recall remained unchanged. This increase in precision
suggests a slight tendency toward under-segmentation.

To further assess the model’s performance, a qualitative analysis
was conducted. Figure 9a shows 25 randomly selected frames with
the predicted segmentation masks with post-processing overlaid,
while the corresponding uncertainty maps of the predicted masks

are presented in Figure 9b. Yellow and red arrows indicate regions of

over- and under-segmentation, respectively. Although the
quantitative analysis suggested a tendency toward under-
segmentation based on higher precision, the qualitative
evaluation revealed more frequent instances of over-

segmentation. This discrepancy may indicate potential bias or
inaccuracies in the ground truth segmentation, leading to
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conflicting interpretations between quantitative metrics and visual
observations.

In this study, manually segmented masks were defined as the
ground truth; however, such annotations are inherently prone to
inter- and intra-rater variability (Deeley et al., 2011; Cardenas et al.,
2019). To mitigate bias, two raters independently annotated the
dataset as described in Section 2.3. However, due to the ambiguous
boundaries of the melt pool, annotation errors may have occurred
from both raters. The discrepancy between the qualitative and
quantitative analyses suggests that the ground truth includes
instances of over-segmentation. Errors presented in the ground
truth have likely contributed to the observed over-segmentation
in visual assessments, despite the high precision score reported in
the quantitative evaluation. The segmentation errors identified
during the visual assessment were minor and often difficult to
detect. This further highlights the challenges in annotating melt
pool boundaries.
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Box plot of the DeeplLabv3 performance with and without post-processing.

Figure 9b illustrates the correlation between model uncertainty
and segmentation errors, showing that all observed segmentation
errors occurred in regions of high uncertainty. In contrast, no
correlation was observed between model uncertainty and camera
position, suggesting that the developed DeepLabv3 model is robust
to variations in camera angle. This also indicates that the
combination of qualitative and quantitative assessments during
the active learning procedure helped mitigate bias in the training
data. Such generalisation is critical for the industrial integration of
the developed pipeline, as it enables consistent melt pool detection
and segmentation regardless of camera configuration.

Notably, high uncertainty is consistently observed around the
melt pool boundaries. While some frames exhibited elevated
uncertainty in other regions, these potential errors were
effectively mitigated through post-processing, which retained only
the largest connected component in each mask. This reduced the
noise caused by wuncertain predictions in irrelevant areas.
Additionally, segmentation errors were confined to regions with
high intensity of high entropy. This suggests that the intensity and
spatial distribution of uncertainty can be analysed to develop a post-
processing algorithm to address over- and under-segmentation. For
instance, entropy-based region suppression or enhancement could
be implemented to selectively refine uncertain regions while
preserving accurate segmentations.

Additionally, while obstructions from the wire feeder and
plasma torch did not affect the melt pool segmentation quality in
this study, previous work has shown the advantages of segmenting
multiple components. For example, Feng et al. (2025) successfully
segmented the wire, arc, and melt pool in WAAM videos using a
visual large model, enabling more detailed analysis of interactions
and improved interpretability in complex or occluded scenes. In this
study, the focus was solely on melt pool analysis, and the model was
deliberately kept simple by performing only binary semantic
Nonetheless,

segmentation. incorporating  multi-component
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segmentation could provide additional insights and represents a
promising direction for future work.

Overall, the deep learning-based approach demonstrated robust
segmentation across different camera orientations and lighting
conditions, achieving a median DSC of 95.90%, effectively
addressing key limitations highlighted in previous studies (Zhao
et al., 2019; Halisch et al,, 2020; Dong et al., 2024) as discussed in
Section 1.1. These results underscore the model’s potential for angle-
invariant melt pool analysis, where accurate localisation is critical.
The results also highlight the effectiveness of the active learning
paradigm for fine-tuning a deep learning model with limited
annotated data. Furthermore, the segmented melt pools served as
input features for WAAM-ViDNet in subsequent dimension
analysis tasks.

4.2 Dimension analysis

The performance of WAAM-ViDNet for dimension analysis
was evaluated using root mean square error (RMSE) and the
Student’s t-test. RMSE was used to quantify the magnitude of
prediction error, as it penalises larger deviations more heavily
(Hodson, 2022). This metric was selected because minimising
both the average and large individual errors is critical for
accurate width prediction. The RMSE and the corresponding
percentage error, defined in Equations 10, 11, quantify the
prediction accuracy of the melt pool width:

1
RMSE = 4|— Z (w; — ;)%
N ieN

where N is the number of the data samples, w denotes the measured

(10)

melt pool width, and @ denotes the predicted width. The percentage
error is computed based on RMSE:
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FIGURE 9
(Continued).

_ RMSE

€ x 100, (11)

where p denotes the mean of ground truth values.

4.2.1 Model evaluation

A novel multi-modal deep learning model, WAAM-ViDNet,
was proposed and evaluated for angle-invariant melt pool analysis.
During the evaluation, to reduce bias and errors introduced by the
ground truth values, the start and end regions of the melt pools were

Frontiers in Manufacturing Technology

omitted from the analysis, following the approach used by Veiga
etal. (2021) and Veiga et al. (2022). The omission of the start region
was due to the difficulty of accurately measuring the melt pool
dimensions at the beginning of the process. As Zhao et al. (2019)
have noted, it is well known that the melt pool dimension increases
at the start of the process. In this study, since the weld bead
dimensions were obtained only after the WAAM process, it was
not feasible to capture the dynamic changes in melt pool dimensions
during the initial phase. As a result, reliable ground truth values for
this period were unavailable, and the initial region was excluded
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(Continued). (@) Segmentation results. (b) Uncertainty maps overlaid on the segmentation. Yellow and red arrows indicate regions of over- and

under-segmentation

from analysis. Additionally, the end region of the weld bead was
excluded as the width of the bead tip had no significant effect on the
melt pool dimensions, thus introducing bias.

Table 5 presents a performance comparison of different model
architectures as defined in Section 3.2.2. The highest performance
was exhibited by WAAM-ViDNet v5, with an error rate of 10.60%,
while WAAM-ViDNet v2 had the second-lowest error of 11.29%.
Despite WAAM-ViDNet v5 showing the best performance, the
difference of only 0.69% in error rate between WAAM-ViDNet
v5 and v2 is relatively minor. As a result, WAAM-ViDNet v2 was
selected for integration into the angle-invariant melt pool analysis
pipeline due to the model’s lightweight nature. While high

Frontiers in Manufacturing Technology

15

performance is desirable, integrating WAAM-ViDNet v5 into the
pipeline would increase the computational burden, reducing its
feasibility for real-time process monitoring. Given that the
proposed pipeline integrates two deep learning models,
optimising the system for computational efficiency is crucial.
Therefore, the WAAM-ViDNet v2 architecture was integrated,
despite the slight sacrifice in performance.

The performance of the WAAM-ViD v2 model varied across
different camera orientations, as presented in Table 6. Although the
WAAM-ViD v2 model achieved comparable accuracy across all
camera orientations, prediction errors ranged between 9.43% and
13.23%. The most optimal performance was observed with the HDR
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TABLE 5 Evaluation of WAAM-ViDNet architecture variants.

Model No. Parameters RMSE (mm) Error (%)
WAAM-ViDNet vl 137.13 M 0.99 11.48
WAAM-ViDNet v2 86.22 M 0.97 1129
WAAM-ViDNet v3 11541 M 0.98 1134
WAAM-ViDNet v4 24572 M 0.98 1139
WAAM-ViDNet v5 158.85 M 0.91 10.60

The lowest model parameter and error values are highlighted in bold.

Xiris XVC-1000 camera in the top-forward orientation, while the
worst performance was observed with the HDR Xiris XVC-1000
in the
performance may be attributed to the imbalanced distribution of

camera side-forward orientation. The variation in
data across camera orientations, as shown in Table 1, with the two
lowest-performing orientations corresponding to those with
the least data.

While the overall accuracy of 88.71% is worse than those
reported in the current state-of-the-art, where Xiong et al. (2020)
achieved an error of 3.02% and Dong et al. (2024) reported an error
of 0.55%. These studies focused on single, optimally positioned
camera setups that captured the entire melt pool from a top-down
perspective. Such configurations facilitated analysis by providing a
complete, unobstructed view of the melt pool geometry. In contrast,
the data analysed in this study involved occlusions due to varied
camera orientations. Therefore, despite the lower comparative
accuracy, the performance remains relatively strong given the
increased complexity introduced by multi-angle video input. To
the authors’ knowledge, this is the first study to evaluate melt pool
analysis using multiple camera viewpoints, which inherently
introduces greater variability and presents a more challenging
learning task.

4.3 Limitations and future works

While the proposed angle-invariant melt pool analysis pipeline
demonstrates relatively high accuracy, several limitations should be
acknowledged. One such limitation stems from the segmentation
model, where errors such as over- and under-segmentation were
identified. These errors could potentially be addressed through an
entropy-based post-processing approach, as discussed.

Another limitation lies in the current post-processing approach.
In this study, the method implemented by Kim et al. (2024) was
used, which incorporates an open-area filter (Salembier et al., 1998).
However, the open-area filter retains only the largest connected
segmentation mask, which carries the risk of an unintended
segmentation having a larger area than the actual melt pool. This
could result in the suppression of the desired segmentation mask.
Therefore, further investigation into post-processing methods for
the model is highly recommended.

Additionally, one of the major limitations of the study is the lack
of investigation into real-time process monitoring. While the
proposed pipeline demonstrated an overall inference time of
0.014 s per frame for both segmentation and width prediction,
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TABLE 6 List of camera orientations and number of videos in WAAM-ViD.

Orientation Camera RMSE (mm)  Error (%)
Top-backward Xiris XVC-1000 0.92 10.29
CAVITAR C400-H 0.98 12.11
Top-central Xiris XVC-1000 1.06 12.94
CAVITAR C400-H 1.10 11.74
Top-forward Xiris XVC-1000 0.83 9.43
CAVITAR C400-H 0.89 11.56
Side-central Xiris XVC-1000 1.17 13.03
Side-forward Xiris XVC-1000 1.27 13.23

The lowest error values are highlighted in bold.

this performance was observed when deployed on an Nvidia RTX
4070 Ti Super GPU with 16 GB of video RAM. The inference time is
expected to increase when deployed on devices with lower
computational power, such as CPUs or embedded systems.
Therefore, further necessary to improve the
computational efficiency of the model. Lightweight segmentation

research is

models, such as TinySegformer (Zhang and Lv, 2024) or Lightm-
Unet (Liao et al.,, 2024), could be considered for implementation.
Additionally, the WAAM-ViDNet model should be further fine-
tuned, with an emphasis on reducing computational cost while
maintaining or improving performance.

Finally, the inclusion of additional data simulating WAAM
defects, such as humping, would substantially enhance the
WAAM-VIiD dataset. At present, the dataset comprises only
videos of WAAM conducted under normal operating conditions,
which restricts variability in melt pool dimensions. Further
limitations  stem from the single-system, single-alloy
configuration employed during data collection; however, this
constraint is less consequential for the present study, as the
methodology focuses on melt pool segmentation and width
prediction, which are largely independent of material or machine
specifications. Nevertheless, the incorporation of additional data
encompassing varying melt pool dimensions, diverse WAAM
systems, and different alloys would serve to increase dataset
diversity, mitigate potential data imbalance, and improve the

generalisability of models trained on this dataset.

4.4 Industry implications

While the proposed pipeline demonstrates promising results
and strong potential for enhancing the generalisability of process
monitoring systems, the acknowledged limitations must be
addressed. This study introduced a novel monitoring approach
designed for adaptability and integration into existing WAAM
setups. Although the developed models accurately predict melt
pool dimensions, certain camera configurations hinder visual
verification by human operators, which may reduce trust and
limit practical deployment.

As the industry progresses toward Industry 5.0, explainability
essential for effective

and trustworthiness are becoming
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human-machine collaboration, enabling operators to shift their
focus to higher-level decision-making tasks. However, these
aspects were not fully addressed in the present study. Although
uncertainty estimation was explored as part of the active learning
process, its broader potential to enhance model confidence and
operator trust remains underutilised. A dedicated investigation into
uncertainty quantification and explainability in process monitoring
systems is urgently needed to advance toward reliable and
trustworthy industrial deployment.

In addition, practical challenges such as segmentation errors,
computational inefficiency, and the need for further fine-tuning
were identified. These issues must be resolved before the pipeline can
be deployed in real-time industrial settings. Future work will focus
on improving segmentation accuracy, enhancing computational
efficiency, and increasing robustness in dynamic environments,
with a particular emphasis on transparency, explainability, and
trust to support reliable human-machine integration.

5 Conclusion

In this paper, a novel angle-invariant melt pool analysis pipeline
was presented, integrating two deep learning models: (1)
DeepLabv3 for semantic segmentation of the melt pool and (2)
WAAM-ViDNet for predicting melt pool width. The angle-
invariant design of the pipeline facilitates seamless integration
with existing WAAM systems, addressing key limitations in
current process monitoring approaches. The pipeline achieved a
prediction accuracy of 88.71% with an inference time of just 0.014 s
per frame, demonstrating its suitability for real-time applications.
This work represents a significant step toward the development of a
universal and automated monitoring system for WAAM.

Additionally, the study introduced a new benchmark dataset for
multi-angle WAAM monitoring, addressing the current lack of
publicly available data in this domain. This dataset provides a
foundation for future research and offers a baseline for
evaluating model performance under diverse viewing conditions.
The authors highlight the importance of developing a unified
monitoring system and its significant potential to enhance the
efficiency and adaptability of manufacturing processes.
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