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Background: Copy number variations (CNVs) in the Plasmodium vivax genome
can influence key parasite traits such as erythrocyte invasion, immune evasion,
drug resistance, and survival in the human host. Their potential role in severe
manifestations of P. vivax malaria, such as cerebral malaria (CM) remains
underexplored. In regions like India, where P. vivax is endemic, understanding
genomic factors that contribute to disease severity is crucial. Given the limited
understanding of genomic factors contributing to disease severity in P. vivax, this
study aims to investigate genome-wide CNVs in clinical isolates from patients
with cerebral and uncomplicated malaria.

Methods: We employed a high-resolution, custom-designed 2 x 400K tiling
microarray for array-based comparative genomic hybridization (aCGH), using
probes with an average spacing of 56 base pairs covering the entire P. vivax
genome. Genomic DNA from cerebral malaria isolates was differentially labeled
and hybridized against reference DNA from uncomplicated malaria isolates.
CNVs were inferred based on fluorescence intensity ratios, indicating
chromosomal regions with copy number gains or losses.

Results: Utilizing probes based on the P. vivax Sal-1 reference genome, we
detected significant CNVs across all 14 chromosomes, affecting 2,138 genes.
CNVs ranged from 100 bp to approximately 1,429 kb in cerebral malaria isolates
compared to uncomplicated cases. Altered regions having gains or losses
included genes encoding surface antigens such as 6-cysteine proteins,
tryptophan-rich antigens (TRAGs), serine-repeat antigen (SERA), apical
membrane antigen (AMA), as well as drug resistance markers. The most
extensive CNV spanned ~1,450 kb on chromosome 12. CNVs were also
observed in intergenic regions, suggesting potential regulatory impacts.
Discussion: This study identifies CNVs in the genome of P. vivax isolates from
cerebral malaria cases, in genes involved in immune evasion, drug resistance, and
host-pathogen interactions. Although the precise impact of these CNVs on
disease severity remains unclear, the findings highlight genetic differences
between isolates from severe and uncomplicated malaria cases, including
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variations in intergenic regions. These findings emphasize the need to further
investigate CNVs that may contribute to P. vivax pathogenesis and resistance. A
deeper understanding of these variations could aid in identifying biomarkers for
severe disease and support the development of more effective malaria control
and treatment strategies.
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1 Introduction

Plasmodium vivax is the most widespread parasite extending
into temperate climates among the 5 Plasmodium species known to
cause malaria in humans. Earlier, P. vivax was considered to be
benign, but in the last few years there has been a change in this trend
as life-threatening symptoms similar to those of P. falciparum cases
such as hepatic dysfunction, cerebral malaria, severe anemia, acute
respiratory distress syndrome (ARDS), and acute kidney injury
have been observed in P. vivax cases as well (Kochar et al., 2005,
2007, 2009; Nautiyal et al., 2005; Sarkar and Bhattacharya, 2008;
Alexandre et al., 2010; Sarkar et al., 2010; Douglas et al., 2012; Kute
et al., 2012; Naing et al., 2014; Phyo et al,, 2022; White, 2022).

The genome of an organism exhibits a spectrum of variations,
encompassing significant structural changes and extending to single
nucleotide polymorphisms. Structural variations comprise
chromosomal size polymorphisms, gene copy number variations
(CNVs), inversions, and translocations. Selection pressures, genetic
drift, and migration collectively influence the diverse genomic
variations present in a population (Mackinnon and Marsh, 2010;
Chang et al., 2013; Kennedy and Dwyer, 2018). Recent interest in
CNVs in malaria parasites has been driven by increasing evidence of
the CNVs role in adaptation, evolution, and disease in a number of
organisms (Anderson et al., 2009; Henrichsen et al., 2009;
Wellcome Trust Case Control Consortium et al., 2010; Chaignat
etal,, 2011; Angstadt et al., 2013; Kirov et al,, 2014; P6s et al., 2021).
CNVs include both deletions and amplifications of a single gene or a
cluster of adjacent genes. Furthermore, CNVs are believed to impact
gene expression levels directly by changing gene dosage and
indirectly by altering the chromatin environment in the proximity
of the CNV (Hastings et al., 2009). Therefore, these CNVs may
influence parasite phenotypes such as drug resistance, erythrocyte
invasion, and transmissibility.

Over the years, the natural evolution of malaria parasites has led
to a massive amount of genetic diversity, either via CNVs or
acquisition of new single nucleotide polymorphisms (SNPs) (Feng
et al., 2003; Cheeseman et al., 2009; Costa et al., 2017; Simam et al.,
2018; Qidwai, 2020). This allows parasites to acquire a high capacity
to adapt to environmental shifts. The malaria parasite employs gene
amplifications or duplications and deletions (CNVs) as a general
strategy to enhance its survival and spread. CNVs in genes related to
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antifolate resistance, such as those encoding GTP cyclohydrolase
(gchl), have been implicated in the development of resistance to
antimalarial drugs in P. falciparum (Heinberg et al., 2013;
Srisutham et al, 2022). Studies have identified CNVs in genes
associated with multidrug resistance in P. falciparum, including P.
falciparum multidrug resistance gene 1 (pfmdrl) and P. falciparum
chloroquine resistance transporter (pfcrt), which play important
roles in the resistance to multiple antimalarial drugs (Gadalla et al.,
2011; Gupta et al., 2018b; Wicht et al., 2020; Gil and Fangony, 2021;
Ward et al., 2022). Similarly, amplifications of pvmdrl and pvcrt
have been identified in isolates from Brazil, French Guiana,
Thailand, Laos, Myanmar, Cambodia, and India, and are
associated with altered susceptibility to multiple antimalarials
(Imwong et al., 2008; Suwanarusk et al., 2008; Vargas-Rodriguez
et al,, 2012; Faway et al,, 2016; Costa et al., 2017; Silva et al., 2018;
Buyon et al., 2021)vivaxvivax. Field studies have also linked pvcrt
overexpression, resulting from increased gene copy number, with
chloroquine resistance (Melo et al., 2014; Costa et al., 2017)).
Beyond drug resistance, recent genomic studies across Southeast
Asia, South America, and Africa have shown that CNVs in P. vivax
are frequently concentrated in host-parasite interaction gene
families, including the Dufty binding protein (PvDBP), merozoite
surface protein 3 (MSP3 family), and reticulocyte binding proteins
(PvRBPs). Independent expansions of PvDBP and MSP3.11 were
observed in Ethiopian isolates (Lo et al., 2019). Recently, Pvdbp gene
amplification has been reported to allow P.vivax to evade host anti-
PvDBP humoral immunity (Popovici et al., 2020). Similarly, CNV's
in multiple PvRBP and MSP genes have been identified in Ethiopian
and Southeast Asian isolates using whole genome sequencing
(WGS) (Ford et al., 2020).

Several laboratory-based approaches have been developed for
detecting CNVs, including multiplex ligation-dependent probe
amplification (MLPA), microarray based comparative genomic
hybridization (aCGH) and SNP microarrays, whole genome
sequencing and RNA sequencing, fluorescence in situ
hybridization (FISH) and PCR based methods (Singh et al., 2021).

Here, we employed an aCGH tiling array approach to identify
CNVs in P. vivax field isolates from the Indian subcontinent
associated with cerebral malaria (CM) by comparing them to
isolates from uncomplicated malaria cases. The CGH array offers
several benefits in detecting CNVs. Its enhanced sensitivity allows
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for the detection of small differences in copy number, as it assesses
both copy loss and gain variations in one experiment by comparing
the relative hybridization intensity of fluorescently labeled test
samples with a single reference DNA sample. Moreover, a dense
and uniform CGH array can be swiftly synthesized and tailored to
focus on virtually any region of interest, including regions abundant
in repeats (Liu et al., 2019).

2 Materials and methods
2.1 Collection of patient blood sample

Blood samples (5 ml) were obtained from patients infected with
P. vivax who were admitted to S.P. Medical College in Bikaner,
India. The collection of patient samples was conducted following
informed consent in accordance with hospital guidelines. Approval
for sample collection was granted by the hospital ethics committee
(No.F.(Acad) SPMC/2003/2395, No.F29(Acad)SPMC/2020/3151).
Infection with P. vivax was confirmed by microscopy and rapid
diagnostic tests (OptiMal test; Diamed AG, Cressier sur Morat,
Switzerland; Falcivax test; Zephyr Biomedical SystemGoa, India) in
the hospital. Blood was immediately (within 15 min) subjected to
density gradient-based separation (Histopaque 1077, Sigma
Aldrich, USA) to isolate peripheral blood mononuclear cells
(PBMCs) from the infected blood samples as per the
manufacturer’s instructions. Both fractions were then washed
twice with phosphate-buffered saline (PBS), lysed with 4 volumes
of TRI-reagent, and stored at -80 °C. These samples were
maintained within the cold chain during transportation to BITS,
where they were processed and evaluated using 18S rRNA gene-
based multiplex PCR to ensure the absence of P. falciparum co-
infection (Pakalapati et al., 2013). The PCR conditions used for the
amplification of the 18S rRNA gene involved initial denaturation at
94 °C for 2 min, followed by denaturation at 94 °C for 1 min 30 s,
annealing at 52 °C for 2 min, extension at 72 °C for 3 minutes, after
initial denaturation all the reactions were run for 30 cycles. The TRI
protocol was used to investigate both RNA and DNA from previous
clinical samples (Chomczynski, 1993). The criteria for determining
complicated cases were based on the World Health Organization
guidelines (World Health Organization, 2010). For CGH array
hybridization, isolates from six patients were considered, of which
three showed cerebral malarial complications, while the other three
were uncomplicated malaria cases (Supplementary Table 1).
Cerebral malaria (CM) with a Glasgow coma scale score lesser
than 11 was considered a complicated case.

2.2 Array CGH design

A custom P. vivax 2 x 400 K CGH microarray (AMADID:
25335) was designed on an Agilent platform by Genotypic
Technology Private Limited, Bangalore, India, using the genomic
location and direction of transcriptional regulation data retrieved
from NCBI. The 60mer probes were designed based on the optimal
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GC% and melting temperature using Genotypic_Probe_Parser.pl
(Perl program developed by Genotypic Technology). All
oligonucleotides were designed and synthesized in situ according
to standard algorithms and methodologies used by Agilent
Technologies. The array design comprised 418577 probes tilled
across the whole genome, with an average probe spacing of 56 bp.
This covers the entire genome, irrespective of intergenic or
intronic sequences.

2.3 Genomic DNA isolation, preparation,
labeling, and hybridization

Genomic DNA preparation, labeling, and hybridization of the
CGH array were performed at the Agilent certified microarray
facility at Genotypic Technology, Bengaluru, India. Total DNA was
extracted from the samples following the manufacturer’s protocol
(TRI Reagent, Sigma Aldrich, USA). Subsequently, both DNA
samples (PVC and PVU) were run on an agarose gel and
confirmed to be intact. The purity and concentration of total
DNA were determined using a Nanodrop ND-1000 UV-visible
spectrophotometer (Nanodrop Technologies, Rockland, USA). The
A260/A280 ratio indicated the absence of proteins and RNA. DNA
from the three patient samples showing CM manifestations were
pooled (PVC) and used as test, while the same was performed for
the uncomplicated samples (PVU) as control. This approach was
designed to identify CNVs consistently enriched in cerebral malaria
compared to uncomplicated malaria isolates, with pooling
providing a representative, group-level overview of robust
variations associated with severe disease. The samples for
Comparative Genomic DNA Hybridization were labeled using an
Agilent Genomic DNA Labeling Kit (Part Number: 5190-0453).
Two micrograms of each sample were digested using Alul and
Rsal. The restricted DNA was then labeled with Cy3 (PVU) and
Cy5 (PVC) dUTP using a random primer labeling method. The
labeled DNA was then concentrated, and the quality was assessed
for yield and specific activity. The labeled DNA samples were
hybridized on a collaboratively designed P. vivax 2x400K CGH
microarray (AMADID: 25335). 5 micrograms of Cy3 and Cy5
labeled samples were hybridized. Hybridizations were done using
the CGH Hybridization kit of Agilent (Part Number: 5190-0404).
Hybridization was performed in Agilent’s Surehyb Chambers at 65°
C for 40 h. The hybridized slides were washed using Agilent aCGH
wash buffers (Part No: 5188-5221/22) and scanned using an Agilent
Microarray Scanner G2505C at 3-micron resolution. The
microarray data discussed in this manuscript has been deposited
in the NCBI Gene Expression Omnibus (GEO) under the GEO
series accession number GSE288219.

2.4 Array CGH data analysis

Image analysis and data normalization were performed by
applying the linear dye normalization method using Agilent
Feature Extraction Software. Data were further normalized via the
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centralization algorithm to ensure that log-ratio distributions were
centered and comparable across probes. CNVs were then identified
using the widely validated Aberration Detection Method IT (ADM-
2), which integrates probe error information in addition to log-ratio
values, providing robust detection even in the presence of noisy
probes. ADM-2 is the standard algorithm for Agilent array-CGH
analysis and is widely used for high-confidence CNV calling
(Delahaye et al., 2012; Chehbani et al., 2022; Bui et al., 2024;
Mademont-Soler et al., 2024). To ensure stringent and reliable
CNV identification, we applied a minimum requirement of three
consecutive probes with an average absolute log, ratio >0.3 (default
threshold 6.0, minProbes = 3, minAvgAbsLogRatio = 0.25),
effectively removing single-probe artifacts arising from
mismatches between probe and target sequences. Additionally,
the Fuzzy Zero correction was enabled to reduce spurious long,
low-level aberrations caused by correlated probe errors, such as
those resulting from sequence divergence. Only genomic regions
meeting all these criteria were considered significant. These
thresholds provide both statistical support and effect-size filtering,
ensuring high specificity in the detection of true copy
number changes.
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3 Results

This study utilized a custom-designed tiling microarray to
explore the overall distinctions between clinical isolates associated
with complicated/cerebral malaria and uncomplicated malaria
caused by P. vivax. Probes were designed based on the reference
genome P. vivax Sal-1. The tiling array facilitated the
comprehensive detection of copy number variations (CNVs)
throughout the genome. CNVs were identified in the field isolates
showing complicated malaria by comparing it with the field isolates
showing uncomplicated malaria. The widely accepted ADM-2
algorithm, employing filtering criteria of at least 3 probes and an
average log fold change of 0.3, was employed for CNV analysis. The
terms “amplification” and “deletion” denote the copy number
differences between the test and the control. Deletions indicate
regions where probe signal intensities in the test strain are close to
background levels, indicating the absence of hybridization.

The size of each chromosome with the number of genes
reported here are as per PlasmoDB v68.0. A circos plot of whole
genome CNV data of the test has been generated to show the
regions in chromosomes exhibiting CNV (Figure 1).

’///

‘¢

\l

ox>

chré

FIGURE 1

Circos plot of whole genome variation in P.vivax isolates showing cerebral malaria manifestation, representing probe-based chromosome-wise copy
number variations. The outer red bars are showing amplifications and green inner bars are showing deletions with fold (log base2).
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3.1 Genome-wide variability in gene copy
numbers

Amplification/deletion intervals varied from approximately
100bp to 1429 kb. Amplification and deletion were present in all
the 14 chromosomes (Supplementary Table 2). Since maintaining a
continuous P. vivax culture has been a challenge, therefore many
proteins remain uncharacterized. Many of the regions with CNVs
have genes encoding these hypothetical proteins.

The longest region showing CNV of approximately 1450 kb
is on chromosome 12 (1575586-3004875) covering 316 genes
that shows continuous amplification (Figure 2), followed
by chromosome 14 (1221441-1677668) with 100 genes
and chromosome 10 (496-429938) with 96 genes, both
having amplifications.

3.2 Copy number variation in regions
having drug-resistance genes

Regions having genes encoding ABC transporters from different
families showed CNVs (Supplementary Table 3). Orthologs of
Plasmodium ABC transporters, known to drive drug resistance in
microorganisms and human tumor cells, may similarly contribute
to drug resistance in Plasmodium (Koenderink et al., 2010). There
are three genes encoding ABC transporters (putative) that are in
regions showing amplification while two genes were in regions
showing deletion. Three of the genes (PVX_097025, PVX_080100,
PVX_118100) encoding multidrug resistance proteins that belong
to ABC transporter families are within regions of amplifications.
Figure 3 shows the continuous amplification in the region
containing PVX_097025, highlighting the CNV at this locus.
Amplification in an ortholog of the gene PVX_080100 in P.
falciparum (PF3D7_0523000) has been reported to be associate
with mefloquine resistance (Cheeseman et al., 2009; Menard and
Dondorp, 2017) (Rovira-Vallbona et al., 2023). Increased copy
number of multidrug resistance gene-1 (mdrl) has been reported
to be associated with increased drug resistance in P. falciparum
isolates as well as in P. vivax (Imwong et al., 2008; Suwanarusk et al.,
2008; Anderson et al.,, 2009; Rovira-Vallbona et al.,, 2023).

10.3389/fmala.2025.1667330

Suwanarusk et al. (2008) showed that pvmdrl amplification in
Thai P. vivax isolates was linked to higher ICs, values for
mefloquine and artesunate, while isolates lacking amplification
were more susceptible, supporting a functional role of CNVs in
drug resistance.

In our data, we have also seen CNVs in regions having
chloroquine resistance genes, a putative chloroquine resistance
marker protein (PVX_118062 in chr 12) having amplification and
putative chloroquine resistance transporters (PVX_087980 in chr 1)
having deletion.

There is amplification observed in the gene responsible for
producing the enzyme hydroxymethylpterin pyrophosphokinase-
dihydropteroate synthetase (PPPK-DHPS). PPPK-DHPS plays a
crucial role in the folate pathway of P. falciparum and is a specific
target of the drug sulfadoxine (Kasekarn et al., 2004). Sulfadoxine
resistance has been reported in both P. falciparum and P. vivax
(Marfurt et al., 2008). Amplification in this gene might be playing a
role in drug resistance against sulfadoxine.

3.3 Copy number variation in regions
having surface antigens

Regions with genes for surface antigens such as 6-cysteine
proteins, tryptophan-rich antigens (TRAgs), serine-repeat antigen
(SERA), apical membrane antigen (AMA), have shown CNVs.
There are 24 TRAgs showing CNVs and all of them have
amplifications. In P. vivax species, TRAgs often occur in clusters
along chromosomes, suggesting their proliferation via gene
duplication and diversification. Certain members of the P. vivax
TRAg family have demonstrated binding properties to red blood
cells, and in certain instances, interactions with partner molecules
have been documented (Kundu et al., 2023). One of the TRAgs
encoded by PVX_088850 which lies within region of amplification
in our data, has been reported to be interacting with PvMSP7,
suggesting possible establishment or stabilization of protein
complex at P.vivax merozoite surface (Tyagi et al., 2016).

Amplification is present in regions with cytoadherence-linked
asexual protein (CLAG) genes located on chromosomes 7 and 14. In
P. falciparum, CLAG proteins has been shown to be involved in the

UCSC Genome Browser on ASM241v2 May 2009 malaria parasite P. vivax (Salvador | 2009) (GCF_000002415.2)
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Continuous amplification of 1450 kb in chromosome 12 (1575586-3004875) covering 316 genes (UCSC Genome Browser). Visualization of a 1,450
kb amplified region on chromosome 12 (coordinates 1,575,586-3,004,875) covering 316 genes, as depicted in the UCSC Genome Browser. The log
ratio (red peaks) represents hybridization intensity, indicating continuous copy number amplification across the region.
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binding of infected erythrocytes to host endothelial cells, a process
termed cytoadherence (Holt et al., 1999; Newbold et al., 1999; Gupta
et al,, 2015) and involved in nutrient uptake and solute transport
(Nguitragool et al., 2011; Gupta et al., 2018a). CNVs are found in
regions containing genes associated with merozoite surface proteins
(MSP-1, MSP-3, and MSP-7), with eight occurring in amplified
regions and six in deleted regions. Using the UCSC Genome
Browser, we observed that region having several MSP paralogs
lying in close proximity on the chromosome was amplified
(Figure 4). Additionally, CNVs are present in 23 genes encoding
SERA proteins, all located on chromosome 4 of the P. vivax
genome, including four in amplified regions and 19 in deleted
regions. They form a multigene family and are conserved among
Plasmodium species. Recent studies implicate this gene family in a
number of aspects in parasite biology and induction of protective
immune response (Arisue et al., 2020).

Amplifications in regions with genes for reticulocyte-binding
proteins or PYRBP (PVX_ 090325 and PVX_ 090330 in chr 5,
PVX_098582 and PVX_098585 in chr 7, PVX_094255 in chr 8,
and PVX_121920 in chr 14) are present. A study by Kosaisavee et al.
also reported variations in the copy number in the reticulocyte-
binding proteins Pvrbp2a and Pvrbp2b by a quantitative real-time
SYBR Green PCR assay (Kosaisavee et al., 2012). Additionally, a
recent study suggests that copy number variations in PvRBP2 of
Plasmodium vivax may contribute to its ability to infect Duffy-
negative individuals (Pestana et al., 2024).

Rhoptry proteins, such as rhoptry-associated protein and
rhoptry neck protein, have amplifications in their genes,
specifically PVX_097590 in chr 10, PVX_117880 in chr 12, and
PVX_ 101485 in chr 14.

Some of the regions with genes for ETRAMPS or early
transcribed membrane proteins (PVX_096070 in chr 3,
PVX 003565 in chr 4, PVX 088870 and PVX 090230 in chr 5,
PVX_086915 in chr 7, PVX_118680 and PVX_121950 in chr 12)
were shown to have amplifications. ETRAMPs are expressed during
Plasmodium intracellular phases and inserted at the parasite
parasitophorous vacuole membrane (PVM) (Brandsma et al., 2022).

There are gains in regions having two genes encoding Pvstpl,
which is phylogenetically closely related to P. falciparum
SURFIN4.2’, a protein exposed on the parasite-infected
erythrocyte (if) surface, and is thus considered to be exposed on
P. vivax-iE (Winter et al., 2005).

Our data showed CNVs in 117 unique vir genes present in the
sub-telomeric regions of chromosomes. There are 84 genes that are
within amplified regions and 10 in regions with deletions. There are
23 vir genes that have both deletion and amplifications
(Supplementary Table 3). The vir (variant interspersed repeat)
genes in P. vivax have been proposed to play a crucial role in
cytoadherence, facilitating the adherence of infected red blood cells
to host endothelial cells. This phenomenon might be contributing
to the pathogenesis and severity of malaria, as cytoadherence can
lead to microvascular obstruction and tissue damage, exacerbating
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the clinical manifestations of P. vivax infection (Carvalho et al,,
2010; Chotivanich et al., 2012; De las Salas et al., 2013; Marin-
Menendez et al., 2013; Totino and Lopes, 2017). It has also been
hypothesized that vir genes play a role in malaria pathogenesis and
that P. vivax may exploit the extensive sequence diversity within
these genes to enhance virulence (Merino et al., 2006; Gupta et al.,
2014; Na et al., 2021).

In our analysis, we have also seen CNVs in genes encoding
Plasmodium exported proteins of unknown functions. There are 73
gains and 13 losses in the regions harboring these genes. These
proteins are secreted by the parasite into the host erythrocyte, where
they modulate various cellular processes. In P. falciparum, some
exported proteins have been reported to be involved in
cytoadherence, allowing infected red blood cells to sequester in
different tissues and evade clearance by the immune system while
others are implicated in modifying the host cell membrane, leading
to the formation of structures such as Maurer’s clefts, which serve as
trafficking hubs for exported proteins. Some exported proteins help
permeabilize the RBC to allow nutrients and wastes to be exchanged
with the blood plasma to facilitate rapid growth and parasite
proliferation (Elsworth et al., 2014).

3.4 Copy number variations in important
genes

Some genes encoding for proteins belonging to the ubiquitin
system machinery and proteasomal degradation pathway were seen
to be in the amplified or deleted regions. 20 genes encoding for
proteins of the ubiquitin system machinery and 9 genes encoding for
proteasomal degradation pathway have shown CNVs. When the
parasite is exposed to host molecule there is an increase in
transcription levels of genes encoding for proteins related to the
Ubiquitin Proteasome (UPS) System (Pereira et al., 2018). The
proteasome is the main engine of Plasmodium protein degradation.
Protein ubiquitylation plays key roles in cell biology, for example in
tagging proteins for proteasomal degradation, or targeting proteins to
distinct subcellular locations. The transition from intracellular
schizont to extracellular merozoite stages in the asexual blood stage
cycle is associated with a general increase in ubiquitylation levels
(Green et al., 2020). Ubiquitin modification is associated with altered
parasite susceptibility to multiple antimalarials (Ng et al., 2017).

Amplification in 12 genes encoding Phist proteins are present.
Studies in P. falciparum have shown that these proteins are involved
in different processes including surface display of PfEMPI1,
gametocytogenesis, changes in cell rigidity. Some phist genes have
been shown to be differentially expressed in cerebral malaria and
pregnancy-associated malaria, indicating a significant role of Phist
in these complications (Warncke et al., 2016).

Approximately 80 genes responsible for encoding proteins forming
ribosomal complexes have exhibited copy number variations. This
observation aligns with expectations, given the parasite’s multifaceted
life cycle necessitating a robust protein synthesis machinery.

Another important amplification is seen in the gene encoding
for putative plasmepsin IV (PVX_086040). Plasmepsin IV (Plm
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IV), an aspartic protease within the food vacuole of the malaria
parasite Plasmodium falciparum, participates in the degradation of
host hemoglobin by the parasite (Gutiérrez-de-Teran et al., 2006).

3.5 Copy number variation in intergenic
region

CNVs have been seen in the intergenic region as well
(Supplementary Table 3). CNVs in intergenic regions can also
affect gene expression, although indirectly. While intergenic
regions do not contain genes themselves, they often harbor
important regions such as promoter and other regulatory
elements such as enhancers and insulators, which play crucial
roles in regulating the expression of nearby genes (Nelson et al.,
2004). When CNVs occur in intergenic regions, they can disrupt the
regulatory landscape by altering the number or arrangement of
regulatory elements. This disruption can affect the expression of
neighboring genes by modifying the accessibility of their regulatory
elements to transcription factors and other regulatory proteins.

Additionally, CNVs in intergenic regions can sometimes
influence gene expression through long-range interactions
between regulatory elements and target genes. These interactions
can occur through chromatin looping and other mechanisms,
allowing distal regulatory elements to exert control over gene
expression. Disruption of these long-range interactions by CNVs
can consequently impact gene expression levels. In our study,
several CNVs were located within intergenic regions upstream of
protein-coding genes. While the precise functional impact of these
CNVs remains to be determined, their proximity to genes encoding
surface antigens, drug resistance proteins, and stress-related
proteins suggests that they could potentially influence gene
regulation. However, experimental studies are required to clarify
whether these intergenic CNVs play a regulatory role in P. vivax.

Although direct functional validation of intergenic CNVs in
Plasmodium vivax has not yet been performed, evidence from
malaria research and studies in other human diseases suggests
that intergenic regions can have important regulatory roles. In P.
falciparum, intergenic regions can give rise to the transcription of
regulatory IncRNAs, which may influence gene expression, sexual
development, and parasite transmission (Batugedara et al., 2023).
Similarly, in humans, CNVs in non-coding regions have been
shown to alter gene regulation and impact phenotypic outcomes
(Zhang and Lupski, 2015). By analogy, intergenic CNVs in P. vivax
may also influence nearby gene expression and contribute to
parasite adaptability, highlighting a potential mechanism by
which non-coding genomic variation could affect parasite biology.
Future studies are required to experimentally validate these effects.

4 Discussion

In this study, we report CNVs observed in P. vivax complicated
malaria (cerebral malaria) field isolates compared to uncomplicated
cases, although we cannot conclude whether these CNVs contribute
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to disease severity. All patient samples in this study were collected
from a single location, Bikaner, North-west India, over the time
period 2007-2008, which may limit the generalizability of the CNV
patterns observed. However, obtaining cerebral malaria (CM)
samples for larger cohort studies is challenging due to the
comparative infrequency of such cases. In this context, the three
CM samples analyzed here provide a sufficient basis for a
preliminary investigation. While limited in scale, they offer
unique insights into potential CNV patterns associated with
severe disease and establish a foundation for future studies. To
our knowledge, no previous whole-genome CNV analysis has been
performed in P. vivax cerebral malaria cases. Future studies across
multiple geographic regions and larger sample sizes will be needed
to confirm and extend these findings. vivaxSignificant gains and
losses can be seen in regions harboring important genes such as
surface antigens, drug resistance, Plasmodium exported proteins
etc. Copy number variations (CNVs) observed in surface antigen
and drug resistance genes may contribute to P. vivax adaptability,
immune evasion, and treatment outcomes. Gene families such as
msp7 and vir, which exhibited CNVs in our dataset, are known to
undergo duplication and diversification, a strategy that enhances
immune evasion and may influence parasite pathogenicity.
Amplifications within vir genes, in particular, could facilitate
antigenic variation and cytoadherence, processes implicated in
disease severity (Merino et al., 2006; Carvalho et al., 2010;
Bernabeu et al, 2012; Gupta et al., 2014; Garzon-Ospina et al.,
2016; Castillo et al,, 2017; Na et al, 2021) Additionally, CNVs
detected in drug resistance-related loci, including pvmdrl, have
been associated in previous studies with altered drug sensitivity,
suggesting that structural variation in these genes may also
influence treatment response in P. vivax (Suwanarusk et al,
2008). At this stage of the investigation, it’s not possible to
speculate whether the variances observed in the test (cerebral
malaria field isolates) contribute directly to the severity of the
disease. Rather, we are reporting that these CNVs were observed
in cerebral malaria patient isolates when compared with
uncomplicated malaria cases. These findings highlight differences
in parasite CNV patterns between patient groups showing the same
disease manifestation, but further functional studies would be
required to establish any causal relationship. These variances
extend beyond coding regions to intergenic locations, suggesting
possible implications for gene regulation. Although functional
validation is lacking, intergenic CNVs in P. vivax may, based on
parallels with P. falciparum and human studies, influence gene
regulation and parasite adaptability, underscoring the need for
experimental confirmation (Batugedara et al,, 2023; Zhang and
Lupski, 2015). While our study did not directly examine host
genetic factors or immune responses, these remain plausible
influences on the CNV patterns observed in the P. vivax cerebral
malaria isolates. For instance, amplification of the gene encoding
pvmdrl in our dataset, previously linked to multidrug resistance in
P. vivax, has been reported that host-imposed selection pressures,
such as antimalarial drug exposure or immune challenges may
shape genomic variation (Suwanarusk et al., 2008). Supporting this,
studies in P. falciparum have shown that CNVs frequently arise
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under selective pressures such as drug treatment, where gene
amplifications confer resistance (Qidwai, 2020; Luth et al., 2024).
This study is an initial effort to employ aCGH tiling array to identify
any variations or disparities in genomic segments between parasite
isolates causing cerebral malaria and uncomplicated malaria.
Understanding these genomic variations is essential for
elucidating the mechanisms of drug resistance, immune evasion
and survivability of P. vivax, ultimately guiding the development of
effective malaria control strategies.
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