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Scavenger receptors: key 
players in the immunological 
puzzle of lupus

Sabine Hahn, Monika Chitre, Dominique Shepard,  

Romana Rashid and Zaida G. Ramirez-Ortiz*

Department of Medicine, Division of Infectious Disease and Immunology, University of Massachusetts 

Chan Medical School, Worcester, MA, United States

Scavenger receptors (SRs) play an important role in the innate immune response by 

recognizing and binding a variety of ligands to initiate the removal of both altered 

self- and non-self-antigens. Over the last two decades, SRs have become a 

forefront for their role influencing and contributing to inflammatory disease 

pathways. The findings discussed in this review show that the immunological role 

SRs play is (1) found in multiple organ systems and not limited to one disease or 

subset of symptoms; (2) part of both the innate and adaptive immune response 

in addition to influencing inflammatory signaling via non-immune cell subtypes; 

(3) both pro- or anti-inflammatory depending on which SR class or cell signaling 

pathway is being observed; (4) potentially useful for the development of 

therapeutics and diagnostic or prognostic biomarkers for autoimmune disease 

pathology. Understanding the role of SRs in the context of inflammation and 

autoimmunity will shed some light on the comprehension of heterogeneous 

diseases, such as Systemic Lupus Erythematosus.

KEYWORDS

scavenger receptors (SRs), autoimmunity, systemic lupus erythematosus (SLE), 

inflammation, cardinal signs

1 Introduction

Systemic lupus erythematosus (SLE) is a complex and multifaceted autoimmune 
disease. It is represented by diverse clinical features impacting multiple organs, 

combined with a wide range of hematological and serological abnormalities, and 
disease comorbidities (1). The current classification criteria [2019 European League 

Against Rheumatism/American College of Rheumatology Immunologic Domains and 
Criteria for SLE (2019 EULAR/ACR)] requires patients to first test positive for 

antinuclear antibodies and is followed by an assessment of a combination of 10 
symptoms or disorders, each weighted differently to calculate a final score (Figure 1) 

(2, 3). Many genetic deficiencies are associated with the development of SLE; however, 
most patients inherit the disease polygenically in conjunction with environmental, 

hormonal, or co-infectious triggers (1, 4, 5). The immunological defects leading to the 
development of SLE are a product of two stages: first, systemic autoimmunity that 

induces serum autoantibodies and, second, immunological events that induce organ 
damage (6). Immune dysregulation in both innate and adaptive immune systems can 

impact the activation and progression of SLE (1, 6). Nonetheless, diagnosis and 
subsequent treatment of SLE have been hampered due to heterogenic clinicopathological 

presentation of the disease (1, 4, 7).
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Immune homeostasis is vital for the balance of immune 
activation and suppression across tissues and organs to prevent 

damage due to excessive, malfunctioning, and/or self-targeting 
immune responses (8). The scavenger receptors (SRs) 

superfamily (Table 1) contributes to maintaining homeostasis 
through their roles- within cellular transport, nutrient 

exchange, and waste removal as well as their roles directly 
within immunity through the identification and presentation of 

antigens, regulation of in<ammation, and adhesion of 
leukocytes (9, 10). SRs act as cell surface receptors, but can also 

be found intracellularly or as soluble forms within circulation 
where they can bind and promote the removal of an array of 

unwanted ligands—either self or non-self—via endocytosis, 
phagocytosis, and micropinocytosis (9, 11). Examples of these 

ligands include apoptotic cells, damage proteins, and heat 
shock proteins. Beyond scavenging for waste products to 

maintain homeostasis, SRs simultaneously help conserve the 

appropriate balance of endogenous molecules, identify damaged 
antigens, and elicit the proper immune responses (9). Over the 

past 40 years, numerous SRs have been identified. This 
superfamily of receptors has been divided into 10 distinct 

classes (12) based on their nucleotide sequence alignment and 
protein structure, with each class further divided into subclasses 

that share specific structural features (Supplementary Table 1) 
(11, 13, 14). However, as the field is evolving, some newly 

uncovered SRs remain unclassified while others are classified as 
noncanonical SRs, or proteins that simply exhibit scavenger 

receptor activity (12). Several SRs have been implicated in the 
progression of autoimmune diseases, including SLE, through 

mechanisms including in<ammation, apoptosis, foam cell 
formation, T cell activation, and the complement pathway. This 

review will discuss the SRs identified to date that play a role in 
autoin<ammation and autoimmunity, particularly in the 

context of SLE.

FIGURE 1 

SLE classification criteria. Current criteria (2019 European League Against Rheumatism/American College of Rheumatology Immunologic Domains 

and Criteria for SLE) requires patients to first test positive for antinuclear antibodies, followed by an assessment of a combination of 10 clinical 

(uncolored) or immunological (blue circles) symptoms or disorders, each weighted differently to calculate a final score amounting to ≥10 points.
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2 Scavenger receptors in clinical 
hallmarks of SLE inflammation

Nearly twenty years ago an “immunological disease 

continuum model” was proposed by McGonagle and Dermott 
(15). The model suggests that noninfectious diseases lie on a 

spectrum from autoimmune to autoin<ammatory, thereby 
classifying the roles of both the innate and adaptive immune 

responses in immunological disease, contextualizing 
noninfectious diseases (Figure 2). Ultimately, the model 

enhanced our understanding of the pathogenesis and treatment 
of immune reactivity against self, or as Paul Ehrlich himself 

called it, “horror autotoxicus” (15), the development of immune 
reactivity to self and loss of immune tolerance through aberrant 

dendritic, B, and T cell responses (15, 16). However, placing 
immunological diseases like SLE along this continuum provides 

an alternative perspective on the heterogeneity of clinical disease 
manifestation through the contribution of different 

in<ammatory responses, without assuming that the adaptive 
immune response is central to disease pathogenesis. For the 

development of therapies, autoimmune diseases with 
autoin<ammatory components could potentially benefit from 

innate immune pathway targeting (15, 16). Patients with SLE 
can experience in<ammation in any organ (17). Local signs and 

symptoms of clinical in<ammation were originally described by 
Celsus in the first century BC as rubor (redness), tumour 

(swelling), calor (heat), and dolor (pain) (Figure 3). A century 
later Galen added functio laesa (loss of function) and nearly two 

thousand years later, Mitchinson added a sixth, �uor (secretion) 

(18–21). These clinical hallmarks of in<ammation may be 
inherently compromised or chronically unresolved in patients 

with SLE (18, 20).

2.1 Rubor

Rubor, or redness, is one of the classical signs of in<ammation, 
arising from hyperemia—an increase in blood <ow and red blood 

cell (RBC) delivery to in<amed tissues (22). SRs, initially 
characterized by their role in binding modified low- and high- 

density lipoproteins (LDL and HDL), have since been found to 
play multifaceted roles in vascular biology. They regulate 

endothelial integrity, vasodilation, red blood cell homeostasis, 
and immune responses, making them central to the 

in<ammatory and vascular manifestations of autoimmune 
diseases such as SLE (23–25).

2.1.1 Rubor: vasculature & vasodilation
Scavenger receptor class B member 1 (SR-B1) is essential for 

lipid and cholesterol metabolism as well as vascular function. 
Expressed on endothelial cells, vascular smooth muscle cells, 
monocytes, and macrophages, SR-B1 facilitates HDL binding 

and mediates endothelium-dependent vasodilation, primarily 
through the synthesis and activity of nitric oxide (NO) (26–32). 

NO is a key signaling molecule in vascular homeostasis, 
responsible for modulating vasodilation, inhibiting leukocyte 

adhesion, and regulating platelet activity (33). In vivo studies 
demonstrate that SR-B1 deficiency leads to significant vascular 

dysfunction, including impaired NO signaling, dyslipidemia, 
increased platelet aggregation, and development of 

atherosclerotic lesions (26, 28–31) (34). For example, mice 
lacking SR-B1 exhibit thrombocytopenia, thrombomegaly, and 

heightened susceptibility to thrombotic events (34, 35). These 
symptoms are observed in 20%–40% of SLE patients. Moreover, 

SLE is associated with elevated systemic NO levels, suggesting 
that NO dysregulation may serve as a biomarker for disease 

activity (36, 37). Further, loss of SR-B1 in vivo contributes to 
coronary artery disease, myocardial infarction, ischemic 

cardiomyopathy, and heart failure—all of which are significantly 
more prevalent in SLE patients (5, 24–26, 38–41). Accelerated 

atherosclerosis remains a leading cause of morbidity and 
mortality in SLE patients (5, 24, 25, 40, 41). In Takayasu 

arteritis, a type of autoimmune vasculitis, autoantibodies against 
SR-B1 interfere with HDL uptake and suppress nitric oxide 

synthase (NOS) activity, promoting endothelial in<ammation 
and vascular damage (42). Similarly, SR-B1 has been implicated 

in the pathogenesis of other autoimmune diseases (43) and is 
strongly linked to cardiovascular disease (CVD), a common 

comorbidity in SLE (44). SLE patients have a higher risk of 
developing cardiovascular disease (CVD) (23–25) as well as 

increased risk for a broad spectrum of cardiovascular 
complications, including aortic wall in<ammation (45), 

development of atherosclerosis (46), peripheral arterial disease 
(47), dyslipidemia (48, 49), heart failure (50), angina pectoris 
(51), and myocardial infarction (51, 52).

TABLE 1 Consensus nomenclature and common names of 
scavenger receptors.

Consensus Nomenclature Common Names

SR-A1 MSR1, SR-AI, SCARA1

SR-A1.1 SR-AII

SR-A3 APC7, MSRL1, SCARA3

SR-A4 COLEC12, CL-P1, SRCL

SR-A5 SCARA5, TESR

SR-A6 MARCO

SR-B1 CD36L1, SR-BI

SR-B2 CD36, PAS4, SCARAB3

SR-D1 CD68

SR-E1 LOX-1, OLR1

SR-E2 Dectin-1, CLEC7A

SR-E3 CD206, Mannose Receptor 1, MRC1

SR-E4 CLEC4HI, HL-1

SR-F1 SCARF1, SREC-1

SR-F2 MEGF10

SR-G1 CXCL16, SR-PSOX

SR-H1 STAB1, FEEL-1

SR-H2 FEEL-2

SR-I1 CD163

SR-J1 RAGE

Unclassified/Noncanonical (SRCR) CD5l (AIM)1, MerTK, gp-340, KIM1

Scavenger receptor cysteine rich (SRCR) is a superfamily of receptors that is characterized 
by the presence of a conserved ∼100–110 cysteine rich structure. On this review we focus on 
AIM as the main SRCR.
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2.1.2 Rubor: red blood cell development & 
maintenance

In addition to its vascular roles, SR-B1 also supports 
erythropoiesis and RBC maintenance (43). In SLE, RBCs 

frequently display abnormal morphology or size variability, 
which may impair oxygen delivery and contribute to common 

symptoms such as chronic fatigue, anemia, and cognitive 
dysfunction (53, 54). Autoimmune hemolytic anemia is another 

hematologic manifestation of SLE, leading to increased RBC 
destruction and free hemoglobin in circulation (55). SR-I1 or 

commonly known as CD163, is a hemoglobin-scavenging 
receptor primarily expressed on M2-polarized macrophages. It 

binds to haptoglobin–hemoglobin complexes to mediate 
hemoglobin clearance during intravascular hemolysis (55–58). In 

lupus nephritis (LN), kidney CD163+ macrophages infiltrate 
glomeruli, contributing to local in<ammation and tissue damage 

(56, 59). Elevated levels of soluble SR-I1 are consistently found 
in the serum of patients with SLE, particularly those with 

macrophage activation syndrome, autoimmune hemolytic 
anemia, or immune thrombocytopenia (57, 60). In<ammatory 

conditions, including SLE, are characterized by increased 

expression of SR-I1, re<ecting ongoing macrophage activation 

(55–57, 61).
Macrophage activation syndrome (MAS) is one of the most 

severe hyperin<ammatory complications of lupus, characterized 
by uncontrolled macrophage and T cell activation, cytokine 

storm, and hemophagocytosis. While vascular and hematologic 
manifestations are well-established in SLE, defective SR 

pathways contributing to MAS susceptibility directly are limited 
(62, 63). In SLE, defective clearance of apoptotic debris [and 

release of nuclear danger/damage-associated molecular patterns 
(DAMPs) such as HMGB1] sustains TLR7/9 signaling and type 

I interferon production, which foster cytotoxic T-cell activation 
and excessive IFN- γ response—features characteristic of MAS 
(64–66). Under these in<ammatory conditions, regulatory 

macrophage circuits such as the CD163-heme oxygenase-1 
(HO-1) pathway, normally critical for heme detoxification and 

resolution of in<ammation, may become functionally exhausted. 
Failure of this axis limits macrophage antioxidant and anti- 

in<ammatory capacity and favors uncontrolled activation and 
hemophagocytosis, thereby lowering the threshold for MAS in 

SLE patients (67, 68). Serum soluble SR-I1 is consistently 

FIGURE 2 

Immunological disease continuum model. This model proposes a spectrum of immune-mediated diseases that ranges from autoinflammatory to 

autoimmune condition.
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elevated in active MAS even under IL-6 blockade and closely 

re<ects disease activity and the clinical relevance of SR 
dependent macrophage dysregulation (69, 70). Additional 

insights into SRs dysfunction and MAS pathogenesis emerge 
from related hyperin<ammatory disorders. For example, in 

systemic juvenile idiopathic arthritis (sJIA), a disease with high 
MAS propensity, soluble SR-I1 correlates with MAS activity and 

TRIM8 upregulation in monocytes/macrophages augmenting 
IFN- γ responsiveness, providing a molecular mechanism for 

macrophage hyperactivation (70, 71).
Despite observed elevations in SR-I1, its precise role in SLE 

pathophysiology remains unclear. Two opposing hypotheses 
currently exist: the first suggests that SR-I1 is abnormally 

elevated, causing excessive phagocytosis of haptoglobin– 
hemoglobin complexes and downstream accumulation of 

iron, oxidative stress, and ferroptosis; the second proposes 
that SR-I1 is elevated as an adaptive response to prevent 

further tissue damage caused by ruptured red blood cells 
(55). Notably, soluble SR-I1 levels correlate with disease 

activity in rheumatoid arthritis (72) and serve as a biomarker 
for active renal involvement in SLE, including in the urine of 

patients with LN (73–75). Together, these findings 
underscore the dual vascular and hematologic roles of SRs 

such as SR-B1 and SR-I1 in the manifestation of rubor and 

broader SLE pathology. Their dysregulation contributes not 

only to visible signs of in<ammation but also to systemic 
complications, making them potential biomarkers and 

therapeutic targets.

2.2 Calor

Calor, or heat, is a hallmark of in<ammation and re<ects 

increased blood <ow and elevated metabolic activity driven 
by in<ammatory mediators. During infection, fever 

(hyperthermia) is a protective physiological response that 
enhances immune function, promotes leukocyte trafficking, 

and inhibits pathogen replication (76–78). Historically, 
controlled elevation of body temperature—therapeutic 

hyperthermia—has even been employed to treat infectious 
disease by enhancing organ perfusion and activating immune 

pathways (76–78). However, excessive or sustained fever can 
lead to tissue damage and adverse outcomes, such as heat 

stroke (76).
In autoimmune diseases such as SLE, fever is a common 

manifestation—even in the absence of infection. Recurrent, 
unexplained fever is often a presenting symptom and is 

considered a clinical clue in early diagnosis (79–81). Studies 

FIGURE 3 

Cardinal signs of inflammation. Biological responses of the body to harmful stimuli in response to scavenger receptors.
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report fever in 36%–86% of SLE patients, although the prevalence 
has declined due to routine use of nonsteroidal anti-in<ammatory 

drugs (NSAIDs) (79, 81–86). Distinguishing SLE-related fever 
from infection remains clinically challenging, particularly in 

patients receiving immunosuppressive therapies that increase 
infection risk or due to inherent disease-associated immune 

perturbations (87, 88). In cases of Fever of Unknown Origin 
(FUO), infection must be rigorously ruled out before attributing 

symptoms to SLE (79). While infection is the most common 
cause of FUO, approximately 5% of cases are ultimately 

diagnosed as autoimmune conditions, including SLE and 
autoimmune thyroiditis (89, 90). Although SRs have not been 

directly linked to the development of fever, they in<uence 
proin<ammatory signaling pathways, such as nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) and 

JAK/STAT, that regulate the febrile response (383).

2.2.1 Calor: endogenous pyrogens/cytokines
Fever is largely mediated by endogenous pyrogens— 

proin<ammatory cytokines that are released by immune cells in 
response to infection, tissue damage, or autoimmune activity. Key 

endogenous pyrogens include tumor necrosis factor-α (TNF-α), 
interleukins (IL-1β, IL-6, IL-8), and interferons (IFN-β, IFN-γ), 

among others (91, 92). These cytokines circulate systemically and 
act on the hypothalamus to elevate body temperature. Many of 

these same cytokines are found at abnormally high levels in SLE 
patients, and their activity contributes to immune dysregulation, 

tissue damage, and systemic in<ammation (93–100).
Due to this, they are also considered potential targets for SLE 

treatments (101). Scavenger receptor class E member 1 (SR-E1), 
also known as LOX-1, is a receptor for oxidized low-density 

lipoproteins (oxLDL) that is primarily expressed on vascular 
endothelial cells (102, 103), but also on vascular smooth muscle 

and lymphoid cells (104). SR-E1 mediates oxLDL endocytosis 
and promotes atherogenesis (104, 105) and has been shown to 

be a key player in the development of atherosclerosis, 
myocardial ischemia, hypertension, and in<ammation (105, 

106). SR-E1 deficiency in vivo protects mice from developing 
atherosclerosis (102), whereas SR-E1 overexpression promotes it 

(107). In SLE patients, SR-E1 expression is elevated even in 
early disease onset and low disease activity and correlates with 

high-sensitivity C-reactive protein (hsCRP), proin<ammatory 
HDL, and oxLDL (108). Moreover, increased SR-E1 in SLE is 

associated with elevated IL-8 and reduced IFN-γ levels, while 
other cytokines such as IL-6, IL-10, and TNF-α remain 

unchanged (105). Interestingly, proin<ammatory cytokines (e.g., 
IL-1β, TNF-α) can themselves induce SR-E1 expression, 

potentially creating a self-perpetuating in<ammatory loop 
(108–110). Perturbing this feedback loop is a possible option to 

reduce in<ammation-driven CVD in SLE (108, 111, 112).

2.2.2 Calor: prostaglandins & thermoregulatory 
neurons

Fever can also be triggered by non-immune cells. Pro- 
in<ammatory cytokines such as IL-1β, IL-6, and TNF-α 
stimulate cyclooxygenase-2 (COX-2), which catalyzes the 

production of prostaglandin E2 (PGE2). PGE2, in turn, binds 
to PGE2 receptors stimulating the part of the brain where 

thermoregulatory neurons modulate body temperature and 
induce fever (113). Elevated PGE2 has been detected in the 

cerebrospinal <uid (CSF) of patients with neuropsychiatric SLE 
(NPSLE), along with increased levels of IL-6, IgG, and 

autoantibodies against calf thymus antigens (114). Among 
these, CSF IL-6 has shown the strongest correlation with 

NPSLE severity and may serve as a potential biomarker (115, 
116). In pristane-induced lupus mouse models, PGE2 mediates 

the production of proin<ammatory cytokines, such as IL-6, IL- 
10, and IFN-γ, and NO (117). While no direct link between 

PGE2 and SRs in SLE has yet been confirmed, emerging 
evidence suggests functional intersections. For example, SR- 
B2–mediated microglial phagocytosis of amyloid-β is regulated 

by PGE2 receptor signaling in in vivo Alzheimer’s disease 
models (118). Additionally, celecoxib, a selective COX-2 

inhibitor used in treating in<ammation in SLE, has been 
shown to upregulate SR-B2 and downregulate SR-E1 in 

macrophages—indicating that prostaglandin pathways can 
modulate SR expression and potentially in<uence 

in<ammatory outcomes (119).

2.2.3 Calor: heat shock proteins
Heat shock proteins (HSPs), molecular chaperones released 

from cells undergoing stress, help maintain protein homeostasis 
(120). Incubating murine skin explants at fever-range 

hyperthermia (40°C) upregulates HSP70 expression and leads to 
dendritic cell (DC) migration (121). At similar temperatures, 

expression of HSP70 is induced in lymphocytes (122, 123). 
HSPs can help immune cells withstand and react to 

in<ammatory environments (121).
HSPs are typically expressed intracellularly; however, under 

conditions of cellular stress (e.g., cell damage, necrosis), HSPs 
may be released extracellularly, where they act as DAMPs. 

Extracellular HSPs can prime antigen-presenting cells, promote 
cytokine production (e.g., TNF-α, IL-6), and contribute to the 

generation of autoantibodies (124–132). This immune activation 
correlates with HSP levels: more cell damage triggers higher 

HSP expression and a more intense immune response 
(133–135). Elevated HSP70 levels, HSP gene polymorphisms, 

and anti-HSP autoantibodies have all been associated with SLE 
pathogenesis (136–141).

Several SRs have been identified as HSP-binding receptors, 
including SR-E1, SR-F1, SR-A, SR-H1, and SR-L1 (141–145). 

SR-E1 and SR-F1 bind strongly to HSP70, HSP90, Grp94, 
Hsp110, and Grp170 (146–149). SR-B2 deficiency in LDL 

receptor–deficient mice exposed to hyperthermic stress leads to 
HSP70 overexpression and enhanced atherosclerosis, 

highlighting the interplay between SRs, heat shock responses, 
and vascular in<ammation (150–152). In lupus-prone mice, 

HSP70-based DNA vaccines have shown promise in suppressing 
anti-dsDNA antibody production, reducing proin<ammatory 

responses, promoting tolerogenic immune responses, and 
prolonging survival (153). Other therapeutic approaches, such as 

epitope-based immunization with HSP70-derived peptides, have 

Hahn et al.                                                                                                                                                             10.3389/flupu.2025.1679564 

Frontiers in Lupus 06 frontiersin.org



demonstrated TReg activation without inducing systemic 
immunosuppression (154). SLE is associated with increased 

auto-antibody productions of other HSP-like proteins and HSPs, 
namely grp94 and calreticulin (155, 156), which has been found 

to play a role in during physiological stresses like fever (157) 
and in the pathogenesis of SLE (144, 158). SR-L1, an HSP 

receptor, is particularly relevant in this context. Membrane- 
bound SR-L1 mediates antigen presentation, cytokine secretion, 

and T helper cell priming (126, 159). SR-L1 plays an immuno- 
protective role by suppressing the expression of in<ammatory 

mediators (MCP-1/CCL2, TNF-α, and MMP-9) (160, 161). To 
suppress in<ammation, SR-L1 sheds its ectodomain, generating 

soluble SR-L1 (162), which can be detected in the serum of 
patients with SLE and Rheumatoid Arthritis (RA) (163). 
Bruton’s tyrosine kinase (Btk) also plays a key role by 

phosphorylating calreticulin on apoptotic cells (ACs), enabling 
membrane-bound SR-L1 to mediate the clearance of C1q- 

opsonized ACs. In the absence of Btk, SR-L1 cannot recognize 
calreticulin, resulting in the accumulation of apoptotic cell 

debris (164). Together, these findings suggest a multifaceted role 
for SRs in regulating immune responses to thermal and 

in<ammatory stress. By binding HSPs and modulating cytokine 
production, SRs represent promising therapeutic targets and 

potential biomarkers for disease severity in SLE. Similarly, many 
HSPs themselves have been identified as targets for the 

treatment of autoimmunity, such as in RA, diabetes, multiple 
sclerosis (MS), and SLE (165, 166).

2.3 Dolor

In in<ammation, dolor represents pain due to changes 
associated with perivasculature and nerve endings. Pain, 

especially chronic pain, is a hallmark of SLE and is often one of 
the first reported symptoms (167). Data shows that 85% of SLE 

patients report joint pain (168, 169) and 32%–66% report 
headaches (169). Up to 80% of SLE patients experiencing pain, 

fatigue, or joint pain rate these symptoms as moderate or severe 
(170). Pain in SLE can be both in<ammatory and non- 

in<ammatory in nature including musculoskeletal [arthritis, 
myositis, avascular necrosis, fracture, osteoarthritis (OA)], 
fibromyalgia), neuropsychological (headache, small fiber 

neuropathy), serositis (pericarditis, pleuritis, peritonitis), 
immunological disturbance, drug side effects, etc. as reviewed by 

Pisetsky et al. (171).

2.3.1 Dolor: neuropathic pain

SR-L1 (known as LRP-1 or CD91), plays a major role in 
neuroin<ammation, nerve de- and re-generation, and 

neuropathic pain (172, 173). SR-L1 deficiency in Schwann cells 
is linked to mechanical allodynia—pain from normally non- 

painful stimuli such as light touch—and impaired motor 
function, both of which contribute to peripheral nerve injury 

and chronic pain (174, 175). SR-L1 deletion on macrophages 
induces an increase in NFκB pathway activation and 
in<ammation (176). SR-L1 downregulates proin<ammatory 

cytokines (IL-1β, TNF-α, and IL-6) released due to NFκB 
activation. Perturbed SR-L1 across several cell types results in 

increased secretion (172).
Similarly, SR-L1 has a role in neuronal cell survival by 

modulating c-Jun N-terminal kinase (JNK)-mediated apoptosis 
(172). Perturbing SR-L1 leads to JNK pathway activation and 

the release of several proin<ammatory cytokines (e.g., TNF-α 
and IL-1ß) and chemokines such as chemokine (C-C motif) 

ligand (CCL) 2 (CCL2), CCL3, or CCL4 (177–179). 
Consequently, SR-L1 downregulation promotes synaptic and 

neuronal loss, leading to cognitive impairment (172, 180–184). 
In MS, autoantibodies against SR-L1 have been found to inhibit 

function and contribute to poor clinical outcomes (185). In 
response to in<ammatory triggers, membrane-bound SR-L1 has 
been found to be anti-in<ammatory (178, 186–189); however, 

increased levels of soluble SR-L1 correlate with in<ammation in 
patients with SLE and RA (163). SR-L1, through its ligands and 

its biologically active soluble form, has been explored as a 
potential therapeutic target for neuropathic pain, based on 

studies of axonal injury and Alzheimer’s disease (172, 177, 183). 
Although auto-antibodies to SR-L1 have not been attributed to 

SLE, auto-antibodies to scavenger receptor class L member 2 
(SR-L2) have been found to be a major player in systemic 

autoimmune diseases (190). In a cohort of 147 patients, anti- 
LRP2 autoantibodies were detected in 87% with RA, 40% with 

SLE, 35% with systemic sclerosis, 15% with osteoarthritis, and 
3% with Behçet’s disease (190).

Beyond their role in systemic autoimmunity, immune cells 
such as macrophages are increasingly recognized for their 

involvement in the pathophysiology of chronic pain (191–193). 
CD68 (SR-D1) is commonly used as a biomarker to quantify 

in<ammatory cell and macrophage infiltration (194). Often 
associated with RA (195), Morton’s neuroma is an entrapment 

neuropathy characterized by compression of a plantar digital 
nerve in the foot, leading to neuropathic symptoms such as 

burning, paroxysmal pain, and paresthesia. In nerve samples 
from patients with Morton’s neuroma, increased intraneural 

CD68+ macrophages have been positively correlated with 
burning pain, while higher expression of SR-A6 has been linked 

to paroxysmal pain, as measured by the Neuropathic Pain 
Symptom Inventory (196). Similarly, intervertebral disc tissue 

from patients with lower back pain shows elevated infiltration of 
TNF-α+ and CD68+ cells (197). Conversely, in post-amputation 

patients experiencing phantom pain, nerve biopsies revealed a 
lower presence of CD68+ macrophages. This finding led 

researchers to propose a potential protective role for these cells 
against the development of chronic pain in certain contexts 
(191). These observations suggest that the role of infiltrating 

CD68+ macrophages in pain may vary depending on the 
condition and anatomical site. For example, pain in chronic 

pancreatitis—whether alcoholic, biliary, hereditary, or 
autoimmune in origin—is typically classified as in<ammatory 

rather than neuropathic, though these categories are not 
mutually exclusive. Notably, in cases of chronic pancreatitis, 

CD68+ macrophage levels did not correlate with pain 
severity (194).
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2.3.2 Dolor: inflammatory pain

Building on the role of macrophage infiltration in various 
pain states, joint in<ammation in diseases such as OA, RA, 

and SLE further illustrates the link between immune cell 
activity and pain. In these conditions, increased infiltration of 

immune cells and the production of pro-in<ammatory 
mediators (often triggered by IgG immune complexes) 

sensitize and activate sensory nociceptors innervating 
joint tissues (198–201). Several SRs associated with 

macrophage activation have been implicated in in<ammatory 
joint pain. For instance, elevated expression of CD163 or 
SF-I1 and the pro-in<ammatory cytokine TNF-α correlates 

with higher resting pain scores in patients with hip OA (202). 
Similarly, IL-1β, another key pro-in<ammatory cytokine, 

contributes to pain through its role in prostaglandin 
production (201, 203).

In RA murine models, macrophages expressing SR-D1, SR-I1, 
and SR-E3 are enriched in in<amed joints; however, a highly 

pathogenic and pro-in<ammatory subset of macrophages co- 
expressing SR-I1 and SR-E3 has been identified in RA synovial 

tissue. These SR-E3+ SR-I1+ macrophages spontaneously secrete 
pro-in<ammatory mediators including IL-6, IL-8, IL-1β, and 

TNF-α, and exhibit strong co-expression of CD40, a 
costimulatory activation marker known to drive chronic 

in<ammation in RA (204–206). Remarkably, inhibition of 
CD40-TRAF6 signaling reversed the secretion of these 

mediators, suggesting that targeting this pathway may offer 
therapeutic benefit (207). Even more compelling is the 

observation that these pathogenic macrophages were present 
before the clinical onset of RA symptoms (207).

Extending beyond the joints, macrophage subsets expressing 
SR-E3 and SR-I1 have also been implicated in chronic pain 

development in the dorsal root ganglia (DRG). In mouse models 
genetically predisposed to chronic pain following peripheral 

injury, DRG-resident macrophages expressing SR-I1 alone (SR- 
E3⁻ SR-I1+) or both SR-E3 and SR-I1 (SR-E3+ SR-I1+) were 

found to promote chronic pain. Targeted depletion of these 
macrophage subsets effectively prevented the development of 

injury-induced chronic pain, highlighting their critical role in 
pain pathogenesis (208).

Relatively few SRs have been directly linked to pain in SLE or 
to pain mechanisms more broadly. However, further investigation 

into how SRs contribute to immune response pathways in SLE, 
particularly those leading to neuropathic and in<ammatory pain, 
may reveal additional SRs involved in early immune 

dysregulation and the onset of autoimmunity. Uncovering these 
connections could offer novel insights into both SLE 

pathogenesis and pain modulation.

2.4 Tumor

The classical hallmark of tumor in in<ammation, or swelling, 
is primarily caused by increased vascular permeability, leukocyte 

infiltration, and <uid accumulation in affected tissues (22). 

A key event in this process is diapedesis, or trans-endothelial 
migration, in which leukocytes exit the bloodstream and traverse 

the vascular and lymphatic endothelial barriers to reach sites of 
in<ammation (209). This involves a tightly regulated sequence: 

leukocyte recruitment, adhesion to ECs, and eventual 
transmigration into surrounding tissues (210). Persistent 

vascular in<ammation is a hallmark of several autoimmune 
conditions, including SLE (211, 212), where dysregulated 

immune cell infiltration exacerbates tissue injury and 
chronic in<ammation.

2.4.1 Tumor: leukocyte recruitment & 

transmigration
Effective leukocyte recruitment is essential for host defense 

and tissue repair; however, in autoimmune diseases such as SLE, 
excessive or uncontrolled leukocyte accumulation leads to 

chronic in<ammation and tissue damage (210).
Myeloid cells, particularly neutrophils and monocytes, play a 

central role in initiating and sustaining vascular in<ammation in 

SLE (212–215). Neutrophils contribute to in<ammation not only 
through phagocytosis but also by producing reactive oxygen 

species (ROS), releasing neutrophil extracellular traps (NETs), and 
modulating adaptive immunity via crosstalk with dendritic cells, 

macrophages, and lymphocytes (211, 216, 217). SRs, particularly 
SR-A, have been implicated in neutrophil activation, including via 

mitogen-activated protein kinase (MAPK) signaling pathways, 
leading to increased production of proin<ammatory cytokines 

(i.e., IL-6, TNF-α) and NET formation (218).
SLE is also characterized by elevated Type I interferon levels, 

which drive monocyte chemotaxis through increased expression 
of MCP-1 and MIP-1α. This promotes the upregulation of SRs 

such as SR-A and SR-B2, further enhancing monocyte and 
neutrophil activation (219–223). These receptors facilitate the 

uptake of modified low-density lipoproteins (LDLs), linking 
innate immune activation with lipid metabolism and vascular 

in<ammation. For example, SR-B2 supports macrophage 
spreading and migration (224), in<ammasome activation (225), 

and has been implicated in lesional macrophage 
proliferation (223, 226).

2.4.2 Tumor: diapedesis & SR-mediated 

endothelial crosstalk
The transmigration of leukocytes across the endothelium is a 

tightly regulated, multi-step process involving changes in both 
leukocytes and endothelial cells. In<ammatory cytokines 

upregulate endothelial adhesion molecules, while chemokines 
activate leukocyte integrins to promote firm adhesion and 

extravasation (210). Leukocytes then alter their morphology to 
traverse the endothelial barrier and surrounding pericyte layer, 

ultimately infiltrating the in<amed interstitial tissue (210).
Among scavenger receptors, SR-G1 is unique in exhibiting 

both receptor and chemokine-like functions. In its membrane- 
bound form, SR-G1 binds oxLDLs and phosphatidylserine (PS), 

contributing to phagocytosis and waste clearance. In its soluble 
form, SR-G1 acts as a chemoattractant through its interaction 

with the CXCR6 receptor on bone marrow plasma cells and 
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T cells (227). Soluble SR-G1 is particularly relevant to SLE: 
elevated serum levels correlate with disease severity, organ 

involvement, and prognosis in both adult (228) and juvenile 
SLE (229). Levels decrease with effective treatment, supporting 

its potential utility as a biomarker for SLE progression and 
therapeutic response (228).

2.4.3 Tumor: SRs in endothelial dysfunction

A major complication in SLE is the premature development of 
atherosclerotic cardiovascular disease (ASCVD). Early plaque 

formation is marked by endothelial dysfunction and the 
infiltration of pro-in<ammatory leukocytes beneath the 

endothelial monolayer (226, 230). Monocyte-derived 
macrophages proliferate in response to hematopoietic growth 

factors such as macrophage colony-stimulating factor (M-CSF) 
and accumulate cholesteryl esters, forming foam cells (231–234). 

M-CSF also enhances SRs expression, particularly SR-A and SR- 
B2, promoting oxLDL uptake and foam cell formation (233, 235).

SR-B2 plays a central role in this process. Suppression of SR- 

B2 in murine models reduces aortic lesion size, suggesting that its 
function is non-redundant and critical in lesion development 

(236, 237). Importantly, SLE patient blood samples contain 
higher levels of oxLDL-containing immune complexes (238), 

which upregulate SR-B2 expression in healthy cells exposed to 
this SLE plasma (235). This mechanism likely contributes to 

accelerated foam cell formation and atherosclerosis in SLE, 
positioning SR-B2 as a potential therapeutic target (239, 240).

Additionally, Mer tyrosine kinase (MerTK), another SR, is 
essential for the clearance of apoptotic cells within plaques. Loss 

of MerTK impairs efferocytosis, promoting the formation of a 
lipid-rich necrotic core and driving plaque instability (241) as 

well as T cell–mediated β cell autoimmunity (242). Elevated 
levels of soluble MerTK in SLE patients correlate with disease 

activity (243), complement depletion, and anti-dsDNA titers, 
suggesting a role in both cardiovascular and autoimmune 

pathology (243, 244).
Another key player is SR-E1 (LOX-1), which mediates uptake 

of modified LDLs and contributes to foam cell formation. OxLDL 
exposure reduces DNA methylation of the SR-E1 promoter, 

creating a positive feedback loop that amplifies SR-E1 expression 
and promotes plaque progression (245). In SLE patients with 

ASCVD, serum levels of soluble SR-E1 correlate with 
in<ammatory biomarkers such as high-sensitivity C-reactive 

protein (hsCRP), proin<ammatory HDL, and oxLDL (108). 
Furthermore, higher sSR-E1 levels are associated with earlier age 

of SLE diagnosis (108), suggesting that SR-E1 could serve both 
as a biomarker and a therapeutic target in SLE-related 

vascular disease.

2.4.4 Tumor: endothelial cell scavenger receptors 
and tissue crosstalk

In SLE, the endothelium has been shown to be in a 
dysregulated state, even during low disease activity (246). SRs 

are expressed on endothelial cells, where they regulate vascular 
permeability, immune cell trafficking, and antigen presentation. 

These scavenger endothelial cells (SECs) are especially 

prominent in the liver, where hepatic sinusoidal endothelial cells 
(HSECs) act as filters for bloodborne antigens and 

macromolecules, given the liver’s extensive exposure to gut- 
derived microbial products (247–251). HSECs express a range of 

SRs including SR-H1 (252–254), SR-H2 (255), SR-B2 (256), SR- 
B1 (257), SR-E3 (258, 259), and SR-F1 (250). SR-H1, for 

example, is induced by proin<ammatory stimuli (260) and, in 

vitro, regulates lymphocyte trafficking to in<amed tissues (261). 

SR-H1 expression on monocytes is considered a predictive 
biomarker for increased cardiovascular-related disease risk (13). 

Both SR-H1 and SR-H2 bind to a variety of ligands including 
acLDL, advanced glycation end-products (AGEs), and both 

gram-positive and gram-negative bacteria (13, 262). SR-H1 also 
facilitates T and B cell trans-endothelial migration via 
interactions with adhesion molecules like ICAM-1 and 

VAP-1 (13, 253, 263–266).
Interestingly, SR-H1 promotes antigen presentation in a 

tolerogenic context by cross-presenting exogenous antigens on 
MHC-I and MHC-II molecules with high expression of 

inhibitory ligands (e.g., PD-L1), HSECs help induce regulatory 
T cells rather than proin<ammatory responses (267–271). 

Inhibition of SR-H1 and SR-H2 has been shown to induce an 
anti-in<ammatory plasma proteome and reduce monocyte- 

driven atherogenesis, pointing to their therapeutic potential (272).
SR-F1 (SCARF1, SREC-1), initially identified in human 

umbilical vein endothelial cells (264), is also upregulated in 
chronic liver diseases such as primary sclerosing cholangitis 

(PSC), primary biliary cholangitis (PBC), ALD, and non- 
alcoholic steatohepatitis (NASH) (250). SR-F1 activation by 

TNF-α or LPS enhances CD4+ T cell recruitment, working in 
concert with VCAM-1 to facilitate immune cell adhesion during 

liver in<ammation (250). Other SRs, including SR-E1 (273, 274), 
SR-H1 (253, 254, 275), SR-H2 (255) also mediate leukocyte 

adhesion to endothelial cells, contributing to in<ammatory 
crosstalk between the vasculature and the immune system.

2.4.5 Tumor: SRs in regulating neutrophil NETS 

and endothelial injury
Neutrophils recruited to the endothelium are activated by 

immune complexes (276) and perform several effector functions 
including phagocytosis, degranulation, and formation of 

neutrophil extracellular traps (NETs) (276, 277). While NETs 
are antimicrobial, excessive NET formation (NETosis) and 

elevated levels of circulating NETs is pathogenic in SLE, where 
it contributes to endothelial injury, immune complex formation, 

and the development of autoantibodies (277).
Increased NETs have been observed in patients with LN and 

in MRL-lpr mice (278). SR-J1 (RAGE) is an SR expressed on 
endothelial cells that plays a role in triggering NETosis (279) 

and, together with clathrin, mediates the uptake of NETs. 
However, endothelial phagocytic capacity is limited, and NET 

overload disrupts vascular integrity. Specifically, NET-associated 
elastase degrades VE-cadherin at intercellular junctions, 

increasing vascular permeability and leakage (278). This 
mechanism links NETosis and SR-mediated uptake to vascular 

damage and albumin extravasation, ultimately highlighting the 
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role of NET clearance in preserving endothelial barrier function 
in SLE.

2.5 Functio laesa

Functio laesa, Latin for “loss of function,” can refer to either 

impaired organ function (280) or neurological responses to 
in<ammation and pain (281). In the context of systemic 

in<ammation, such as in SLE, functio laesa often re<ects multi- 
organ dysfunction or outright failure (282). SLE can affect 

nearly every organ system, manifesting in complications such as 
lupus nephritis (kidneys), neuropsychiatric disease (central 

nervous system), cutaneous lupus (skin), lymphadenopathy 
(lymphatic system), and various cardiovascular conditions (283, 

284). Organ damage occurs in at least 50% of SLE patients 
(285), though some studies report even higher rates. 

A Taiwanese cohort found that over 80% of SLE patients 
developed organ damage within 6 months of diagnosis (286), 

while U.S. studies report damage in 33%–50% of patients within 
the first five years (287). The most frequently affected systems 

vary by region: ocular, neuropsychiatric, and cardiovascular 
systems are common in the U.S. and Germany (287, 288), while 

renal, neuropsychiatric, pulmonary, gastrointestinal, and 
cutaneous systems are prominent in Taiwanese patients (286, 289).

2.5.1 Functio laesa: neuropsychiatric

Neuropsychiatric symptoms are among the most common 
manifestations of SLE, affecting 80%–90% of patients worldwide 

(290). These symptoms include cognitive impairment, motor 
dysfunction, sleep disruption, fatigue, mood disorders, and 

behavioral changes. Cognitive dysfunction often presents early— 
prior to the development of dementia or confusion—whereas 

symptoms like depression or headaches are more difficult to 
diagnose and frequently missed in early screenings (290).

Up to 40% of neuropsychiatric SLE (NP-SLE) symptoms 
arise before or at the time of SLE diagnosis, and 60% typically 

develop within a year (291, 292). Current research is focused 
on whether NP symptoms are driven by central nervous 

system (CNS) in<ammation in chronic SLE, CNS dysfunction 
and damage, or treatments and medications (290, 293). While 

lesions are not always evident in NP-SLE patients, functional 
abnormalities have been identified, including cerebral 

hypoperfusion (292, 294–298), metabolic deficiencies (292, 
299–302), and—most commonly—progressive neuronal 

atrophy (292, 298, 300, 303–310).
In SLE-prone mouse models, neuropsychiatric and behavioral 

symptoms precede systemic autoimmunity, immune cell 
infiltration, or vascular damage (311). Interestingly, microglia in 

SLE-prone mice exhibit neurodegenerative disease-associated 
signatures prior to systemic SLE manifestations. Microglia from 

SLE mouse models show upregulation of genes involved in SR 
activity and downregulation of genes involved in in<ammation 

and chemotaxis, suggesting that microglia in SLE-prone mice 
may not be able to regulate in<ammation appropriately (311). 
Makinde et al. found SRs, SR-G1 (CXCL16) and LGALS3BP, are 

upregulated in lupus-prone mouse microglia. In healthy 
conditions, microglial cells maintain tissue homeostasis in the 

brain by sensing changes in the environment and responding 
appropriately. Anti-in<ammatory microglia release 

immunomodulatory factors to support tissue repair in the brain. 
In disease contexts, anti-in<ammatory microglia may also 

reduce immune response and promote cell invasion and 
tumorigenesis (312). Outside of SLE, microglial SR-G1 has been 

proposed as a therapeutic target to reduce neuroin<ammation 
(312), and LGALS3BP may be a therapeutic target for its roles 

in angiogenesis and tumor progression (313). In SLE, serum SR- 
G1 and platelet LGALS3BP levels also correlate with LN severity 

(229, 314), pointing to systemic involvement beyond the CNS.

2.5.2 Functio laesa: tissue homeostasis & 
clearance of apoptotic cells

Dysregulation of both innate and adaptive immune responses 
contribute to SLE (315). Adaptive immunity establishes a highly 

specific immunological memory to pathogens. B and T cells of 
the adaptive immune system are responsible for ensuring a 

specific, controlled spatiotemporal response to limit or prevent 
excessive tissue damage (316). The breakdown in immune 
tolerance is a hallmark of SLE development (315), as well as 

many other autoimmune disorders (316). Tissue homeostasis 
depends on the efficient clearance of apoptotic cells (ACs) by 

phagocytes in an immunologically silent process that prevents 
in<ammation (317). Dying cells release “find-me” signals that 

attract phagocytes, while surface markers like phosphatidylserine 
(PS) serve as “eat-me” signals (317). Failure to clear ACs leads 

to their secondary necrosis, triggering in<ammation, disruption 
of self-tolerance, and immune activation—a major contributor 

to SLE pathogenesis (318–321).
Elevated levels of uncleared ACs in SLE patients support the 

notion that defective clearance contributes to disease (319, 320). 
Scavenger receptors are critical in mediating efferocytosis, 

including SR-A, SR-F, and SR-H families (11, 262, 264, 322–325). 
SR-A1 and MARCO (SR-A6) are key receptors in this process. 

SR-A1 expressed on thymic macrophages was first shown to 
mediate apoptotic thymocyte clearance, and its blockade reduces 

phagocytosis by ∼50% (326). Mice lacking SR-A1 and MARCO 
develop higher levels of autoantibodies and lupus-like disease due 

to impaired clearance of apoptotic debris by marginal zone 
macrophages in the spleen (323). Additionally, SLE patients and 

murine models have been found to spontaneously produce 
autoantibodies against these SRs, impairing the apoptotic cell 

removal ability of these two SRs (323, 327).
SR-F1 (SCARF1) also plays a role in apoptotic cell clearance. 

Mice lacking SCARF1 develop lupus-like symptoms, including 
nephritis and dermatitis, driven by defective phagocytosis of PS- 

and C1q-labeled apoptotic cells (328). SCARF1 is a non- 
redundant efferocytosis receptor expressed on BDCA1+ dendritic 

cells, where its engagement promotes anti-in<ammatory IL-10 
production via STAT1/STAT3 signaling (329). Interestingly, 

while SCARF1 expression is not reduced in SLE patients, they 
exhibit anti-SCARF1 autoantibodies, which correlate with 

impaired efferocytosis (329). Additional work is needed to 

Hahn et al.                                                                                                                                                             10.3389/flupu.2025.1679564 

Frontiers in Lupus 10 frontiersin.org



understand the function and action of the anti-SCARF1 
autoantibodies, and whether these autoantibodies can be used as 

biomarkers for SLE.

2.5.3 Functio laesa: systemic organ damage
SLE-associated systemic in<ammation leads to damage in 

organs such as the heart, lungs, and liver, particularly in 
patients with hematological symptoms like leukopenia or 

thrombocytopenia due to the circulation and accumulation of 
auto-antibodies and in<ammatory mediators throughout the 

body (330). Scavenger receptors are again implicated—SR-A 
expression on peripheral blood mononuclear cells (PBMCs) 

correlates with systemic in<ammatory response syndrome 
(SIRS) and multiple organ dysfunction syndrome (MODS), 

both indicators of poor survival outcomes (331). Further, 
mechanistic studies further demonstrate that MSR1 (SR-A) 

can physically synergize with Toll-like receptor 4 to amplify 
NF-kB signaling and pro-in<ammatory cytokine release, 

providing a potential molecular bridge to the cytokine storm 
characteristic of MAS leading to systemic organ damage (332, 

333). Similarly, soluble SR-I1 (CD163) levels correlate with 
MODS severity and prognosis in sepsis (334). Increased SR-I1 

expression is found on macrophages in Macrophage 
Activation Syndrome patients who later develop SLE (65) and 

on PBMCs of prior diagnosed SLE patients (335). In LN and 
glomerulonephritis (GN), CD163+ macrophage infiltration is 

positively associated with disease severity and renal function 
decline (336, 337).

Effective SR-mediated clearance of dying cells is protective 
in acute injury, limiting the release of intracellular contents 
and preventing secondary necrosis and in<ammation (338, 

339). Conversely, impaired clearance promotes chronic 
in<ammation and autoimmunity, as seen in SLE (340). The 

soluble scavenger receptor CD5l (also known as AIM, 
apoptosis inhibitor of macrophage) binds cellular debris and 

promotes phagocytic internalization of dead cells. AIM is 
primarily expressed by macrophages in the liver, lymphoid, 

and in<amed tissues (338, 341, 342). Elevated AIM levels are 
observed in both SLE patients (343) and lupus prone mice 

(344), correlating with SLE disease activity (343). AIM is 
most well-known for its role in Acute Kidney Injury (AKI) 

and chronic liver injury in which the accumulation of 
circulating AIM correlates with the progression of organ 

damage (345, 346). Two other SRs, SR-B2 and kidney injury 
molecule-1 (KIM-1), can recognize AIM when bound to 

cellular debris (338, 347). KIM-1, a scavenger receptor not 
typically expressed in healthy kidneys, is markedly elevated in 

injured renal tissue (348, 349). Elevated urinary KIM-1 levels 
in SLE patients suggest its utility as a non-invasive biomarker 

for renal involvement and progression of LN (350).

2.6 Fluor

Fluor refers to the secretion of mucus and in<ammation of 
mucous membranes (19). Patients with autoimmune diseases, 

including SLE, exhibit an increased risk of developing chronic 
sinusitis (351, 352). Interestingly, chronic sinusitis may also 

serve as an early indicator of autoimmune disease onset (353). 
This relationship is thought to arise either from intrinsic 

immune dysregulation—leading to impaired mucosal defense 
and tolerance breakdown—or from extrinsic factors such as 

medications or infections that trigger or exacerbate 
autoimmunity (354).

One key player in mucosal immunity is glycoprotein-340 (gp- 
340), a member of the SR family (355, 356). Gp-340 is highly 

expressed in the sinonasal, ocular, and pulmonary mucosa, 
where it contributes to innate defense through pathogen 

recognition and clearance (355–357) and is found to be up- 
regulated in patients with chronic sinusitis (357).

Gp-340 functions in part through its interaction with 

Surfactant Protein D (SP-D), a collectin involved in pathogen 
recognition, modulation of in<ammation, and phagocytosis 

(355, 358, 359). In SP-D-deficient mice, bacterial lung infections 
result in elevated in<ammation, increased oxidative stress, and 

impaired macrophage function (360). Low circulating levels of 
SP-D have also been linked to the development of SLE (359). 

Although a direct mechanistic connection between gp-340 and 
SLE has not yet been established, its encoding gene, Deleted in 

Malignant Brain Tumor 1 (DMBT1), has been associated with 
several autoimmune and immune-related conditions, including 

SLE (361, 362).
A similar compromise in mucosal barrier integrity is seen in 

the gastrointestinal tract, which plays a vital role in immune 
homeostasis. The intestinal epithelium and its associated 

mucosal layer protect against microbial invasion while allowing 
for nutrient absorption (363, 364). Increased intestinal 

permeability, commonly referred to as “leaky gut syndrome”, 
permits the translocation of microbial products into the 

bloodstream, triggering both acute and systemic in<ammation 
(363, 364). “Leaky Gut Syndrome” is increasingly implicated in 

the pathogenesis of SLE, as it has been in other autoimmune 
diseases such as RA, multiple sclerosis (MS), and type 1 

diabetes (365).
In lupus, impaired gut barrier function allows pathogen- 

associated molecular patterns (PAMPs) and DAMPs to enter the 
bloodstream, activating dendritic cells, macrophages, and 

neutrophils (364). Bacterial components such as 
lipopolysaccharide (LPS), lipoteichoic acid (LTA), and β-glucans 

have been detected in the serum of SLE patients, re<ecting 
microbial translocation and systemic immune activation (366). 

Scavenger receptor SR-E3 (CD206), also known as the mannose 
receptor, has been implicated in both gut dysbiosis and LN 
(367). In lupus-prone mouse models, colonization with 

Segmented Filamentous Bacteria (SFB) exacerbates 
glomerulonephritis, alters immune cell profiles, and disrupts gut 

barrier integrity (368). Notably, kidney-infiltrating CD206+ 

macrophages were observed in SFB-colonized mice, suggesting 

that gut-primed immune cells migrate to distal in<ammatory 
sites, such as the kidney (368). In human SLE patients, the 

presence of CD206+ macrophages in the kidney correlates with 
disease severity (369).
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The importance of mucosal SRs in maintaining immune 
tolerance is further supported by findings in Celiac disease, 

another autoimmune disorder affecting the gastrointestinal 
mucosa. Like SLE, Celiac disease is characterized by impaired 

clearance of ACs, which leads to the accumulation of cellular 
debris and chronic in<ammation. Studies have shown that 

duodenal tissues from Celiac patients exhibit reduced expression 
of several scavenger receptors, including SR-B2, 

thrombospondin-1 (TSP-1), and CD61, alongside elevated levels 
of in<ammatory cytokines such as IL-15, IL21, and IFN-γ (370). 

Furthermore, lamina propria mononuclear cells (LPMCs) 
isolated from Celiac patients display a diminished capacity to 

phagocytose ACs (370). Disruption in these localized immune 
defenses may initiate or amplify systemic in<ammation and 
contribute to disease pathogenesis.

3 Scavenger receptors as biomarkers 
and targets to treat SLE

The complexity and heterogeneity of SLE—both in terms of 
clinical presentation and underlying immunological mechanisms 
—have long posed significant challenges in diagnosis, prognosis, 

and treatment. While serological markers such as anti-dsDNA 
and anti-Smith antibodies are commonly used, they lack 

sensitivity and specificity across all disease stages and patient 
populations. Therefore, there is growing interest in identifying 

novel, more reliable biomarkers that re<ect disease activity, 
organ involvement, and therapeutic responsiveness.

Among the most promising candidates are SRs. SRs play a 
critical role in innate immunity through the recognition and 

clearance of endogenous and exogenous ligands, including 
apoptotic cells, modified lipids, and microbial products. 

Dysregulated expression or function of SRs has been implicated 
in the breakdown of self-tolerance and chronic in<ammation, 

hallmarks of SLE pathogenesis. Notably, SRs also participate in 
intracellular signaling cascades such as the MAPK, NF-κB, and 

JAK-STAT pathways—many of which are known to be 
dysregulated in autoimmune conditions (316, 371–373). This 

positions SRs not only as mediators of immune response but 
also as potential biomarkers for disease progression and targets 

for immunomodulatory therapy.
Biomarkers are essential for the diagnosis, prognosis and the 

monitoring of SLE. Markers like dsDNA, complement levels and 
the presence of certain autoantibodies have been validated and 

are being used in clinical practice. However, it wasn’t until 2007 
that Wermeling et al. showed the presence of antibodies 

responsible for recognizing MARCO and SR-A (323). The 
discovery was then followed up by Chen et al., where the group 

identified an increase of anti-SR-A and anti-MARCO IgG in 
SLE patients when compared to controls (327, 374). In 2022, 

Jorge et al. showed an increase in anti-SCARF1 antibodies that 
correlate with increase dsDNA in the serum (329). This data 

was true for 26% of the patients suffering from SLE, however no 
additional correlation was found with other disease markers. 

Recently it was identified that the SR sCD163 (SR-I1) was 

elevated in patients suffering from LN, and it was suggested to 
be used as a prognostic biomarker (59). These discoveries are 

only in the initial stages and additional work is necessary to 
take this finding to the clinic. There is one thing all these 

discoveries had in common, the presence of these antibodies to 
SRs contribute to the breakdown of self-tolerance and increase 

autoimmune pathogenesis, making SRs the perfect candidate as 
disease progression biomarker.

Current SLE management strategies aim to (1) minimize 
disease activity, (2) prevent irreversible organ damage, (3) 

reduce the burden of comorbidities and treatment-related side 
effects, and (4) improve quality of life by alleviating pain and 

fatigue (5). However, due to the heterogeneous nature of the 
disease, a universal diagnostic or treatment protocol remains 
elusive. While glucocorticosteroids and antimalarial drugs have 

historically formed the backbone of treatment, their long-term 
use is associated with serious side effects and complications 

(Table 2). In recent years, the therapeutic landscape has shifted 
toward biologics, with only two FDA-approved options 

currently available—belimumab and anifrolumab (1, 375–377). 
Despite their promise, many patients exhibit incomplete or 

variable responses, necessitating adjunct or personalized 
therapies that account for unique immune signatures and organ 

involvement (375).
Targeting key signaling pathways associated with SR activation 

—such as MAPK, NF-κB, and JAK-STAT—has been explored in 
clinical trials with mixed outcomes, largely due to SLE’s 

intrinsic heterogeneity and overlapping immunopathogenic 
mechanisms (101, 316, 372, 373). These challenges underscore 

the need for refined biomarkers and therapeutic targets. As 
research advances, scavenger receptors may provide dual utility 

as both indicators of disease activity and modulators of 
in<ammation, offering a promising avenue for stratified 

medicine in SLE care.

4 Discussion

Scavenger receptors play an essential role in the immune 

system and their immunomodulatory function through a variety 
of immune and non-immune cell types in the context of 

in<ammation and several autoimmune diseases. The past two 
decades of research have shown that the role of SRs in 

in<ammatory disease might have been underestimated, and the 
more recent body of published work demonstrates the many 

ways SRs in<uence, modulate, and directly contribute to 
in<ammatory disease-related pathways.

Although great strides have been made to understand how SRs 
contribute to in<ammation, many unanswered questions remain. 

As shown in this review, there is quite a bit of redundancy 
regarding SRs and the pathways that they participate in or 

regulate. Still, it appears that one class is not responsible for the 
immunomodulatory effects of SRs (10, 260). SRs participate in 

pro- and anti-in<ammatory signaling cascades, which muddies 
their contribution to the development and prognosis of 

in<ammatory disease as well. Furthermore, they interact with 
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other pattern recognition receptors to enhance or suppress a 

response (10, 378).
There is convincing evidence that some SRs can act as 

potentially useful biomarkers for autoimmune disease 
diagnostics and prognostics, but this is not the case for every SR 

family. For example, autoantibodies for SR-AI are elevated in 
SLE patients (327) and autoantibodies to SCARF1 are linked to 

defects in efferocytosis and autoimmunity (329). Further 
research is necessary to identify SR with subset or symptoms of 

autoimmunity. However, designing SR-based therapeutic 
approaches may prove challenging since SR levels do not 

necessarily vary between healthy individuals and those with 
in<ammatory disease. Downstream research is needed to 

finetune current findings and provide greater clarity on these 
knowledge gaps.

Despite the knowledge gaps that remain regarding SRs and 
their role in in<ammation and autoimmunity, current research 

demonstrates that SRs wear many immunological hats and 
contribute to a variety of in<ammatory signaling pathways. 

Therefore, it is crucial to continue investigating the role of SRs 

in in<ammation to determine the therapeutic potential of 

targeting SRs in the context of in<ammatory and 
autoimmune disease.
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TABLE 2 Current SLE treatment options.

Drug Class Molecular target EULAR domains SLE 
approval

Ref.

Azathioprine Non-steroidal 
immunosuppressant

Calcineurin inhibitor Hematologic, Skin, Renal, Constitutional, 
Neuropsychiatric

FDA, EMA (375, 379, 
380)

Cyclosporine Non-steroidal 
immunosuppressant

Calcineurin inhibitor Renal, Mucocutaneous, Hematologic OL (375, 381)

Cyclophosphamide Non-steroidal 
immunosuppressant/ Cytotoxic

Add an “alkyl” group to DNA Renal, Neuropsychiatric, Hematologic OL (375, 379, 
380)

Mycophenolate 
mofetil

Non-steroidal 
immunosuppressant

Inosine Monophospate 
Dehydrogenase inhibitor

Hematologic, Mucocutaneous, Renal OL (375, 382)

Abatacept Non-steroidal 
immunosuppressant

CD80/CD86 on APCs blocker Hematologic, Renal, Mocucutaneous OL (379)

Voclosporin Non-steroidal 
immunosuppressant

Calcineurin inhibitor Renal, Mucocutaneous, Hematologic FDA, EMA (375, 380)

Tacrolimus Non-steroidal 
immunosuppressant

Calcineurin inhibitor Renal, Mucocutaneous, Hematologic OL (375, 380)

Methotrexate Non-steroidal 
immunosuppressant/ Cytotoxic

Calcineurin inhibitor Arthritis, Mucocutaneous, Serositis, 
Musculoskeletal

OL (375, 380)

Belimumab Biologic BlyS neutralizing Arthritis, Mucocutaneous, Renal, 
Musculoskeletal, Immunological

FDA, EMA (375, 379, 
380)

Anifrolumab Biologic Type I IFN Receptor blocker Arthritis, Mucocutaneous, OL (375, 380)

Rituximab Biologic Binds to CD20 Neuropsychiatric, Renal, Arthritis OL (375, 380)

Chloroquine Antimalarial Inhibit autophagy Hematologic OL (375)

Hydroxychloroquine Antimalarial, Antirheumatic IFN suppressor Arthritis, Mucocutaneous, Serositis FDA, EMA (375, 379, 
381)

Quinacrine Antimalarial Anti-in<ammatory Mucocutaneous, Serositis, Arthritis FDA (375, 380)

Methylprednisolone Glucocorticoids Anti-in<ammatory Hematologic, Renal, Neuropsychiatric FDA (375)

Dexamethasone Glucocorticoids Binding to the cytoplasmic 
glucocorticoid receptor (GR)

Renal, Neuropsychiatric FDA (375)

Prednisolone Corticosteroids Multiple Overactive immune system FDA, EMA (379)

Hydrocortisone Corticosteroids Binding to the cytoplasmic 
glucocorticoid receptor (GR)

Overactive immune system FDA, EMA (379)

Aspirin NSAID Thrombosis prevention Serositis, Antiphospholipid antibody, 
Arthritis, Constitutional

FDA (379)

Celecoxib NSAID COX-2 inhibitor Arthritis, Constitutional OL

Heparin Anticoagulant Thrombin inhibitor and clotting 
factors

Serositis, Antiphospholipid antibody, FDA (382)

Warfarin Anticoagulant Interferes with clotting factors Serositis, Antiphospholipid antibody, FDA (382)

*OL: Off-label medications. 
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