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Language as a mental capacity

Dieter Hillert*

San Diego State University, San Diego, CA, United States

While bonding and stress signals are widespread across species, symbolic
computation is a uniquely human capacity. This article examines the intricate
relationship between the evolving primate brain and the emergence of the
mental language capacity in the human lineage, focusing on the neural
circuits instantiated by mental agents. By integrating neurobiological and
eco-cultural evidence, we identify a punctuated step at around 1.8 Ma with
the appearance of Homo erectus and propose a corresponding neural
threshold for symbolic representations and processes. The critical increase in
internal computational capacity may reflect interactions between behavioral
dynamics and neurogenetic properties. We argue, in particular, that the
rise in social interactions and learning, the adoption of an energetically
richer diet, and increased mobility exerted mutually reinforcing effects on
cortical reorganization, enhancing neural connectivity and ultimately supporting
symbolic language processing. We therefore suggest a scaled mental capacity
for language and emphasize the importance of incorporating neurobiological
factors when defining the evolution of the language capacity and its functions.

KEYWORDS

internal thoughts, language capacity, mental agents, neural structures, origin of
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1 Introduction

Owing to our own biological makeup, complex mental computations occur effortlessly.
Only partially we become aware of this intrinsic power when we express it through
symbolic concepts. The ability to acquire and use these concepts, in turn, depends on
our innate mental readiness. In constructing mental models, we employ these symbolic
concepts to represent various mental activities, including language, music, mathematics,
navigation, or games. A critical question is how to best model these intrinsic computations.
For instance, it remains unclear to what extent these models should incorporate domain-
specific or domain-independent structures to adequately represent these computations.
Additionally, while it is an ambitious goal, modeling a correspondence between mental
computations and neural signaling activities is highly sought after (Churchland and
Sejnowski, 1992; Piccinini and Bahar, 2013; Colom et al., 2010).

Our approach seeks to interpret mental computations as changes in neural signaling
within and between cortical circuits. These changes can be contextually unique in
timing and setting, yet fundamental principles likely apply universally across all mental
computations. This distinct human capacity is rooted in our species-specific genetic
makeup. Additionally, comparative research shows that some basic mental computations
and neural structures are shared with other primates and mammals, underscoring a
broader evolutionary continuum (Cantlon and Brannon, 2007; Tomasello and Herrmann,
2010; Ardesch et al., 2019; van den Heuvel et al., 2023; Spocter et al., 1691; Sousa et al.,
2017; Margulies et al., 2016).

Our understanding of “what language is” is fundamentally shaped by our mental
and neural frameworks. In particular, when language research includes an evolutionary
perspective, it becomes evident that many controversial discussions in the field stem
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from varying definitions of language. Here our approach integrates
introspective and behavioral data with critical neurobiological
insights to understand better the cortical circuits responsible for
linguistic and symbolic computations. They underpin modern
language, a capacity uniquely human yet evolved from our primate
and hominin ancestors. We advocate an incremental perspective,
suggesting that the mental capacities enabling language were, to
some extent, present in our biological predecessors.

Discerning this innate predisposition is crucial for defining
language as a mental capacity. Specifically, the focus is not on
how language manifests specific typologies such as sound patterns,
syntactic roles, lexical categorizations, phrasal structures, semantic
frames or pragmatic expressions. Instead, our interest is the
speaker’s mental capacity to acquire and employ these structures.
The standard view is that we share 98.8% of our genes with panins
(chimpanzees and bonobos), but a recent study reports differences
between 12.5 and 13.3% (Yoo et al,, 2025). Apart from these
reports, the gaps responsible for different mental capacities are
gene sequences (the precise order of bases), changes in protein-
noncoding DNA and significant differences in gene regulations.
Due to those species-specific gene regulations, the human brain
undergoes significant maturation within the first 4 years of life.
By means of directed linguistic input and contextually relevant
self-reinforcing cycle, synaptic pruning actively shapes and refines
neural circuits. Setting aside speculations about the linguistic and
mental capacities of our extinct hominin relatives, the human
brain is genetically predisposed to acquire a symbolic system for
expressing inner mental states such as feelings, ideas, or opinions.

We discuss how the network of neural circuits brings about
mental agents in modern humans. Specifically, regarding the
language capacity, we discuss what sets the human brain apart
of other primates. We draw conclusions how this language
capacity may have evolved in the hominin lineage. Neural circuits
emerged in context of specific ecocultural conditions, implying
that the language capacity may have changed over time in the
human lineage. Hence, the discussion will further outline major
distinctions between the human language system and the semiotic
signal system of other animals, further clarifying language as a
mental system.

2 Neural circuits as mental agents

A species’ neural circuits can be viewed as a composition
of mental agents that employ strategies
socioecological challenges. These circuits internally compute

in response to

mental representations to create beliefs, goals, intentions and
creates specialized mental systems (Davidson, 1963; Dennett,
1987). The human language system is one of these specialized
systems. It shares to some extent neural circuits with other,
non-linguistic systems such as visuospatial working memory,
hierarchical action planning, tool-use sequencing, or theory
of mind (ToM; Baddeley, 2003; Badre and D’Esposito, 2009;
Fedorenko and Duncan, 2013). It operates like a specialized agent
that forms conceptual representations and generates linguistic
computations (Fodor, 1983; Baron-Cohen, 1995; Chomsky, 2000).
As we discuss below, some inference-based evidence indicates that
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language-related brain circuits evolved incrementally in the lineage
of higher primates.

Drawing on the evolutionary perspective: the more adaptable
a mental agent the better equipped for survival (Emery and
Clayton, 2009; Uddin, 2021). The rise of mental agents in evolution
are caused by the increase of neural network communication,
including recurrent loops (re-entrant). Some factors are brain
mass (MgRr), structural properties, neuron numbers (N) and their
density and packing properties. The human mind consists of
numerous mental agents that cooperate—or sometimes compete—
to carry out mental tasks (society of mind theory; Minsky, 1986).
The brain organ of our extinct hominin ancestors is essentially
unknown to us. We can only draw indirect conclusions from
fossils, including endocasts, and to some extent from behavioral
proxies to fill the evolutionary gap since the divergence from
panins about 7-6 Ma. One approach is to use endocasts volumes
to interfere N and match them against behavioral adaptiveness
to offer insight into mental capacity of an extinct species.
However, since other significant neural factors such as cortical
connectivity or neuron density cannot be considered, we are
confined to describing broad tendencies about how human mental
agents evolved.

While mice and other rodents mental agents excel at
memorizing food source locations, higher primates generally
exhibit more complex mental agents. Gibbons (Hylobatidae), for
example, have a relative (r)Mggr of about 1.82% (brain-body ratio
0f 100:5,500 g), which is similar to modern humans who exhibit an
rMgr of about 1.9% (1,350:70,000 g). However, the average rMpg of
modern humans is about three times larger than that expected for
non-human primates of equivalent body size (Passingham, 1975).
Thus, Mpr and body mass does not consistently inform about a
species’ mental capacity. Instead, absolute Mg has been shown to
be a more accurate predictor of mental capacities (Gibson et al.,
2001; Roth and Dicke, 2005; Deaner et al., 2007).

Substantial mental differences between humans and other
primates are undoubtedly influenced by Mgg, yet the question
remains: what specific neuronal factors endow humans with
unparalleled mental abilities? The predisposed sheer N and their
extensive interconnectivity likely contribute to our mental capacity,
including our ability to acquire a modern-type language.

The African elephant (Loxodonta africana), for instance, with
rMgr of 0.07%, has approximately 257 bn (billion) N, with a large
portion located in the cerebellum, primarily dedicated to motor
control (Herculano-Houzel et al., 2014). Despite their modest
rMgg, elephants are noted for their high social and emotional skills
and self-awareness (Herculano-Houzel, 2009, 2012). In contrast,
the human brain, which is densely packed, has, as mentioned above,
an rMpr of 1.9% and contains about 86 bn N. This structure
supports advanced mental abilities such as symbolic thinking,
complex social interactions, and technological innovations. While
total N is an important factor in determining a species’ mental
capacity, the critical element is the neural composition, which
enables relatively efficient and flexible signal processing. Ultimately,
each species’ brain is adapted to its unique ecological niche, and the
mental capacity is just one component that contributes to a species’
survival strategy.

Terrestrial ecosystems typically feature a broader diversity
of competitive scenarios among species compared to aquatic or
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aerial environments. Within these ecosystems, hominids not only
developed tools but also transformed their environments through
increased social interactions. On various scales, this may have
spurred the development of cortical structures that supported
expanded mental capacities, including language and memory.
However, can we identify one or several critical neural factors
that underpinned the emergence of language-readiness? Moreover,
what was the evolutionary driving force behind this capacity?

A species genotypic traits interact with ecological and cultural
niches and in form of mutual reinforcing feedback loops, known
as triadic niche construction (Deacon, 1997; Fuentes, 2017; Odling-
Smee et al., 2003). Phenotypic traits are, for instance, shaped
by survival pressures, tool use, shared intentionality, ToM and
semiotic practices and determine a species’ brain architecture,
including neural circuits associated with mental agents (Premack,
1978; Frith, 2003). Hominins are active niche constructors and not
passive recipients, and their mental agents emerged in context of
such an increasingly triadic environment. We report evidence that
supports the view of scaled mental capacity for language in the
human lineage. This mental capacity underlies various cognitive
domains. It has been argued that computations supporting manual
tool production and use may have been co-opted for another
domain, such as language (Corballis, 2002; Stout and Chaminade,
2007; Arbib, 2012; Fitch and Martins, 2014). From a capacity-based
perspective, one may posit that new neural circuits and mental
agents draw on domain-general cortical resources rather than
arising through cross-domain fertilization, while acknowledging
that both processes may interact.

3 A scaled mental capacity

Humans possess an innate capacity to create and manipulate
symbols, a product of an evolving mental capacity (Traugott, 2011).
In the domain of language, this capacity manifests as the linguistic
properties that a child acquires with relative ease within the first
3-4 years of life, encompassing sound patterns, the formation
and manipulation of syntactic groups, and the generation of
structured, contextually relevant meanings. This capacity for
storing and manipulating extensive symbolic information is unique
to modern humans.

The emergence of this internal capacity is widely debated, with
some theorists positing that it coincided with the advent of modern
human behaviors around 65 ka, propelled by increases in social
complexity and genetic mutations (Corballis, 2002; Miyagawa et al.,
2025). While this scenario is plausible, it remains speculative,
has only limited neurobiological backing and is not universally
accepted (Hillert, 2015; Mcbrearty and Brooks, 2000; Billard, 2002).

Based on fossil evidence, the average Mpr of 350¢g for Pan
troglodytes (emergence: ~6.5 Ma) and of 400 g for Australopithecus
(4Ma) are marginally different. The C-copy (srGAP2C) is
associated with Mpr of 600g for Homo (H.) habilis (2.8 Ma),
Mgr of 775g for H. rudolfensis (2.4 Ma), and 930¢g for early H.
erectus (1.8 Ma), 1,029 g for late H. erectus (~0.75Ma) and the
D-copy mechanism with Mpr of 1,250¢g for H. heidelbergensis
(0.6 Ma), 1,487 g of H. neanderthalensis (0.4 Ma) and 1,350 g for
H. sapiens (0.3 Ma; Sporny et al., 2017). While the initial B-copy is
relative inactive and the D-copy is a pseudogene lacking regulatory
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elements for gene expressions, srGAP2C may have been a critical
factor for facilitating the development of complex neural networks
and synaptic genesis (Charrier et al., 2012).

H. naledi (538 g Mpg; 0.34 Ma) and H. floresiensis (380 g Mgg;
0.19 Ma) represent notable exceptions to the general trend toward
larger brain and body sizes in the human lineage. The neural
architecture of H. naledi may have been similar to early H. erectus,
while H. floresiensis might have shared characteristics with late
H. erectus, with its smaller size potentially resulting from insular
dwarfism. Despite their smaller brains, both species seem to exhibit
relatively complex behaviors (Holloway, 2012; Brumm et al., 2016).

Research has shown that the human brain conforms to the
cellular scaling rules observed in other primate brains (Azevedo
etal., 2009). These rules are derived from the isotropic fractionator
method, which involves direct processing of brain tissue to count
the number of neuronal and non-neuronal nuclei such as glia,
ependymal cells, and pericytes. The sampled volume is then scaled
up to estimate N in the entire brain (Herculano-Houzel and Lent,
2005). According to scaling rules for primate brains, relatively close
similarities have been observed between the generic primate brain
and that of a male human. This comparison includes N and non-
N with the following measurements: Mgr (1,500/ 1,508 g), Npr
(93/ 86 bn; non-Ngr (112/85 bn); Mcx (cortex; 1,412/1,233 g);
Ncx (25/16 bn); rMpr: 94/82%, rNcx (27/19%); Mcp (cerebellum;
121/154 g); Ncp (61/69 bn); rMcp 8/10% (Gibson et al., 2001).

Recently, the brain of a fruit fly (Drosophila melanogaster),
comparable in size to a grain of sand, was analyzed using a manually
corrected machine learning 3D image reconstruction algorithm
(Shiu et al., 2024). This brain comprises 140,000 N across 8,400
different types and possesses about 54.5 M syn (synapses). Although
these figures appear vast, they are minuscule when compared
to the scale of the human brain. However, despite advances in
technology, directly quantifying the neural connections in a human
brain remains a challenge, akin to counting leaves in a vast forest.
Based on histological sampling and extrapolation techniques, it is
estimated that a typical human brain, containing about 86-100 bn
N, harbors between 100 trillion (tn: 10e12) and 1 quadrillion (qtn:
10e15) syn. This amounts to approximately 1,000-10,000 syn per
N (Drachman, 2005). Thus, a human brain with a Mggr of around
1,350 g has on average about 88 bn N and 484 tn syn.

These estimates, though bold, must be considered with
caution since the potential neural connections are not simply an
exponential function of N. Biological constraints, such as variations
in synaptic density influenced by factors like age and health,
complicate these calculations (Samu et al., 2017). The range of
N in the human brain, which overlaps with those found in H.
heidelbergensis or Neanderthals (76-90 bn N), suggests that these
ancient humans possessed mental capacities comparable to those of
modern humans (Berwick and Chomsky, 2016; Herculano-Houzel
and Kaas, 2011). This alignment is not surprising, given that some
taxonomies classify both Homo species as variations of modern
humans rather than distinct species (Brauer, 2021; Stringer, 2012;
Hillert, 2021).

An average early H. erectus brain with Mpg of 930 g would have
possessed about 59 bn N and an estimated 333 tn syn, while a late
H. erectus with an Mpg of 1,029 g about 66 bn N and 370 tn syn.
For several reasons, we assume late H. erectus’ cortical composition
may have approximately achieved a significant portion of the
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metrics found in archaic humans such as Neanderthals or H.
heidelbergensis, and in modern humans (Berwick and Chomsky,
2016). The mental agents that reflect the language capacity likely
hinge on a neural complexity threshold, best estimated by N
and neural network connectivity (Tallerman and Gibson, 2012;
Hillert, 2023). The mere increase in N and alterations in cellular
composition in response to ecological pressures might have spurred
the necessary neural reorganization for mental agents supporting
symbolic thoughts.

As a result, we project a scaled mental capacity for internal
thought processes throughout the primate lineage. Endocranial
and archaeological evidence suggests that H. erectus’ brain reached
a neural threshold for symbolic capacity around 1.8 Ma (see
Figure 1). In essence, the expansion of the primate brain, coupled
with subcortical and cortical reorganization in various areas, laid
the groundwork for complex symbolic computations. Furthermore,
endocranial and genetic evidence indicates a significant increase in
Mg within the hominin lineage (Du et al., 2018).

Recent studies have pinpointed a series of genes that contribute
to cortical expansion in hominins, notably through the copy
mechanisms of the ancestral srGAP2 gene (Slit-Robo Rho GTPase
activating protein 2; Dennis et al., 2012). For example, great apes,
including members of the genus Pan, possess a B-copy of this gene,
a trait shared with extinct early hominins. This genetic endowment
underscores the evolutionary continuity and genetic factors driving
cortical growth across various hominin species.

Fossils and artifacts provide evidence for how the human
mental capacity evolved and came to be used in our hominin
ancestors. It should be stressed that we discuss a mental
capacity fundamentally grounded in a neurobiological
predisposition. Although niche construction processes may
have gradually cultivated more specialized mental agents, a
species’ neurobiological makeup remains the essential prerequisite
and must be sufficiently flexible to allow further refinements.
The appearance of artifacts indicating visuospatial, aesthetic or
symbolic computation can offer partial insight into the species’
mental capacity. Nevertheless, such manifestations are always
contingent on prior biological prerequisites that enable new
adaptive behaviors. We argued here that the neural threshold
for a symbolic capacity may be associated with early H. erectus
about 1.8 Ma due to genetic changes such as C-copy of stGAP2
and cortical growth (Mpr reached ca. 930 g). Prehistoric hominin
endocasts and artifacts support this timeline although the evidence
is suggestive rather than conclusive. It is said that H. habilis
endocasts indicate an expansion and reorganization of the
neural circuits involved in language, in particular prefrontal and
parietotemporal regions (Falk, 1983; Tobias, 1987).

The earliest known tool industry, including the Lomekwi
3 assemblage dated to approximately 3.3 Ma, associated with
Kenyanthropus platyops and possibly Australopithecus afarensis,
whereas later Oldowan tools are linked to H. habilis. The refinement
of tools did not emerge abruptly but can be traced back to the
simpler Oldowan and early Acheulean tools, which were primarily
crude bifaces or choppers. The earliest Acheulean assemblages,
so far known, appeared around 1.76 Ma at Konso (Ethiopia)
and West Turkana (Kenya). They reflect hierarchical action
sequencing, learning strategies and cultural transmission. These
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finds were taken as evidence for early forms of speech or gestural
communication (Tobias, 1971; Holloway, 1981; Falk, 2009, 2014;
Holloway, 2008). Other candidates are even older and refer to
Oldowan paleoart (Bednarik, 2003; Harrod, 2014).

For example, in the Kenyan East Turkana at the Koobi Fora
formation (site FxJj1), a 1.8 Ma broken core with inner diamond-
shape was found, typically produced by (intentional) flake removal;
or in the East African Rift Valley at Olduvai Gorge in Tanzania
(site Frida Leakey Korongo North), a 1.87Ma grooved and
pecked cobble was discovered indicating an intentionally altered
surface structure. Oldowan artifacts seem to reflect constructive
visuospatial processes, including basic hierarchical sequences with
subroutines. There are, however, no signs for aesthetic symmetry
or symbolic representations as found for Acheulean bifacial tools
(Wynn, 2002; D’Errico and Villa, 1997; Miyagawa et al., 2025).
The transition from early to late Acheulean marking a particularly
significant cognitive advancement beyond the preceding Oldowan
phase (Wynn, 1985). The continuous expansion of mental
computational capacities supports the hypothesis of transformative
shifts in neuronal composition and integration of cortico-
subcortical networks, acknowledging that merely expanding Mgr
is insufficient to signify the emergence of symbolic cognition
(Semendeferi et al., 2002; Rilling and Seligman, 2002; Schoenemann
et al.,, 2005). Alongside increasing mental computations, adaptive
neuroplasticity might have driven neural changes to enhance
both mass and connectivity, accommodating complex internal and
symbolic processing.

The specific ecological and cultural factors that influences
cortical expansion in the human lineage are unknown. However,
H. erectus seemed to have crossed a qualitative leap through
coordinated high-return foraging diets (Potts, 2012). In turn, this
led to reduced energy constraints on brain growth and to a
smaller digestive system (Aiello and Wheeler, 1995; Pontzer, 2012;
Bramble and Lieberman, 2004). Thus, more complex behaviors
were possible such as inhabiting variable and new environments,
forming stable social structures and accumulated tool innovations
more rapidly. Cortical expansion and mental complexity mutually
amplified each other and generated a niche construction feedback
loop. These changes were supported by shifts of the life cycle
such as prolonged juvenile learning (DeSilva and Lesnik, 2008). By
contrast, many contemporaneous hominins, including H. habilis,
H. rudolfensis or species of the Paranthropus lineage, were confined
to relatively specific ecological niches. Their mobility and social
structure was limited and lacked the energetic benefits due to lower
caloric diets. Those hominins did not attain the trajectory required
for increasingly complex mental capacities (Rightmire, 2013). H.
erectus became therefore the only lineage to survive, spread and
give rise to later Homo species, including our own species.

In conclusion, the mental capacity for language is a scaled
product that already begun in its basic forms in H. erectus’
ancestors, including the genera Australopithecus and Pan. Neural
changes associated with active tool making imply a growing
awareness of the self, others, and the environment, and an increased
ability to act on that awareness. For reasons discussed above, a
threshold toward symbols and basic syntax may have reached
with the appearance of H. erectus (Bickerton, 2014; Wynn, 1985).
According to one primodial language hypothesis, phenemes are
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FIGURE 1

Estimated threshold of the mental capacity for language. The logarithmic trendline of hominin average brain mass (g) suggests a critical breakpoint at
around 1.8 Ma, in particular when significant behavioral changes of early H. erectus are considered.

the onset building blocks for early spoken language. They are
speech sounds produced along with gestures expressing meaning.
At a later stage, phenemes were desemanticized and replaced
by meaning-neutral phonemes (Foster, 1978). Even though early
Homo species might have used a combination of phenemes
and gestures, their mental capacity may have already met the
threshold for symbolic processing due to isometric increase in N,
connectivity, and reorganization.

4 Language as a mental organ

Empirical and theoretical approaches to studying language
are diverse and often subject to vigorous debate. A significant
portion of human interaction relies on spoken or signed
language, supplemented by non-verbal cues ranging from eye
contact to body posture and facial expressions. Analyzing the
structure and pragmatic use of individual languages represents a
research approach fundamentally different from investigating the
underlying mental capacity for language. Even in these seemingly
clear contexts, debates continue to stir in the murky waters. For
example, proponents of the strong version of the linguistic relativity
hypothesis argue that language profoundly influences how we
think, what we focus on, and how we perceive the world. They
suggest that speakers of different languages do not merely express
themselves differently but may also think differently (Boroditsky,
2011; Whorf, 1956).

Frontiersin Language Sciences

Research into the mental capacity for language typically does
not necessarily explore cultural-linguistic differences since it does
not inform about the underlying computations. Arguing that
speakers of different languages think differently is a superficial
argument since they can describe meanings non-lexicalized in their
respective culture. Figuratively speaking, the structure of a house is
governed by the laws of statics, while the choice of materials and
design is influenced by factors like climate and personal preference.
One may choose different aesthetics but needs to comply to the
principles of physics.

While it is both intriguing and compelling to explore
typological styles of thinking, a deeper understanding of what
thinking entails and its evolutionary origin requires us to examine
the shared mental computational capacities within a species or
even across species. The mental capacity for language pertains
to these inherent mental dispositions and computations. The
philosophical underpinning of the mentalistic paradigm provides
a comprehensive framework for addressing these issues (Chomsky,
1968; Berwick and Chomsky, 2016). Since only humans possess the
ability to acquire and use an internalized symbolic system to decode
and encode thoughts, this capacity is likely an integral component
of the human genotype, one that enables neural circuits supporting
language. We posit that this mental capacity or organ evolved
over time, suggesting that our ancestors must have been partially
equipped with this capacity (Hillert, 2026).

It is often debated whether the mental capacity for language
primarily arose from the need to enhance communicative
efficiency (Wilson and Sperber, 2004; Tomasello, 2008; Fedorenko
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et al, 2024) or if its principal function was to expand mental
capacities for various reasons (Fodor, 1975; Chomsky, 2007; Pinker,
2007; Fujita, 2014). While both perspectives emphasize different
aspects of communication and cognition, there is consensus,
as discussed above, that the selection of advantageous traits
leading to increased cortical size is not arbitrary (Darwin, 1859;
Dawkins, 1976). For several reasons, the internal thought hypothesis
is a plausible scenario, although it does not undermine the
communicative function of language (Traugott, 2011). It states
that thinking occurs via an innate mental language (mentalese)
that manipulates symbols and representations. Moreover, mental
representations of syntactic structures would reflect the logical
structure of the propositions they represent, with a key property
being compositionality. This approach suggests that much of
our thinking is analogous to linguistic computations, a claim
for which there is limited evidence. Reasoning, for instance,
can be based on non-symbolic processes, including holistic or
statistical computations, as observed in motor learning, visuo-
spatial reasoning, or heuristic-pragmatic decision-making.

The generative-linguistic approach highlights discrete infinity
as a critical criterion for the development of the human mental
capacity, asserting that a language-specific binary operation
(Merge) generates tree-like sentence structures (Chomsky, 1995).
For example, internal Merge is demonstrated in questions like
What, did you say that you bought,? Here, the interrogative
pronoun what is moved from the embedded canonical structure
to the beginning of the sentence. It should be noted, though,
that while most known languages utilize such an extended
syntax, including embedding phrases within phrases (recursion),
exceptions exist. They include, for example, Piraha (indigenous
Amazonian language), Warlpiri and Jingulu (Australian aboriginal
language), Hua (Papua New Guinea language) or Dani (New
Guinea language; Everett, 2005, 2008; Simpson, 1991; Haiman,
1980; Pensalfini, 2003; Heider, 1972). Despite their limited use
of extended syntax in everyday communication, speakers of these
languages undoubtedly possess the mental capacity to acquire
and use these structures. Cultural lifestyle factors may influence
the grammatical complexity metric observed in these languages
compared to more wide-spread languages.

Furthermore, recursive operations are not restricted to syntax
in language. The formation of vertical concept formations,
mediated through symbolic representations, involves recursive
processes. The origin of these abstract concepts can be linked to
the idea to specify or generalize beyond perceptual entities, such
as “harmful vs. non-harmful animals (Rosch, 1978).” Semantic
recursion, in the form of lexical grouping, may represent an early
stage in language evolution where syntactic rules were not yet
prominent (Jackendoff, 1999; Hillert and Fujita, 2023). Moreover,
recursive patterns are not confined to linguistic domains; they
are prevalent in areas such as mathematics, music, and reasoning
(Corballis, 2011; De Martins, 2012). Thus, the definition of
“what language is” should not hinge on typological complexity
or communicative efficiency but must be linked to the evolving
mental capacities.

As discussed, a crucial argument is that an increase in
critical Mpr enhanced capacities across various domains in the
human lineage, not merely in sensory-motor modalities related to
language. The generation of internal images based on perception
and enhanced long- and short-memory systems exemplifies this.
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Abstract thinking and reasoning represent language-independent
mental computations. In the early stages of hominin evolution,
individuals may have modified their kinetic behaviors to optimize
survival strategies, sharing this knowledge with conspecifics
through non-verbal means, including facial expressions, body
posture or vocalizations (Donald, 1991; Zlatev et al., 2005; Arbib,
2012). Although this communication style might be regarded as an
incipient stage of language, kinetic interactions are primarily the
result of enhanced internal computations.

further
independence of thought from language. Aphasic disorders

Language disorders provide evidence for the
and specific language impairments in children typically do not
impact general aspects of cognition, often referred to as intelligence
(Broca, 1861; Wernicke, 1874; Jackson, 1878; Head, 1926; Orton,
1937; Bishop, 1997; Leonard, 1998). However, defining intelligence
remains challenging. Individuals whose neural circuits are
impaired for lexical production or spatial orientation, may still
utilize multiple specific or broad-scaled cortical and subcortical
networks (Aguirre and D’Esposito, 1999; Goodglass and Wingfield,
1997). Such individuals retain sufficient access to alternative
mental agents, possibly redundant memory systems, even though
they may be unable to perform specific tasks. A dissociation
between specific language-related aspects (e.g., circuits related to
motor-sensory or lexical processes) and predefined non-linguistic
circuits, as evidenced by neuroimaging, does not negate the
internal thought hypothesis. Language-related circuits are not only
modularly organized but also distributed, tapping into various
memory systems such as social-pragmatic aspects, cognitive
control, or ToM (Arbib, 2012; Graci and Capone, 2023). From
an evolutionary perspective, it is plausible that language and its
associated memory systems evolved from the need to enhance
internal mental computations. Although the distinction between a
narrow and broad language system has been introduced, focusing
on linguistic syntax, we find similar computations in non-syntactic
linguistic and non-linguistic domains (Hauser and Chomsky, 2002;
Katz and Pesetsky, 2011; Wakita, 2014; Levinson, 2014; De Martins
et al., 2015; Nasukawa, 2017).

Linguistic encoding of thoughts likely played a critical role.
Refined concept formations, scaffolded by symbolic representations
and their manipulations, may had have enhanced mental
abilities within and across domains, improved self-awareness,
and facilitated social interactions, including communication. The
properties of the human brain that enables the sharing of thoughts
through rules and representations making it the most efficient
mental system for interpreting the world and communicating ideas.

5 Conclusions

We contend that language, as a form of symbolic processing,
represents a scaled mental capacity in evolutionary terms. Due to
competitive pressures in terrestrial environments, hominin brains
evolved to enhance internal computations, thereby increasing
mental versatility and survival rates against competitors for
resources. This mental capacity developed along with cortical
growth in the hominin lineage, providing the necessary capacities
for enhanced mental computations as ultimately evidenced in
extended rules and representations across and within domains.
Hence, from a phylogenetic perspective, language primarily
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functions as a system for expressing thoughts, encoded into motor
activity that manifests as either covert or overt speech.

Neurobiological evidence indicates that while mental activities
related to bonding and stress responses are observed in non-
human primates, mammals, and birds, symbolic computations
remain a uniquely human capacity. Fossil finds, behavioral relics,
and neural properties in terms of brain mass, neuron count, and
estimated synaptic connections across various hominins suggest
that language is a scaled mental capacity. Although our final
assumptions are based on inferences from various datasets, we
predict that the critical neural threshold for the mental language
capacity was reached by 1.8Ma with the emergence of early
H. erectus.
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