

OPEN ACCESS

EDITED BY Selcan Demir,

Eskişehir Osmangazi University, Türkiye

REVIEWED BY

Ozge Basaran, Hacettepe University, Türkiye Vildan Güngörer, University of Health Sciences, Türkiye

*CORRESPONDENCE

Zaida G. Ramirez-Ortiz

☑ Zaida.RamirezOrtiz@umassmed.edu

RECEIVED 04 August 2025 ACCEPTED 30 September 2025 PUBLISHED 29 October 2025

CITATION

Hahn S, Chitre M, Shepard D, Rashid R and Ramirez-Ortiz ZG (2025) Scavenger receptors: key players in the immunological puzzle of lupus. Front. Lupus 3:1679564.

doi: 10.3389/flupu.2025.1679564

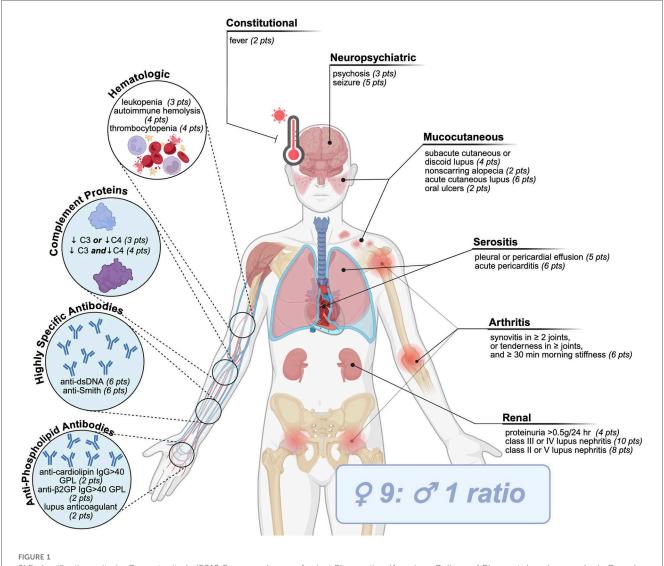
COPYRIGHT

© 2025 Hahn, Chitre, Shepard, Rashid and Ramirez-Ortiz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Scavenger receptors: key players in the immunological puzzle of lupus

Sabine Hahn, Monika Chitre, Dominique Shepard, Romana Rashid and Zaida G. Ramirez-Ortiz*

Department of Medicine, Division of Infectious Disease and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States


Scavenger receptors (SRs) play an important role in the innate immune response by recognizing and binding a variety of ligands to initiate the removal of both altered self- and non-self-antigens. Over the last two decades, SRs have become a forefront for their role influencing and contributing to inflammatory disease pathways. The findings discussed in this review show that the immunological role SRs play is (1) found in multiple organ systems and not limited to one disease or subset of symptoms; (2) part of both the innate and adaptive immune response in addition to influencing inflammatory signaling via non-immune cell subtypes; (3) both pro- or anti-inflammatory depending on which SR class or cell signaling pathway is being observed; (4) potentially useful for the development of therapeutics and diagnostic or prognostic biomarkers for autoimmune disease pathology. Understanding the role of SRs in the context of inflammation and autoimmunity will shed some light on the comprehension of heterogeneous diseases, such as Systemic Lupus Erythematosus.

KEYWORDS

scavenger receptors (SRs), autoimmunity, systemic lupus erythematosus (SLE), inflammation, cardinal signs

1 Introduction

Systemic lupus erythematosus (SLE) is a complex and multifaceted autoimmune disease. It is represented by diverse clinical features impacting multiple organs, combined with a wide range of hematological and serological abnormalities, and disease comorbidities (1). The current classification criteria [2019 European League Against Rheumatism/American College of Rheumatology Immunologic Domains and Criteria for SLE (2019 EULAR/ACR)] requires patients to first test positive for antinuclear antibodies and is followed by an assessment of a combination of 10 symptoms or disorders, each weighted differently to calculate a final score (Figure 1) (2, 3). Many genetic deficiencies are associated with the development of SLE; however, most patients inherit the disease polygenically in conjunction with environmental, hormonal, or co-infectious triggers (1, 4, 5). The immunological defects leading to the development of SLE are a product of two stages: first, systemic autoimmunity that induces serum autoantibodies and, second, immunological events that induce organ damage (6). Immune dysregulation in both innate and adaptive immune systems can impact the activation and progression of SLE (1, 6). Nonetheless, diagnosis and subsequent treatment of SLE have been hampered due to heterogenic clinicopathological presentation of the disease (1, 4, 7).

SLE classification criteria. Current criteria (2019 European League Against Rheumatism/American College of Rheumatology Immunologic Domains and Criteria for SLE) requires patients to first test positive for antinuclear antibodies, followed by an assessment of a combination of 10 clinical (uncolored) or immunological (blue circles) symptoms or disorders, each weighted differently to calculate a final score amounting to ≥10 points.

Immune homeostasis is vital for the balance of immune activation and suppression across tissues and organs to prevent damage due to excessive, malfunctioning, and/or self-targeting immune responses (8). The scavenger receptors (SRs) superfamily (Table 1) contributes to maintaining homeostasis through their roles- within cellular transport, nutrient exchange, and waste removal as well as their roles directly within immunity through the identification and presentation of antigens, regulation of inflammation, and adhesion of leukocytes (9, 10). SRs act as cell surface receptors, but can also be found intracellularly or as soluble forms within circulation where they can bind and promote the removal of an array of unwanted ligands-either self or non-self-via endocytosis, phagocytosis, and micropinocytosis (9, 11). Examples of these ligands include apoptotic cells, damage proteins, and heat shock proteins. Beyond scavenging for waste products to maintain homeostasis, SRs simultaneously help conserve the

appropriate balance of endogenous molecules, identify damaged antigens, and elicit the proper immune responses (9). Over the past 40 years, numerous SRs have been identified. This superfamily of receptors has been divided into 10 distinct classes (12) based on their nucleotide sequence alignment and protein structure, with each class further divided into subclasses that share specific structural features (Supplementary Table 1) (11, 13, 14). However, as the field is evolving, some newly uncovered SRs remain unclassified while others are classified as noncanonical SRs, or proteins that simply exhibit scavenger receptor activity (12). Several SRs have been implicated in the progression of autoimmune diseases, including SLE, through mechanisms including inflammation, apoptosis, foam cell formation, T cell activation, and the complement pathway. This review will discuss the SRs identified to date that play a role in autoinflammation and autoimmunity, particularly in the context of SLE.

TABLE 1 Consensus nomenclature and common names of scavenger receptors.

Consensus Nomenclature	Common Names		
SR-A1	MSR1, SR-AI, SCARA1		
SR-A1.1	SR-AII		
SR-A3	APC7, MSRL1, SCARA3		
SR-A4	COLEC12, CL-P1, SRCL		
SR-A5	SCARA5, TESR		
SR-A6	MARCO		
SR-B1	CD36L1, SR-BI		
SR-B2	CD36, PAS4, SCARAB3		
SR-D1	CD68		
SR-E1	LOX-1, OLR1		
SR-E2	Dectin-1, CLEC7A		
SR-E3	CD206, Mannose Receptor 1, MRC1		
SR-E4	CLEC4HI, HL-1		
SR-F1	SCARF1, SREC-1		
SR-F2	MEGF10		
SR-G1	CXCL16, SR-PSOX		
SR-H1	STAB1, FEEL-1		
SR-H2	FEEL-2		
SR-I1	CD163		
SR-J1	RAGE		
Unclassified/Noncanonical (SRCR)	CD5l (AIM)1, MerTK, gp-340, KIM1		

Scavenger receptor cysteine rich (SRCR) is a superfamily of receptors that is characterized by the presence of a conserved \sim 100–110 cysteine rich structure. On this review we focus on AIM as the main SRCR.

2 Scavenger receptors in clinical hallmarks of SLE inflammation

Nearly twenty years ago an "immunological disease continuum model" was proposed by McGonagle and Dermott (15). The model suggests that noninfectious diseases lie on a spectrum from autoimmune to autoinflammatory, thereby classifying the roles of both the innate and adaptive immune responses immunological disease, contextualizing noninfectious diseases (Figure 2). Ultimately, the model enhanced our understanding of the pathogenesis and treatment of immune reactivity against self, or as Paul Ehrlich himself called it, "horror autotoxicus" (15), the development of immune reactivity to self and loss of immune tolerance through aberrant dendritic, B, and T cell responses (15, 16). However, placing immunological diseases like SLE along this continuum provides an alternative perspective on the heterogeneity of clinical disease manifestation contribution through the of inflammatory responses, without assuming that the adaptive immune response is central to disease pathogenesis. For the of therapies, autoimmune diseases development autoinflammatory components could potentially benefit from innate immune pathway targeting (15, 16). Patients with SLE can experience inflammation in any organ (17). Local signs and symptoms of clinical inflammation were originally described by Celsus in the first century BC as rubor (redness), tumour (swelling), calor (heat), and dolor (pain) (Figure 3). A century later Galen added functio laesa (loss of function) and nearly two thousand years later, Mitchinson added a sixth, fluor (secretion) (18–21). These clinical hallmarks of inflammation may be inherently compromised or chronically unresolved in patients with SLE (18, 20).

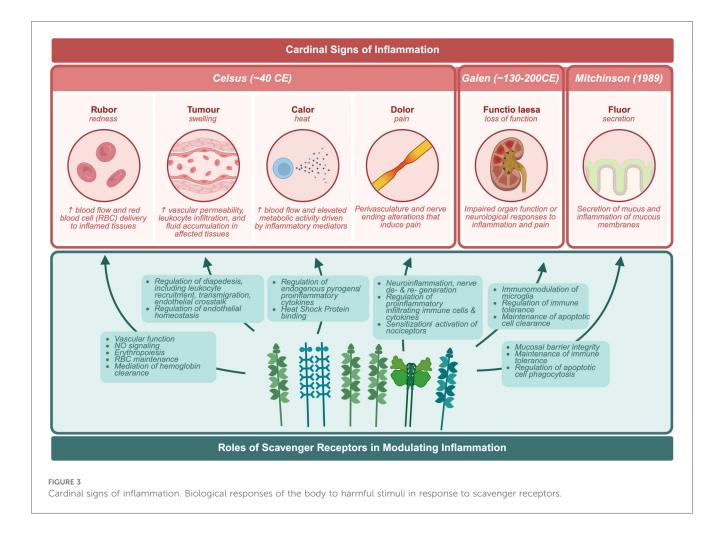
2.1 Rubor

Rubor, or redness, is one of the classical signs of inflammation, arising from hyperemia—an increase in blood flow and red blood cell (RBC) delivery to inflamed tissues (22). SRs, initially characterized by their role in binding modified low- and high-density lipoproteins (LDL and HDL), have since been found to play multifaceted roles in vascular biology. They regulate endothelial integrity, vasodilation, red blood cell homeostasis, and immune responses, making them central to the inflammatory and vascular manifestations of autoimmune diseases such as SLE (23–25).

2.1.1 Rubor: vasculature & vasodilation

Scavenger receptor class B member 1 (SR-B1) is essential for lipid and cholesterol metabolism as well as vascular function. Expressed on endothelial cells, vascular smooth muscle cells, monocytes, and macrophages, SR-B1 facilitates HDL binding and mediates endothelium-dependent vasodilation, primarily through the synthesis and activity of nitric oxide (NO) (26-32). NO is a key signaling molecule in vascular homeostasis, responsible for modulating vasodilation, inhibiting leukocyte adhesion, and regulating platelet activity (33). In vivo studies demonstrate that SR-B1 deficiency leads to significant vascular dysfunction, including impaired NO signaling, dyslipidemia, increased platelet aggregation, and development atherosclerotic lesions (26, 28-31) (34). For example, mice lacking SR-B1 exhibit thrombocytopenia, thrombomegaly, and heightened susceptibility to thrombotic events (34, 35). These symptoms are observed in 20%-40% of SLE patients. Moreover, SLE is associated with elevated systemic NO levels, suggesting that NO dysregulation may serve as a biomarker for disease activity (36, 37). Further, loss of SR-B1 in vivo contributes to coronary artery disease, myocardial infarction, ischemic cardiomyopathy, and heart failure-all of which are significantly more prevalent in SLE patients (5, 24-26, 38-41). Accelerated atherosclerosis remains a leading cause of morbidity and mortality in SLE patients (5, 24, 25, 40, 41). In Takayasu arteritis, a type of autoimmune vasculitis, autoantibodies against SR-B1 interfere with HDL uptake and suppress nitric oxide synthase (NOS) activity, promoting endothelial inflammation and vascular damage (42). Similarly, SR-B1 has been implicated in the pathogenesis of other autoimmune diseases (43) and is strongly linked to cardiovascular disease (CVD), a common comorbidity in SLE (44). SLE patients have a higher risk of developing cardiovascular disease (CVD) (23-25) as well as increased risk for a broad spectrum of cardiovascular complications, including aortic wall inflammation (45), development of atherosclerosis (46), peripheral arterial disease (47), dyslipidemia (48, 49), heart failure (50), angina pectoris (51), and myocardial infarction (51, 52).

Immune System Involvement	Diseases	SLE Manifestation
Immune System Involvement Abnormal somatic cells Danger Theory Monocytes (macrophages, neutrophils) perturbation (chronic recruitment, enhanced chemotaxis, activated effector functions) Abnormal proinflammatory cytokine expression (IL-1\(\beta\),	Rare Monogenic Autoinflammatory Diseases HIDS, PAPA, TRAPS, FMF, Blau Syndrome, DITRA, PAAND, NLRC4, PRAAS	Type I Interferonopathies (ex. IFNa, caspase-1, IL-18, IL-1β, cGAS-STING Complement deficiencies (C1q, C1r, C0) Toll-like Receptor Dysregulation (TLR: Proinflammatory cytokine dysregulatio (ex. IL-1β, IFNa) Inflammasomopathies
Abnormal proinflammatory cytokine expression (IL-1β, TNFα, IFNα, IFNβ, IL-6, IL-8) Pathergy Reactions	Polygenic Autoinflammatory Diseases Idiopathic uveitis, Takayasu arteritis, Gout, Osteoarthritis, Crohn Disease, Sarcoidosis, Ulcerative colitis	SCE ONSET For receptor mutations 1 SCE ONSET PROPERTY OF THE
Abnormal myeloid cells, lymphocytes IMMUNE DYSREGULATION	Mixed Pattern Diseases Ankylosing spondylitis, Reactive arthritis, Behçet Syndrome, Psoriasis, Psoriatic arthritis, Sarcoidosis	Combinations of Risks DIAGNOSIS BIGGENCE BIGGNC BIGGENCE BIGGENCO BIGGENCE BIGGENCE BIGGENCE BIGGENCE BIGGENCE BIGGENCE BIGGENCE
Failure of Peripheral Tolerance Failure in discrimination between Self vs. Non-Self Clonal Selection Theory Autoantibodies and peptides	Classic Polygenic Autoimmune Diseases Rheumatoid arthritis, Celiac's Disease, Primary biliary cirrhosis, Myasthenia gravis, Type 1 Diabetes, Sjogren Syndrome, ANCA associated vasculitis Vitiligo, Addison's disease, Pemphigoid, Systemic Lupus Erythematosus	Classical Multifactorial SLE STE DIAGNOSIS Pidden of processing and processing an
Failure of Central Tolerance Abnormal cytokine expression (IFNy, IL-12, IL-4, IL-5, IL-9, IL-17, IL-21, IL-23) T and B cell perturbation	Rare Monogenic Autoimmune Diseases IPEX, ALPS, APS-1/APECED	DNASE1L3 mutations Complement deficiencies (C1q, C1r, C0, C2, C4) Antibody deficiencies Immune dysregulation mutations (FAS SOCS1, Ikaros, PKC8, FOXP3)


Immunological disease continuum model. This model proposes a spectrum of immune-mediated diseases that ranges from autoinflammatory to

2.1.2 Rubor: red blood cell development & maintenance

autoimmune condition.

In addition to its vascular roles, SR-B1 also supports erythropoiesis and RBC maintenance (43). In SLE, RBCs frequently display abnormal morphology or size variability, which may impair oxygen delivery and contribute to common symptoms such as chronic fatigue, anemia, and cognitive dysfunction (53, 54). Autoimmune hemolytic anemia is another hematologic manifestation of SLE, leading to increased RBC destruction and free hemoglobin in circulation (55). SR-I1 or commonly known as CD163, is a hemoglobin-scavenging receptor primarily expressed on M2-polarized macrophages. It binds to haptoglobin-hemoglobin complexes to mediate hemoglobin clearance during intravascular hemolysis (55-58). In lupus nephritis (LN), kidney CD163⁺ macrophages infiltrate glomeruli, contributing to local inflammation and tissue damage (56, 59). Elevated levels of soluble SR-I1 are consistently found in the serum of patients with SLE, particularly those with macrophage activation syndrome, autoimmune hemolytic anemia, or immune thrombocytopenia (57, 60). Inflammatory conditions, including SLE, are characterized by increased expression of SR-I1, reflecting ongoing macrophage activation (55–57, 61).

Macrophage activation syndrome (MAS) is one of the most severe hyperinflammatory complications of lupus, characterized by uncontrolled macrophage and T cell activation, cytokine storm, and hemophagocytosis. While vascular and hematologic manifestations are well-established in SLE, defective SR pathways contributing to MAS susceptibility directly are limited (62, 63). In SLE, defective clearance of apoptotic debris [and release of nuclear danger/damage-associated molecular patterns (DAMPs) such as HMGB1] sustains TLR7/9 signaling and type I interferon production, which foster cytotoxic T-cell activation and excessive IFN- y response—features characteristic of MAS (64-66). Under these inflammatory conditions, regulatory macrophage circuits such as the CD163-heme oxygenase-1 (HO-1) pathway, normally critical for heme detoxification and resolution of inflammation, may become functionally exhausted. Failure of this axis limits macrophage antioxidant and antiinflammatory capacity and favors uncontrolled activation and hemophagocytosis, thereby lowering the threshold for MAS in SLE patients (67, 68). Serum soluble SR-I1 is consistently

elevated in active MAS even under IL-6 blockade and closely reflects disease activity and the clinical relevance of SR dependent macrophage dysregulation (69, 70). Additional insights into SRs dysfunction and MAS pathogenesis emerge from related hyperinflammatory disorders. For example, in systemic juvenile idiopathic arthritis (sJIA), a disease with high MAS propensity, soluble SR-I1 correlates with MAS activity and TRIM8 upregulation in monocytes/macrophages augmenting IFN- γ responsiveness, providing a molecular mechanism for macrophage hyperactivation (70, 71).

Despite observed elevations in SR-II, its precise role in SLE pathophysiology remains unclear. Two opposing hypotheses currently exist: the first suggests that SR-II is abnormally elevated, causing excessive phagocytosis of haptoglobin-hemoglobin complexes and downstream accumulation of iron, oxidative stress, and ferroptosis; the second proposes that SR-II is elevated as an adaptive response to prevent further tissue damage caused by ruptured red blood cells (55). Notably, soluble SR-II levels correlate with disease activity in rheumatoid arthritis (72) and serve as a biomarker for active renal involvement in SLE, including in the urine of patients with LN (73–75). Together, these findings underscore the dual vascular and hematologic roles of SRs such as SR-B1 and SR-II in the manifestation of *rubor* and

broader SLE pathology. Their dysregulation contributes not only to visible signs of inflammation but also to systemic complications, making them potential biomarkers and therapeutic targets.

2.2 Calor

Calor, or heat, is a hallmark of inflammation and reflects increased blood flow and elevated metabolic activity driven by inflammatory mediators. During infection, fever (hyperthermia) is a protective physiological response that enhances immune function, promotes leukocyte trafficking, and inhibits pathogen replication (76–78). Historically, controlled elevation of body temperature—therapeutic hyperthermia—has even been employed to treat infectious disease by enhancing organ perfusion and activating immune pathways (76–78). However, excessive or sustained fever can lead to tissue damage and adverse outcomes, such as heat stroke (76).

In autoimmune diseases such as SLE, fever is a common manifestation—even in the absence of infection. Recurrent, unexplained fever is often a presenting symptom and is considered a clinical clue in early diagnosis (79–81). Studies

report fever in 36%-86% of SLE patients, although the prevalence has declined due to routine use of nonsteroidal anti-inflammatory drugs (NSAIDs) (79, 81-86). Distinguishing SLE-related fever from infection remains clinically challenging, particularly in patients receiving immunosuppressive therapies that increase infection risk or due to inherent disease-associated immune perturbations (87, 88). In cases of Fever of Unknown Origin (FUO), infection must be rigorously ruled out before attributing symptoms to SLE (79). While infection is the most common cause of FUO, approximately 5% of cases are ultimately diagnosed as autoimmune conditions, including SLE and autoimmune thyroiditis (89, 90). Although SRs have not been directly linked to the development of fever, they influence proinflammatory signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and JAK/STAT, that regulate the febrile response (383).

2.2.1 Calor: endogenous pyrogens/cytokines

Fever is largely mediated by endogenous pyrogens—proinflammatory cytokines that are released by immune cells in response to infection, tissue damage, or autoimmune activity. Key endogenous pyrogens include tumor necrosis factor- α (TNF- α), interleukins (IL-1 β , IL-6, IL-8), and interferons (IFN- β , IFN- γ), among others (91, 92). These cytokines circulate systemically and act on the hypothalamus to elevate body temperature. Many of these same cytokines are found at abnormally high levels in SLE patients, and their activity contributes to immune dysregulation, tissue damage, and systemic inflammation (93–100).

Due to this, they are also considered potential targets for SLE treatments (101). Scavenger receptor class E member 1 (SR-E1), also known as LOX-1, is a receptor for oxidized low-density lipoproteins (oxLDL) that is primarily expressed on vascular endothelial cells (102, 103), but also on vascular smooth muscle and lymphoid cells (104). SR-E1 mediates oxLDL endocytosis and promotes atherogenesis (104, 105) and has been shown to be a key player in the development of atherosclerosis, myocardial ischemia, hypertension, and inflammation (105, 106). SR-E1 deficiency in vivo protects mice from developing atherosclerosis (102), whereas SR-E1 overexpression promotes it (107). In SLE patients, SR-E1 expression is elevated even in early disease onset and low disease activity and correlates with high-sensitivity C-reactive protein (hsCRP), proinflammatory HDL, and oxLDL (108). Moreover, increased SR-E1 in SLE is associated with elevated IL-8 and reduced IFN-y levels, while other cytokines such as IL-6, IL-10, and TNF-α remain unchanged (105). Interestingly, proinflammatory cytokines (e.g., IL-1β, TNF-α) can themselves induce SR-E1 expression, potentially creating a self-perpetuating inflammatory loop (108-110). Perturbing this feedback loop is a possible option to reduce inflammation-driven CVD in SLE (108, 111, 112).

2.2.2 Calor: prostaglandins & thermoregulatory neurons

Fever can also be triggered by non-immune cells. Proinflammatory cytokines such as IL-1 β , IL-6, and TNF- α stimulate cyclooxygenase-2 (COX-2), which catalyzes the

production of prostaglandin E2 (PGE2). PGE2, in turn, binds to PGE2 receptors stimulating the part of the brain where thermoregulatory neurons modulate body temperature and induce fever (113). Elevated PGE2 has been detected in the cerebrospinal fluid (CSF) of patients with neuropsychiatric SLE (NPSLE), along with increased levels of IL-6, IgG, and autoantibodies against calf thymus antigens (114). Among these, CSF IL-6 has shown the strongest correlation with NPSLE severity and may serve as a potential biomarker (115, 116). In pristane-induced lupus mouse models, PGE2 mediates the production of proinflammatory cytokines, such as IL-6, IL-10, and IFN-γ, and NO (117). While no direct link between PGE2 and SRs in SLE has yet been confirmed, emerging evidence suggests functional intersections. For example, SR-B2-mediated microglial phagocytosis of amyloid-β is regulated by PGE2 receptor signaling in in vivo Alzheimer's disease models (118). Additionally, celecoxib, a selective COX-2 inhibitor used in treating inflammation in SLE, has been shown to upregulate SR-B2 and downregulate SR-E1 in macrophages-indicating that prostaglandin pathways can modulate SR potentially expression and influence inflammatory outcomes (119).

2.2.3 Calor: heat shock proteins

Heat shock proteins (HSPs), molecular chaperones released from cells undergoing stress, help maintain protein homeostasis (120). Incubating murine skin explants at fever-range hyperthermia (40°C) upregulates HSP70 expression and leads to dendritic cell (DC) migration (121). At similar temperatures, expression of HSP70 is induced in lymphocytes (122, 123). HSPs can help immune cells withstand and react to inflammatory environments (121).

HSPs are typically expressed intracellularly; however, under conditions of cellular stress (e.g., cell damage, necrosis), HSPs may be released extracellularly, where they act as DAMPs. Extracellular HSPs can prime antigen-presenting cells, promote cytokine production (e.g., TNF- α , IL-6), and contribute to the generation of autoantibodies (124–132). This immune activation correlates with HSP levels: more cell damage triggers higher HSP expression and a more intense immune response (133–135). Elevated HSP70 levels, HSP gene polymorphisms, and anti-HSP autoantibodies have all been associated with SLE pathogenesis (136–141).

Several SRs have been identified as HSP-binding receptors, including SR-E1, SR-F1, SR-A, SR-H1, and SR-L1 (141-145). SR-E1 and SR-F1 bind strongly to HSP70, HSP90, Grp94, Hsp110, and Grp170 (146-149). SR-B2 deficiency in LDL receptor-deficient mice exposed to hyperthermic stress leads to overexpression and enhanced atherosclerosis, highlighting the interplay between SRs, heat shock responses, and vascular inflammation (150-152). In lupus-prone mice, HSP70-based DNA vaccines have shown promise in suppressing anti-dsDNA antibody production, reducing proinflammatory responses, promoting tolerogenic immune responses, and prolonging survival (153). Other therapeutic approaches, such as epitope-based immunization with HSP70-derived peptides, have

demonstrated T_{Reg} activation without inducing systemic immunosuppression (154). SLE is associated with increased auto-antibody productions of other HSP-like proteins and HSPs, namely grp94 and calreticulin (155, 156), which has been found to play a role in during physiological stresses like fever (157) and in the pathogenesis of SLE (144, 158). SR-L1, an HSP receptor, is particularly relevant in this context. Membranebound SR-L1 mediates antigen presentation, cytokine secretion, and T helper cell priming (126, 159). SR-L1 plays an immunoprotective role by suppressing the expression of inflammatory mediators (MCP-1/CCL2, TNF-α, and MMP-9) (160, 161). To suppress inflammation, SR-L1 sheds its ectodomain, generating soluble SR-L1 (162), which can be detected in the serum of patients with SLE and Rheumatoid Arthritis (RA) (163). Bruton's tyrosine kinase (Btk) also plays a key role by phosphorylating calreticulin on apoptotic cells (ACs), enabling membrane-bound SR-L1 to mediate the clearance of C1qopsonized ACs. In the absence of Btk, SR-L1 cannot recognize calreticulin, resulting in the accumulation of apoptotic cell debris (164). Together, these findings suggest a multifaceted role for SRs in regulating immune responses to thermal and inflammatory stress. By binding HSPs and modulating cytokine production, SRs represent promising therapeutic targets and potential biomarkers for disease severity in SLE. Similarly, many HSPs themselves have been identified as targets for the treatment of autoimmunity, such as in RA, diabetes, multiple sclerosis (MS), and SLE (165, 166).

2.3 Dolor

In inflammation, *dolor* represents pain due to changes associated with perivasculature and nerve endings. Pain, especially chronic pain, is a hallmark of SLE and is often one of the first reported symptoms (167). Data shows that 85% of SLE patients report joint pain (168, 169) and 32%–66% report headaches (169). Up to 80% of SLE patients experiencing pain, fatigue, or joint pain rate these symptoms as moderate or severe (170). Pain in SLE can be both inflammatory and non-inflammatory in nature including musculoskeletal [arthritis, myositis, avascular necrosis, fracture, osteoarthritis (OA)], fibromyalgia), neuropsychological (headache, small fiber neuropathy), serositis (pericarditis, pleuritis, peritonitis), immunological disturbance, drug side effects, etc. as reviewed by Pisetsky et al. (171).

2.3.1 Dolor: neuropathic pain

SR-L1 (known as LRP-1 or CD91), plays a major role in neuroinflammation, nerve de- and re-generation, and neuropathic pain (172, 173). SR-L1 deficiency in Schwann cells is linked to mechanical allodynia—pain from normally non-painful stimuli such as light touch—and impaired motor function, both of which contribute to peripheral nerve injury and chronic pain (174, 175). SR-L1 deletion on macrophages induces an increase in NFkB pathway activation and inflammation (176). SR-L1 downregulates proinflammatory

cytokines (IL-1 β , TNF- α , and IL-6) released due to NF κ B activation. Perturbed SR-L1 across several cell types results in increased secretion (172).

Similarly, SR-L1 has a role in neuronal cell survival by modulating c-Jun N-terminal kinase (JNK)-mediated apoptosis (172). Perturbing SR-L1 leads to JNK pathway activation and the release of several proinflammatory cytokines (e.g., TNF-α and IL-1ß) and chemokines such as chemokine (C-C motif) ligand (CCL) 2 (CCL2), CCL3, or CCL4 (177-179). Consequently, SR-L1 downregulation promotes synaptic and neuronal loss, leading to cognitive impairment (172, 180-184). In MS, autoantibodies against SR-L1 have been found to inhibit function and contribute to poor clinical outcomes (185). In response to inflammatory triggers, membrane-bound SR-L1 has been found to be anti-inflammatory (178, 186-189); however, increased levels of soluble SR-L1 correlate with inflammation in patients with SLE and RA (163). SR-L1, through its ligands and its biologically active soluble form, has been explored as a potential therapeutic target for neuropathic pain, based on studies of axonal injury and Alzheimer's disease (172, 177, 183). Although auto-antibodies to SR-L1 have not been attributed to SLE, auto-antibodies to scavenger receptor class L member 2 (SR-L2) have been found to be a major player in systemic autoimmune diseases (190). In a cohort of 147 patients, anti-LRP2 autoantibodies were detected in 87% with RA, 40% with SLE, 35% with systemic sclerosis, 15% with osteoarthritis, and 3% with Behçet's disease (190).

Beyond their role in systemic autoimmunity, immune cells such as macrophages are increasingly recognized for their involvement in the pathophysiology of chronic pain (191–193). CD68 (SR-D1) is commonly used as a biomarker to quantify inflammatory cell and macrophage infiltration (194). Often associated with RA (195), Morton's neuroma is an entrapment neuropathy characterized by compression of a plantar digital nerve in the foot, leading to neuropathic symptoms such as burning, paroxysmal pain, and paresthesia. In nerve samples from patients with Morton's neuroma, increased intraneural CD68⁺ macrophages have been positively correlated with burning pain, while higher expression of SR-A6 has been linked to paroxysmal pain, as measured by the Neuropathic Pain Symptom Inventory (196). Similarly, intervertebral disc tissue from patients with lower back pain shows elevated infiltration of TNF- α^+ and CD68⁺ cells (197). Conversely, in post-amputation patients experiencing phantom pain, nerve biopsies revealed a lower presence of CD68+ macrophages. This finding led researchers to propose a potential protective role for these cells against the development of chronic pain in certain contexts (191). These observations suggest that the role of infiltrating CD68⁺ macrophages in pain may vary depending on the condition and anatomical site. For example, pain in chronic pancreatitis—whether alcoholic, biliary, hereditary, autoimmune in origin-is typically classified as inflammatory rather than neuropathic, though these categories are not mutually exclusive. Notably, in cases of chronic pancreatitis, CD68⁺ macrophage levels did not correlate with pain severity (194).

2.3.2 Dolor: inflammatory pain

Building on the role of macrophage infiltration in various pain states, joint inflammation in diseases such as OA, RA, and SLE further illustrates the link between immune cell activity and pain. In these conditions, increased infiltration of immune cells and the production of pro-inflammatory mediators (often triggered by IgG immune complexes) sensitize and activate sensory nociceptors innervating joint tissues (198–201). Several SRs associated with macrophage activation have been implicated in inflammatory joint pain. For instance, elevated expression of CD163 or SF-I1 and the pro-inflammatory cytokine TNF- α correlates with higher resting pain scores in patients with hip OA (202). Similarly, IL-1 β , another key pro-inflammatory cytokine, contributes to pain through its role in prostaglandin production (201, 203).

In RA murine models, macrophages expressing SR-D1, SR-I1, and SR-E3 are enriched in inflamed joints; however, a highly pathogenic and pro-inflammatory subset of macrophages co-expressing SR-I1 and SR-E3 has been identified in RA synovial tissue. These SR-E3 $^+$ SR-I1 $^+$ macrophages spontaneously secrete pro-inflammatory mediators including IL-6, IL-8, IL-1 β , and TNF- α , and exhibit strong co-expression of CD40, a costimulatory activation marker known to drive chronic inflammation in RA (204–206). Remarkably, inhibition of CD40-TRAF6 signaling reversed the secretion of these mediators, suggesting that targeting this pathway may offer therapeutic benefit (207). Even more compelling is the observation that these pathogenic macrophages were present before the clinical onset of RA symptoms (207).

Extending beyond the joints, macrophage subsets expressing SR-E3 and SR-I1 have also been implicated in chronic pain development in the dorsal root ganglia (DRG). In mouse models genetically predisposed to chronic pain following peripheral injury, DRG-resident macrophages expressing SR-I1 alone (SR-E3⁻ SR-I1⁺) or both SR-E3 and SR-I1 (SR-E3⁺ SR-I1⁺) were found to promote chronic pain. Targeted depletion of these macrophage subsets effectively prevented the development of injury-induced chronic pain, highlighting their critical role in pain pathogenesis (208).

Relatively few SRs have been directly linked to pain in SLE or to pain mechanisms more broadly. However, further investigation into how SRs contribute to immune response pathways in SLE, particularly those leading to neuropathic and inflammatory pain, may reveal additional SRs involved in early immune dysregulation and the onset of autoimmunity. Uncovering these connections could offer novel insights into both SLE pathogenesis and pain modulation.

2.4 Tumor

The classical hallmark of *tumor* in inflammation, or swelling, is primarily caused by increased vascular permeability, leukocyte infiltration, and fluid accumulation in affected tissues (22).

A key event in this process is diapedesis, or trans-endothelial migration, in which leukocytes exit the bloodstream and traverse the vascular and lymphatic endothelial barriers to reach sites of inflammation (209). This involves a tightly regulated sequence: leukocyte recruitment, adhesion to ECs, and eventual transmigration into surrounding tissues (210). Persistent vascular inflammation is a hallmark of several autoimmune conditions, including SLE (211, 212), where dysregulated immune cell infiltration exacerbates tissue injury and chronic inflammation.

2.4.1 Tumor: leukocyte recruitment & transmigration

Effective leukocyte recruitment is essential for host defense and tissue repair; however, in autoimmune diseases such as SLE, excessive or uncontrolled leukocyte accumulation leads to chronic inflammation and tissue damage (210).

Myeloid cells, particularly neutrophils and monocytes, play a central role in initiating and sustaining vascular inflammation in SLE (212–215). Neutrophils contribute to inflammation not only through phagocytosis but also by producing reactive oxygen species (ROS), releasing neutrophil extracellular traps (NETs), and modulating adaptive immunity via crosstalk with dendritic cells, macrophages, and lymphocytes (211, 216, 217). SRs, particularly SR-A, have been implicated in neutrophil activation, including via mitogen-activated protein kinase (MAPK) signaling pathways, leading to increased production of proinflammatory cytokines (i.e., IL-6, TNF-α) and NET formation (218).

SLE is also characterized by elevated Type I interferon levels, which drive monocyte chemotaxis through increased expression of MCP-1 and MIP-1α. This promotes the upregulation of SRs such as SR-A and SR-B2, further enhancing monocyte and neutrophil activation (219-223). These receptors facilitate the uptake of modified low-density lipoproteins (LDLs), linking innate immune activation with lipid metabolism and vascular inflammation. For example, SR-B2 supports macrophage spreading and migration (224), inflammasome activation (225), and has been implicated in lesional macrophage proliferation (223, 226).

2.4.2 Tumor: diapedesis & SR-mediated endothelial crosstalk

The transmigration of leukocytes across the endothelium is a tightly regulated, multi-step process involving changes in both leukocytes and endothelial cells. Inflammatory cytokines upregulate endothelial adhesion molecules, while chemokines activate leukocyte integrins to promote firm adhesion and extravasation (210). Leukocytes then alter their morphology to traverse the endothelial barrier and surrounding pericyte layer, ultimately infiltrating the inflamed interstitial tissue (210).

Among scavenger receptors, SR-G1 is unique in exhibiting both receptor and chemokine-like functions. In its membrane-bound form, SR-G1 binds oxLDLs and phosphatidylserine (PS), contributing to phagocytosis and waste clearance. In its soluble form, SR-G1 acts as a chemoattractant through its interaction with the CXCR6 receptor on bone marrow plasma cells and

T cells (227). Soluble SR-G1 is particularly relevant to SLE: elevated serum levels correlate with disease severity, organ involvement, and prognosis in both adult (228) and juvenile SLE (229). Levels decrease with effective treatment, supporting its potential utility as a biomarker for SLE progression and therapeutic response (228).

2.4.3 Tumor: SRs in endothelial dysfunction

A major complication in SLE is the premature development of atherosclerotic cardiovascular disease (ASCVD). Early plaque formation is marked by endothelial dysfunction and the infiltration of pro-inflammatory leukocytes beneath the endothelial monolayer (226, 230). Monocyte-derived macrophages proliferate in response to hematopoietic growth factors such as macrophage colony-stimulating factor (M-CSF) and accumulate cholesteryl esters, forming foam cells (231–234). M-CSF also enhances SRs expression, particularly SR-A and SR-B2, promoting oxLDL uptake and foam cell formation (233, 235).

SR-B2 plays a central role in this process. Suppression of SR-B2 in murine models reduces aortic lesion size, suggesting that its function is non-redundant and critical in lesion development (236, 237). Importantly, SLE patient blood samples contain higher levels of oxLDL-containing immune complexes (238), which upregulate SR-B2 expression in healthy cells exposed to this SLE plasma (235). This mechanism likely contributes to accelerated foam cell formation and atherosclerosis in SLE, positioning SR-B2 as a potential therapeutic target (239, 240).

Additionally, Mer tyrosine kinase (MerTK), another SR, is essential for the clearance of apoptotic cells within plaques. Loss of MerTK impairs efferocytosis, promoting the formation of a lipid-rich necrotic core and driving plaque instability (241) as well as T cell–mediated β cell autoimmunity (242). Elevated levels of soluble MerTK in SLE patients correlate with disease activity (243), complement depletion, and anti-dsDNA titers, suggesting a role in both cardiovascular and autoimmune pathology (243, 244).

Another key player is SR-E1 (LOX-1), which mediates uptake of modified LDLs and contributes to foam cell formation. OxLDL exposure reduces DNA methylation of the SR-E1 promoter, creating a positive feedback loop that amplifies SR-E1 expression and promotes plaque progression (245). In SLE patients with ASCVD, serum levels of soluble SR-E1 correlate with inflammatory biomarkers such as high-sensitivity C-reactive protein (hsCRP), proinflammatory HDL, and oxLDL (108). Furthermore, higher sSR-E1 levels are associated with earlier age of SLE diagnosis (108), suggesting that SR-E1 could serve both as a biomarker and a therapeutic target in SLE-related vascular disease.

2.4.4 Tumor: endothelial cell scavenger receptors and tissue crosstalk

In SLE, the endothelium has been shown to be in a dysregulated state, even during low disease activity (246). SRs are expressed on endothelial cells, where they regulate vascular permeability, immune cell trafficking, and antigen presentation. These scavenger endothelial cells (SECs) are especially

prominent in the liver, where hepatic sinusoidal endothelial cells (HSECs) act as filters for bloodborne antigens and macromolecules, given the liver's extensive exposure to gutderived microbial products (247-251). HSECs express a range of SRs including SR-H1 (252-254), SR-H2 (255), SR-B2 (256), SR-B1 (257), SR-E3 (258, 259), and SR-F1 (250). SR-H1, for example, is induced by proinflammatory stimuli (260) and, in vitro, regulates lymphocyte trafficking to inflamed tissues (261). SR-H1 expression on monocytes is considered a predictive biomarker for increased cardiovascular-related disease risk (13). Both SR-H1 and SR-H2 bind to a variety of ligands including acLDL, advanced glycation end-products (AGEs), and both gram-positive and gram-negative bacteria (13, 262). SR-H1 also facilitates T and B cell trans-endothelial migration via interactions with adhesion molecules like ICAM-1 and VAP-1 (13, 253, 263-266).

Interestingly, SR-H1 promotes antigen presentation in a tolerogenic context by cross-presenting exogenous antigens on MHC-I and MHC-II molecules with high expression of inhibitory ligands (e.g., PD-L1), HSECs help induce regulatory T cells rather than proinflammatory responses (267–271). Inhibition of SR-H1 and SR-H2 has been shown to induce an anti-inflammatory plasma proteome and reduce monocytedriven atherogenesis, pointing to their therapeutic potential (272).

SR-F1 (SCARF1, SREC-1), initially identified in human umbilical vein endothelial cells (264), is also upregulated in chronic liver diseases such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), ALD, and non-alcoholic steatohepatitis (NASH) (250). SR-F1 activation by TNF- α or LPS enhances CD4+ T cell recruitment, working in concert with VCAM-1 to facilitate immune cell adhesion during liver inflammation (250). Other SRs, including SR-E1 (273, 274), SR-H1 (253, 254, 275), SR-H2 (255) also mediate leukocyte adhesion to endothelial cells, contributing to inflammatory crosstalk between the vasculature and the immune system.

2.4.5 Tumor: SRs in regulating neutrophil NETS and endothelial injury

Neutrophils recruited to the endothelium are activated by immune complexes (276) and perform several effector functions including phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) (276, 277). While NETs are antimicrobial, excessive NET formation (NETosis) and elevated levels of circulating NETs is pathogenic in SLE, where it contributes to endothelial injury, immune complex formation, and the development of autoantibodies (277).

Increased NETs have been observed in patients with LN and in MRL-lpr mice (278). SR-J1 (RAGE) is an SR expressed on endothelial cells that plays a role in triggering NETosis (279) and, together with clathrin, mediates the uptake of NETs. However, endothelial phagocytic capacity is limited, and NET overload disrupts vascular integrity. Specifically, NET-associated elastase degrades VE-cadherin at intercellular junctions, increasing vascular permeability and leakage (278). This mechanism links NETosis and SR-mediated uptake to vascular damage and albumin extravasation, ultimately highlighting the

role of NET clearance in preserving endothelial barrier function in SLE.

2.5 Functio laesa

Functio laesa, Latin for "loss of function," can refer to either impaired organ function (280) or neurological responses to inflammation and pain (281). In the context of systemic inflammation, such as in SLE, functio laesa often reflects multiorgan dysfunction or outright failure (282). SLE can affect nearly every organ system, manifesting in complications such as lupus nephritis (kidneys), neuropsychiatric disease (central nervous system), cutaneous lupus (skin), lymphadenopathy (lymphatic system), and various cardiovascular conditions (283, 284). Organ damage occurs in at least 50% of SLE patients (285), though some studies report even higher rates. A Taiwanese cohort found that over 80% of SLE patients developed organ damage within 6 months of diagnosis (286), while U.S. studies report damage in 33%-50% of patients within the first five years (287). The most frequently affected systems vary by region: ocular, neuropsychiatric, and cardiovascular systems are common in the U.S. and Germany (287, 288), while renal, neuropsychiatric, pulmonary, gastrointestinal, cutaneous systems are prominent in Taiwanese patients (286, 289).

2.5.1 Functio laesa: neuropsychiatric

Neuropsychiatric symptoms are among the most common manifestations of SLE, affecting 80%–90% of patients worldwide (290). These symptoms include cognitive impairment, motor dysfunction, sleep disruption, fatigue, mood disorders, and behavioral changes. Cognitive dysfunction often presents early—prior to the development of dementia or confusion—whereas symptoms like depression or headaches are more difficult to diagnose and frequently missed in early screenings (290).

Up to 40% of neuropsychiatric SLE (NP-SLE) symptoms arise before or at the time of SLE diagnosis, and 60% typically develop within a year (291, 292). Current research is focused on whether NP symptoms are driven by central nervous system (CNS) inflammation in chronic SLE, CNS dysfunction and damage, or treatments and medications (290, 293). While lesions are not always evident in NP-SLE patients, functional abnormalities have been identified, including cerebral hypoperfusion (292, 294–298), metabolic deficiencies (292, 299–302), and—most commonly—progressive neuronal atrophy (292, 298, 300, 303–310).

In SLE-prone mouse models, neuropsychiatric and behavioral symptoms precede systemic autoimmunity, immune cell infiltration, or vascular damage (311). Interestingly, microglia in SLE-prone mice exhibit neurodegenerative disease-associated signatures prior to systemic SLE manifestations. Microglia from SLE mouse models show upregulation of genes involved in SR activity and downregulation of genes involved in inflammation and chemotaxis, suggesting that microglia in SLE-prone mice may not be able to regulate inflammation appropriately (311). Makinde *et al.* found SRs, SR-G1 (CXCL16) and LGALS3BP, are

upregulated in lupus-prone mouse microglia. In healthy conditions, microglial cells maintain tissue homeostasis in the brain by sensing changes in the environment and responding appropriately. Anti-inflammatory microglia release immunomodulatory factors to support tissue repair in the brain. In disease contexts, anti-inflammatory microglia may also reduce immune response and promote cell invasion and tumorigenesis (312). Outside of SLE, microglial SR-G1 has been proposed as a therapeutic target to reduce neuroinflammation (312), and LGALS3BP may be a therapeutic target for its roles in angiogenesis and tumor progression (313). In SLE, serum SR-G1 and platelet LGALS3BP levels also correlate with LN severity (229, 314), pointing to systemic involvement beyond the CNS.

2.5.2 Functio laesa: tissue homeostasis & clearance of apoptotic cells

Dysregulation of both innate and adaptive immune responses contribute to SLE (315). Adaptive immunity establishes a highly specific immunological memory to pathogens. B and T cells of the adaptive immune system are responsible for ensuring a specific, controlled spatiotemporal response to limit or prevent excessive tissue damage (316). The breakdown in immune tolerance is a hallmark of SLE development (315), as well as many other autoimmune disorders (316). Tissue homeostasis depends on the efficient clearance of apoptotic cells (ACs) by phagocytes in an immunologically silent process that prevents inflammation (317). Dying cells release "find-me" signals that attract phagocytes, while surface markers like phosphatidylserine (PS) serve as "eat-me" signals (317). Failure to clear ACs leads to their secondary necrosis, triggering inflammation, disruption of self-tolerance, and immune activation—a major contributor to SLE pathogenesis (318-321).

Elevated levels of uncleared ACs in SLE patients support the notion that defective clearance contributes to disease (319, 320). Scavenger receptors are critical in mediating efferocytosis, including SR-A, SR-F, and SR-H families (11, 262, 264, 322–325). SR-A1 and MARCO (SR-A6) are key receptors in this process. SR-A1 expressed on thymic macrophages was first shown to mediate apoptotic thymocyte clearance, and its blockade reduces phagocytosis by ~50% (326). Mice lacking SR-A1 and MARCO develop higher levels of autoantibodies and lupus-like disease due to impaired clearance of apoptotic debris by marginal zone macrophages in the spleen (323). Additionally, SLE patients and murine models have been found to spontaneously produce autoantibodies against these SRs, impairing the apoptotic cell removal ability of these two SRs (323, 327).

SR-F1 (SCARF1) also plays a role in apoptotic cell clearance. Mice lacking SCARF1 develop lupus-like symptoms, including nephritis and dermatitis, driven by defective phagocytosis of PS-and C1q-labeled apoptotic cells (328). SCARF1 is a non-redundant efferocytosis receptor expressed on BDCA1⁺ dendritic cells, where its engagement promotes anti-inflammatory IL-10 production via STAT1/STAT3 signaling (329). Interestingly, while SCARF1 expression is not reduced in SLE patients, they exhibit anti-SCARF1 autoantibodies, which correlate with impaired efferocytosis (329). Additional work is needed to

understand the function and action of the anti-SCARF1 autoantibodies, and whether these autoantibodies can be used as biomarkers for SLE.

2.5.3 Functio laesa: systemic organ damage

SLE-associated systemic inflammation leads to damage in organs such as the heart, lungs, and liver, particularly in patients with hematological symptoms like leukopenia or thrombocytopenia due to the circulation and accumulation of auto-antibodies and inflammatory mediators throughout the body (330). Scavenger receptors are again implicated—SR-A expression on peripheral blood mononuclear cells (PBMCs) correlates with systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS), both indicators of poor survival outcomes (331). Further, mechanistic studies further demonstrate that MSR1 (SR-A) can physically synergize with Toll-like receptor 4 to amplify NF-kB signaling and pro-inflammatory cytokine release, providing a potential molecular bridge to the cytokine storm characteristic of MAS leading to systemic organ damage (332, 333). Similarly, soluble SR-I1 (CD163) levels correlate with MODS severity and prognosis in sepsis (334). Increased SR-I1 expression is found on macrophages in Macrophage Activation Syndrome patients who later develop SLE (65) and on PBMCs of prior diagnosed SLE patients (335). In LN and glomerulonephritis (GN), CD163+ macrophage infiltration is positively associated with disease severity and renal function decline (336, 337).

Effective SR-mediated clearance of dying cells is protective in acute injury, limiting the release of intracellular contents and preventing secondary necrosis and inflammation (338, 339). Conversely, impaired clearance promotes chronic inflammation and autoimmunity, as seen in SLE (340). The soluble scavenger receptor CD5l (also known as AIM, apoptosis inhibitor of macrophage) binds cellular debris and promotes phagocytic internalization of dead cells. AIM is primarily expressed by macrophages in the liver, lymphoid, and inflamed tissues (338, 341, 342). Elevated AIM levels are observed in both SLE patients (343) and lupus prone mice (344), correlating with SLE disease activity (343). AIM is most well-known for its role in Acute Kidney Injury (AKI) and chronic liver injury in which the accumulation of circulating AIM correlates with the progression of organ damage (345, 346). Two other SRs, SR-B2 and kidney injury molecule-1 (KIM-1), can recognize AIM when bound to cellular debris (338, 347). KIM-1, a scavenger receptor not typically expressed in healthy kidneys, is markedly elevated in injured renal tissue (348, 349). Elevated urinary KIM-1 levels in SLE patients suggest its utility as a non-invasive biomarker for renal involvement and progression of LN (350).

2.6 Fluor

Fluor refers to the secretion of mucus and inflammation of mucous membranes (19). Patients with autoimmune diseases,

including SLE, exhibit an increased risk of developing chronic sinusitis (351, 352). Interestingly, chronic sinusitis may also serve as an early indicator of autoimmune disease onset (353). This relationship is thought to arise either from intrinsic immune dysregulation—leading to impaired mucosal defense and tolerance breakdown—or from extrinsic factors such as medications or infections that trigger or exacerbate autoimmunity (354).

One key player in mucosal immunity is glycoprotein-340 (gp-340), a member of the SR family (355, 356). Gp-340 is highly expressed in the sinonasal, ocular, and pulmonary mucosa, where it contributes to innate defense through pathogen recognition and clearance (355–357) and is found to be upregulated in patients with chronic sinusitis (357).

Gp-340 functions in part through its interaction with Surfactant Protein D (SP-D), a collectin involved in pathogen recognition, modulation of inflammation, and phagocytosis (355, 358, 359). In SP-D-deficient mice, bacterial lung infections result in elevated inflammation, increased oxidative stress, and impaired macrophage function (360). Low circulating levels of SP-D have also been linked to the development of SLE (359). Although a direct mechanistic connection between gp-340 and SLE has not yet been established, its encoding gene, Deleted in Malignant Brain Tumor 1 (DMBT1), has been associated with several autoimmune and immune-related conditions, including SLE (361, 362).

A similar compromise in mucosal barrier integrity is seen in the gastrointestinal tract, which plays a vital role in immune homeostasis. The intestinal epithelium and its associated mucosal layer protect against microbial invasion while allowing for nutrient absorption (363, 364). Increased intestinal permeability, commonly referred to as "leaky gut syndrome", permits the translocation of microbial products into the bloodstream, triggering both acute and systemic inflammation (363, 364). "Leaky Gut Syndrome" is increasingly implicated in the pathogenesis of SLE, as it has been in other autoimmune diseases such as RA, multiple sclerosis (MS), and type 1 diabetes (365).

In lupus, impaired gut barrier function allows pathogenassociated molecular patterns (PAMPs) and DAMPs to enter the bloodstream, activating dendritic cells, macrophages, and neutrophils (364).Bacterial components lipopolysaccharide (LPS), lipoteichoic acid (LTA), and β-glucans have been detected in the serum of SLE patients, reflecting microbial translocation and systemic immune activation (366). Scavenger receptor SR-E3 (CD206), also known as the mannose receptor, has been implicated in both gut dysbiosis and LN (367). In lupus-prone mouse models, colonization with Segmented Filamentous Bacteria (SFB) exacerbates glomerulonephritis, alters immune cell profiles, and disrupts gut barrier integrity (368). Notably, kidney-infiltrating CD206+ macrophages were observed in SFB-colonized mice, suggesting that gut-primed immune cells migrate to distal inflammatory sites, such as the kidney (368). In human SLE patients, the presence of CD206+ macrophages in the kidney correlates with disease severity (369).

The importance of mucosal SRs in maintaining immune tolerance is further supported by findings in Celiac disease, another autoimmune disorder affecting the gastrointestinal mucosa. Like SLE, Celiac disease is characterized by impaired clearance of ACs, which leads to the accumulation of cellular debris and chronic inflammation. Studies have shown that duodenal tissues from Celiac patients exhibit reduced expression several scavenger receptors, including thrombospondin-1 (TSP-1), and CD61, alongside elevated levels of inflammatory cytokines such as IL-15, IL21, and IFN- γ (370). Furthermore, lamina propria mononuclear cells (LPMCs) isolated from Celiac patients display a diminished capacity to phagocytose ACs (370). Disruption in these localized immune defenses may initiate or amplify systemic inflammation and contribute to disease pathogenesis.

3 Scavenger receptors as biomarkers and targets to treat SLE

The complexity and heterogeneity of SLE—both in terms of clinical presentation and underlying immunological mechanisms—have long posed significant challenges in diagnosis, prognosis, and treatment. While serological markers such as anti-dsDNA and anti-Smith antibodies are commonly used, they lack sensitivity and specificity across all disease stages and patient populations. Therefore, there is growing interest in identifying novel, more reliable biomarkers that reflect disease activity, organ involvement, and therapeutic responsiveness.

Among the most promising candidates are SRs. SRs play a critical role in innate immunity through the recognition and clearance of endogenous and exogenous ligands, including apoptotic cells, modified lipids, and microbial products. Dysregulated expression or function of SRs has been implicated in the breakdown of self-tolerance and chronic inflammation, hallmarks of SLE pathogenesis. Notably, SRs also participate in intracellular signaling cascades such as the MAPK, NF-κB, and JAK-STAT pathways—many of which are known to be dysregulated in autoimmune conditions (316, 371–373). This positions SRs not only as mediators of immune response but also as potential biomarkers for disease progression and targets for immunomodulatory therapy.

Biomarkers are essential for the diagnosis, prognosis and the monitoring of SLE. Markers like dsDNA, complement levels and the presence of certain autoantibodies have been validated and are being used in clinical practice. However, it wasn't until 2007 that Wermeling et al. showed the presence of antibodies responsible for recognizing MARCO and SR-A (323). The discovery was then followed up by Chen et al., where the group identified an increase of anti-SR-A and anti-MARCO IgG in SLE patients when compared to controls (327, 374). In 2022, Jorge et al. showed an increase in anti-SCARF1 antibodies that correlate with increase dsDNA in the serum (329). This data was true for 26% of the patients suffering from SLE, however no additional correlation was found with other disease markers. Recently it was identified that the SR sCD163 (SR-I1) was

elevated in patients suffering from LN, and it was suggested to be used as a prognostic biomarker (59). These discoveries are only in the initial stages and additional work is necessary to take this finding to the clinic. There is one thing all these discoveries had in common, the presence of these antibodies to SRs contribute to the breakdown of self-tolerance and increase autoimmune pathogenesis, making SRs the perfect candidate as disease progression biomarker.

Current SLE management strategies aim to (1) minimize disease activity, (2) prevent irreversible organ damage, (3) reduce the burden of comorbidities and treatment-related side effects, and (4) improve quality of life by alleviating pain and fatigue (5). However, due to the heterogeneous nature of the disease, a universal diagnostic or treatment protocol remains elusive. While glucocorticosteroids and antimalarial drugs have historically formed the backbone of treatment, their long-term use is associated with serious side effects and complications (Table 2). In recent years, the therapeutic landscape has shifted toward biologics, with only two FDA-approved options currently available—belimumab and anifrolumab (1, 375-377). Despite their promise, many patients exhibit incomplete or variable responses, necessitating adjunct or personalized therapies that account for unique immune signatures and organ involvement (375).

Targeting key signaling pathways associated with SR activation—such as MAPK, NF- κ B, and JAK-STAT—has been explored in clinical trials with mixed outcomes, largely due to SLE's intrinsic heterogeneity and overlapping immunopathogenic mechanisms (101, 316, 372, 373). These challenges underscore the need for refined biomarkers and therapeutic targets. As research advances, scavenger receptors may provide dual utility as both indicators of disease activity and modulators of inflammation, offering a promising avenue for stratified medicine in SLE care.

4 Discussion

Scavenger receptors play an essential role in the immune system and their immunomodulatory function through a variety of immune and non-immune cell types in the context of inflammation and several autoimmune diseases. The past two decades of research have shown that the role of SRs in inflammatory disease might have been underestimated, and the more recent body of published work demonstrates the many ways SRs influence, modulate, and directly contribute to inflammatory disease-related pathways.

Although great strides have been made to understand how SRs contribute to inflammation, many unanswered questions remain. As shown in this review, there is quite a bit of redundancy regarding SRs and the pathways that they participate in or regulate. Still, it appears that one class is not responsible for the immunomodulatory effects of SRs (10, 260). SRs participate in pro- and anti-inflammatory signaling cascades, which muddies their contribution to the development and prognosis of inflammatory disease as well. Furthermore, they interact with

TABLE 2 Current SLE treatment options.

Drug	Class	Molecular target	EULAR domains	SLE approval	Ref.
Azathioprine	Non-steroidal immunosuppressant	Calcineurin inhibitor	Hematologic, Skin, Renal, Constitutional, Neuropsychiatric	FDA, EMA	(375, 379, 380)
Cyclosporine	Non-steroidal immunosuppressant	Calcineurin inhibitor	Renal, Mucocutaneous, Hematologic	OL	(375, 381)
Cyclophosphamide	Non-steroidal immunosuppressant/ Cytotoxic	Add an "alkyl" group to DNA	Renal, Neuropsychiatric, Hematologic	OL	(375, 379, 380)
Mycophenolate mofetil	Non-steroidal immunosuppressant	Inosine Monophospate Dehydrogenase inhibitor	Hematologic, Mucocutaneous, Renal	OL	(375, 382)
Abatacept	Non-steroidal immunosuppressant	CD80/CD86 on APCs blocker	Hematologic, Renal, Mocucutaneous	OL	(379)
Voclosporin	Non-steroidal immunosuppressant	Calcineurin inhibitor	Renal, Mucocutaneous, Hematologic	FDA, EMA	(375, 380)
Tacrolimus	Non-steroidal immunosuppressant	Calcineurin inhibitor	Renal, Mucocutaneous, Hematologic	OL	(375, 380)
Methotrexate	Non-steroidal immunosuppressant/ Cytotoxic	Calcineurin inhibitor	Arthritis, Mucocutaneous, Serositis, Musculoskeletal	OL	(375, 380)
Belimumab	Biologic	BlyS neutralizing	Arthritis, Mucocutaneous, Renal, Musculoskeletal, Immunological	FDA, EMA	(375, 379, 380)
Anifrolumab	Biologic	Type I IFN Receptor blocker	Arthritis, Mucocutaneous,	OL	(375, 380)
Rituximab	Biologic	Binds to CD20	Neuropsychiatric, Renal, Arthritis	OL	(375, 380)
Chloroquine	Antimalarial	Inhibit autophagy	Hematologic	OL	(375)
Hydroxychloroquine	Antimalarial, Antirheumatic	IFN suppressor	Arthritis, Mucocutaneous, Serositis	FDA, EMA	(375, 379, 381)
Quinacrine	Antimalarial	Anti-inflammatory	Mucocutaneous, Serositis, Arthritis	FDA	(375, 380)
Methylprednisolone	Glucocorticoids	Anti-inflammatory	Hematologic, Renal, Neuropsychiatric	FDA	(375)
Dexamethasone	Glucocorticoids	Binding to the cytoplasmic glucocorticoid receptor (GR)	Renal, Neuropsychiatric	FDA	(375)
Prednisolone	Corticosteroids	Multiple	Overactive immune system	FDA, EMA	(379)
Hydrocortisone	Corticosteroids	Binding to the cytoplasmic glucocorticoid receptor (GR)	Overactive immune system	FDA, EMA	(379)
Aspirin	NSAID	Thrombosis prevention	Serositis, Antiphospholipid antibody, Arthritis, Constitutional	FDA	(379)
Celecoxib	NSAID	COX-2 inhibitor	Arthritis, Constitutional	OL	
Heparin	Anticoagulant	Thrombin inhibitor and clotting factors	Serositis, Antiphospholipid antibody,	FDA	(382)
Warfarin	Anticoagulant	Interferes with clotting factors	Serositis, Antiphospholipid antibody,	FDA	(382)

^{*}OL: Off-label medications.

other pattern recognition receptors to enhance or suppress a response (10, 378).

There is convincing evidence that some SRs can act as potentially useful biomarkers for autoimmune disease diagnostics and prognostics, but this is not the case for every SR family. For example, autoantibodies for SR-AI are elevated in SLE patients (327) and autoantibodies to SCARF1 are linked to defects in efferocytosis and autoimmunity (329). Further research is necessary to identify SR with subset or symptoms of autoimmunity. However, designing SR-based therapeutic approaches may prove challenging since SR levels do not necessarily vary between healthy individuals and those with inflammatory disease. Downstream research is needed to finetune current findings and provide greater clarity on these knowledge gaps.

Despite the knowledge gaps that remain regarding SRs and their role in inflammation and autoimmunity, current research demonstrates that SRs wear many immunological hats and contribute to a variety of inflammatory signaling pathways. Therefore, it is crucial to continue investigating the role of SRs

in inflammation to determine the therapeutic potential of targeting SRs in the context of inflammatory and autoimmune disease.

Author contributions

SH: Writing – original draft, Writing – review & editing. MC: Writing – review & editing. DS: Writing – review & editing. RR: Writing – review & editing. ZR: Conceptualization, Funding acquisition, Supervision, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work was funded by Lupus Research Alliance Innovation Award 2022 and DoD-Impact Award (DoD W81XWH-21-1-0803).

Acknowledgments

We would thank Dr. Stuart Levitz and his lab for providing additional advice in the preparation of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to

ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/flupu.2025. 1679564/full#supplementary-material

References

- 1. Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. *Nat Rev Dis Primers*. (2016) 2:16039. doi: 10.1038/nrdp.2016.39
- 2. Vaillant AJ, Goyal A, Bansal P, Varacallo M. Systemic Lupus Erythematosus. Florida, USA: StatPearls Publishing (2023).
- 3. Lam NV, Brown JA, Sharma R. Systemic lupus erythematosus: diagnosis and treatment. *Am Fam Physician*. (2023) 107:383–95.
- 4. Sang A, Yin Y, Zheng YY, Morel L. Animal models of molecular pathology systemic lupus erythematosus. *Prog Mol Biol Transl Sci.* (2012) 105:321–70. doi: 10.1016/B978-0-12-394596-9.00010-X
- 5. Fava A, Petri M. Systemic lupus erythematosus: diagnosis and clinical management. *J Autoimmun.* (2019) 96:1–13. doi: 10.1016/j.jaut.2018.11.001
- Pathak S, Mohan C. Cellular and molecular pathogenesis of systemic lupus erythematosus: lessons from animal models. Arthritis Res Ther. (2011) 13:241. doi: 10.1186/ar3465
- 7. Gachpazan M, Akhlaghipour I, Rahimi HR, Saburi E, Mojarrad M, Abbaszadegan MR, et al. Genetic and molecular biology of systemic lupus erythematosus among Iranian patients: an overview. *Auto Immun Highlights*. (2021) 12:2. doi: 10.1186/s13317-020-00144-y
- 8. da Gama Duarte J, Woods K, Andrews MC, Behren A. The good, the (not so) bad and the ugly of immune homeostasis in melanoma. *Immunology & Cell Biology.* (2018) 96:497–506. doi: 10.1111/imcb.12001
- 9. Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger receptors: novel roles in the pathogenesis of liver inflammation and cancer. *Semin Liver Dis.* (2022) 42:61–76. doi: 10.1055/s-0041-1733876
- 10. Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. *Nat Rev Immunol.* (2013) 13:621–34. doi: 10.1038/nri3515
- 11. PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DME, Drickamer K, Febbraio M, et al. A consensus definitive classification of scavenger receptors and their roles in health and disease. *J Immunol.* (2017) 198:3775–89. doi: 10.4049/jimmunol.1700373
- 12. Prabhudas M, Bowdish D, Drickamer K, Febbraio M, Herz J, Kobzik L, et al. Standardizing scavenger receptor nomenclature. *J Immunol.* (2014) 192:1997–2006. doi: 10.4049/jimmunol.1490003
- 13. Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, et al. Scavenger receptor structure and function in health and disease. *Cells.* (2015) 4:178–201. doi: 10.3390/cells4020178
- 14. Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol. (1997) 8:275-80. doi: 10.1097/00041433-199710000-00006
- 15. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. *PLoS Med.* (2006) 3:e297. doi: 10.1371/journal.pmed.0030297

- 16. Marcuzzi A, Melloni E, Zauli G, Romani A, Secchiero P, Maximova N, et al. Autoinflammatory diseases and cytokine storms—imbalances of innate and adaptative immunity. *Int J Mol Sci.* (2021) 22:11241. doi: 10.3390/ijms222011241
- 17. Cervera R, Khamashta MA, Font J, Sebastiani GD, Gil A, Lavilla P, et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. *Medicine (Baltimore).* (2003) 82:299–308. doi: 10.1097/01.md.0000091181.93122.55
- 18. Fayyaz A, Igoe A, Kurien BT, Danda D, James JA, Stafford HA, et al. Haematological manifestations of lupus. *Lupus Sci Med.* (2015) 2:e000078. doi: 10.1136/lupus-2014-000078
- 19. Mitchinson MJ. Fluor: another cardinal sign of inflammation. Lancet. (1989) 2:1520. doi: 10.1016/S0140-6736(89)92957-7
- 20. Punchard NA, Whelan CJ, Adcock I. The journal of inflammation. J Inflamm (Lond. (2004) 1:1. doi: 10.1186/1476-9255-1-1
- 21. Ciaccia L. Fundamentals of Inflammation.
- $22.\ Hannoodee$ S, Nasuruddin DN. $Acute\ Inflammatory\ Response.$ Florida, USA: StatPearls Publishing (2024).
- 23. Stojan G, Petri M. Atherosclerosis in systemic lupus erythematosus. *J Cardiovasc Pharmacol.* (2013) 62:255–62. doi: 10.1097/FJC.0b013e31829dd857
- 24. Wilhelm AJ, Major AS. Accelerated atherosclerosis in SLE: mechanisms and prevention approaches. *Int J Clin Rheumtol.* (2012) 7:527–39. doi: 10.2217/ijr.12.46
- 25. van Leuven SI, Major AS. Accelerated atherosclerosis in systemic lupus erythematosus: don't Forget the devil we know!. *Rheumatology.* (2023) 63:3–5. doi: 10.1093/rheumatology/kead329
- 26. Pearson JT, Yoshimoto M, Chen YC, Sultani R, Edgley AJ, Nakaoka H, et al. Widespread coronary dysfunction in the absence of HDL receptor SR-B1 in an ischemic cardiomyopathy mouse model. *Sci Rep.* (2017) 7:18108. doi: 10.1038/s41598-017-18485-6
- 27. Staršíchová A. SR-B1-/-ApoE-R61h/h mice mimic human coronary heart disease. *Cardiovasc Drugs Ther.* (2023) 38(6):1123–37. doi: 10.1007/s10557-023-07475-8
- 28. Hein TW, Kuo L. LDLs impair vasomotor function of the coronary microcirculation: role of superoxide anions. *Circ Res.* (1998) 83:404–14. doi: 10. 1161/01.RES.83.4.404
- 29. Hein TW, Liao JC, Kuo L. oxLDL specifically impairs endothelium-dependent, NO-mediated dilation of coronary arterioles. *Am J Physiol Heart Circ Physiol.* (2000) 278:H175–83. doi: 10.1152/ajpheart.2000.278.1.H175
- Zeiher AM, Drexler H, Wollschläger H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation. (1991) 84:1984–92. doi: 10.1161/01. CIR.84.5.1984

- 31. Van Eck M, Hoekstra M, Hildebrand RB, Yaong Y, Stengel D, Kruijt JK, et al. Increased oxidative stress in scavenger receptor BI knockout mice with dysfunctional HDL. *Arterioscler Thromb Vasc Biol.* (2007) 27:2413–9. doi: 10.1161/ATVBAHA.107. 145474
- 32. Gracia-Rubio I, Martín C, Civeira F, Cenarro A. SR-B1, a key receptor involved in the progression of cardiovascular disease: a perspective from mice and human genetic studies. *Biomedicines*. (2021) 9:1–18. doi: 10.3390/biomedicines9060612
- 33. Anderson TJ. Assessment and treatment of endothelial dysfunction in humans. J. Am. Coll. Cardiol. (1999) 34:631–8. doi: 10.1016/S0735-1097(99)00259-4
- 34. Korporaal SJ, Meurs I, Hauer AD, Hildebrand RB, Hoekstra M, Cate HT, et al. Deletion of the high-density lipoprotein receptor scavenger receptor BI in mice modulates thrombosis susceptibility and indirectly affects platelet function by elevation of plasma free cholesterol. *Arterioscler Thromb Vasc Biol.* (2011) 31:34–42. doi: 10.1161/ATVBAHA.110.210252
- 35. Galanopoulos N, Christoforidou A, Bezirgiannidou Z. Lupus thrombocytopenia: pathogenesis and therapeutic implications. *Mediterr J Rheumatol.* (2017) 28:20–6. doi: 10.31138/mjr.28.1.20
- 36. Wanchu A, Khullar M, Deodhar SD, Bambery P, Sud A. Nitric oxide synthesis is increased in patients with systemic lupus erythematosus. *Rheumatol Int.* (1998) 18:41–3. doi: 10.1007/s002960050055
- 37. Al Gadban MM, German J, Truman J-P, Soodavar F, Riemer EC, Twal WO, et al. Lack of nitric oxide synthases increases lipoprotein immune complex deposition in the aorta and elevates plasma sphingolipid levels in lupus. *Cell Immunol.* (2012) 276:42–51. doi: 10.1016/j.cellimm.2012.03.007
- 38. Zhang S, Picard MH, Vasile E, Zhu Y, Raffai RL, Weisgraber KH, et al. Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice. *Circulation*. (2005) 111:3457–64. doi: 10.1161/CIRCULATIONAHA.104.523563
- 39. Nakaoka H, Nakagawa-Toyama Y, Nishida M, Okada T, Kawase R, Yamashita T, et al. Establishment of a novel murine model of ischemic cardiomyopathy with multiple diffuse coronary lesions. *PLoS One.* (2013) 8:e70755. doi: 10.1371/journal.pone.0070755
- 40. Nossent J, Cikes N, Kiss E, Marchesoni A, Nassonova V, Mosca M, et al. Current causes of death in systemic lupus erythematosus in Europe, 2000–2004: relation to disease activity and damage accrual. *Lupus*. (2007) 16:309–17. doi: 10. 1177/0961203307077987
- 41. Bernatsky S, Boivin JF, Joseph L, Manzi S, Ginzler E, Gladman DD, et al. Mortality in systemic lupus erythematosus. *Arthritis Rheum.* (2006) 54:2550–7. doi: 10.1002/art.21955
- 42. Mutoh T, Shirai T, Ishii T, Shirota Y, Fujishima F, Takahashi F, et al. Identification of two major autoantigens negatively regulating endothelial activation in takayasu arteritis. *Nat Commun*. (2020) 11:1253. doi: 10.1038/s41467-020-15088-0
- 43. Feng H, Guo L, Wang D, Gao H, Hou G, Zheng Z, et al. Deficiency of scavenger receptor BI leads to impaired lymphocyte homeostasis and autoimmune disorders in mice. *Arterioscler Thromb Vasc Biol.* (2011) 31:2543–51. doi: 10.1161/ATVBAHA. 111.234716
- 44. Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol. (2024) 21:780–807. doi: 10.1038/s41569-024-01045-7
- 45. Carlucci PM, Purmalek MM, Dey AK, Temesgen-Oyelakin Y, Sakhardande S, Joshi AA, et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. *JCI Insight.* (2018) 3(8):1–16. doi: 10.1172/jci.insight.99276
- 46. Smith CK, Vivekanandan-Giri A, Tang C, Knight JS, Mathew A, Padilla RL, et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. *Arthritis Rheumatol.* (2014) 66:2532–44. doi: 10.1002/art.38703
- 47. Forte F, Buonaiuto A, Calcaterra I, Iannuzzo G, Ambrosino P, Di Minno MND. Association of systemic lupus erythematosus with peripheral arterial disease: a meta-analysis of literature studies. *Rheumatology (Oxford)*. (2020) 59:3181–92. doi: 10. 1093/rheumatology/keaa414
- 48. Purmalek MM, Carlucci PM, Dey AK, Sampson M, Temesgen-Oyelakin Y, Sakhardande S, et al. Association of lipoprotein subfractions and glycoprotein acetylation with coronary plaque burden in SLE. *Lupus Sci Med.* (2019) 6:e000332. doi: 10.1136/lupus-2019-000332
- 49. Szabó MZ, Szodoray P, Kiss E. Dyslipidemia in systemic lupus erythematosus. Immunol Res. (2017) 65:543–50. doi: 10.1007/s12026-016-8892-9
- 50. Yafasova A, Fosbøl EL, Schou M, Baslund B, Faurschou M, Docherty KF, et al. Long-term cardiovascular outcomes in systemic lupus erythematosus. *J Am Coll Cardiol.* (2021) 77:1717–27. doi: 10.1016/j.jacc.2021.02.029
- 51. Manzi S, Meilahn EN, Rairie JE, Conte CG, Medsger TA Jr., Jansen-McWilliams L, et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the framingham study. *Am J Epidemiol*. (1997) 145:408–15. doi: 10.1093/oxfordjournals.aje.a009122

- 52. Restivo V, Candiloro S, Daidone M, Norrito R, Cataldi M, Minutolo G, et al. Systematic review and meta-analysis of cardiovascular risk in rheumatological disease: symptomatic and non-symptomatic events in rheumatoid arthritis and systemic lupus erythematosus. *Autoimmun Rev.* (2022) 21:102925. doi: 10.1016/j. autrev.2021.102925
- 53. Mohamed OSD, Azmy GJ, Elfadl EMA. Clinical significance of red blood cell distribution width in systemic lupus erythematosus patients. *Egypt Rheumatol Rehab.* (2020) 47:38. doi: 10.1186/s43166-020-00037-y
- 54. Ghiran IC, Zeidel ML, Shevkoplyas SS, Burns JM, Tsokos GC, Kyttaris VC. Systemic lupus erythematosus serum deposits C4d on red blood cells, decreases red blood cell membrane deformability, and promotes nitric oxide production. *Arthritis Rheum.* (2011) 63:503–12. doi: 10.1002/art.30143
- 55. Cheng Q, Mou L, Su W, Chen X, Zhang T, Xie Y, et al. Ferroptosis of CD163 + tissue-infiltrating macrophages and CD10+ PC+ epithelial cells in lupus nephritis. *Front Immunol.* (2023) 14:1–11. doi: 10.3389/fimmu.2023.1171318
- 56. Endo N, Tsuboi N, Furuhashi K, Shi Y, Du Q, Abe T, et al. Urinary soluble CD163 level reflects glomerular inflammation in human lupus nephritis. *Nephrol Dial Transplant*. (2016) 31:2023–33. doi: 10.1093/ndt/gfw214
- $57.\ Moestrup$ SK, Møller HJ. CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann Med. (2004) 36:347–54. doi: 10.1080/07853890410033171
- 58. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, et al. Identification of the haemoglobin scavenger receptor. *Nature*. (2001) 409:198–201. doi: 10.1038/35051594
- 59. Liu Y, Li M, Zhang H, Yin Z, Wang X. Clinical significance of serum soluble scavenger receptor CD163 in patients with lupus nephritis. *Lupus*. (2024) 33:1279–88. doi: 10.1177/09612033241276033
- 60. Nishino A, Katsumata Y, Kawasumi H, Hirahara S, Kawaguchi Y, Yamanaka H. Usefulness of soluble CD163 as a biomarker for macrophage activation syndrome associated with systemic lupus erythematosus. *Lupus*. (2019) 28:986–94. doi: 10. 1177/0961203319860201
- 61. Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163(+) macrophages in inflammatory and malignant diseases. *Int J Mol Sci.* (2020) 21:1–32. doi: 10.3390/ijms21155497
- 62. Liu AC, Yang Y, Li MT, Jia Y, Chen S, Ye S, et al. Macrophage activation syndrome in systemic lupus erythematosus: a multicenter, case-control study in China. *Clin Rheumatol.* (2018) 37:93–100. doi: 10.1007/s10067-017-3625-6
- 63. Aziz A, Castaneda EE, Ahmad N, Veerapalli H, Rockferry AG, Lankala CR, et al. Exploring macrophage activation syndrome secondary to systemic lupus erythematosus in adults: a systematic review of the literature. *Cureus.* (2021) 13: e18822. doi: 10.7759/cureus.18822
- 64. Liu T, Son M, Diamond B. HMGB1 in systemic lupus erythematosus. Front Immunol. (2020) 11:1057. doi: 10.3389/fimmu.2020.01057
- 65. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. *Front Immunol.* (2019) 10:119. doi: 10.3389/fimmu.2019.00119
- 66. Elkon KB, Stone VV. Type I interferon and systemic lupus erythematosus. J Interferon Cytokine Res. (2011) 31:803–12. doi: 10.1089/jir.2011.0045
- 67. Abraham NG, Drummond G. CD163-mediated hemoglobin-heme uptake activates macrophage HO-1, providing an antiinflammatory function. *Circ Res.* (2006) 99:911–4. doi: 10.1161/01.RES.0000249616.10603.d6
- 68. Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. *Oxid Med Cell Longev*. (2013) 2013:523652. doi: 10.1155/2013/523652
- 69. Gao Z, Wang Y, Wang J, Zhang J, Wang Z. Soluble ST2 and CD163 as potential biomarkers to differentiate primary hemophagocytic lymphohistiocytosis from macrophage activation syndrome. *Mediterr J Hematol Infect Dis.* (2019) 11: e2019008. doi: 10.4084/mjhid.2019.008
- 70. Sakumura N, Shimizu M, Mizuta M, Inoue N, Nakagishi Y, Yachie A. Soluble CD163, a unique biomarker to evaluate the disease activity, exhibits macrophage activation in systemic juvenile idiopathic arthritis. *Cytokine*. (2018) 110:459–65. doi: 10.1016/j.cyto.2018.05.017
- 71. Schulert GS, Pickering AV, Do T, Dhakal S, Fall N, Schnell D, et al. Monocyte and bone marrow macrophage transcriptional phenotypes in systemic juvenile idiopathic arthritis reveal TRIM8 as a mediator of IFN-gamma hyperresponsiveness and risk for macrophage activation syndrome. *Ann Rheum Dis.* (2021) 80:617–25. doi: 10.1136/annrheumdis-2020-217470
- 72. Greisen SR, Moller HJ, Stengaard-Pedersen K, Hetland ML, Hørslev-Petersen K, Jørgensen A, et al. Soluble macrophage-derived CD163 is a marker of disease activity and progression in early rheumatoid arthritis. *Clin Exp Rheumatol.* (2011) 29:689–92.
- 73. Mejia-Vilet JM, Zhang XL, Cruz C, Cano-Verduzco ML, Shapiro JP, Nagaraja HN, et al. Urinary soluble CD163: a novel noninvasive biomarker of activity for lupus nephritis. J Am Soc Nephrol. (2020) 31:1335–47. doi: 10.1681/ASN.2019121285
- 74. Zhang T, Li H, Vanarsa K, Gidley G, Mok CC, Petri M, et al. Association of urine sCD163 with proliferative lupus nephritis, fibrinoid necrosis, cellular

crescents and intrarenal M2 macrophages. Front Immunol. (2020) 11:671. doi: 10. 3389/fmmu.2020.00671

- 75. Huang YJ, Lin CH, Yang HY, Luo SF, Kuo CF. Urine soluble CD163 is a promising biomarker for the diagnosis and evaluation of lupus nephritis. *Front Immunol.* (2022) 13:935700. doi: 10.3389/fimmu.2022.935700
- 76. Markota A, Kalamar Ž, Fluher J, Pirkmajer S. Therapeutic hyperthermia for the treatment of infection-a narrative review. *Front Physiol.* (2023) 14:1215686. doi: 10. 3389/fphys.2023.1215686
- 77. Zhang H-G, Mehta K, Cohen P, Guha C. Hyperthermia on immune regulation: a temperature's Story. *Cancer Lett.* (2008) 271:191–204. doi: 10.1016/j.canlet.2008.05. 026
- 78. Xinghua Gao HC. Hyperthermia on skin immune system and its application in the treatment of human papillomavirus-infected skin diseases. *Front. Med.* (2014) 8:1–5. doi: 10.1007/s11684-014-0309-3
- 79. Timlin H, Syed A, Haque U, Adler B, Law G, Machireddy K, et al. Fevers in adult lupus patients. *Cureus*. (2018) 10:e2098. doi: 10.7759/cureus.2098
- 80. Kallinich T, Gattorno M, Grattan CE, de Koning HD, Traidl-Hoffmann C, Feist E, et al. Unexplained recurrent fever: when is autoinflammation the explanation? *Allergy.* (2013) 68:285–96. doi: 10.1111/all.12084
- 81. Galloway J, Cope AP. The ying and yang of fever in rheumatic disease. *Clinical Medicine*. (2015) 15:288–91. doi: 10.7861/clinmedicine.15-3-288
- 82. Ryu S, Fu W, Petri MA. Associates and predictors of pleurisy or pericarditis in SLE. *Lupus Sci Med.* (2017) 4:e000221. doi: 10.1136/lupus-2017-000221
- 83. Font J, Cervera R, Ramos-Casals M, García-Carrasco M, Sents J, Herrero C, et al. Clusters of clinical and immunologic features in systemic lupus erythematosus: analysis of 600 patients from a single center. Semin Arthritis Rheum. (2004) 33:217–30. doi: 10.1053/S0049-0172(03)00133-1
- 84. Ambrose N, Morgan TA, Galloway J, Ionnoau Y, Beresford MW, Isenberg DA. Differences in disease phenotype and severity in SLE across age groups. *Lupus*. (2016) 25:1542–50. doi: 10.1177/0961203316644333
- 85. Swaak AJ, van den Brink HG, Smeenk RJ, Manger K, Kalden JR, Tosi S, et al. Systemic lupus erythematosus: clinical features in patients with a disease duration of over 10 years, first evaluation. *Rheumatology (Oxford)*. (1999) 38:953–8. doi: 10.1093/rheumatology/38.10.953
- 86. Harvey AM, Shulman LE, Tumulty PA, Conley CL, Schoenrich EH. Systemic lupus erythematosus: review of the literature and clinical analysis of 138 cases. *Medicine (Baltimore)*. (1954) 33:291–437. doi: 10.1097/00005792-195412000-00001
- 87. Barber MRW, Clarke AE. Systemic lupus erythematosus and risk of infection. Expert Rev Clin Immunol. (2020) 16:527–38. doi: 10.1080/1744666X. 2020.1763793
- 88. Kunzler ALF, Tsokos GC. Infections in patients with systemic lupus erythematosus: the contribution of primary immune defects versus treatment-induced immunosuppression. *Eur J Rheumatol.* (2023) 10:148–58. doi: 10.5152/eurjrheum.2023.23068
- 89. Lunchenkov N, Filippov E, Prihodko O, Volchkova E. Classical fever of unknown origin: retrospective study in infectious clinical hospital №2. *Open Forum Infect Dis.* (2017) 4:S343–S343. doi: 10.1093/ofid/ofx163.818
- 90. Abdel-Aleem A, Zaki MS. Spinocerebellar ataxia type 2 (SCA2) in an Egyptian family presenting with polyphagia and marked CAG expansion in infancy. *J Neurol.* (2008) 255:413–9. doi: 10.1007/s00415-008-0690-4
- 91. Netea MG, Kullberg BJ, Van der Meer JWM. Circulating cytokines as mediators of fever. Clin Infect Dis. (2000) 31:S178–84. doi: 10.1086/317513
- 92. Zampronio AR, Soares DM, Souza GE. Central mediators involved in the febrile response: effects of antipyretic drugs. *Temperature (Austin.* (2015) 2:506–21. doi: 10.1080/23328940.2015.1102802
- 93. Damiati LA, Denetiu I, Bahlas S, Damiati S, Pushparaj PN. Immunoprofiling of cytokines, chemokines, and growth factors in female patients with systemic lupus erythematosus— a pilot study. *BMC Immunol.* (2023) 24:13. doi: 10.1186/s12865-023-00551-6
- 94. Weckerle CE, Mangale D, Franek BS, Kelly JA, Kumabe M, James JA, et al. Large-scale analysis of tumor necrosis factor α levels in systemic lupus erythematosus. *Arthritis Rheum*. (2012) 64:2947–52. doi: 10.1002/art.34483
- 95. Xiang N, Fang X, Sun XG, Zhou YB, Ma Y, Zhu C, et al. Expression profile of PU.1 in CD4(+)T cells from patients with systemic lupus erythematosus. *Clin Exp Med.* (2021) 21:621–32. doi: 10.1007/s10238-021-00717-9
- 96. La Cava A. Anticytokine therapies in systemic lupus erythematosus. *Immunotherapy.* (2010) 2:575–82. doi: 10.2217/imt.10.29
- 97. Park J, Jang W, Park HS, Park KH, Kwok SK, Park SH, et al. Cytokine clusters as potential diagnostic markers of disease activity and renal involvement in systemic lupus erythematosus. *J Int Med Res.* (2020) 48:300060520926882. doi: 10.1177/0300060520926882
- 98. Pacheco Y, Barahona-Correa J, Monsalve DM, Acosta-Ampudia Y, Rojas M, Rodríguez Y, et al. Cytokine and autoantibody clusters interaction in systemic lupus erythematosus. *J Transl Med.* (2017) 15:239. doi: 10.1186/s12967-017-1345-y

- 99. Reynolds JA, McCarthy EM, Haque S, Ngamjanyaporn P, Sergeant JC, Lee E, et al. Cytokine profiling in active and quiescent SLE reveals distinct patient subpopulations. *Arthritis Res Ther.* (2018) 20:173. doi: 10.1186/s13075-018-1666-0
- 100. Bahlas S, Damiati L, Dandachi N, Sait H, Alsefri M, Pushparaj PN. Rapid immunoprofiling of cytokines, chemokines and growth factors in patients with active rheumatoid arthritis using luminex multiple analyte profiling technology for precision medicine. *Clin Exp Rheumatol.* (2019) 37:112–9.
- 101. Allen ME, Rus V, Szeto GL. Leveraging heterogeneity in systemic lupus erythematosus for new therapies. *Trends Mol Med.* (2021) 27:152–71. doi: 10.1016/j.molmed.2020.09.009
- 102. Mehta JL, Sanada N, Hu CP, Chen J, Dandapat A, Sugawara F, et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. *Circ Res.* (2007) 100:1634–42. doi: 10.1161/CIRCRESAHA.107.149724
- 103. Wang X, Phillips MI, Mehta JL. LOX-1 and angiotensin receptors, and their interplay. *Cardiovasc Drugs Ther.* (2011) 25:401–17. doi: 10.1007/s10557-011-6331-7
- 104. Twigg MW, Freestone K, Homer-Vanniasinkam S, Ponnambalam S. The LOX-1 scavenger receptor and its implications in the treatment of vascular disease. *Cardiol Res Pract.* (2012) 2012:632408. doi: 10.1155/2012/632408
- 105. Pyrpyris N, Dimitriadis K, Beneki E, Iliakis P, Soulaidopoulos S, Tsioufis P, et al. LOX-1 receptor: a diagnostic tool and therapeutic target in atherogenesis. *Curr Probl Cardiol.* (2024) 49:102117. doi: 10.1016/j.cpcardiol.2023.102117
- 106. Thakkar S, Wang X, Khaidakov M, Dai Y, Gokulan K, Mehta JL, et al. Structure-based design targeted at LOX-1, a receptor for oxidized low-density lipoprotein. *Sci Rep.* (2015) 5:16740. doi: 10.1038/srep16740
- 107. Akhmedov A, Rozenberg I, Paneni F, Camici GG, Shi Y, Doerries C, et al. Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis *in vivo*. *Eur Heart J*. (2014) 35:2839–48. doi: 10.1093/eurheartj/eht532
- 108. Sagar D, Gaddipati R, Ongstad EL, Bhagroo N, An LL, Wang J, et al. LOX-1: a potential driver of cardiovascular risk in SLE patients. *PLoS One.* (2020) 15:e0229184. doi: 10.1371/journal.pone.0229184
- 109. Kume N, Moriwaki H, Kataoka H, Minami M, Murase T, Sawamura T, et al. Inducible expression of LOX-1, a novel receptor for oxidized LDL, in macrophages and vascular smooth muscle cells. *Ann N Y Acad Sci.* (2000) 902:323–7. doi: 10. 1111/j.1749-6632.2000.tb06332.x
- 110. Hofnagel O, Luechtenborg B, Stolle K, Lorkowski S, Eschert H, Plenz G, et al. Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. *Arterioscler Thromb Vasc Biol.* (2004) 24:1789–95. doi: 10.1161/01.ATV. 0000140061.89096.2b
- 111. Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC, et al. Anti-Inflammatory therapy with canakinumab for the prevention and management of diabetes. *J Am Coll Cardiol.* (2018) 71:2392–401. doi: 10.1016/j.jacc.2018.03.002
- 112. Ridker PM, MacFadyen JG, Glynn RJ, Koenig W, Libby P, Everett BM, et al. Inhibition of interleukin-1 β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease. *J Am Coll Cardiol.* (2018) 71:2405–14. doi: 10.1016/j.jacc. 2018.03.490
- 113. Santacroce L, Colella M, Charitos IA, Di Domenico M, Palmirotta R, Jirillo E. Microbial and host metabolites at the backstage of fever: current knowledge about the co-ordinate action of receptors and molecules underlying pathophysiology and clinical implications. *Metabolites*. (2023) 13:461. doi: 10.3390/metabo13030461
- 114. Tsai CY, Wu TH, Tsai ST, Chen KH, Thajeb P, Lin WM, et al. Cerebrospinal fluid Interleukin-6, prostaglandin E2 and autoantibodies in patients with neuropsychiatric systemic lupus erythematosus and central nervous system infections. *Scand J Rheumatol.* (1994) 23:57–63. doi: 10.3109/03009749409103028
- 115. Okamoto H, Kobayashi A, Yamanaka H. Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus. *BioMed Res Int.* (2010) 2010:268436. doi: 10.1155/2010/268436
- 116. Hirohata S, Kikuchi H. Role of Serum IL-6 in neuropsychiatric systemic lupus erythematosus. ACR Open Rheumatol. (2021) 3:42–9. doi: 10.1002/acr2.11217
- 117. Chae BS, Shin TY, Kim DK, Eun JS, Leem JY, Yang JH. Prostaglandin E2-mediated dysregulation of proinflammatory cytokine production in pristane-induced lupus mice. *Arch Pharm Res.* (2008) 31:503–10. doi: 10.1007/s12272-001-185-6
- 118. Li X, Melief E, Postupna N, Montine KS, Keene CD, Montine TJ. Prostaglandin E $_2$ receptor subtype 2 regulation of scavenger receptor CD36 modulates microglial A β_{42} phagocytosis. Am J Pathol. (2015) 185:230–9. doi: 10. 1016/j.ajpath.2014.09.016
- 119. Voloshyna I, Kasselman LJ, Carsons SE, Littlefield MJ, Gomolin IH, De Leon J, et al. Cox-2-dependent and independent effects of cox-2 inhibitors and nsaids on proatherogenic changes in human monocytes/macrophages. *J Invest Med.* (2017) 65:694–704. doi: 10.1136/jim-2016-000259
- 120. Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. *MedComm*. (2022) 3:e161. doi: 10.1002/mco2.161
- 121. Ostberg JR, Kabingu E, Repasky EA. Thermal regulation of dendritic cell activation and migration from skin explants. *Int J Hyperthermia*. (2003) 19:520–33. doi: 10.1080/02656730310001607986

- 122. Di YP, Repasky EA, Subjeck JR. Distribution of HSP70, protein kinase C, and spectrin is altered in lymphocytes during a fever-like hyperthermia exposure. *J Cell Physiol.* (1997) 172:44–54. doi: 10.1002/(SICI)1097-4652(199707)172:1<44::AID-JCP5>3.0.CO;2-D
- 123. Ostberg JR, Kaplan KC, Repasky EA. Induction of stress proteins in a panel of mouse tissues by fever-range whole body hyperthermia. *Int J Hyperthermia.* (2002) 18:552–62. doi: 10.1080/02656730210166168
- 124. Munoz LE, Janko C, Chaurio RA, Schett G, Gaipl US, Herrmann M. Igg opsonized nuclear remnants from dead cells cause systemic inflammation in SLE. *Autoimmunity*. (2010) 43:232–5. doi: 10.3109/08916930903510930
- 125. Tukaj S, Sitko K. Heat shock protein 90 (Hsp90) and Hsp70 as potential therapeutic targets in autoimmune skin diseases. *Biomolecules*. (2022) 12:1153. doi: 10.3390/biom12081153
- 126. Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. *Proc Natl Acad Sci USA*. (2004) 101:6128–33. doi: 10.1073/pnas.0308180101
- 127. Vega VL, Rodríguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. *J Immunol.* (2008) 180:4299–307. doi: 10.4049/jimmunol.180.6.4299
- 128. Noessner E, Gastpar R, Milani V, Brandl A, Hutzler PJ, Kuppner MC, et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. *J Immunol.* (2002) 169:5424–32. doi: 10.4049/jimmunol.169. 10.5424
- 129. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. *J Biol Chem.* (2002) 277:15028–34. doi: 10.1074/jbc.M200497200
- 130. Lehner T, Bergmeier LA, Wang Y, Tao L, Sing M, Spallek R, et al. Heat shock proteins generate beta-chemokines which function as innate adjuvants enhancing adaptive immunity. *Eur J Immunol.* (2000) 30:594–603. doi: 10.1002/1521-4141 (200002)30:2<594::AID-IMMU594>3.0.CO;2-1
- 131. Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. *J Immunol.* (2002) 168:2997–3003. doi: 10.4049/jimmunol.168.6.2997
- 132. Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. *Nat Rev Immunol.* (2015) 15:335–49. doi: 10.1038/nri3843
- 133. Torigoe T, Tamura Y, Sato N. Heat shock proteins and immunity: application of hyperthermia for immunomodulation. *Int J Hyperthermia*. (2009) 25:610–6. doi: 10.3109/02656730903315831
- 134. Sugawara A, Torigoe T, Tamura Y, Kamiguchi K, Nemoto K, Oguro H, et al. Polyamine compound deoxyspergualin inhibits heat shock protein-induced activation of immature dendritic cells. *Cell Stress Chaperones.* (2009) 14:133–9. doi: 10.1007/s12192-008-0064-y
- 135. Chen T, Guo J, Han C, Yang M, Cao X. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. *J Immunol.* (2009) 182:1449–59. doi: 10.4049/jimmunol.182.3.1449
- 136. Arora SK, Singh G, Sehgal S. Comparative evaluation of anti-heat shock protein antibodies in SLE and healthy controls. *Scand J Rheumatol.* (1995) 24:160–3. doi: 10.3109/03009749509099306
- 137. Ghoreishi M, Katayama I, Yokozeki H, Nishioka K. Analysis of 70 KD heat shock protein (HSP70) expression in the lesional skin of lupus erythematosus (LE) and LE related diseases. *J Dermatol.* (1993) 20:400–5. doi: 10.1111/j.1346-8138. 1993.tb01307.x
- 138. Lovis C, Mach F, Donati YR, Bonventre JV, Polla BS. Heat shock proteins and the kidney. *Ren Fail.* (1994) 16:179–92. doi: 10.3109/08860229409044859
- 139. Fürnrohr BG, Wach S, Kelly JA, Haslbeck M, Weber CK, Stach CM, et al. Polymorphisms in the Hsp70 gene locus are genetically associated with systemic lupus erythematosus. *Ann Rheum Dis.* (2010) 69:1983–9. doi: 10.1136/ard.2009. 122630
- 140. Minota S, Cameron B, Welch WJ, Winfield JB. Autoantibodies to the constitutive 73-kD member of the hsp70 family of heat shock proteins in systemic lupus erythematosus. *J Exp Med.* (1988) 168:1475–80. doi: 10.1084/jem.168.4.1475
- 141. Jacquemin C, Rambert J, Guillet S, Thiolat D, Boukhedouni N, Doutre M-S, et al. Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. *Br J Dermatol.* (2017) 177:1367–75. doi: 10.1111/bjd.15550
- 142. Thériault JR, Adachi H, Calderwood SK. Role of scavenger receptors in the binding and internalization of heat shock protein 70. *J Immunol.* (2006) 177:8604–11. doi: 10.4049/jimmunol.177.12.8604
- 143. Calderwood SK, Theriault J, Gray PJ, Gong J. Cell surface receptors for molecular chaperones. *Methods.* (2007) 43:199–206. doi: 10.1016/j.ymeth.2007.06.008
- 144. Berwin B, Delneste Y, Lovingood RV, Post SR, Pizzo SV. SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin*. *J Biol Chem.* (2004) 279:51250–7. doi: 10.1074/jbc.M406202200

145. Facciponte JG, Wang XY, Subjeck JR. Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. *Eur J Immunol.* (2007) 37:2268–79. doi: 10.1002/eji. 200737127

- 146. Murshid A, Gong J, Calderwood SK. Heat shock protein 90 mediates efficient antigen cross presentation through the scavenger receptor expressed by endothelial cells-I. *J Immunol.* (2010) 185:2903–17. doi: 10.4049/jimmunol.0903635
- 147. Greaves DR, Gough PJ, Gordon S. Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence. *Curr Opin Lipidol.* (1998) 9:425–32. doi: 10.1097/00041433-199810000-00006
- 148. Manjili MH, Henderson R, Wang XY, Chen X, Li Y, Repasky E, et al. Development of a recombinant HSP110-HER-2/neu vaccine using the chaperoning properties of HSP110. *Cancer Res.* (2002) 62:1737–42.
- 149. Murshid A, Gong J, Calderwood SK. Hsp90-peptide complexes stimulate antigen presentation through the class II pathway after binding scavenger receptor SREC-I. *Immunobiology.* (2014) 219:924–31. doi: 10.1016/j.imbio.2014.08.001
- 150. Afek A, Keren G, Harats D, George J. Whole body hyperthermia accelerates atherogenesis in low-density lipoprotein receptor deficient mice. *Exp Mol Pathol.* (2001) 71:63–72. doi: 10.1006/exmp.2001.2379
- 151. Calderwood SK, Theriault JR, Gong J. How is the immune response affected by hyperthermia and heat shock proteins? Int J Hyperthermia. (2005) 21:713–6. doi: 10.1080/02656730500340794
- 152. Zhu X, Ng HP, Lai YC, Craigo JK, Nagilla PS, Raghani P, et al. Scavenger receptor function of mouse fcy receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice. *J Immunol.* (2014) 193:2483–95. doi: 10.4049/jimmunol.1303075
- 153. Liu A, Ferretti C, Shi F-D, Cohen IR, Quintana FJ, La Cava A. DNA vaccination with Hsp70 protects against systemic lupus erythematosus in (NZB \times NZW)F1 mice. Arthritis Rheumatol. (2020) 72:997–1002. doi: 10.1002/art.41202
- 154. van Herwijnen MJC, Wieten L, van der Zee R, van Kooten PJ, Wagenaar-Hilbers JP, Hoek A, et al. Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. *Proc Natl Acad Sci USA*. (2012) 109:14134–9. doi: 10.1073/pnas.1206803109
- 155. Boehm J, Orth T, Van Nguyen P, Söling HD. Systemic lupus erythematosus is associated with increased auto-antibody titers against calreticulin and grp94, but calreticulin is not the ro/SS-A antigen. *Eur J Clin Invest.* (1994) 24:248–57. doi: 10. 1111/j.1365-2362.1994.tb01082.x
- 156. Sontheimer RD, Racila D, Racila E, Eggleton P, Donnelly S. Calreticulin's role (s) in autoimmune disorders. In: Eggleton P, Michalak M, editors. *Calreticulin*. 2nd edn. Boston, MA: Springer US (2003). p. 180–92.
- 157. Conway EM, Liu L, Nowakowski B, Steiner-Mosonyi M, Ribeiro SP, Michalak M. Heat shock-sensitive expression of calreticulin. *in vitro* and *in vivo* up-regulation. *J Biol Chem.* (1995) 270:17011–6. doi: 10.1074/jbc.270.28.17011
- 158. Eggleton P, Llewellyn DH. Pathophysiological roles of calreticulin in autoimmune disease. Scand J Immunol. (1999) 49:466–73. doi: 10.1046/j.1365-3083.1999.00542.x
- 159. Binder RJ, Zhou YJ, Messmer MN, Pawaria S. CD91-dependent modulation of immune responses by heat shock proteins: a role in autoimmunity. *Autoimmune Dis.* (2012) 2012:863041. doi: 10.1155/2012/863041
- 160. Overton CD, Yancey PG, Major AS, Linton MF, Fazio S. Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. *Circ Res.* (2007) 100:670–7. doi: 10.1161/01.RES.0000260204.40510.aa
- 161. Gaultier A, Arandjelovic S, Niessen S, Overton CD, Linton MF, Fazio S, et al. Regulation of tumor necrosis factor receptor-1 and the IKK-NF-kappaB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor. *Blood.* (2008) 111:5316–25. doi: 10.1182/blood-2007-12-127613
- 162. Zurhove K, Nakajima C, Herz J, Bock HH, May P. Gamma-secretase limits the inflammatory response through the processing of LRP1. *Sci Signal.* (2008) 1:ra15. doi: 10.1126/scisignal.1164263
- 163. Gorovoy M, Gaultier A, Campana WM, Firestein GS, Gonias SL. Inflammatory mediators promote production of shed LRP1/CD91, which regulates cell signaling and cytokine expression by macrophages. *J Leukoc Biol.* (2010) 88:769–78. doi: 10.1189/jlb.0410220
- 164. Byrne JC, Ni Gabhann J, Stacey KB, Coffey BM, McCarthy E, Thomas W, et al. Bruton's tyrosine kinase is required for apoptotic cell uptake via regulating the phosphorylation and localization of calreticulin. *J Immunol.* (2013) 190:5207–15. doi: 10.4049/jimmunol.1300057
- 165. Rajaiah R, Moudgil KD. Heat-shock proteins can promote as well as regulate autoimmunity. *Autoimmun Rev.* (2009) 8:388–93. doi: 10.1016/j.autrev. 2008.12.004
- 166. Schett G, Redlich K, Xu Q, Bizan P, Gröger M, Tohidast-Akrad M, et al. Enhanced expression of heat shock protein 70 (hsp70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. Differential regulation of hsp70 expression and hsf1 activation in synovial fibroblasts by proinflammatory cytokines, shear stress, and antiinflammatory drugs. *J Clin Invest.* (1998) 102:302–11. doi: 10.1172/JCI2465

- 167. Waldheim E, Ajeganova S, Bergman S, Frostegård J, Welin E. Variation in pain related to systemic lupus erythematosus (SLE): a 7-year follow-up study. *Clin Rheumatol.* (2018) 37:1825–34. doi: 10.1007/s10067-018-4079-1
- 168. Gladman D, Urowitz M, Klippel J. Primer on the Rheumatic Diseases. New York, NY: Springer Science+Business Media (1997).
- 169. Greco CM, Rudy TE, Manzi S. Adaptation to chronic pain in systemic lupus erythematosus: applicability of the multidimensional pain inventory. *Pain Medicine*. (2003) 4:39-50. doi: 10.1046/j.1526-4637.2003.03001.x
- 170. Nyman E, Vaughan T, Desta B, Wang X, Barut V, Emmas C. Characteristics and symptom severity of patients reporting systemic lupus erythematosus in the PatientsLikeMe online health community: a retrospective observational study. *Rheumatol Ther.* (2020) 7:201–13. doi: 10.1007/s40744-020-00195-7
- 171. Pisetsky DS, Eudy AM, Clowse MEB, Rogers JL. The categorization of pain in systemic lupus erythematosus. *Rheum Dis Clin North Am.* (2021) 47:215–28. doi: 10. 1016/j.rdc.2020.12.004
- 172. García-Fernández P, Üçeyler N, Sommer C. From the low-density lipoprotein receptor-related protein 1 to neuropathic pain: a potentially novel target. *Pain Rep.* (2021) 6:e898. doi: 10.1097/PR9.000000000000898
- 173. Brifault C, Kwon H, Campana WM, Gonias SL. LRP1 deficiency in microglia blocks neuro-inflammation in the spinal dorsal horn and neuropathic pain processing. *Glia*. (2019) 67:1210–24. doi: 10.1002/glia.23599
- 174. Orita S, Henry K, Mantuano E, Yamauchi K, De Corato A, Ishikawa T, et al. Schwann cell LRP1 regulates remak bundle ultrastructure and axonal interactions to prevent neuropathic pain. *J Neurosci.* (2013) 33:5590–602. doi: 10.1523/JNEUROSCI. 3342-12.2013
- 175. Poplawski G, Ishikawa T, Brifault C, Lee-Kubli C, Regestam R, Henry KW, et al. Schwann cells regulate sensory neuron gene expression before and after peripheral nerve injury. *Glia.* (2018) 66:1577–90. doi: 10.1002/glia.23325
- 176. Yancey PG, Blakemore J, Ding L, Fan D, Overton CD, Zhang Y, et al. Macrophage LRP-1 controls plaque cellularity by regulating efferocytosis and akt activation. *Arterioscler Thromb Vasc Biol.* (2010) 30:787–95. doi: 10.1161/ATVBAHA.109.202051
- 177. Gaultier A, Arandjelovic S, Li X, Janes J, Dragojlovic N, Zhou GP, et al. A shed form of LDL receptor-related protein-1 regulates peripheral nerve injury and neuropathic pain in rodents. *J Clin Invest.* (2008) 118:161–72. doi: 10.1172/JCI32371
- 178. Mantuano E, Brifault C, Lam MS, Azmoon P, Gilder AS, Gonias SL. LDL receptor-related protein-1 regulates NF κ B and microRNA-155 in macrophages to control the inflammatory response. *Proc Natl Acad Sci U S A.* (2016) 113:1369–74. doi: 10.1073/pnas.1515480113
- 179. Yang L, Liu CC, Zheng H, Kanekiyo T, Atagi Y, Jia L, et al. LRP1 modulates the microglial immune response via regulation of JNK and NF-κB signaling pathways. *J Neuroinflammation*. (2016) 13:304. doi: 10.1186/s12974-016-0772-7
- 180. He Y, Ruganzu JB, Zheng Q, Wu X, Jin H, Peng X, et al. Silencing of LRP1 exacerbates inflammatory response via TLR4/NF- κ B/MAPKs signaling pathways in APP/PS1 transgenic mice. *Mol Neurobiol.* (2020) 57:3727–43. doi: 10.1007/s12035-020-01982-7
- 181. Liu CC, Hu J, Zhao N, Wang J, Wang N, Cirrito JR, et al. Astrocytic LRP1 mediates brain a β clearance and impacts amyloid deposition. *J Neurosci.* (2017) 37:4023–31. doi: 10.1523/JNEUROSCI.3442-16.2017
- 182. Ma LY, Fei YL, Wang XY, Wu SD, Du JH, Zhu M, et al. The research on the relationship of RAGE, LRP-1, and a β accumulation in the hippocampus, prefrontal lobe, and amygdala of STZ-induced diabetic rats. *J Mol Neurosci.* (2017) 62:1–10. doi: 10.1007/s12031-017-0892-2
- 183. Patel P, Shah J. Role of vitamin D in amyloid clearance via LRP-1 upregulation in Alzheimer's disease: a potential therapeutic target? *J Chem Neuroanat.* (2017) 85:36–42. doi: 10.1016/j.jchemneu.2017.06.007
- 184. Zhang H, Chen W, Tan Z, Zhang L, Dong Z, Cui W, et al. A role of low-density lipoprotein receptor-related protein 4 (LRP4) in astrocytic a β clearance. *J Neurosci.* (2020) 40:5347–61. doi: 10.1523/JNEUROSCI.0250-20.2020
- 185. Pazhouhandeh M, Sahraian MA, Siadat SD, Fateh A, Vaziri F, Tabrizi F, et al. A systems medicine approach reveals disordered immune system and lipid metabolism in multiple sclerosis patients. *Clin Exp Immunol.* (2018) 192:18–32. doi: 10.1111/cei.13087
- 186. Pocivavsek A, Mikhailenko I, Strickland DK, Rebeck GW. Microglial low-density lipoprotein receptor-related protein 1 modulates c-jun N-terminal kinase activation. *J Neuroimmunol.* (2009) 214:25–32. doi: 10.1016/j.jneuroim.2009.06.010
- 187. Pocivavsek A, Burns MP, Rebeck GW. Low-density lipoprotein receptors regulate microglial inflammation through c-jun N-terminal kinase. *Glia.* (2009) 57:444–53. doi: 10.1002/glia.20772
- 188. Staudt ND, Jo M, Hu J, Bristow JM, Pizzo DP, Gaultier A, et al. Myeloid cell receptor LRP1/CD91 regulates monocyte recruitment and angiogenesis in tumors. *Cancer Res.* (2013) 73:3902–12. doi: 10.1158/0008-5472.CAN-12-4233
- 189. Chuang TY, Guo Y, Seki SM, Rosen AM, Johanson DM, Mandell JW, et al. LRP1 expression in microglia is protective during CNS autoimmunity. *Acta Neuropathol Commun.* (2016) 4:68. doi: 10.1186/s40478-016-0343-2

- 190. Ooka S, Matsui T, Nishioka K, Kato T. Autoantibodies to low-density-lipoprotein-receptor-related protein 2 (LRP2) in systemic autoimmune diseases. *Arthritis Res Ther.* (2003) 5:R174–80. doi: 10.1186/ar754
- 191. Stremmel C, Horn C, Eder S, Dimmler A, Lang W. The impact of immunological parameters on the development of phantom pain after major amputation. *Eur J Vasc Endovasc Surg.* (2005) 30:79–82. doi: 10.1016/j.ejvs.2005.02.
- 192. Wagner R, Heckman HM, Myers RR. Wallerian degeneration and hyperalgesia after peripheral nerve injury are glutathione-dependent. *Pain.* (1998) 77:173-9. doi: 10.1016/S0304-3959(98)00091-8
- 193. Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-alpha expression. *Pain.* (1998) 74:35–42. doi: 10.1016/S0304-3959 (97)00148-6
- 194. Ceyhan GO, Deucker S, Demir IE, Erkan M, Schmelz M, Bergmann F, et al. Neural fractalkine expression is closely linked to pain and pancreatic neuritis in human chronic pancreatitis. *Lab Invest.* (2009) 89:347–61. doi: 10.1038/labinvest. 2008 170
- 195. Mahran SA. Rheumatoid arthritis and malignancy. J Rheumatol Arthritis Dis. (2019) 4:1–2.
- 196. Sandy-Hindmarch OP, Chang P-S, Scheuren PS, De Schoenmacker I, Hubli M, Loizou C, et al. The local molecular signature of human peripheral neuropathic pain. *PAIN*. (2024) 166(5):1143–56. doi: 10.1097/j.pain.0000000000003472
- 197. Dongfeng R, Hou S, Wu W, Wang H, Shang W, Tang J, et al. The expression of tumor necrosis factor- α and CD68 in high-intensity zone of lumbar intervertebral disc on magnetic resonance image in the patients with low back pain. *Spine*. (2011) 36:E429–33. doi: 10.1097/BRS.0b013e3181dfce9e
- 198. Wijesinghe SN, Ditchfield C, Flynn S, Agrawal J, Davis ET, Dajas-Bailador F, et al. Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthritis Cartilage. (2024) 32:1358–70. doi: 10.1016/j.joca.2024.06.011
- 199. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. (2016) 388:2023–38. doi: 10.1016/S0140-6736(16)30173-8
- 200. Ceccarelli F, Perricone C, Cipriano E, Massaro L, Natalucci F, Capalbo G, et al. Joint involvement in systemic lupus erythematosus: from pathogenesis to clinical assessment. Semin Arthritis Rheum. (2017) 47:53–64. doi: 10.1016/j.semarthrit.2017. 03.022
- 201. Hasegawa T, Lee CYC, Hotchen AJ, Fleming A, Singh R, Suzuki K, et al. Macrophages and nociceptor neurons form a sentinel unit around fenestrated capillaries to defend the synovium from circulating immune challenge. *Nat Immunol.* (2024) 25:2270–83. doi: 10.1038/s41590-024-02011-8
- 202. Ohashi Y, Uchida K, Fukushima K, Satoh M, Koyama T, Tsuchiya M, et al. Correlation between CD163 expression and resting pain in patients with hip osteoarthritis: possible contribution of CD163 + monocytes/macrophages to pain pathogenesis. *J Orthop Res.* (2022) 40:1365–74. doi: 10.1002/jor.25157
- 203. Cunha TM, Verri WA, Silva JS, Poole S, Cunha FQ, Ferreira SH. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. *Proc Natl Acad Sci U S A*. (2005) 102:1755–60. doi: 10.1073/pnas.0409225102
- 204. Román-Fernández IV, García-Chagollán M, Cerpa-Cruz S, Jave-Suárez LF, Palafox-Sánchez CA, García-Arellano S, et al. Assessment of CD40 and CD40l expression in rheumatoid arthritis patients, association with clinical features and DAS28. *Clin Exp Med.* (2019) 19:427–37. doi: 10.1007/s10238-019-00568-5
- 205. Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med. (2000) 6:114-114. doi: 10.1038/72162
- 206. Suttles J, Stout RD. Macrophage CD40 signaling: a pivotal regulator of disease protection and pathogenesis. *Semin Immunol.* (2009) 21:257–64. doi: 10.1016/j.smim. 2009.05.011
- 207. Hanlon MM, Smith CM, Canavan M, Neto NGB, Song Q, Lewis MJ, et al. Loss of synovial tissue macrophage homeostasis precedes rheumatoid arthritis clinical onset. *Sci Adv.* (2024) 10:eadj1252. doi: 10.1126/sciadv.adj1252
- 208. Reynders A, Anissa Jhumka Z, Gaillard S, Mantilleri A, Malapert P, Magalon K, et al. Gut microbiota promotes pain chronicity in Myosin1A deficient male mice. *Brain Behav Immun.* (2024) 119:750–66. doi: 10.1016/j.bbi.2024.05.010
- 209. Muller WA. Getting leukocytes to the site of inflammation. $\it Vet\ Pathol.\ (2013)\ 50:7-22.$ doi: 10.1177/0300985812469883
- 210. Filippi MD. Mechanism of diapedesis: importance of the transcellular route. Adv Immunol. (2016) 129:25–53. doi: 10.1016/bs.ai.2015.09.001
- 211. Ramirez GA, Rovere-Querini P, Sabbadini MG, Manfredi AA. Parietal and intravascular innate mechanisms of vascular inflammation. *Arthritis Res Ther.* (2015) 17:16. doi: 10.1186/s13075-015-0528-2
- 212. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. *J Immunol*. (2011) 187:538–52. doi: 10.4049/jimmunol.1100450

- 213. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. *Proc Natl Acad Sci U S A.* (2010) 107:9813–8. doi: 10.1073/pnas. 0909927107
- 214. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. *Sci Transl Med.* (2011) 3:73ra19. doi: 10.1126/scitranslmed.3001180
- 215. Leffler J, Martin M, Gullstrand B, Tydén H, Lood C, Truedsson L, et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. *J Immunol.* (2012) 188:3522–31. doi: 10.4049/jimmunol.1102404
- 216. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. *Nat Rev Immunol.* (2011) 11:519–31. doi: 10.1038/nri3024
- 217. Perdomo J, Leung HHL, Ahmadi Z, Yan F, Chong JJH, Passam FH, et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. *Nat Commun.* (2019) 10:1322. doi: 10.1038/s41467-019-09160-7
- 218. Zhu Y, Yang Y, Li F, Fan S, Chen X, Lu Y, et al. Stimulation of the class-A scavenger receptor induces neutrophil extracellular traps (NETs) by ERK dependent NOX2 and ROMO1 activation. *Biochem Biophys Res Commun.* (2019) 511:847–54. doi: 10.1016/j.bbrc.2019.02.142
- 219. Manchanda AS, Kwan AC, Ishimori M, Thomson LEJ, Li D, Berman DS, et al. Coronary microvascular dysfunction in patients with systemic lupus erythematosus and chest pain. *Front Cardiovasc Med.* (2022) 9:867155. doi: 10.3389/fcvm.2022.867155
- 220. McCarthy EM, Smith S, Lee RZ, Cunnane G, Doran MF, Donnelly S, et al. The association of cytokines with disease activity and damage scores in systemic lupus erythematosus patients. *Rheumatology (Oxford).* (2014) 53:1586–94. doi: 10.1093/rheumatology/ket428
- 221. Živković V, Cvetković T, Mitić B, Stamenković B, Stojanović S, Radovanović-Dinić B, et al. Monocyte chemoattractant protein-1 as a marker of systemic lupus erythematosus: an observational study. *Rheumatol Int.* (2018) 38:1003–8. doi: 10. 1007/s00296-017-3888-x
- 222. Lee YH, Song GG. Urinary MCP-1 as a biomarker for lupus nephritis: a meta-analysis. Z Rheumatol. (2017) 76:357-63. doi: 10.1007/s00393-016-0109-z
- 223. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. *Circ Res.* (2016) 118:653–67. doi: 10.1161/CIRCRESAHA.115.
- 224. Park YM, Febbraio M, Silverstein RL. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest. (2009) 119:136–45. doi: 10.1172/JC135535
- 225. Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. *Nat Immunol.* (2013) 14:812–20. doi: 10.1038/ni.2639
- 226. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. *Nat Med.* (2013) 19:1166–72. doi: 10.1038/nm.3258
- 227. Alquraini A, El Khoury J. Scavenger receptors. Curr Biol. (2020) 30:R790-5. doi: 10.1016/j.cub.2020.05.051
- 228. Qin M, Guo Y, Jiang L, Wang X. Elevated levels of serum sCXCL16 in systemic lupus erythematosus; potential involvement in cutaneous and renal manifestations. *Clin Rheumatol.* (2014) 33:1595–601. doi: 10.1007/s10067-014-2741-9
- 229. Hassan AM, Farghal NMA, Hegab DS, Mohamed WS, Abd-Elnabi HH. Serum-soluble CXCL16 in juvenile systemic lupus erythematosus: a promising predictor of disease severity and lupus nephritis. *Clin Rheumatol.* (2018) 37:3025–32. doi: 10.1007/s10067-018-4203-2
- 230. Libby P, Nahrendorf M, Swirski FK. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded "cardiovascular Continuum". *J Am Coll Cardiol*. (2016) 67:1091–103. doi: 10.1016/j.jacc.2015.12.048
- 231. Hilgendorf I, Theurl I, Gerhardt LMS, Robbins CS, Weber GF, Gonen A, et al. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. *Circulation*. (2014) 129:1677–87. doi: 10.1161/CIRCULATIONAHA.113.006381
- 232. Swirski FK, Hilgendorf I, Robbins CS. From proliferation to proliferation: monocyte lineage comes full circle. *Semin Immunopathol.* (2014) 36:137–48. doi: 10.1007/s00281-013-0409-1
- 233. Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. *Am J Pathol.* (1992) 140:301–16.
- 234. Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. *Am J Pathol.* (2001) 158:879–91. doi: 10.1016/S0002-9440(10)64036-9

- 235. Reiss AB, Wan DW, Anwar K, Merrill JT, Wirkowski PA, Shah N, et al. Enhanced CD36 scavenger receptor expression in THP-1 human monocytes in the presence of lupus plasma: linking autoimmunity and atherosclerosis. *Exp Biol Med (Maywood)*. (2009) 234:354–60. doi: 10.3181/0806-BC-194
- 236. Febbraio M, Podrez EA, Smith JD, Hajjar DP, Hazen SL, Hoff HF, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. *J Clin Invest.* (2000) 105:1049–56. doi: 10.1172/JCI9259
- 237. Kuchibhotla S, Vanegas D, Kennedy DJ, Guy E, Nimako G, Morton RE, et al. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. *Cardiovasc Res.* (2008) 78:185–96. doi: 10.1093/cvr/cvm093
- 238. Matsuura E, Kobayashi K, Hurley BL, Lopez LR. Atherogenic oxidized low-density lipoprotein/beta2-glycoprotein I (oxLDL/beta2GPI) complexes in patients with systemic lupus erythematosus and antiphospholipid syndrome. *Lupus*. (2006) 15:478–83. doi: 10.1191/0961203306lu2337oa
- 239. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. *Nat Rev Immunol.* (2010) 10:36–46. doi: 10.1038/nri2675
- 240. Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. *J Cell Biol.* (2015) 209:13–22. doi: 10.1083/jcb.201412052
- 241. Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe—/— mice. *Arterioscler Thromb Vasc Biol.* (2008) 28:1421–8. doi: 10.1161/ATVBAHA.108.167197
- 242. Wallet MA, Sen P, Flores RR, Wang Y, Yi Z, Huang Y, et al. MerTK is required for apoptotic cell–induced T cell tolerance. *J Exp Med.* (2008) 205:219–32. doi: 10. 1084/jem.20062293
- 243. Wu J, Ekman C, Jönsen A, Sturfelt G, Bengtsson AA, Gottsäter A, et al. Increased plasma levels of the soluble mer tyrosine kinase receptor in systemic lupus erythematosus relate to disease activity and nephritis. *Arthritis Res Ther.* (2011) 13:R62. doi: 10.1186/ar3316
- 244. Zizzo G, Guerrieri J, Dittman LM, Merrill JT, Cohen PL. Circulating levels of soluble MER in lupus reflect M2c activation of monocytes/macrophages, autoantibody specificities and disease activity. *Arthritis Res Ther.* (2013) 15:R212. doi: 10.1186/ar4407
- 245. Kattoor AJ, Goel A, Mehta JL. LOX-1: regulation, signaling and its role in atherosclerosis. *Antioxidants (Basel)*. (2019) 8(7):1–15. doi: 10.3390/antiox8070218
- 246. Bergkamp SC, Wahadat MJ, Salah A, Kuijpers TW, Smith V, Tas SW, et al. Dysregulated endothelial cell markers in systemic lupus erythematosus: a systematic review and meta-analysis. *J Inflamm*. (2023) 20:18. doi: 10.1186/s12950-023-00342-1
- 247. Seternes T, Sørensen K, Smedsrød B. Scavenger endothelial cells of vertebrates: a nonperipheral leukocyte system for high-capacity elimination of waste macromolecules. *Proc Natl Acad Sci U S A.* (2002) 99:7594–7. doi: 10.1073/pnas. 102173299
- 248. Smedsrød B. Clearance function of scavenger endothelial cells. Comp Hepatol. (2004) 3(Suppl 1):S22. doi: 10.1186/1476-5926-2-S1-S22
- 249. Sørensen KK, McCourt P, Berg T, Crossley C, Couteur DL, Wake K, et al. The scavenger endothelial cell: a new player in homeostasis and immunity. *Am J Physiol Regul Integr Comp Physiol.* (2012) 303:R1217–30. doi: 10.1152/ajpregu. 00686.2011
- 250. Patten DA, Kamarajah SK, Rose JM, Tickle J, Shepherd EL, Adams DH, et al. SCARF-1 promotes adhesion of CD4+ T cells to human hepatic sinusoidal endothelium under conditions of shear stress. *Sci Rep.* (2017) 7:17600. doi: 10.1038/s41598-017-17928-4
- 251. Amersfoort J, Eelen G, Carmeliet P. Immunomodulation by endothelial cells partnering up with the immune system? Nat Rev Immunol. (2022) 22:576–88. doi: 10.1038/s41577-022-00694-4
- 252. Patten DA, Wilson GK, Bailey D, Shaw RK, Jalkanen S, Salmi M, et al. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: a new step in migration. *Hepatology.* (2017) 65:294–309. doi: 10.1002/hep.28879
- 253. Shetty S, Weston CJ, Oo YH, Westerlund N, Stamataki Z, Youster J, et al. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. *J Immunol.* (2011) 186:4147–55. doi: 10.4049/jimmunol.1002961
- 254. Shetty S, Bruns T, Weston CJ, Stamataki Z, Oo YH, Long HM, et al. Recruitment mechanisms of primary and malignant B cells to the human liver. *Hepatology.* (2012) 56:1521–31. doi: 10.1002/hep.25790
- 255. Jung M-Y, Park S-Y, Kim I-S. Stabilin-2 is involved in lymphocyte adhesion to the hepatic sinusoidal endothelium via the interaction with $\alpha M\beta 2$ integrin. *J Leukocyte Biol.* (2007) 82:1156–65. doi: 10.1189/jlb.0107052
- 256. Duryee MJ, Freeman TL, Willis MS, Hunter CD, Hamilton BC 3rd, Suzuki H, et al. Thiele, scavenger receptors on sinusoidal liver endothelial cells are involved in the uptake of aldehyde-modified proteins. *Mol Pharmacol.* (2005) 68:1423–30. doi: 10.1124/mol.105.016121

- 257. Malerød L, Juvet K, Gjøen T, Berg T. The expression of scavenger receptor class B, type I (SR-BI) and caveolin-1 in parenchymal and nonparenchymal liver cells. *Cell Tissue Res.* (2002) 307:173–80. doi: 10.1007/s00441-001-0476-9
- 258. Elvevold K, Simon-Santamaria J, Hasvold H, McCourt P, Smedsrød B, Sørensen KK. Liver sinusoidal endothelial cells depend on mannose receptor-mediated recruitment of lysosomal enzymes for normal degradation capacity. *Hepatology.* (2008) 48:2007–15. doi: 10.1002/hep.22527
- 259. Malovic I, Sørensen KK, Elvevold KH, Nedredal GI, Paulsen S, Erofeev AV, et al. The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor. *Hepatology*. (2007) 45:1454–61. doi: 10.1002/hep.21639
- 260. Taban Q, Mumtaz PT, Masoodi KZ, Haq E, Ahmad SM. Scavenger receptors in host defense: from functional aspects to mode of action. *Cell Commun Signal*. (2022) 20:2. doi: 10.1186/s12964-021-00812-0
- 261. Irjala H, Elima K, Johansson EL, Merinen M, Kontula K, Alanen K, et al. The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels. *Eur J Immunol.* (2003) 33:815–24. doi: 10.1002/eji.200323859
- 262. Ishii J, Adachi H, Aoki J, Koizumi H, Tomita S, Suzuki T, et al. SREC-II, a new member of the scavenger receptor type F family, trans-interacts with SREC-I through its extracellular domain. *J Biol Chem.* (2002) 277:39696–702. doi: 10.1074/jbc. M206140200
- 263. Karikoski M, Irjala H, Maksimow M, Miiluniemi M, Granfors K, Hernesniemi S, et al. Clever-1/stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. *Eur J Immunol.* (2009) 39:3477–87. doi: 10.1002/eji.200939896
- 264. Adachi H, Tsujimoto M, Arai H, Inoue K. Expression cloning of a novel scavenger receptor from human endothelial cells. *J Biol Chem.* (1997) 272:31217–20. doi: 10.1074/jbc.272.50.31217
- 265. Bertolino P, Schrage A, Bowen DG, Klugewitz K, Ghani S, Eulenburg K, et al. Early intrahepatic antigen-specific retention of naïve CD8+ T cells is predominantly ICAM-1/LFA-1 dependent in mice. *Hepatology*. (2005) 42:1063–71. doi: 10.1002/hep. 20885
- 266. John B, Crispe IN. Passive and active mechanisms trap activated CD8+ T cells in the liver. *J Immunol.* (2004) 172:5222–9. doi: 10.4049/jimmunol.172.9.5222
- 267. Limmer A, Ohl J, Wingender G, Berg M, Jüngerkes F, Schumak B, et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8T cell tolerance. *Eur J Immunol.* (2005) 35:2970–81. doi: 10.1002/eji.200526034
- 268. Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y, Groettrup M, et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. *Nat Med.* (2000) 6:1348–54. doi: 10.1038/82161
- 269. Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. *Hepatology*. (2008) 47:296–305. doi: 10.1002/hep.21965
- 270. Burgdorf S, Kautz A, Böhnert V, Knolle PA, Kurts C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8T cell activation. *Science*. (2007) 316:612–6. doi: 10.1126/science.1137971
- 271. Carambia A, Freund B, Schwinge D, Heine M, Laschtowitz A, Huber S, et al. TGF- β -dependent induction of CD4*CD25*Foxp3* tregs by liver sinusoidal endothelial cells. *J Hepatol.* (2014) 61:594–9. doi: 10.1016/j.jhep.2014.04.027
- 272. Manta CP, Leibing T, Friedrich M, Nolte H, Adrian M, Schledzewski K, et al. Targeting of scavenger receptors stabilin-1 and stabilin-2 ameliorates atherosclerosis by a plasma proteome switch mediating monocyte/macrophage suppression. *Circulation*. (2022) 146:1783–99. doi: 10.1161/CIRCULATIONAHA.121.058615
- 273. Hayashida K, Kume N, Minami M, Kita T. Lectin-like oxidized LDL receptor-1 (LOX-1) supports adhesion of mononuclear leukocytes and a monocyte-like cell line THP-1 cells under static and flow conditions. *FEBS Lett.* (2002) 511:133–8. doi: 10.1016/S0014-5793(01)03297-5
- 274. Honjo M, Nakamura K, Yamashiro K, Kiryu J, Tanihara H, McEvoy LM, et al. Lectin-like oxidized LDL receptor-1 is a cell-adhesion molecule involved in endotoxin-induced inflammation. *Proc Natl Acad Sci U S A.* (2003) 100:1274–9. doi: 10.1073/pnas.0337528100
- 275. Salmi M, Koskinen K, Henttinen T, Elima K, Jalkanen S. CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. *Blood*. (2004) 104:3849–57. doi: 10.1182/blood-2004-01-0222
- 276. Wang L, Luqmani R, Udalova IA. The role of neutrophils in rheumatic disease-associated vascular inflammation. *Nat Rev Rheumatol.* (2022) 18:158–70. doi: 10.1038/s41584-021-00738-4
- 277. Moore S, Juo H-H, Nielsen CT, Tyden H, Bengtsson AA, Lood C. Role of neutrophil extracellular traps regarding patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus. *J Rheumatol.* (2020) 47:1652–60. doi: 10.3899/jrheum.190875
- 278. Pieterse E, Rother N, Garsen M, Hofstra JM, Satchell SC, Hoffmann M, et al. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. *Arterioscler Thromb Vasc Biol.* (2017) 37:1371–9. doi: 10.1161/ATVBAHA.117. 309002

279. Boone BA, Orlichenko L, Schapiro NE, Loughran P, Gianfrate GC, Ellis JT, et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. *Cancer Gene Ther.* (2015) 22:326–34. doi: 10.1038/cgt.2015.21

- 280. Megha KB, Joseph X, Akhil V, Mohanan PV. Cascade of immune mechanism and consequences of inflammatory disorders. *Phytomedicine*. (2021) 91:153712. doi: 10.1016/j.phymed.2021.153712
- 281. Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation-nature's way to efficiently respond to all types of challenges: implications for understanding and managing "the epidemic" of chronic diseases. *Front Med (Lausanne)*. (2018) 5:1–30. doi: 10.3389/fmed.2018.00316
- 282. Marshall JC. SIRS and MODS: what is their relevance to the science and practice of intensive care? *Shock.* (2000) 14:586–9. doi: 10.1097/00024382-200014060-00002
- 283. Muhammad O, Jindal H, Sharath M, Khan AM, Choi S. Systemic lupus erythematosus with multi-organ involvement in a young female: lymphadenopathy, lupus cerebritis, lupus nephritis, and cardiac manifestations. *Cureus.* (2021) 13: e15517. doi: 10.7759/cureus.15517
- 284. Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol. (2020) 21:605–14. doi: 10.1038/s41590-020-0677-6
- 285. Murimi-Worstell IB, Lin DH, Nab H, Kan HJ, Onasanya O, Tierce JC, et al. Association between organ damage and mortality in systemic lupus erythematosus: a systematic review and meta-analysis. *BMJ Open*. (2020) 10:e031850. doi: 10.1136/bmjopen-2019-031850
- 286. Chiu YM, Chuang MT, Lang HC. Medical costs incurred by organ damage caused by active disease, comorbidities and side effect of treatments in systemic lupus erythematosus patients: a Taiwan nationwide population-based study. *Rheumatol Int.* (2016) 36:1507–14. doi: 10.1007/s00296-016-3551-y
- 287. Bell CF, Ajmera MR, Meyers J. An evaluation of costs associated with overall organ damage in patients with systemic lupus erythematosus in the United States. Lupus.~(2022)~31:202-11.~doi:~10.1177/09612033211073670
- 288. Schultze M, Garal-Pantaler E, Pignot M, Levy RA, Carnarius H, Schneider M, et al. Clinical and economic burden of organ damage among patients with systemic lupus erythematosus in a real-world setting in Germany. *BMC Rheumatology*. (2024) 8:18. doi: 10.1186/s41927-024-00387-6
- 289. Kang SC, Hwang SJ, Chang YS, Chou CT, Tsai CY. Characteristics of comorbidities and costs among patients who died from systemic lupus erythematosus in Taiwan. *Arch Med Sci.* (2012) 8:690–6. doi: 10.5114/aoms.2012. 30293
- 290. Gulinello M, Wen J, Putterman C. Neuropsychiatric symptoms in lupus. *Psychiatr Ann.* (2012) 42:322–8. doi: 10.3928/00485713-20120906-05
- 291. van Dam AP. Diagnosis and pathogenesis of CNS lupus. Rheumatol Int. (1991) 11:1–11. doi: 10.1007/BF00290244
- 292. Ballok DA. Neuroimmunopathology in a murine model of neuropsychiatric lupus. *Brain Res Rev.* (2007) 54:67–79. doi: 10.1016/j.brainresrev.2006.12.003
- 293. Antonchak MA, Saoudian M, Khan AR, Brunner HI, Luggen ME. Cognitive dysfunction in patients with systemic lupus erythematosus: a controlled study. J Rheumatol. (2011) 38:1020–5. doi: 10.3899/jrheum.100560
- 294. Colamussi P, Giganti M, Cittanti C, Dovigo L, Trotta F, Tola MR, et al. Brain single-photon emission tomography with 99mTc-HMPAO in neuropsychiatric systemic lupus erythematosus: relations with EEG and MRI findings and clinical manifestations. *Eur J Nucl Med.* (1995) 22:17–24. doi: 10.1007/BF00997243
- 295. Handa R, Sahota P, Kumar M, Jagannathan NR, Bal CS, Gulati M, et al. *in vivo* proton magnetic resonance spectroscopy (MRS) and single photon emission computerized tomography (SPECT) in systemic lupus erythematosus (SLE). *Magn Reson Imaging*. (2003) 21:1033–7. doi: 10.1016/S0730-725X(03)00200-5
- 296. Huang WS, Chiu PY, Tsai CH, Kao A, Lee CC. Objective evidence of abnormal regional cerebral blood flow in patients with systemic lupus erythematosus on tc-99 m ECD brain SPECT. *Rheumatol Int.* (2002) 22:178–81. doi: 10.1007/s00296-002-0224-9
- 297. López-Longo FJ, Carol N, Almoguera MI, Olazarán J, Alonso-Farto JC, Ortega A, et al. Cerebral hypoperfusion detected by SPECT in patients with systemic lupus erythematosus is related to clinical activity and cumulative tissue damage. *Lupus*. (2003) 12:813–9. doi: 10.1191/0961203303lu470oa
- 298. Luyendijk J, Steens SC, Ouwendijk WJ, Steup-Beekman GM, Bollen EL, van der Grond J, et al. Neuropsychiatric systemic lupus erythematosus: lessons learned from magnetic resonance imaging. *Arthritis Rheum*. (2011) 63:722–32. doi: 10.1002/art.30157
- 299. Komatsu N, Kodama K, Yamanouchi N, Okada S, Noda S, Nawata Y, et al. Decreased regional cerebral metabolic rate for glucose in systemic lupus erythematosus patients with psychiatric symptoms. *Eur Neurol.* (1999) 42:41–8. doi: 10.1159/000008067
- 300. Sibbitt WL Jr., Sibbitt RR. Magnetic resonance spectroscopy and positron emission tomography scanning in neuropsychiatric systemic lupus erythematosus. *Rheum Dis Clin North Am.* (1993) 19:851–68. doi: 10.1016/S0889-857X(21)00210-6

- 301. Brooks WM, Sabet A, Sibbitt WL Jr., Barker PB, van Zijl PC, Duyn JH, et al. Neurochemistry of brain lesions determined by spectroscopic imaging in systemic lupus erythematosus. *J Rheumatol.* (1997) 24:2323–9.
- 302. Volkow ND, Warner N, McIntyre R, Valentine A, Kulkarni M, Mullani N, et al. Cerebral involvement in systemic lupus erythematosus. *Am J Physiol Imaging*. (1988) 3:91–8.
- 303. Sibbitt WL Jr., Haseler LJ, Griffey RH, Hart BL, Sibbitt RR, Matwiyoff NA. Analysis of cerebral structural changes in systemic lupus erythematosus by proton MR spectroscopy. *AJNR Am J Neuroradiol.* (1994) 15:923–8.
- 304. Gonzalez-Scarano F, Lisak RP, Bilaniuk LT, Zimmerman RA, Atkins PC, Zweiman B. Cranial computed tomography in the diagnosis of systemic lupus erythematosus. *Ann Neurol.* (1979) 5:158–65. doi: 10.1002/ana.410050209
- 305. Kaell AT, Shetty M, Lee BC, Lockshin MD. The diversity of neurologic events in systemic lupus erythematosus. Prospective clinical and computed tomographic classification of 82 events in 71 patients. *Arch Neurol.* (1986) 43:273–6. doi: 10.1001/archneur.1986.00520030063016
- 306. Miguel EC, Pereira RM, Pereira CA, Baer L, Gomes RE, de Sá LC, et al. Psychiatric manifestations of systemic lupus erythematosus: clinical features, symptoms, and signs of central nervous system activity in 43 patients. *Medicine (Baltimore)*. (1994) 73:224–32. doi: 10.1097/00005792-199407000-00005
- 307. Omdal R, Selseth B, Kløw NE, Husby G, Mellgren SI. Clinical neurological, electrophysiological, and cerebral CT scan findings in systemic lupus erythematosus. Scand J Rheumatol. (1989) 18:283-9. doi: 10.3109/03009748909095031
- 308. Ainiala H, Dastidar P, Loukkola J, Lehtimäki T, Korpela M, Peltola J, et al. Cerebral MRI abnormalities and their association with neuropsychiatric manifestations in SLE: a population-based study. *Scand J Rheumatol.* (2005) 34:376–82. doi: 10.1080/03009740510026643
- 309. Waterloo K, Omdal R, Jacobsen EA, Kløw NE, Husby G, Torbergsen T, et al. Cerebral computed tomography and electroencephalography compared with neuropsychological findings in systemic lupus erythematosus. J Neurol. (1999) 246:706–11. doi: 10.1007/s004150050436
- 310. Kozora E, Filley CM. Cognitive dysfunction and white matter abnormalities in systemic lupus erythematosus. *J Int Neuropsychol Soc.* (2011) 17:385–92. doi: 10.1017/51355617711000191
- 311. Makinde HM, Winter DR, Procissi D, Mike EV, Stock AD, Kando MJ, et al. A novel microglia-specific transcriptional signature correlates with behavioral deficits in neuropsychiatric lupus. *Front Immunol.* (2020) 11:230. doi: 10.3389/fimmu.2020.00230
- 312. Lepore F, D'Alessandro G, Antonangeli F, Santoro A, Esposito V, Limatola C, et al. CXCL16/CXCR6 axis drives microglia/macrophages phenotype in physiological conditions and plays a crucial role in glioma. *Front Immunol.* (2018) 9:2750. doi: 10. 3389/fimmu.2018.02750
- 313. Zhao C, Liu Y, Meng J, Wang X, Liu X, Li W, et al. LGALS3BP in microglia promotes retinal angiogenesis through PI3K/AKT pathway during hypoxia. *Invest Ophthalmol Vis Sci.* (2022) 63:25. doi: 10.1167/iovs.63.8.25
- 314. El Bannoudi H, Cornwell M, Luttrell-Williams E, Engel A, Rolling C, Barrett TJ, et al. Platelet LGALS3BP as a mediator of myeloid inflammation in systemic lupus erythematosus. *Arthritis Rheumatol.* (2023) 75:711–22. doi: 10.1002/art.42382
- 315. Pan L, Lu MP, Wang JH, Xu M, Yang SR. Immunological pathogenesis and treatment of systemic lupus erythematosus. *World J Pediatr.* (2020) 16:19–30. doi: 10.1007/s12519-019-00229-3
- 316. Hedrich CM. Shaping the spectrum from autoinflammation to autoimmunity. $Clin\ Immunol.\ (2016)\ 165:21-8.\ doi:\ 10.1016/j.clim.2016.03.002$
- 317. Mistry P, Kaplan MJ. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. *Clin Immunol.* (2017) 185:59–73. doi: 10.1016/j. clim.2016.08.010
- 318. Mahajan A, Herrmann M, Muñoz LE. Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE. *Front Immunol.* (2016) 7:35. doi: 10.3389/fimmu.2016.00035
- 319. Sheriff A, Gaipl US, Voll RE, Kalden JR, Herrmann M. Apoptosis and systemic lupus erythematosus. *Rheum Dis Clin North Am.* (2004) 30:505–27. doi: 10.1016/j.rdc.2004.04.006
- 320. Gaipl US, Kuhn A, Sheriff A, Munoz LE, Franz S, Voll RE, et al. Clearance of apoptotic cells in human SLE. *Curr Dir Autoimmun*. (2006) 9:173–87. doi: 10.1159/000090781
- 321. Schiller M, Bekeredjian-Ding I, Heyder P, Blank N, Ho AD, Lorenz HM. Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. *Cell Death Differ.* (2008) 15:183–91. doi: 10.1038/sj.cdd.4402239
- 322. Jo HS, Kim HJ. Stabilin-2 mediated apoptotic cell phagocytosis induces interleukin-10 expression by p38 and Pbx1 signaling. *Cell Biochem Biophys.* (2024) 82:919–25. doi: 10.1007/s12013-024-01243-7
- 323. Wermeling F, Chen Y, Pikkarainen T, Scheynius A, Winqvist O, Izui S, et al. Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. *J Exp Med.* (2007) 204:2259–65. doi: 10.1084/jem.20070600

324. Wicker-Planquart C, Tacnet-Delorme P, Preisser L, Dufour S, Delneste Y, Housset D, et al. Insights into the ligand binding specificity of SREC-II (scavenger receptor expressed by endothelial cells). *FEBS Open Bio.* (2021) 11:2693–704. doi: 10.1002/2211-5463.13260

- 325. Iram T, Ramirez-Ortiz Z, Byrne MH, Coleman UA, Kingery ND, Means TK, et al. Megf10 is a receptor for C1Q that mediates clearance of apoptotic cells by astrocytes. *J Neurosci.* (2016) 36:5185–92. doi: 10.1523/JNEUROSCI.3850-15.2016
- 326. Platt N, Suzuki H, Kurihara Y, Kodama T, Gordon S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes *in vitro. Proc Natl Acad Sci U S A.* (1996) 93:12456–60. doi: 10.1073/pnas.93.22.12456
- 327. Chen XW, Shen Y, Sun CY, Wu FX, Chen Y, Yang CD. Anti-class a scavenger receptor autoantibodies from systemic lupus erythematosus patients impair phagocytic clearance of apoptotic cells by macrophages *in vitro*. *Arthritis Res Ther*. (2011) 13:R9. doi: 10.1186/ar3230
- 328. Ramirez-Ortiz ZG, Pendergraft WF 3rd, Prasad A, Byrne MH, Iram T, Blanchette CJ, et al. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. *Nat Immunol.* (2013) 14:917–26. doi: 10.1038/ni.2670
- 329. Jorge AM, Lao T, Kim R, Licciardi S, El Khoury J, Luster AD, et al. SCARF1-induced Efferocytosis plays an immunomodulatory role in humans, and autoantibodies targeting SCARF1 are produced in patients with systemic lupus erythematosus. *J Immunol.* (2022) 208:955–67. doi: 10.4049/jimmunol.2100532
- 330. Tan L, Zhao Y. Analysis of multiple organ damage and clinical immunological characteristics in systemic lupus erythematosus patients with hematologic involvement. *Int J Med Sci.* (2021) 18:2624–9. doi: 10.7150/ijms.48997
- 331. Emura I, Usuda H. Appearance of large scavenger receptor A-positive cells and increased small scavenger receptor A positive cells in peripheral blood is associated with mortality in systemic inflammatory response syndrome and multiple organ dysfunction syndrome. *Pathol Int.* (2011) 61:7–12. doi: 10.1111/j.1440-1827.2010.
- 332. Onyishi CU, Desanti GE, Wilkinson AL, Lara-Reyna S, Frickel EM, Fejer G, et al. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen. *Nat Commun.* (2023) 14:4895. doi: 10.1038/s41467-023-40635-w
- 333. Yu H, Ha T, Liu L, Wang X, Gao M, Kelley J, et al. Scavenger receptor A (SRA) is required for LPS-induced TLR4 mediated NF-kappaB activation in macrophages. *Biochim Biophys Acta*. (2012) 1823:1192–8. doi: 10.1016/j.bbamcr. 2012.05.004
- 334. Feng L, Zhou X, Su L-X, Feng D, Jia Y-H, Xie L-X. Clinical significance of soluble hemoglobin scavenger receptor CD163 (sCD163) in sepsis, a prospective study. *PLoS One.* (2012) 7:e38400. doi: 10.1371/journal.pone.0038400
- 335. Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non-classical monocytes display inflammatory features: validation in sepsis and systemic lupus erythematous. *Sci Rep.* (2015) 5:13886. doi: 10.1038/srep13886
- 336. Olmes G, Buttner-Herold M, Ferrazzi F, Distel L, Amann K, Daniel C. CD163+ M2c-like macrophages predominate in renal biopsies from patients with lupus nephritis. *Arthritis Res Ther.* (2016) 18:90. doi: 10.1186/s13075-016-0989-y
- 337. Li J, Liu CH, Xu DL, Gao B. Significance of CD163-positive macrophages in proliferative glomerulonephritis. *Am J Med Sci.* (2015) 350:387–92. doi: 10.1097/MAJ. 0000000000000569
- 338. Arai S, Miyazaki T. A scavenging system against internal pathogens promoted by the circulating protein apoptosis inhibitor of macrophage (AIM). *Semin Immunopathol.* (2018) 40:567–75. doi: 10.1007/s00281-018-0717-6
- 339. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. *J Clin Invest.* (2017) 127:383–401. doi: 10.1172/JCI83822
- 340. Shao WH, Cohen PL. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. *Arthritis Res Ther.* (2011) 13:202. doi: 10.1186/ar3206
- 341. Chen Q, Ishii K, Mori H, Nishijima A, Arai S, Miyazaki T, et al. Cryo-EM reveals structural basis for human AIM/CD51 recognition of polymeric immunoglobulin M. *Nat Commun.* (2024) 15:9387. doi: 10.1038/s41467-024-53615-5
- 342. Sanjurjo L, Aran G, Roher N, Valledor AF, Sarrias M-R. AIM/CD5l: a key protein in the control of immune homeostasis and inflammatory disease. *J Leukocyte Biol.* (2015) 98:173–84. doi: 10.1189/jlb.3RU0215-074R
- 343. Lai X, Xiang Y, Zou L, Li Y, Zhang L. Elevation of serum CD5l concentration is correlated with disease activity in patients with systemic lupus erythematosus. *Int Immunopharmacol.* (2018) 63:311–6. doi: 10.1016/j.intimp.2018.07.022
- 344. Akama-Garren EH, Carroll MC. Lupus susceptibility loci predispose mice to clonal lymphocytic responses and myeloid expansion. *J. Immunol.* (2022) 208:2403–24. doi: 10.4049/jimmunol.2200098
- 345. Sugisawa R, Komatsu G, Hiramoto E, Takeda N, Yamamura K-i, Arai S, et al. Independent modes of disease repair by AIM protein distinguished in AIM-felinized mice. *Sci Rep.* (2018) 8:13157. doi: 10.1038/s41598-018-31580-6

- 346. Yamazaki T, Mori M, Arai S, Tateishi R, Abe M, Ban M, et al. Circulating AIM as an indicator of liver damage and hepatocellular carcinoma in humans. *PLoS One.* (2014) 9:e109123. doi: 10.1371/journal.pone.0109123
- 347. Arai S, Kitada K, Yamazaki T, Takai R, Zhang X, Tsugawa Y, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. *Nat Med.* (2016) 22:183–93. doi: 10.1038/nm.4012
- 348. Dieudé M, West LJ, Muruve DA, Gunaratman L, Mohanakumar T, Zorn E, et al. New answers to old conundrums: what antibodies. Exosomes and inflammasomes bring to the conversation. Canadian national transplant research program international summit report. *Transplantation*. (2018) 102:209–14. doi: 10. 1097/TP.000000000001872
- 349. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. *J Biol Chem.* (1998) 273:4135–42. doi: 10.1074/jbc.273.7.4135
- 350. Nozaki Y, Shiga T, Ashida C, Tomita D, Itami T, Kishimoto K, et al. U-KIM-1 as a predictor of treatment response in lupus nephritis. *Lupus*. (2023) 32:54–62. doi: 10.1177/09612033221135871
- 351. Shih LC, Hsieh HH, Tsay GJ, Lee IT, Tsou YA, Lin CL, et al. Chronic rhinosinusitis and premorbid autoimmune diseases: a population-based case-control study. Sci~Rep.~(2020)~10:18635.~doi:~10.1038/s41598-020-75815-x
- 352. Kronzer VL, Crowson CS, Sparks JA, Vassallo R, Davis JM 3rd. Investigating asthma, allergic disease, passive smoke exposure, and risk of rheumatoid arthritis. *Arthritis Rheumatol.* (2019) 71:1217–24. doi: 10.1002/art.40858
- 353. Elcioglu OC, Afsar B, Bakan A, Takir M, Ozkok A, Oral A, et al. Chronic rhinosinusitis, endothelial dysfunction, and atherosclerosis. *Am J Rhinol Allergy*. (2016) 30:58–61. doi: 10.2500/ajra.2016.30.4325
- 354. Kronzer VI., Davis JM, Hanson AC, Sparks JA, Myasoedova E, Duarte-Garcia A, et al. Association between sinusitis and incident rheumatic diseases: a population-based study. *RMD Open.* (2024) 10(1):1–9. doi: 10.1136/rmdopen-2023-003622
- 355. Bikker FJ, Ligtenberg AJM, End C, Renner M, Blaich S, Lyer S, et al. Bacteria binding by DMBT1/SAG/gp-340 is confined to the VEVLXXXXW motif in its scavenger receptor cysteine-rich domains*. *J Biol Chem.* (2004) 279:47699–703. doi: 10.1074/jbc.M406095200
- 356. Osei KA, Deivanayagam C, Nichols JJ. Glycoprotein 340 in mucosal immunity and ocular surface. Ocul Surf. (2018) 16:282–8. doi: 10.1016/j.jtos.2018.04.006
- 357. Kim TH, Lee SH, Lee HM, Jung HH, Lee SH, Cho WS, et al. Increased expression of glycoprotein 340 in the ethmoid Sinus Mucosa of patients with chronic sinusitis. *Arch Otolaryngol Head Neck Surg.* (2007) 133:1111–4. doi: 10.1001/archotol.133.11.1111
- 358. Sorensen GL. Surfactant protein D in respiratory and non-respiratory diseases. Front Med (Lausanne). (2018) 5:18. doi: 10.3389/fmed.2018.00018
- 359. Hoegh SV, Voss A, Sorensen GL, Høj A, Bendixen C, Junker P, et al. Circulating surfactant protein D is decreased in systemic lupus erythematosus. *J Rheumatol.* (2009) 36:2449–53. doi: 10.3899/jrheum.090069
- 360. LeVine AM, Whitsett JA, Gwozdz JA, Richardson TR, Fisher JH, Burhans MS, et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. *J Immunol.* (2000) 165:3934–40. doi: 10.4049/jimmunol. 165.7.3934
- 361. Gan XX, Li YY, Li SJ, Mo SS, Feng JH, Shen F, et al. Significance of DMBT1 in papillary thyroid carcinoma concurrent with Hashimoto's Thyroiditis. *Front Oncol.* (2021) 11:680873. doi: 10.3389/fonc.2021.680873
- 362. Choudhury K, Gandhi M, Kumar U, Chatterjee S, Purty RS. Evaluation of the deleted in malignant brain tumor 1 protein expression and DNA methylation profile in rheumatoid arthritis patients. *Indian J Rheumatol.* (2023) 18:68–73. doi: 10.4103/injr.injr_181_21
- 363. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. (2017) 8:598. doi: 10.3389/fimmu.2017.00598

- 364. Charoensappakit A, Sae-khow K, Leelahavanichkul A. Gut barrier damage and gut translocation of pathogen molecules in lupus, an impact of innate immunity (macrophages and neutrophils) in autoimmune disease. *Int J Mol Sci.* (2022) 23:8223. doi: 10.3390/ijms23158223
- 365. Battaglia M, Garrett-Sinha LA. Bacterial infections in lupus: roles in promoting immune activation and in pathogenesis of the disease. *J Transl Autoimmun*. (2021) 4:100078. doi: 10.1016/j.jtauto.2020.100078
- 366. Nockher WA, Wigand R, Schoeppe W, Scherberich JE. Elevated levels of soluble CD14 in serum of patients with systemic lupus erythematosus. *Clin Exp Immunol.* (1994) 96:15–9. doi: 10.1111/j.1365-2249.1994.tb06222.x
- 367. Gordon S. Pattern recognition receptors: doubling up for the innate immune response. *Cell.* (2002) 111:927–30. doi: 10.1016/S0092-8674(02)01201-1
- 368. Valiente GR, Munir A, Hart ML, Blough P, Wada TT, Dalan EE, et al. Gut dysbiosis is associated with acceleration of lupus nephritis. *Sci Rep.* (2022) 12:152. doi: 10.1038/s41598-021-03886-5
- 369. Li J, Yu YF, Liu CH, Wang CM. Significance of M2 macrophages in glomerulonephritis with crescents. *Pathol Res Pract.* (2017) 213:1215–20. doi: 10.1016/j.prp.2017.04.011
- 370. Cupi ML, Sarra M, De Nitto D, Franzè E, Marafini I, Monteleone I, et al. Defective expression of scavenger receptors in celiac disease Mucosa. *PLoS One.* (2014) 9:e100980. doi: 10.1371/journal.pone.0100980
- 371. Merino LMM, Parra-Medina R, Sarria MA, Galvis JAD. Innate immune system. In: Shoenfeld Y, Anaya JM, Rojas-Villarraga A, editors. *Autoimmunity: From Bench to Bedside.* Bogota, Colombia: El Rosario University Press (2013).
- 372. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. *Oncotarget.* (2018) 9:7204–18. doi: 10.18632/oncotarget.23208
- 373. Nair A, Thankachen RU, Raj J, Gopi S. 1 Inflammation, symptoms, benefits, reaction, and biochemistry. In: Gopi S, Amalraj A, Kunnumakkara A, Thomas S, editors. *Inflammation and Natural Products*. New York, NY: Academic Press (2021). p. 1–19.
- 374. Warde N. Class A scavenger receptors as novel autoantigens in SLE. Nat Rev Rheumatol. (2011) 7:195–195. doi: 10.1038/nrrheum.2011.30
- 375. Katarzyna PB, Wiktor S, Ewa D, Piotr L. Current treatment of systemic lupus erythematosus: a clinician's Perspective. *Rheumatol Int.* (2023) 43:1395–407. doi: 10. 1007/s00296-023-05306-5
- 376. Blair HA, Duggan ST. Belimumab: a review in systemic lupus erythematosus. Drugs.~(2018)~78:355-66.~doi:~10.1007/s40265-018-0872-z
- 377. Deeks ED. Anifrolumab: first approval. *Drugs.* (2021) 81:1795–802. doi: 10. 1007/s40265-021-01604-z
- 378. Areschoug T, Gordon S. Scavenger receptors: role in innate immunity and microbial pathogenesis. *Cell Microbiol.* (2009) 11:1160–9. doi: 10.1111/j.1462-5822. 2009.01326.x
- 379. Nayroles G, Frybourg S, Gabriel S, Kornfeld Å, Antoñanzas-Villar F, Espín J, et al. Unlocking the potential of established products: toward new incentives rewarding innovation in Europe. *J Mark Access Health Policy.* (2017) 5:1298190. doi: 10.1080/20016689.2017.1298190
- 380. Ruiz-Irastorza G, Bertsias G. Treating systemic lupus erythematosus in the 21st century: new drugs and new perspectives on old drugs. *Rheumatology.* (2020) 59: v69–81. doi: 10.1093/rheumatology/keaa403
- 381. Athanassiou P, Athanassiou L. Current treatment approach, emerging therapies and new horizons in systemic lupus erythematosus. *Life.* (2023) 13:1496. doi: 10.3390/life13071496
- 382. Yuan W, Guan F. Thrombosis and anticoagulation therapy in systemic lupus erythematosus. *Autoimmune Dis.* (2022) 2022:3208037. doi: 10.1155/2022/3208037
- 383. Platanitis E, Decker T. Regulatory networks involving STATs, IRFs, and NF κ B in inflammation. Front Immunol. (2018) 9. doi: 10.3389/fimmu.2018.02542