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Scavenger receptors: key
players in the immunological
puzzle of lupus

Sabine Hahn, Monika Chitre, Dominique Shepard,
Romana Rashid and Zaida G. Ramirez-Ortiz*

Department of Medicine, Division of Infectious Disease and Immunology, University of Massachusetts
Chan Medical School, Worcester, MA, United States

Scavenger receptors (SRs) play an important role in the innate immune response by
recognizing and binding a variety of ligands to initiate the removal of both altered
self- and non-self-antigens. Over the last two decades, SRs have become a
forefront for their role influencing and contributing to inflammatory disease
pathways. The findings discussed in this review show that the immunological role
SRs play is (1) found in multiple organ systems and not limited to one disease or
subset of symptoms; (2) part of both the innate and adaptive immune response
in addition to influencing inflammatory signaling via non-immune cell subtypes;
(3) both pro- or anti-inflammatory depending on which SR class or cell signaling
pathway is being observed; (4) potentially useful for the development of
therapeutics and diagnostic or prognostic biomarkers for autoimmune disease
pathology. Understanding the role of SRs in the context of inflammation and
autoimmunity will shed some light on the comprehension of heterogeneous
diseases, such as Systemic Lupus Erythematosus.
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1 Introduction

Systemic lupus erythematosus (SLE) is a complex and multifaceted autoimmune
disease. It is represented by diverse clinical features impacting multiple organs,
combined with a wide range of hematological and serological abnormalities, and
disease comorbidities (1). The current classification criteria [2019 European League
Against Rheumatism/American College of Rheumatology Immunologic Domains and
Criteria for SLE (2019 EULAR/ACR)] requires patients to first test positive for
antinuclear antibodies and is followed by an assessment of a combination of 10
symptoms or disorders, each weighted differently to calculate a final score (Figure 1)
(2, 3). Many genetic deficiencies are associated with the development of SLE; however,
most patients inherit the disease polygenically in conjunction with environmental,
hormonal, or co-infectious triggers (1, 4, 5). The immunological defects leading to the
development of SLE are a product of two stages: first, systemic autoimmunity that
induces serum autoantibodies and, second, immunological events that induce organ
damage (6). Immune dysregulation in both innate and adaptive immune systems can
impact the activation and progression of SLE (1, 6). Nonetheless, diagnosis and
subsequent treatment of SLE have been hampered due to heterogenic clinicopathological
presentation of the disease (1, 4, 7).
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FIGURE 1

Mucocutaneous

subacute cutaneous or
discoid lupus (4 pts)
nonscarring alopecia (2 pts)
acute cutaneous lupus (6 pts)
oral ulcers (2 pts)

Serositis

pleural or pericardial effusion (5 pts)
acute pericarditis (6 pts)

Arthritis

synovitis in 2 2 joints,
or tenderness in 2 joints,
and 2= 30 min morning stiffness (6 pts)

Renal

proteinuria >0.5g/24 hr (4 pts)
class lll or IV lupus nephritis (710 pts)
class Il or V lupus nephritis (8 pts)

SLE classification criteria. Current criteria (2019 European League Against Rneumatism/American College of Rheumatology Immunologic Domains
and Criteria for SLE) requires patients to first test positive for antinuclear antibodies, followed by an assessment of a combination of 10 clinical
(uncolored) or immunological (blue circles) symptoms or disorders, each weighted differently to calculate a final score amounting to >10 points.

Immune homeostasis is vital for the balance of immune
activation and suppression across tissues and organs to prevent
damage due to excessive, malfunctioning, and/or self-targeting
The (SRs)
superfamily (Table 1) contributes to maintaining homeostasis
their
exchange, and waste removal as well as their roles directly

immune responses (8). scavenger receptors

through roles- within cellular transport, nutrient
within immunity through the identification and presentation of

antigens, regulation of inflammation, and adhesion of
leukocytes (9, 10). SRs act as cell surface receptors, but can also
be found intracellularly or as soluble forms within circulation
where they can bind and promote the removal of an array of
unwanted ligands—either self or non-self—via endocytosis,
phagocytosis, and micropinocytosis (9, 11). Examples of these
ligands include apoptotic cells, damage proteins, and heat
shock proteins. Beyond scavenging for waste products to

maintain homeostasis, SRs simultaneously help conserve the
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appropriate balance of endogenous molecules, identify damaged
antigens, and elicit the proper immune responses (9). Over the
past 40 vyears, numerous SRs have been identified. This
superfamily of receptors has been divided into 10 distinct
classes (12) based on their nucleotide sequence alignment and
protein structure, with each class further divided into subclasses
that share specific structural features (Supplementary Table 1)
(11, 13, 14). However, as the field is evolving, some newly
uncovered SRs remain unclassified while others are classified as
noncanonical SRs, or proteins that simply exhibit scavenger
receptor activity (12). Several SRs have been implicated in the
progression of autoimmune diseases, including SLE, through
mechanisms including inflammation, apoptosis, foam cell
formation, T cell activation, and the complement pathway. This
review will discuss the SRs identified to date that play a role in
autoinflammation
context of SLE.

and autoimmunity, particularly in the
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TABLE 1 Consensus
scavenger receptors.

‘ Consensus Nomenclature Common Names

nomenclature and common names of

SR-Al MSR1, SR-AIL, SCARAL
SR-Al.1 SR-AII

SR-A3 APC7, MSRLI1, SCARA3
SR-A4 COLECI12, CL-P1, SRCL
SR-A5 SCARAS, TESR

SR-A6 MARCO

SR-B1 CD36L1, SR-BI

SR-B2 CD36, PAS4, SCARAB3
SR-D1 CD68

SR-E1 LOX-1, OLR1

SR-E2 Dectin-1, CLEC7A
SR-E3 CD206, Mannose Receptor 1, MRC1
SR-E4 CLEC4HI, HL-1

SR-F1 SCARFI, SREC-1

SR-F2 MEGF10

SR-G1 CXCL16, SR-PSOX
SR-H1 STABI, FEEL-1

SR-H2 FEEL-2

SR-1 CD163

SR-J1 RAGE

Unclassified/Noncanonical (SRCR) CD5l (AIM)1, MerTK, gp-340, KIM1

Scavenger receptor cysteine rich (SRCR) is a superfamily of receptors that is characterized
by the presence of a conserved ~100-110 cysteine rich structure. On this review we focus on
AIM as the main SRCR.

2 Scavenger receptors in clinical
hallmarks of SLE inflammation

Nearly twenty years ago an “immunological disease

continuum model” was proposed by McGonagle and Dermott
(15). The model suggests that noninfectious diseases lie on a
spectrum from autoimmune to autoinflammatory, thereby
classifying the roles of both the innate and adaptive immune
responses in  immunological  disease,  contextualizing
2). the model

enhanced our understanding of the pathogenesis and treatment

noninfectious diseases (Figure Ultimately,
of immune reactivity against self, or as Paul Ehrlich himself
called it, “horror autotoxicus” (15), the development of immune
reactivity to self and loss of immune tolerance through aberrant
dendritic, B, and T cell responses (15, 16). However, placing
immunological diseases like SLE along this continuum provides
an alternative perspective on the heterogeneity of clinical disease
the of different

inflammatory responses, without assuming that the adaptive

manifestation  through contribution
immune response is central to disease pathogenesis. For the
of with

autoinflammatory components could potentially benefit from

development therapies, autoimmune diseases
innate immune pathway targeting (15, 16). Patients with SLE
can experience inflammation in any organ (17). Local signs and
symptoms of clinical inflammation were originally described by
Celsus in the first century BC as rubor (redness), tumour
(swelling), calor (heat), and dolor (pain) (Figure 3). A century
later Galen added functio laesa (loss of function) and nearly two

thousand years later, Mitchinson added a sixth, fluor (secretion)
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(18-21). These clinical hallmarks of inflammation may be
inherently compromised or chronically unresolved in patients
with SLE (18, 20).

2.1 Rubor

Rubor, or redness, is one of the classical signs of inflammation,
arising from hyperemia—an increase in blood flow and red blood
cell (RBC) delivery to inflamed tissues (22). SRs, initially
characterized by their role in binding modified low- and high-
density lipoproteins (LDL and HDL), have since been found to
play multifaceted roles in vascular biology. They regulate
endothelial integrity, vasodilation, red blood cell homeostasis,
the
inflammatory and vascular manifestations of autoimmune
diseases such as SLE (23-25).

and immune responses, making them central to

2.1.1 Rubor: vasculature & vasodilation

Scavenger receptor class B member 1 (SR-B1) is essential for
lipid and cholesterol metabolism as well as vascular function.
Expressed on endothelial cells, vascular smooth muscle cells,
monocytes, and macrophages, SR-B1 facilitates HDL binding
and mediates endothelium-dependent vasodilation, primarily
through the synthesis and activity of nitric oxide (NO) (26-32).
NO is a key signaling molecule in vascular homeostasis,
responsible for modulating vasodilation, inhibiting leukocyte
adhesion, and regulating platelet activity (33). In vivo studies
demonstrate that SR-B1 deficiency leads to significant vascular
dysfunction, including impaired NO signaling, dyslipidemia,
platelet  aggregation, of
atherosclerotic lesions (26, 28-31) (34). For example, mice

increased and  development
lacking SR-B1 exhibit thrombocytopenia, thrombomegaly, and
heightened susceptibility to thrombotic events (34, 35). These
symptoms are observed in 20%-40% of SLE patients. Moreover,
SLE is associated with elevated systemic NO levels, suggesting
that NO dysregulation may serve as a biomarker for disease
activity (36, 37). Further, loss of SR-Bl in vivo contributes to
coronary artery disease, myocardial infarction, ischemic
cardiomyopathy, and heart failure—all of which are significantly
more prevalent in SLE patients (5, 24-26, 38-41). Accelerated
atherosclerosis remains a leading cause of morbidity and
mortality in SLE patients (5, 24, 25, 40, 41). In Takayasu
arteritis, a type of autoimmune vasculitis, autoantibodies against
SR-B1 interfere with HDL uptake and suppress nitric oxide
synthase (NOS) activity, promoting endothelial inflammation
and vascular damage (42). Similarly, SR-B1 has been implicated
in the pathogenesis of other autoimmune diseases (43) and is
strongly linked to cardiovascular disease (CVD), a common
comorbidity in SLE (44). SLE patients have a higher risk of
developing cardiovascular disease (CVD) (23-25) as well as
increased risk for a broad spectrum of cardiovascular

wall (45),

development of atherosclerosis (46), peripheral arterial disease

complications, including aortic inflammation
(47), dyslipidemia (48, 49), heart failure (50), angina pectoris

(51), and myocardial infarction (51, 52).
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DNASE1L3 mutations
Complement deficiencies (C1q, C1r, C1s,

Anfibody deficiencies
Immune dysregulation mutations (FAS,
SOCS1, Ikaros, PKCS, FOXP3)

2.1.2 Rubor: red blood cell development &
maintenance

In addition to its vascular roles, SR-Bl also supports
erythropoiesis and RBC maintenance (43). In SLE, RBCs
frequently display abnormal morphology or size variability,
which may impair oxygen delivery and contribute to common
symptoms such as chronic fatigue, anemia, and cognitive
dysfunction (53, 54). Autoimmune hemolytic anemia is another
hematologic manifestation of SLE, leading to increased RBC
destruction and free hemoglobin in circulation (55). SR-I1 or
commonly known as CD163, is a hemoglobin-scavenging
receptor primarily expressed on M2-polarized macrophages. It
binds to haptoglobin-hemoglobin
hemoglobin clearance during intravascular hemolysis (55-58). In
lupus nephritis (LN), kidney CD163" macrophages infiltrate

complexes to mediate

glomeruli, contributing to local inflammation and tissue damage
(56, 59). Elevated levels of soluble SR-I1 are consistently found
in the serum of patients with SLE, particularly those with
hemolytic
anemia, or immune thrombocytopenia (57, 60). Inflammatory

macrophage activation syndrome, autoimmune

conditions, including SLE, are characterized by increased
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expression of SR-I1, reflecting ongoing macrophage activation
(55-57, 61).

Macrophage activation syndrome (MAS) is one of the most
severe hyperinflammatory complications of lupus, characterized
by uncontrolled macrophage and T cell activation, cytokine
storm, and hemophagocytosis. While vascular and hematologic
well-established in SLE, defective SR
pathways contributing to MAS susceptibility directly are limited

manifestations are

(62, 63). In SLE, defective clearance of apoptotic debris [and
release of nuclear danger/damage-associated molecular patterns
(DAMPs) such as HMGBI1] sustains TLR7/9 signaling and type
I interferon production, which foster cytotoxic T-cell activation
and excessive IFN- vy response—features characteristic of MAS
(64-66).
macrophage circuits such as the CDI163-heme oxygenase-1
(HO-1) pathway, normally critical for heme detoxification and

Under these inflammatory conditions, regulatory

resolution of inflammation, may become functionally exhausted.
Failure of this axis limits macrophage antioxidant and anti-
inflammatory capacity and favors uncontrolled activation and
hemophagocytosis, thereby lowering the threshold for MAS in
SLE patients (67, 68). Serum soluble SR-I1 is consistently
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Roles of Scavenger Receptors in Modulating Inflammati

Cardinal signs of inflammation. Biological responses of the body to harmful stimuli in response to scavenger receptors.

elevated in active MAS even under IL-6 blockade and closely
reflects disease activity and the clinical relevance of SR
dependent macrophage dysregulation (69, 70). Additional
insights into SRs dysfunction and MAS pathogenesis emerge
from related hyperinflammatory disorders. For example, in
systemic juvenile idiopathic arthritis (sJIA), a disease with high
MAS propensity, soluble SR-I1 correlates with MAS activity and
TRIMS8 upregulation in monocytes/macrophages augmenting
IFN- y responsiveness, providing a molecular mechanism for
macrophage hyperactivation (70, 71).

Despite observed elevations in SR-I1, its precise role in SLE
pathophysiology remains unclear. Two opposing hypotheses
currently exist: the first suggests that SR-I1 is abnormally
elevated, causing excessive phagocytosis of haptoglobin—
hemoglobin complexes and downstream accumulation of
iron, oxidative stress, and ferroptosis; the second proposes
that SR-I1 is elevated as an adaptive response to prevent
further tissue damage caused by ruptured red blood cells
(55). Notably, soluble SR-I1 levels correlate with disease
activity in rheumatoid arthritis (72) and serve as a biomarker
for active renal involvement in SLE, including in the urine of
with LN  (73-75). these
underscore the dual vascular and hematologic roles of SRs
such as SR-BIl and SR-Il in the manifestation of rubor and

patients Together, findings
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broader SLE pathology. Their dysregulation contributes not
only to visible signs of inflammation but also to systemic
complications, biomarkers and

making them potential

therapeutic targets.

2.2 Calor

Calor, or heat, is a hallmark of inflammation and reflects
increased blood flow and elevated metabolic activity driven
by
(hyperthermia) is a protective physiological response that
enhances immune function, promotes leukocyte trafficking,
inhibits (76-78).
controlled temperature—therapeutic

inflammatory  mediators. During infection, fever

and pathogen replication

of body
hyperthermia—has even been employed to treat infectious

Historically,
elevation

disease by enhancing organ perfusion and activating immune
pathways (76-78). However, excessive or sustained fever can
lead to tissue damage and adverse outcomes, such as heat
stroke (76).

In autoimmune diseases such as SLE, fever is a common
manifestation—even in the absence of infection. Recurrent,
unexplained fever is often a presenting symptom and is
considered a clinical clue in early diagnosis (79-81). Studies
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report fever in 36%-86% of SLE patients, although the prevalence
has declined due to routine use of nonsteroidal anti-inflammatory
drugs (NSAIDs) (79, 81-
from infection remains clinically challenging, particularly in

). Distinguishing SLE-related fever

patients receiving immunosuppressive therapies that increase
infection risk or due to inherent disease-associated immune
perturbations (87, 88). In cases of Fever of Unknown Origin
(FUO), infection must be rigorously ruled out before attributing
symptoms to SLE (79). While infection is the most common
cause of FUO, approximately 5% of cases are ultimately
diagnosed as autoimmune conditions, including SLE and
). Although SRs have not been

directly linked to the development of fever, they influence

autoimmune thyroiditis (89,

proinflammatory signaling pathways, such as nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) and
JAK/STAT, that regulate the febrile response (383).

2.2.1 Calor: endogenous pyrogens/cytokines
Fever is pyrogens—
proinflammatory cytokines that are released by immune cells in

largely mediated by endogenous

response to infection, tissue damage, or autoimmune activity. Key
endogenous pyrogens include tumor necrosis factor-o (TNF-a),
interleukins (IL-1fB, IL-6, IL-8), and interferons (IFN-f, IFN-y),
among others (91, 92). These cytokines circulate systemically and
act on the hypothalamus to elevate body temperature. Many of
these same cytokines are found at abnormally high levels in SLE
patients, and their activity contributes to immune dysregulation,
tissue damage, and systemic inflammation (93-100).

Due to this, they are also considered potential targets for SLE
treatments (101). Scavenger receptor class E member 1 (SR-El),
also known as LOX-1, is a receptor for oxidized low-density
lipoproteins (oxLDL) that is primarily expressed on vascular
endothelial cells (102,

and lymphoid cells (

), but also on vascular smooth muscle
). SR-E1 mediates oxLDL endocytosis
and promotes atherogenesis (104, ) and has been shown to
be a key player in the development of atherosclerosis,
myocardial ischemia, hypertension, and inflammation (105,

). SR-E1 deficiency in vivo protects mice from developing
atherosclerosis (102), whereas SR-E1 overexpression promotes it
(107). In SLE patients, SR-E1 expression is elevated even in
early disease onset and low disease activity and correlates with
high-sensitivity C-reactive protein (hsCRP), proinflammatory
HDL, and oxLDL (108). Moreover, increased SR-E1 in SLE is
associated with elevated IL-8 and reduced IFN-y levels, while
other cytokines such as IL-6, IL-10, and TNF-a remain
unchanged (105). Interestingly, proinflammatory cytokines (e.g.,
IL-18, TNF-0) can SR-E1
potentially creating a inflammatory loop
(108-

reduce inflammation-driven CVD in SLE (108, R ).

themselves induce expression,
self-perpetuating

). Perturbing this feedback loop is a possible option to

2.2.2 Calor: prostaglandins & thermoregulatory
neurons

Fever can also be triggered by non-immune cells. Pro-
inflammatory cytokines such as IL-1B, IL-6, and TNF-o
stimulate cyclooxygenase-2 (COX-2), which catalyzes the
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production of prostaglandin E2 (PGE2). PGE2, in turn, binds
to PGE2 receptors stimulating the part of the brain where
thermoregulatory neurons modulate body temperature and
). Elevated PGE2 has been detected in the
cerebrospinal fluid (CSF) of patients with neuropsychiatric SLE
(NPSLE), along with increased levels of IL-6, IgG, and
autoantibodies against calf thymus antigens (

induce fever (

). Among
these, CSF IL-6 has shown the strongest correlation with
NPSLE severity and may serve as a potential biomarker (115,

). In pristane-induced lupus mouse models, PGE2 mediates
the production of proinflammatory cytokines, such as IL-6, IL-
10, and IFN-y, and NO (117). While no direct link between
PGE2 and SRs in SLE has yet been confirmed, emerging
evidence suggests functional intersections. For example, SR-
B2-mediated microglial phagocytosis of amyloid-f is regulated
by PGE2 receptor signaling in in vivo Alzheimer’s disease
models (118). Additionally, celecoxib, a selective COX-2
inhibitor used in treating inflammation in SLE, has been
shown to upregulate SR-B2 and downregulate SR-El1 in
macrophages—indicating that prostaglandin pathways can
modulate SR
inflammatory outcomes (119).

expression and  potentially  influence

2.2.3 Calor: heat shock proteins

Heat shock proteins (HSPs), molecular chaperones released
from cells undergoing stress, help maintain protein homeostasis
(120).
hyperthermia (40°C) upregulates HSP70 expression and leads to

Incubating murine skin explants at fever-range

dendritic cell (DC) migration (121). At similar temperatures,
expression of HSP70 is induced in lymphocytes (122, ).
HSPs
inflammatory environments (121).

can help immune cells withstand and react to

HSPs are typically expressed intracellularly; however, under
conditions of cellular stress (e.g., cell damage, necrosis), HSPs
may be released extracellularly, where they act as DAMPs.
Extracellular HSPs can prime antigen-presenting cells, promote
cytokine production (e.g., TNF-a, IL-6), and contribute to the
generation of autoantibodies (124-132). This immune activation
correlates with HSP levels: more cell damage triggers higher
HSP
(133-

and anti-HSP autoantibodies have all been associated with SLE

expression and a more intense immune response

). Elevated HSP70 levels, HSP gene polymorphisms,

pathogenesis (136-141).

Several SRs have been identified as HSP-binding receptors,
including SR-E1, SR-F1, SR-A, SR-HI, and SR-L1 (141-145).
SR-E1 and SR-F1 bind strongly to HSP70, HSP90, Grp9%4,
Hspl110, and Grpl70 (146-149). SR-B2 deficiency in LDL
receptor—deficient mice exposed to hyperthermic stress leads to
HSP70
highlighting the interplay between SRs, heat shock responses,

overexpression and enhanced atherosclerosis,

and vascular inflammation (150-152). In lupus-prone mice,
HSP70-based DNA vaccines have shown promise in suppressing
anti-dsDNA antibody production, reducing proinflammatory
responses, immune

promoting tolerogenic responses, and

prolonging survival (153). Other therapeutic approaches, such as

epitope-based immunization with HSP70-derived peptides, have
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demonstrated Tge, activation without inducing systemic

immunosuppression (154). SLE is associated with increased
auto-antibody productions of other HSP-like proteins and HSPs,
), which has been found
to play a role in during physiological stresses like fever (157)
). SR-L1, an HSP

receptor, is particularly relevant in this context. Membrane-

namely grp94 and calreticulin (155,
and in the pathogenesis of SLE (144,

bound SR-L1 mediates antigen presentation, cytokine secretion,
and T helper cell priming (126, ). SR-L1 plays an immuno-
protective role by suppressing the expression of inflammatory
mediators (MCP-1/CCL2, TNF-0, and MMP-9) (160, ). To
suppress inflammation, SR-L1 sheds its ectodomain, generating
soluble SR-L1 (162), which can be detected in the serum of
patients with SLE and Rheumatoid Arthritis (RA) (163).
Bruton’s tyrosine kinase (Btk) also plays a key role by
phosphorylating calreticulin on apoptotic cells (ACs), enabling
membrane-bound SR-L1 to mediate the clearance of Clq-
opsonized ACs. In the absence of Btk, SR-L1 cannot recognize
calreticulin, resulting in the accumulation of apoptotic cell
debris (
for SRs in regulating immune responses to thermal and

). Together, these findings suggest a multifaceted role

inflammatory stress. By binding HSPs and modulating cytokine
production, SRs represent promising therapeutic targets and
potential biomarkers for disease severity in SLE. Similarly, many
HSPs themselves have been identified as targets for the
treatment of autoimmunity, such as in RA, diabetes, multiple
sclerosis (MS), and SLE (165, ).

2.3 Dolor

In inflammation, dolor represents pain due to changes

associated with perivasculature and nerve endings. Pain,
especially chronic pain, is a hallmark of SLE and is often one of
). Data shows that 85% of SLE
) and 32%-66% report

). Up to 80% of SLE patients experiencing pain,

the first reported symptoms (
patients report joint pain (168,
headaches (
fatigue, or joint pain rate these symptoms as moderate or severe
(170).

inflammatory in nature including musculoskeletal [arthritis,

Pain in SLE can be both inflammatory and non-

myositis, avascular necrosis, fracture, osteoarthritis (OA)],
fibromyalgia), neuropsychological (headache, small fiber
neuropathy), serositis (pericarditis, pleuritis, peritonitis),

immunological disturbance, drug side effects, etc. as reviewed by
Pisetsky et al. (171).

2.3.1 Dolor: neuropathic pain
SR-L1 (known as LRP-1 or CD91), plays a major role in
nerve de- and

neuroinflammation, re-generation, and

neuropathic pain (172, ). SR-L1 deficiency in Schwann cells
is linked to mechanical allodynia—pain from normally non-
painful stimuli such as light touch—and impaired motor
function, both of which contribute to peripheral nerve injury
and chronic pain (174, ). SR-L1 deletion on macrophages

induces an increase in NFkB pathway activation and

inflammation (176). SR-L1 downregulates proinflammatory
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cytokines (IL-1B, TNF-a, and IL-6) released due to NFkB
activation. Perturbed SR-L1 across several cell types results in
increased secretion (172).

Similarly, SR-L1 has a role in neuronal cell survival by
modulating c-Jun N-terminal kinase (JNK)-mediated apoptosis
(172). Perturbing SR-L1 leads to JNK pathway activation and
the release of several proinflammatory cytokines (e.g., TNF-o
and IL-188) and chemokines such as chemokine (C-C motif)
(CCL) 2 (CCL2), CCL3, or CCL4 (177-179).
Consequently, SR-L1 downregulation promotes synaptic and

ligand

neuronal loss, leading to cognitive impairment (172, -184).
In MS, autoantibodies against SR-L1 have been found to inhibit
). In
response to inflammatory triggers, membrane-bound SR-L1 has

function and contribute to poor clinical outcomes (
been found to be anti-inflammatory (178, -189); however,
increased levels of soluble SR-L1 correlate with inflammation in
patients with SLE and RA (163). SR-L1, through its ligands and
its biologically active soluble form, has been explored as a
potential therapeutic target for neuropathic pain, based on
studies of axonal injury and Alzheimer’s disease (172, , ).
Although auto-antibodies to SR-L1 have not been attributed to
SLE, auto-antibodies to scavenger receptor class L member 2
(SR-L2) have been found to be a major player in systemic
autoimmune diseases (190). In a cohort of 147 patients, anti-
LRP2 autoantibodies were detected in 87% with RA, 40% with
SLE, 35% with systemic sclerosis, 15% with osteoarthritis, and
3% with Behget’s disease (190).

Beyond their role in systemic autoimmunity, immune cells
such as macrophages are increasingly recognized for their
involvement in the pathophysiology of chronic pain (191-193).
CD68 (SR-D1) is commonly used as a biomarker to quantify
). Often
), Morton’s neuroma is an entrapment

inflammatory cell and macrophage infiltration (
associated with RA (
neuropathy characterized by compression of a plantar digital
nerve in the foot, leading to neuropathic symptoms such as
burning, paroxysmal pain, and paresthesia. In nerve samples
from patients with Morton’s neuroma, increased intraneural
CD68" macrophages have been positively correlated with
burning pain, while higher expression of SR-A6 has been linked
to paroxysmal pain, as measured by the Neuropathic Pain
Symptom Inventory (196). Similarly, intervertebral disc tissue
from patients with lower back pain shows elevated infiltration of
TNF-o" and CD68" cells (

patients experiencing phantom pain, nerve biopsies revealed a

). Conversely, in post-amputation

lower presence of CD68" macrophages. This finding led
researchers to propose a potential protective role for these cells
against the development of chronic pain in certain contexts
(191). These observations suggest that the role of infiltrating
CD68" macrophages in pain may vary depending on the
condition and anatomical site. For example, pain in chronic
pancreatitis—whether  alcoholic,  biliary,  hereditary, or
autoimmune in origin—is typically classified as inflammatory
rather than neuropathic, though these categories are not
mutually exclusive. Notably, in cases of chronic pancreatitis,
CDé68" did not

severity (194).

macrophage levels correlate with pain
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2.3.2 Dolor: inflammatory pain

Building on the role of macrophage infiltration in various
pain states, joint inflammation in diseases such as OA, RA,
and SLE further illustrates the link between immune cell
activity and pain. In these conditions, increased infiltration of

immune cells and the production of pro-inflammatory

mediators (often triggered by IgG immune complexes)
sensitize and activate sensory nociceptors innervating
joint tissues (198-201). Several SRs associated with

macrophage activation have been implicated in inflammatory
joint pain. For instance, elevated expression of CD163 or
SE-I1 and the pro-inflammatory cytokine TNF-a correlates
with higher resting pain scores in patients with hip OA (202).
Similarly, IL-1B, another key pro-inflammatory cytokine,
contributes to pain through its role in prostaglandin
production (201, ).

In RA murine models, macrophages expressing SR-D1, SR-I1,
and SR-E3 are enriched in inflamed joints; however, a highly
pathogenic and pro-inflammatory subset of macrophages co-
expressing SR-I1 and SR-E3 has been identified in RA synovial
tissue. These SR-E3™ SR-I1" macrophages spontaneously secrete

pro-inflammatory mediators including IL-6, IL-8, IL-1fB, and

TNF-0, and exhibit strong co-expression of CD40, a
costimulatory activation marker known to drive chronic
inflammation in RA (204-206). Remarkably, inhibition of
CD40-TRAF6  signaling reversed the secretion of these

mediators, suggesting that targeting this pathway may offer
therapeutic benefit (207). Even more compelling is the
observation that these pathogenic macrophages were present
before the clinical onset of RA symptoms (207).

Extending beyond the joints, macrophage subsets expressing
SR-E3 and SR-I1 have also been implicated in chronic pain
development in the dorsal root ganglia (DRG). In mouse models
genetically predisposed to chronic pain following peripheral
injury, DRG-resident macrophages expressing SR-I1 alone (SR-
E3™ SR-I1") or both SR-E3 and SR-I1 (SR-E3* SR-I1") were
found to promote chronic pain. Targeted depletion of these
macrophage subsets effectively prevented the development of
injury-induced chronic pain, highlighting their critical role in
pain pathogenesis (208).

Relatively few SRs have been directly linked to pain in SLE or
to pain mechanisms more broadly. However, further investigation
into how SRs contribute to immune response pathways in SLE,
particularly those leading to neuropathic and inflammatory pain,
additional SRs
dysregulation and the onset of autoimmunity. Uncovering these
both SLE

may reveal involved in early immune

connections could offer novel insights into

pathogenesis and pain modulation.

2.4 Tumor

The classical hallmark of tumor in inflammation, or swelling,
is primarily caused by increased vascular permeability, leukocyte
infiltration, and fluid accumulation in affected tissues (22).
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A key event in this process is diapedesis, or trans-endothelial
migration, in which leukocytes exit the bloodstream and traverse
the vascular and lymphatic endothelial barriers to reach sites of
inflammation (
leukocyte
transmigration

). This involves a tightly regulated sequence:
ECs, and
tissues  (210).
vascular inflammation is a hallmark of several autoimmune

recruitment, adhesion to eventual

into surrounding Persistent

conditions, including SLE (211, ), where dysregulated

immune cell infiltration exacerbates tissue injury and

chronic inflammation.

2.4.1 Tumor: leukocyte recruitment &
transmigration

Effective leukocyte recruitment is essential for host defense
and tissue repair; however, in autoimmune diseases such as SLE,
excessive or uncontrolled leukocyte accumulation leads to
chronic inflammation and tissue damage (210).

Myeloid cells, particularly neutrophils and monocytes, play a
central role in initiating and sustaining vascular inflammation in
SLE (212~
through phagocytosis but also by producing reactive oxygen

). Neutrophils contribute to inflammation not only

species (ROS), releasing neutrophil extracellular traps (NETs), and
modulating adaptive immunity via crosstalk with dendritic cells,
macrophages, and lymphocytes (211, , ). SRs, particularly
SR-A, have been implicated in neutrophil activation, including via
mitogen-activated protein kinase (MAPK) signaling pathways,
leading to increased production of proinflammatory cytokines
(i.e., IL-6, TNF-0) and NET formation (218).

SLE is also characterized by elevated Type I interferon levels,
which drive monocyte chemotaxis through increased expression
of MCP-1 and MIP-1la. This promotes the upregulation of SRs
such as SR-A and SR-B2, further enhancing monocyte and
neutrophil activation (219-223). These receptors facilitate the
uptake of modified low-density lipoproteins (LDLs), linking
innate immune activation with lipid metabolism and vascular
SR-B2
), inflammasome activation (225),

inflammation. For example, supports macrophage
spreading and migration (
and has been implicated in lesional = macrophage

proliferation (223, ).

2.4.2 Tumor: diapedesis & SR-mediated
endothelial crosstalk

The transmigration of leukocytes across the endothelium is a
tightly regulated, multi-step process involving changes in both
endothelial
upregulate endothelial adhesion molecules, while chemokines

leukocytes and cells. Inflammatory cytokines
activate leukocyte integrins to promote firm adhesion and
extravasation (210). Leukocytes then alter their morphology to
traverse the endothelial barrier and surrounding pericyte layer,
ultimately infiltrating the inflamed interstitial tissue (210).
Among scavenger receptors, SR-G1 is unique in exhibiting
both receptor and chemokine-like functions. In its membrane-
bound form, SR-G1 binds oxLDLs and phosphatidylserine (PS),
contributing to phagocytosis and waste clearance. In its soluble
form, SR-G1 acts as a chemoattractant through its interaction

with the CXCR6 receptor on bone marrow plasma cells and
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T cells (227). Soluble SR-G1 is particularly relevant to SLE:
elevated serum levels correlate with disease severity, organ
involvement, and prognosis in both adult (
SLE (
its potential utility as a biomarker for SLE progression and

) and juvenile
). Levels decrease with effective treatment, supporting

therapeutic response (228).

2.4.3 Tumor: SRs in endothelial dysfunction

A major complication in SLE is the premature development of
atherosclerotic cardiovascular disease (ASCVD). Early plaque
formation is marked by endothelial dysfunction and the
infiltration leukocytes beneath the
endothelial Monocyte-derived
macrophages proliferate in response to hematopoietic growth

of pro-inflammatory
monolayer (226, ).

factors such as macrophage colony-stimulating factor (M-CSF)
and accumulate cholesteryl esters, forming foam cells (231-234).
M-CSF also enhances SRs expression, particularly SR-A and SR-
B2, promoting oxLDL uptake and foam cell formation (233, ).

SR-B2 plays a central role in this process. Suppression of SR-
B2 in murine models reduces aortic lesion size, suggesting that its
function is non-redundant and critical in lesion development
(236,

higher levels of oxLDL-containing immune complexes (238),

). Importantly, SLE patient blood samples contain

which upregulate SR-B2 expression in healthy cells exposed to
this SLE plasma (
accelerated foam cell formation and atherosclerosis in SLE,

). This mechanism likely contributes to

positioning SR-B2 as a potential therapeutic target (239, 240).

Additionally, Mer tyrosine kinase (MerTK), another SR, is
essential for the clearance of apoptotic cells within plaques. Loss
of MerTK impairs efferocytosis, promoting the formation of a
) as
). Elevated
levels of soluble MerTK in SLE patients correlate with disease
activity (
suggesting a role in both cardiovascular and autoimmune
pathology (243, 244).

Another key player is SR-E1 (LOX-1), which mediates uptake
of modified LDLs and contributes to foam cell formation. OxLDL
exposure reduces DNA methylation of the SR-El promoter,

lipid-rich necrotic core and driving plaque instability (
well as T cell-mediated B cell autoimmunity (

), complement depletion, and anti-dsDNA titers,

creating a positive feedback loop that amplifies SR-E1 expression
and promotes plaque progression (245). In SLE patients with
ASCVD, SR-E1
inflammatory biomarkers such as high-sensitivity C-reactive
protein (hsCRP), proinflammatory HDL, and oxLDL (108).
Furthermore, higher sSR-E1 levels are associated with earlier age
of SLE diagnosis (
as a biomarker and a therapeutic target in SLE-related

serum levels of soluble correlate with

), suggesting that SR-E1 could serve both
vascular disease.

2.4.4 Tumor: endothelial cell scavenger receptors
and tissue crosstalk

In SLE,
dysregulated state, even during low disease activity (

the endothelium has been shown to be in a
). SRs
are expressed on endothelial cells, where they regulate vascular
permeability, immune cell trafficking, and antigen presentation.
These scavenger endothelial cells (SECs) are

especially
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prominent in the liver, where hepatic sinusoidal endothelial cells
(HSECs) act as filters for bloodborne
macromolecules, given the liver’s extensive exposure to gut-

antigens and

derived microbial products (247-251). HSECs express a range of

SRs including SR-H1 (252-254), SR-H2 (255), SR-B2 (256), SR-
B1 (257), SR-E3 (258, ), and SR-F1 (250). SR-H1, for
example, is induced by proinflammatory stimuli (260) and, in

vitro, regulates lymphocyte trafficking to inflamed tissues (261).
SR-H1 expression on monocytes is considered a predictive
biomarker for increased cardiovascular-related disease risk (13).
Both SR-HI and SR-H2 bind to a variety of ligands including
acLDL, advanced glycation end-products (AGEs), and both

gram-positive and gram-negative bacteria (13, ). SR-H1 also
facilitates T and B cell trans-endothelial migration via
interactions with adhesion molecules like ICAM-1 and
VAP-1 (13, 253, 263-266).

Interestingly, SR-H1 promotes antigen presentation in a
tolerogenic context by cross-presenting exogenous antigens on
MHC-I and MHC-II molecules with high expression of
inhibitory ligands (e.g., PD-L1), HSECs help induce regulatory
T cells rather than proinflammatory responses (267-271).
Inhibition of SR-HI and SR-H2 has been shown to induce an
anti-inflammatory plasma proteome and reduce monocyte-
driven atherogenesis, pointing to their therapeutic potential (272).

SR-F1 (SCARF1, SREC-1), initially identified in human
umbilical vein endothelial cells (264), is also upregulated in
chronic liver diseases such as primary sclerosing cholangitis
(PSC), primary biliary cholangitis (PBC), ALD, and non-
alcoholic  steatohepatitis (NASH) (250). SR-F1 activation by
TNF-a or LPS enhances CD4+ T cell recruitment, working in
concert with VCAM-1 to facilitate immune cell adhesion during
liver inflammation (250). Other SRs, including SR-E1 (273, ),
SR-H1 (253, , ), SR-H2 (
adhesion to endothelial cells, contributing to inflammatory

) also mediate leukocyte
crosstalk between the vasculature and the immune system.

2.4.5 Tumor: SRs in regulating neutrophil NETS
and endothelial injury

Neutrophils recruited to the endothelium are activated by
immune complexes (276) and perform several effector functions
and formation of
). While NETs

are antimicrobial, excessive NET formation (NETosis) and

including phagocytosis, degranulation,

neutrophil extracellular traps (NETs) (276,

elevated levels of circulating NETSs is pathogenic in SLE, where
it contributes to endothelial injury, immune complex formation,
and the development of autoantibodies (277).

Increased NETs have been observed in patients with LN and
in MRL-Ipr mice (278). SR-J1 (RAGE) is an SR expressed on
endothelial cells that plays a role in triggering NETosis (279)
and, together with clathrin, mediates the uptake of NETs.
However, endothelial phagocytic capacity is limited, and NET
overload disrupts vascular integrity. Specifically, NET-associated
VE-cadherin at

permeability and

elastase  degrades intercellular  junctions,

leakage (278). This
mechanism links NETosis and SR-mediated uptake to vascular

increasing vascular

damage and albumin extravasation, ultimately highlighting the
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role of NET clearance in preserving endothelial barrier function
in SLE.

2.5 Functio laesa

Functio laesa, Latin for “loss of function,” can refer to either
impaired organ function (280) or neurological responses to
inflammation and pain (281). In the context of systemic
inflammation, such as in SLE, functio laesa often reflects multi-
). SLE can affect

nearly every organ system, manifesting in complications such as

organ dysfunction or outright failure (

lupus nephritis (kidneys), neuropsychiatric disease (central
nervous system), cutaneous lupus (skin), lymphadenopathy
(lymphatic system), and various cardiovascular conditions (283,

). Organ damage occurs in at least 50% of SLE patients
(285), though
A Taiwanese cohort found that over 80% of SLE patients

some studies report even higher rates.
developed organ damage within 6 months of diagnosis (286),
while U.S. studies report damage in 33%-50% of patients within
the first five years (287). The most frequently affected systems
vary by region: ocular, neuropsychiatric, and cardiovascular
), while

gastrointestinal, and

systems are common in the U.S. and Germany (287,

renal, neuropsychiatric, pulmonary,

cutaneous systems are prominent in Taiwanese patients (286, ).

2.5.1 Functio laesa: neuropsychiatric

Neuropsychiatric symptoms are among the most common
manifestations of SLE, affecting 80%-90% of patients worldwide
(290). These symptoms include cognitive impairment, motor
dysfunction, sleep disruption, fatigue, mood disorders, and
behavioral changes. Cognitive dysfunction often presents early—
prior to the development of dementia or confusion—whereas
symptoms like depression or headaches are more difficult to
diagnose and frequently missed in early screenings (290).

Up to 40% of neuropsychiatric SLE (NP-SLE) symptoms
arise before or at the time of SLE diagnosis, and 60% typically
develop within a year (291, ). Current research is focused
on whether NP symptoms are driven by central nervous
system (CNS) inflammation in chronic SLE, CNS dysfunction

and damage, or treatments and medications (290, ). While
lesions are not always evident in NP-SLE patients, functional
abnormalities have been identified, including cerebral
hypoperfusion (292, -298), metabolic deficiencies (292,

-302), and—most commonly—progressive  neuronal
atrophy (292, 298, 300, 303-310).

In SLE-prone mouse models, neuropsychiatric and behavioral

symptoms precede systemic autoimmunity, immune cell

infiltration, or vascular damage (311). Interestingly, microglia in
SLE-prone mice exhibit neurodegenerative disease-associated
signatures prior to systemic SLE manifestations. Microglia from
SLE mouse models show upregulation of genes involved in SR
activity and downregulation of genes involved in inflammation
and chemotaxis, suggesting that microglia in SLE-prone mice
may not be able to regulate inflammation appropriately (311).
Makinde et al. found SRs, SR-G1 (CXCL16) and LGALS3BP, are
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upregulated in lupus-prone mouse microglia. In healthy
conditions, microglial cells maintain tissue homeostasis in the
brain by sensing changes in the environment and responding
appropriately. Anti-inflammatory microglia release
immunomodulatory factors to support tissue repair in the brain.
In disease contexts, anti-inflammatory microglia may also
reduce immune response and promote cell invasion and
). Outside of SLE, microglial SR-G1 has been
proposed as a therapeutic target to reduce neuroinflammation
(312), and LGALS3BP may be a therapeutic target for its roles
in angiogenesis and tumor progression (313). In SLE, serum SR-
G1 and platelet LGALS3BP levels also correlate with LN severity

(229,

tumorigenesis (

), pointing to systemic involvement beyond the CNS.

2.5.2 Functio laesa: tissue homeostasis &
clearance of apoptotic cells

Dysregulation of both innate and adaptive immune responses
contribute to SLE (
specific immunological memory to pathogens. B and T cells of

). Adaptive immunity establishes a highly

the adaptive immune system are responsible for ensuring a
specific, controlled spatiotemporal response to limit or prevent
excessive tissue damage (316). The breakdown in immune
tolerance is a hallmark of SLE development (315), as well as
many other autoimmune disorders (316). Tissue homeostasis
depends on the efficient clearance of apoptotic cells (ACs) by
phagocytes in an immunologically silent process that prevents
inflammation (317). Dying cells release “find-me” signals that
attract phagocytes, while surface markers like phosphatidylserine
). Failure to clear ACs leads

to their secondary necrosis, triggering inflammation, disruption

(PS) serve as “eat-me” signals (

of self-tolerance, and immune activation—a major contributor
to SLE pathogenesis (318-321).

Elevated levels of uncleared ACs in SLE patients support the
notion that defective clearance contributes to disease (319, ).
Scavenger receptors are critical in mediating efferocytosis,
including SR-A, SR-F, and SR-H families (11, ) s -325).
SR-A1l and MARCO (SR-A6) are key receptors in this process.
SR-Al expressed on thymic macrophages was first shown to
mediate apoptotic thymocyte clearance, and its blockade reduces
phagocytosis by ~50% (326). Mice lacking SR-A1 and MARCO
develop higher levels of autoantibodies and lupus-like disease due
to impaired clearance of apoptotic debris by marginal zone
). Additionally, SLE patients and
murine models have been found to spontaneously produce

macrophages in the spleen (

autoantibodies against these SRs, impairing the apoptotic cell
removal ability of these two SRs (323, ).

SR-F1 (SCARF1) also plays a role in apoptotic cell clearance.
Mice lacking SCARF1 develop lupus-like symptoms, including
nephritis and dermatitis, driven by defective phagocytosis of PS-
). SCARF1
redundant efferocytosis receptor expressed on BDCA1* dendritic

and Clq-labeled apoptotic cells ( is a non-
cells, where its engagement promotes anti-inflammatory IL-10
production via STAT1/STAT3 signaling (329).
while SCARF1 expression is not reduced in SLE patients, they
exhibit anti-SCARF1
impaired efferocytosis (329).

Interestingly,

autoantibodies, which correlate with
Additional work is needed to
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understand the function and action of the anti-SCARF1
autoantibodies, and whether these autoantibodies can be used as
biomarkers for SLE.

2.5.3 Functio laesa: systemic organ damage
SLE-associated systemic inflammation leads to damage in
organs such as the heart, lungs, and liver, particularly in
patients with hematological symptoms like leukopenia or
thrombocytopenia due to the circulation and accumulation of
auto-antibodies and inflammatory mediators throughout the
body (
expression on peripheral blood mononuclear cells (PBMCs)

). Scavenger receptors are again implicated—SR-A

correlates with systemic inflammatory response syndrome
(SIRS) and multiple organ dysfunction syndrome (MODS),
both indicators of poor survival outcomes (331). Further,
mechanistic studies further demonstrate that MSR1 (SR-A)
can physically synergize with Toll-like receptor 4 to amplify
NF-kB signaling and pro-inflammatory cytokine release,
providing a potential molecular bridge to the cytokine storm
characteristic of MAS leading to systemic organ damage (332,

). Similarly, soluble SR-I1 (CD163) levels correlate with
). Increased SR-11
in Macrophage
Activation Syndrome patients who later develop SLE (65) and
). In LN and
glomerulonephritis (GN), CD163" macrophage infiltration is

MODS severity and prognosis in sepsis (

expression is found on macrophages

on PBMCs of prior diagnosed SLE patients (

positively associated with disease severity and renal function
decline (336, ).

Effective SR-mediated clearance of dying cells is protective
in acute injury, limiting the release of intracellular contents
and preventing secondary necrosis and inflammation (338,
chronic

). The
soluble scavenger receptor CD5l (also known as AIM,

). Conversely, impaired clearance promotes

inflammation and autoimmunity, as seen in SLE (

apoptosis inhibitor of macrophage) binds cellular debris and
promotes phagocytic internalization of dead cells. AIM is
primarily expressed by macrophages in the liver, lymphoid,
). Elevated AIM levels are
) and lupus prone mice
). AIM is
most well-known for its role in Acute Kidney Injury (AKI)

and inflamed tissues (338, s
observed in both SLE patients (
(344), correlating with SLE disease activity (

and chronic liver injury in which the accumulation of
circulating AIM correlates with the progression of organ
). Two other SRs, SR-B2 and kidney injury
molecule-1 (KIM-1), can recognize AIM when bound to

damage (345,
cellular debris (338, ). KIM-1, a scavenger receptor not
typically expressed in healthy kidneys, is markedly elevated in
injured renal tissue (348, ). Elevated urinary KIM-1 levels
in SLE patients suggest its utility as a non-invasive biomarker

for renal involvement and progression of LN (350).

2.6 Fluor

Fluor refers to the secretion of mucus and inflammation of
mucous membranes (19). Patients with autoimmune diseases,
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including SLE, exhibit an increased risk of developing chronic
sinusitis (351, ). Interestingly, chronic sinusitis may also
serve as an early indicator of autoimmune disease onset (353).
This relationship is thought to arise either from intrinsic
immune dysregulation—leading to impaired mucosal defense
and tolerance breakdown—or from extrinsic factors such as
medications or infections that trigger or exacerbate
autoimmunity (354).

One key player in mucosal immunity is glycoprotein-340 (gp-
340), a member of the SR family (355, 356). Gp-340 is highly
expressed in the sinonasal, ocular, and pulmonary mucosa,
where it contributes to innate defense through pathogen

recognition and clearance ( ) and is found to be up-
regulated in patients with chronic sinusitis (357).

Gp-340 functions in part through its interaction with
Surfactant Protein D (SP-D), a collectin involved in pathogen
recognition, modulation of inflammation, and phagocytosis

( b bl

result in elevated inflammation, increased oxidative stress, and

). In SP-D-deficient mice, bacterial lung infections

impaired macrophage function (360). Low circulating levels of
SP-D have also been linked to the development of SLE (359).
Although a direct mechanistic connection between gp-340 and
SLE has not yet been established, its encoding gene, Deleted in
Malignant Brain Tumor 1 (DMBT1), has been associated with
several autoimmune and immune-related conditions, including
SLE (361, 362).

A similar compromise in mucosal barrier integrity is seen in
the gastrointestinal tract, which plays a vital role in immune
homeostasis. The intestinal epithelium and its associated
mucosal layer protect against microbial invasion while allowing
for nutrient absorption (363, ). Increased intestinal
permeability, commonly referred to as “leaky gut syndrome”,
permits the translocation of microbial products into the
bloodstream, triggering both acute and systemic inflammation

(363,

the pathogenesis of SLE, as it has been in other autoimmune

). “Leaky Gut Syndrome” is increasingly implicated in

diseases such as RA, multiple sclerosis (MS), and type 1
diabetes (365).

In lupus, impaired gut barrier function allows pathogen-
associated molecular patterns (PAMPs) and DAMPs to enter the
bloodstream, cells, and

activating dendritic macrophages,

neutrophils (364). Bacterial components such as
lipopolysaccharide (LPS), lipoteichoic acid (LTA), and B-glucans
have been detected in the serum of SLE patients, reflecting
microbial translocation and systemic immune activation (366).
Scavenger receptor SR-E3 (CD206), also known as the mannose
receptor, has been implicated in both gut dysbiosis and LN
(367).

Segmented

colonization with
(SFB)
glomerulonephritis, alters immune cell profiles, and disrupts gut
Notably, kidney-infiltrating CD206"
macrophages were observed in SFB-colonized mice, suggesting

In lupus-prone mouse models,

Filamentous Bacteria exacerbates

barrier integrity (368).

that gut-primed immune cells migrate to distal inflammatory
sites, such as the kidney (368). In human SLE patients, the
presence of CD206" macrophages in the kidney correlates with

disease severity (369).
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The importance of mucosal SRs in maintaining immune
tolerance is further supported by findings in Celiac disease,
another autoimmune disorder affecting the gastrointestinal
mucosa. Like SLE, Celiac disease is characterized by impaired
clearance of ACs, which leads to the accumulation of cellular
debris and chronic inflammation. Studies have shown that
duodenal tissues from Celiac patients exhibit reduced expression
of receptors,  including  SR-B2,
thrombospondin-1 (TSP-1), and CD61, alongside elevated levels
of inflammatory cytokines such as IL-15, IL21, and IFN-y (370).
(LPMCs)
isolated from Celiac patients display a diminished capacity to
phagocytose ACs (
defenses may initiate or amplify systemic inflammation and

several scavenger

Furthermore, lamina propria mononuclear cells

). Disruption in these localized immune

contribute to disease pathogenesis.

The complexity and heterogeneity of SLE—both in terms of
clinical presentation and underlying immunological mechanisms
—have long posed significant challenges in diagnosis, prognosis,
and treatment. While serological markers such as anti-dsDNA
and anti-Smith antibodies are commonly used, they lack
sensitivity and specificity across all disease stages and patient
populations. Therefore, there is growing interest in identifying
novel, more reliable biomarkers that reflect disease activity,
organ involvement, and therapeutic responsiveness.

Among the most promising candidates are SRs. SRs play a
critical role in innate immunity through the recognition and
clearance of endogenous and exogenous ligands, including
modified
Dysregulated expression or function of SRs has been implicated

apoptotic  cells, lipids, and microbial products.
in the breakdown of self-tolerance and chronic inflammation,
hallmarks of SLE pathogenesis. Notably, SRs also participate in
intracellular signaling cascades such as the MAPK, NF-«B, and
JAK-STAT pathways—many of which are known to be
). This

positions SRs not only as mediators of immune response but

dysregulated in autoimmune conditions (316, -
also as potential biomarkers for disease progression and targets
for immunomodulatory therapy.

Biomarkers are essential for the diagnosis, prognosis and the
monitoring of SLE. Markers like dsDNA, complement levels and
the presence of certain autoantibodies have been validated and
are being used in clinical practice. However, it wasn’t until 2007
that Wermeling et al. showed the presence of antibodies
responsible for recognizing MARCO and SR-A (323). The
discovery was then followed up by Chen et al., where the group
identified an increase of anti-SR-A and anti-MARCO IgG in

SLE patients when compared to controls (327, ). In 2022,
Jorge et al. showed an increase in anti-SCARF1 antibodies that
correlate with increase dsDNA in the serum (329). This data

was true for 26% of the patients suffering from SLE, however no
additional correlation was found with other disease markers.
Recently it was identified that the SR sCD163 (SR-I1) was

Frontiers in

12

10.3389/flupu.2025.1679564

elevated in patients suffering from LN, and it was suggested to
be used as a prognostic biomarker (59). These discoveries are
only in the initial stages and additional work is necessary to
take this finding to the clinic. There is one thing all these
discoveries had in common, the presence of these antibodies to
SRs contribute to the breakdown of self-tolerance and increase
autoimmune pathogenesis, making SRs the perfect candidate as
disease progression biomarker.

Current SLE management strategies aim to (1) minimize
disease activity, (2) prevent irreversible organ damage, (3)
reduce the burden of comorbidities and treatment-related side
effects, and (4) improve quality of life by alleviating pain and
fatigue (5). However, due to the heterogeneous nature of the
disease, a universal diagnostic or treatment protocol remains
elusive. While glucocorticosteroids and antimalarial drugs have
historically formed the backbone of treatment, their long-term
use is associated with serious side effects and complications
( ). In recent years, the therapeutic landscape has shifted
toward biologics, with only two FDA-approved options
~377).

Despite their promise, many patients exhibit incomplete or

currently available—belimumab and anifrolumab (1,

variable responses, necessitating adjunct or personalized
therapies that account for unique immune signatures and organ
involvement (375).

Targeting key signaling pathways associated with SR activation
—such as MAPK, NF-kB, and JAK-STAT—has been explored in
clinical trials with mixed outcomes, largely due to SLE’s
intrinsic heterogeneity and overlapping immunopathogenic
mechanisms (101, R R ). These challenges underscore
the need for refined biomarkers and therapeutic targets. As
research advances, scavenger receptors may provide dual utility
as both indicators of disease activity and modulators of
for stratified

inflammation, offering a promising avenue

medicine in SLE care.

Scavenger receptors play an essential role in the immune
system and their immunomodulatory function through a variety
of immune and non-immune cell types in the context of
inflammation and several autoimmune diseases. The past two
decades of research have shown that the role of SRs in
inflammatory disease might have been underestimated, and the
more recent body of published work demonstrates the many
ways SRs influence, modulate, and directly contribute to
inflammatory disease-related pathways.

Although great strides have been made to understand how SRs
contribute to inflammation, many unanswered questions remain.
As shown in this review, there is quite a bit of redundancy
regarding SRs and the pathways that they participate in or
regulate. Still, it appears that one class is not responsible for the
immunomodulatory effects of SRs (10, ). SRs participate in
pro- and anti-inflammatory signaling cascades, which muddies
their contribution to the development and prognosis of
inflammatory disease as well. Furthermore, they interact with



Hahn et al.

TABLE 2 Current SLE treatment options.

10.3389/flupu.2025.1679564

Molecular target EULAR domains SLE Ref.
approval
Azathioprine Non-steroidal Calcineurin inhibitor Hematologic, Skin, Renal, Constitutional, | FDA, EMA (375, 379,
immunosuppressant Neuropsychiatric 380)
Cyclosporine Non-steroidal Calcineurin inhibitor Renal, Mucocutaneous, Hematologic OL (375, 381)
immunosuppressant
Cyclophosphamide Non-steroidal Add an “alkyl” group to DNA Renal, Neuropsychiatric, Hematologic OL (375, 379,
immunosuppressant/ Cytotoxic 380)
Mycophenolate Non-steroidal Inosine Monophospate Hematologic, Mucocutaneous, Renal OL (375, 382)
mofetil immunosuppressant Dehydrogenase inhibitor
Abatacept Non-steroidal CD80/CD86 on APCs blocker Hematologic, Renal, Mocucutaneous OL (379)
immunosuppressant
Voclosporin Non-steroidal Calcineurin inhibitor Renal, Mucocutaneous, Hematologic FDA, EMA (375, 380)
immunosuppressant
Tacrolimus Non-steroidal Calcineurin inhibitor Renal, Mucocutaneous, Hematologic OL (375, 380)
immunosuppressant
Methotrexate Non-steroidal Calcineurin inhibitor Arthritis, Mucocutaneous, Serositis, OL (375, 380)
immunosuppressant/ Cytotoxic Musculoskeletal
Belimumab Biologic BlyS neutralizing Arthritis, Mucocutaneous, Renal, FDA, EMA (375, 379,
Musculoskeletal, Immunological 380)
Anifrolumab Biologic Type I IEN Receptor blocker Arthritis, Mucocutaneous, OL (375, 380)
Rituximab Biologic Binds to CD20 Neuropsychiatric, Renal, Arthritis OL (375, 380)
Chloroquine Antimalarial Inhibit autophagy Hematologic OL (375)
Hydroxychloroquine | Antimalarial, Antirheumatic IEN suppressor Arthritis, Mucocutaneous, Serositis FDA, EMA (375, 379,
381)
Quinacrine Antimalarial Anti-inflammatory Mucocutaneous, Serositis, Arthritis FDA (375, 380)
Methylprednisolone | Glucocorticoids Anti-inflammatory Hematologic, Renal, Neuropsychiatric FDA (375)
Dexamethasone Glucocorticoids Binding to the cytoplasmic Renal, Neuropsychiatric FDA (375)
glucocorticoid receptor (GR)
Prednisolone Corticosteroids Multiple Overactive immune system FDA, EMA (379)
Hydrocortisone Corticosteroids Binding to the cytoplasmic Overactive immune system FDA, EMA (379)
glucocorticoid receptor (GR)
Aspirin NSAID Thrombosis prevention Serositis, Antiphospholipid antibody, FDA (379)
Arthritis, Constitutional
Celecoxib NSAID COX-2 inhibitor Arthritis, Constitutional OL
Heparin Anticoagulant Thrombin inhibitor and clotting Serositis, Antiphospholipid antibody, FDA (382)
factors
Warfarin Anticoagulant Interferes with clotting factors Serositis, Antiphospholipid antibody, FDA (382)

*OL: Off-label medications.

other pattern recognition receptors to enhance or suppress a
response (10, 378).

There is convincing evidence that some SRs can act as
potentially useful biomarkers for autoimmune disease
diagnostics and prognostics, but this is not the case for every SR
family. For example, autoantibodies for SR-AI are elevated in
SLE patients (327) and autoantibodies to SCARFI are linked to
defects in efferocytosis and autoimmunity (329). Further
research is necessary to identify SR with subset or symptoms of
autoimmunity. However, designing SR-based therapeutic
approaches may prove challenging since SR levels do not
necessarily vary between healthy individuals and those with
inflammatory disease. Downstream research is needed to
finetune current findings and provide greater clarity on these
knowledge gaps.

Despite the knowledge gaps that remain regarding SRs and
their role in inflammation and autoimmunity, current research
demonstrates that SRs wear many immunological hats and
contribute to a variety of inflammatory signaling pathways.

Therefore, it is crucial to continue investigating the role of SRs
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in inflammation to determine the therapeutic potential of
SRs in the
autoimmune disease.

targeting context of inflammatory and
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