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The intracellular bacterium Wolbachia pipientis has emerged as a promising tool
for controlling mosquito-borne diseases; however, key aspects of its biology
remain insufficiently understood, particularly how Wolbachia influences vector
competence for certain arboviruses. The main factors implicated are the activation
of mosquito antiviral pathways and competition for cellular resources at the viral
replication site. Transinfection of Wolbachia strains into vector populations has
proven to be an effective strategy for controlling arboviral diseases. Here, we
investigate the within-host density and tissue distribution of two naturally
occurring Wolbachia strains—wAIlbA and wAlbB—n Aedes albopictus from
Argentina, where infection patterns diverge from those observed globally. Using
quantitative PCR, we assessed symbiont density in ovarian (n = 5) and somatic
tissues (n = 5) of adult females, and in adult males across different ages: 0, 5 and 14
days post-emergence (n = 5 per age group). Our results reveal superinfection in
ovaries (WAIbA + wAlbB) with similar densities (median relative density,,awa = 3.78
and median relative density,,aps = 3.31), but only wAlbB was consistently detected
in somatic tissues (median relative density,,aps = 0.41), suggesting tissue-specific
distribution of strains. Additionally, wAlbB density in males remained stable
throughout the adult lifespan (median relative densitytimeo = 0.83; median
relative densityyme 5 = 1.98; median relative densityime 14 = 0.66). These findings
support the hypothesis that Wolbachia somatic localization is strain-specific and
may be under evolutionary selection, with implications for vertical transmission
and host fitness. By advancing our understanding of Wolbachia density dynamics in
a natural mosquito vector population, this study contributes critical baseline data
to inform and optimize Wolbachia-based biocontrol strategies in regions at risk of
arboviral outbreaks. Because the wAlbB strain from Ae. albopictus is widely used in
replacement techniques, any knowledge of its behavior in natural host populations
is valuable.

Asian tiger mosquito, Wolbachia, quantitative PCR, Arbovirus, biocontrol, longevity,
bacterial density
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1 Introduction

The recent emergence and re-emergence of mosquito-borne
diseases (MBD) like yellow fever (YF), dengue fever (DF),
chikungunya fever (CHIKF) and Zika disease (ZVD) is a cause
for international concern. While DF remains the world’s most
prevalent arboviral disease with tens of millions of cases annually
and severe outbreaks in the Americas, YFV persists in endemic foci
with high fatality among severe cases, CHIKF continues to cause
regional outbreaks with occasional severe neurological sequelae,
and ZVD circulates at lower levels globally but poses a persistent
threat due to its teratogenic potential (1-5). Changes in climate and
anthropogenic factors (e.g., land-use transformations and the large-
scale movement of people, animals, and goods) are altering
environmental conditions. These changes can indirectly affect the
transmission and geographical distribution of MBD by facilitating
the spread and redistribution of disease vectors across regions (6, 7).

Current approaches to managing MBD primarily focus on
reducing populations of both immature and adult mosquitoes
through insecticide application and community-based efforts to
eliminate breeding habitats (8, 9). However, despite substantial
resource investment, long—term reductions in mosquito densities
remain challenging, with insecticide resistance being one of the
main contributing factors (10), and seasonal outbreaks continue to
occur (11, 12). This highlights a widely acknowledged need for
innovative, cost-effective, and efficient tools to control arboviruses
(13, 14). The limited success of conventional control methods has
driven the exploration of innovative entomological strategies. The
reproductive parasite Wolbachia pipientis Hertig, 1936
(Rickettsiales: Rickettsiaceae) (hereafter, Wolbachia), an
obligatory intracellular and maternally inherited bacterium found
in many arthropod species, sounds as a promising environmentally
friendly weapon against MBD (15). Its ability to invade and
maintain itself through manipulation of its host reproduction can
be used to diminish mosquito population levels. Laying in the
induced cytoplasmic incompatibility (CI) between uninfected
females and infected males, both suppression and replacement
with immune mosquito strategies have been proposed (16). While
the concept of using the intracellular bacterium Wolbachia to
manage mosquito populations was introduced over five decades
ago, its potential role in dengue control has only garnered
significant attention in the last ten years (17). Field studies in
Australia and Indonesia have shown that releasing Wolbachia-
transinfected Aedes aegypti (Linnaeus, 1762) mosquitoes can lead
to a significant and lasting decrease in the DF transmission (18).
Notably, a cluster randomized trial in Yogyakarta, Indonesia,
demonstrated a 77% reduction in dengue cases in areas treated
with Wolbachia (19). In Brazil, pilot releases in Rio de Janeiro and
Niteroi successfully established Wolbachia in local mosquito
populations. Subsequently, Niteroi expanded the intervention
city-wide, using a phased strategy that included community
engagement, information campaigns, mosquito releases, and field
monitoring of Wolbachia prevalence (20, 21). Something similar
occurred in the Colombian cities of Bello, Medellin, and Itagiii (22,
23). However, further field data are needed to evaluate Wolbachia’s
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effectiveness against these viruses and to assess its broader public
health impact, as some investigations from Colombia are suggesting
(24). Thus, it is important to study other Wolbachia strains and
mosquito vectors to facilitate the introduction of this technology in
other at-risk countries. The Asian tiger mosquito Aedes albopictus
(Skuse, 1894) (Diptera: Culicidae) has expanded significantly over
the past three decades from its native range in Southeast Asia to
regions across North and South America, Southern Europe, parts of
Africa, and various islands in Oceania, where it is now well
established (25, 26). This mosquito is a competent vector for at
least 22 arboviruses, including CHIKF and all four DF serotypes
(27, 28). Although Ae. albopictus generally plays a secondary role in
the transmission of DF and CHIKF compared to Ae. aegypti—partly
due to its lower vector competence (29)—it has been implicated in
outbreaks of these viruses in locations such as Hawaii, Mauritius,
Gabon, Madagascar, and La Réunion (30-32). Moreover,
autochthonous transmission of both viruses in parts of Europe by
this species (33-36) highlights its growing public health relevance
on a global scale. In Argentina, Ae. albopictus was first detected in
1998 (37). Its geographic distribution is restricted to the
northeastern provinces of Misiones (where it was initially
observed) and Corrientes (where it arrived due to a recent range
expansion) (38). While it has been considered a secondary vector in
Argentina (39), the wide variation in transmission efficiency
observed across the Americas (40) suggests a substantial risk of
CHIKF and DF becoming established and spreading throughout
tropical, subtropical, and even temperate areas of the continent.

Aedes albopictus is naturally superinfected with two Wolbachia
strains, identified as wAIbA and wAIbB (41), across nearly its entire
global distribution (see Figure 1 in (42)). A notable exception occurs
in Argentina, where individuals have been found carrying only the
wAIbB strain or lacking Wolbachia infection altogether (39). The
relatively low vector competence observed in Ae. albopictus
populations from the Argentinean subtropics—when compared to
Ae. aegypti—may be influenced by the presence of Wolbachia. This
hypothesis is supported by studies on Ae. albopictus from La
Reéunion Island, where the endosymbiont was shown to reduce
DENV-2 dissemination and salivary gland infection (43). However,
given potential differences in Wolbachia strains, densities, and
environmental factors between regions, further investigation is
warranted to clarify its role in modulating vector competence
under local conditions.

Both wAIbA and wAIbB strains have been associated with
increased resistance to arboviral infections in mosquitoes (43),
with wAIbB typically reaching higher densities within the host
(44). The density of the symbiont plays a critical role in the host-
symbiont interaction, influencing not only the efficiency of maternal
transmission but also the potential virulence of the symbiont itself
(45, 46). Moreover, symbiont density has been identified as a key
factor modulating immune function and antiviral responses in
mosquitoes, alongside the genetic makeup of both the host and
the Wolbachia strain (47, 48). Several studies have reported a
positive correlation between Wolbachia density and the strength
of antiviral protection in the mosquito host (47, 49, 50). Although
the precise mechanisms by which Wolbachia influences vector
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FIGURE 1

Map indicating the collection site for Ae. albopictus. (A) Regional map showing the relative position of Argentina within the continent. (B) Map of
Argentina highlighting the sampling location in Puerto Iguazu. Maps were created using Adobe InDesign.

competence remain to be fully elucidated, current evidence points
to bacterial density as a major factor (47), as well as the bacterium’s
localization in somatic tissues—outside the gonads—where it
coexists with the pathogen (51). Given that Wolbachia strains
differ in both tissue tropism and replication levels within their
hosts (52-54), and that these parameters can vary between strains in
superinfected individuals (46, 55-57), our study aims to quantify
the density of Wolbachia strains in Ae. albopictus populations from
Argentina. As a preliminary step to explore the symbiont’s potential
influence on arbovirus transmission, we assessed variation in
Wolbachia density according to tissue type in females.
Additionally, we examined whether symbiont density changes
with host age, in order to evaluate if this factor may underlie the
previously reported infection polymorphism in
Argentinean populations.

2 Materials and methods
2.1 Sample collection

Immature stages of Ae. albopictus were collected from a natural
population at a go-kart track in Puerto Iguazli, Argentina (25°
39°207S-54°33’12"W) in February-March of 2019 (Figure 1), and
reared to adulthood in the laboratory of the Centro de
Investigaciones Ecologicas Subtropicales (CIES), at Puerto Iguazu.
First instar larvae were separated in 1 L of dechlorinated water in a
plastic flat tray with finely ground guinea pig food until pupation.
Larval density was not quantified due to high and continuous larval
mortality, which caused density to vary during this stage. The pupae
were removed and individualized to plastic containers and provided
with water and raisins in preparation for emergence. Following
emergence adults were sexed and maintained in plastic vials
containing cotton and moist filter paper, and fed raisins. Larvae
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and adults were kept in an incubator with a temperature cycle
fluctuating between 21 °C and 34 °C, 60% of humidity and a
photoperiod of 14:10 (L:D), simulating field conditions. The FO
generation was used in two simultaneous experiments: (i)
comparison of wAIbA and wAIbB strain densities between ovaries
and somatic tissues of females, and (ii) comparison of wAIbB
density among mosquitos of different ages using males as a
model. Both experiments were made at the CIES.

2.2 DNA extraction

DNA extraction was performed on ten adult individuals of Ae.
albopictus (per experiment) using Chelex® 100 resin (Bio-Rad, US).
Each mosquito was placed in an Eppendorf tube containing 100 uL
of 5% Chelex solution and 2 pL of Proteinase K (20 mg/mL;
Promega, US). The mixture was incubated overnight at 56 °C for
a period of 18 h. Proteinase K was then inactivated at 95 °C for 10
minutes. Subsequently, the sample was centrifuged at 14,000 rpm
for 5 minutes, and the supernatant was transferred to a new tube
and stored at =20 °C. DNA quality was assessed using a NanoDrop
spectrophotometer (Thermo Fisher Scientific, USA).

2.3 Quantitative PCR assays

Wolbachia strain densities were investigated through
quantitative PCR (hereafter, gPCR). Quantification of wAIbA and
wAIbB strain densities was performed using the standard curve
method. The wall surface protein gene (wsp) was used with strain-
specific primers (Table 1). Quantification was normalized using the
actin gene of Ae. albopictus as reference gene. These normalized
values were used in comparative analyses (soma vs. ovary; and 0
days old males vs. 5days old males; 5days old males vs. 14 days old
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males). Target genes (wsp of wAIbA and wAIbB) and the reference
gene (actin) were amplified from the same genomic DNA samples.

Previously published primers (58-60) were first tested. Due to
non-specific amplification in negative controls, new primers were
designed and tested for specificity. Primer design was performed in
Gene Runner V3.05 (61) with selection criteria as follows: amplicon
size of 150-200 bp, GC content of 30-80%, and absence of
secondary structures, which was checked with DNAMAN (62).
The selected primers are shown in Table 1. To confirm annealing
temperature and expected amplicon size (189 bp for actine gene,
194 bp for wAIbA wsp gene, and 213 bp for wAlbB wsp gene),
endpoint PCR was performed under the following conditions: 94 °C
for 155, 60 °C for 25 s, and 72 °C for 15 s (40 cycles). DNA from Ae.
albopictus was used as template; DNase-free water was included as a
negative control. PCRs were run on a Labnet Multigene thermal
cycler (Thermo Fisher Scientific, US). Reaction volumes were 12.5
pl: 6.25 pl GoTaq Master Mix (Promega, US), 10 uM each primer
(Macrogen, South Korea), 40 ng DNA, and 4.25 pl DNAse-free
water. Amplicons were visualized on 2% agarose gels stained with
ethidium bromide 0.4 pug/ml (Promega, US) under UV light. Two
infected mosquitoes per Wolbachia strain were tested, and for the
actin gene, one mosquito.

All quantitative PCR assays were conducted on a StepOne Plus
instrument (Applied Biosystems, USA), using 96-well plates and
MicroAmpTM adhesive seals (Thermo Fisher Scientific, USA), in a
final volume of 20 pl following the design and reporting guidelines
of Bustin et al. (63). Each reaction used 10 pl of a MasterMix with
SYBR® Green intercalating dye (Thermo Fisher Scientific, USA), 10
uM of oligonucleotides (Macrogen, South Korea), and 40 ng of total
genomic DNA template.

Cycling conditions were 95 °C for 10 min, followed by 40 cycles
of 15 sec at 95 °C and 1 min at 60 °C. Each plate included target and
reference genes for each sample, with five biological replicates per
comparison group, three technical replicates of each biological
replicate and three technical replicates of negative controls per
gene. Amplification quality was assessed by inspecting the
amplification and melting temperature curves (see Supplementary
Material). Cq values were averaged after verifying specificity via
melting curves.

PCR efficiencies were calculated from standard curves (one per
gene) generated using serial dilutions of a purified-PCR product
(ranging from 10ng/pl and 0.001 ng/ul), with each dilution run in
triplicate. Amplification efficiency (E) was calculated using the slope
(m) of the linear regression line according to Applied Biosystems

10.3389/finsc.2025.1655459

(2004): E = 10 (-1/m) - 1. Slopes ranging from -3.1 to -3.6
(corresponding to 90-110% efficiency) were considered
acceptable. These efficiency values were used to validate the
performance of the primer pairs, but not to calculate absolute
quantities. Instead, relative quantification was performed using
the comparative Cq method (AACt) (64). Normalized Wolbachia
density in each sample was calculated as the ratio of wsp gene
concentration (wAIbA or wAIbB) to actin gene amplification. These
normalized values were used in statistical analyses. All analyses
were conducted in R v4.1.0 (65) using integrated RStudio v1.0.153
environment (66).

2.4 Biological assays

2.4.1 qPCR assay for comparison of bacterial
density between soma and ovary

Five newly emerged females (biological replicates) were
dissected immediately after emergence and sex determination to
separate somatic and ovarian tissues under a light microscope. Each
female was placed in a drop (ca. 20-30 ul) of PBS 1X on a
microscope slide. Using fine forceps, the terminal abdominal
segment was gently pulled to expose and remove the ovaries. The
ovaries were rinsed in distilled water to prevent cross-
contamination with somatic tissues, and the forceps were
sterilized before handling the soma. Somatic and ovarian tissues
were placed in separate Eppendorf tubes, and DNA was extracted as
explained in subsection 2.2. DNA dilutions were prepared at a final
concentration of 10 ng/pl and used in qPCR assays. The relative
densities of Wolbachia strains wAIbA and wAlbB were compared
between ovary and soma according to subsection 2.3. Relative
densities obtained from this assay were compared using the
Mann-Whitney U test using the rstatix (67) and ggpubr libraries
(68). Box plots were generated using the base R function boxplot.

2.4.2 qPCR assay to evaluate the variation in
bacterial density of the wAlbB strain over male
longevity

Because the wMel strain may show reduced density and CI
when Ae. aegyptilarvae are reared at high temperatures (69-71), but
the wAIDbB strain proved to be much less susceptible to the effects of
similar high rearing temperatures (70, 71), the latter might be well
suited for population replacement in hot environments, given its
ability to effectively block transmission of DF and other arboviruses

TABLE 1 List of primers used in qPCR assays, including primer ID, sequences (5'-3’), melting temperature (Tm), and GC content (%).

Organism ID Sequence (5°'-3') Tm (°C) % GC
Ae. albopictus Act_F CCTTCAACACACCGGCCATGTACG 653 583
Ae. albopictus Act R TCAGATCGCGACCGGCCAAATC 64.0 59.1
Wolbachia wspAlbA_F CCAGTAGTTTCGCTATCAAAGTG 56.4 435
Wolbachia wspAlbB_F GTTGATCTCTTTAGTAGCTGATAC 53.8 37.5
Wolbachia wspAlb_R GTTGGTGTTGGTGTTGGTGCAG 615 54.5
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(72). Thus, our efforts were primarily devoted to quantification of
this strain. Additionally, attempts made to quantify the wAIbA
strain yielded inconclusive results due to non-specific amplification.
Thus, we proceeded to investigate only the density of the
wAIbB strain.

The density of the wAIbB strain was measured in five males
(biological replicates) at three time points: immediately after
emergence, at 5 days post-emergence, and 14 days post-
emergence. As explained before, larvae collected from the field
were individually isolated in transparent plastic containers at the
pupal stage. Adults were monitored daily. Five males were
euthanized at each time point by cold exposure. DNA was
extracted as described in subsection 2.2 and dilutions were
prepared at 5 ng/pl for the actin gene and 50 ng/pl for the wsp
gene of the wAIbB strain. The relative density was quantified
according to subsection 2.3.

Comparisons of wAIbB density were performed between time
points 0 and 1, and between 1 and 2. The results were analyzed with
the Kruskal-Wallis test using libraries tidyverse (73). Box plots were
generated using the base R function boxplot.

3 Results

3.1 gPCR assay for comparison of bacterial
density in soma and ovary

Primer efficiency (Ef) resulted in Ef wsp_wAlbB = 109.12%
(R* = 0.9911), Ef_wsp_wAIbA = 103.61% (R® = 0.9884), and
Ef Actin = 117.83% (R® = 0.9866). Although the actin primer
showed an efficiency slightly exceeding the recommended range for

10.3389/finsc.2025.1655459

the comparative Cq (AACt) method, no correction was applied.
Given that all reactions were performed under identical conditions
and involved comparative analyses within primer sets, we consider
the relative quantification results to be reliable. However, this
deviation is acknowledged as a limitation of the method. Melting
showed three distinct peaks corresponding to each one wsp_wAIbB
(87.5° C), wsp_wAIbA (80.1° C), and actin (78.6° C), confirming
specific amplification for each target (see Supplementary Material).

Both wAIbA (median relative density = 3.78) and wAIbB
(median relative density = 3.31) strains were detected in all five
ovarian samples, indicating superinfection (Figure 2). No significant
difference in density between wAIbA and wAIbB was observed in
ovaries (Mann-Whitney U test, p > 0.05). In somatic tissues, wAIbB
was detected in four of the five individuals (median relative density
= 0.41), whereas wAIbA was not detected in any (Figure 2). A
significant difference in bacterial density was observed between
wAIbA and wAlbB in somatic tissues (Mann-Whitney U
test, p < 0.05).

3.2 gPCR assay to evaluate changes in
wAIbB density over male lifespan

For the assay evaluating the dynamics of wAIbB density over
male lifespan, primer efficiencies were Ef wspAlbB = 98.76%
(R* = 0.9920) and Ef Actin = 111.55% (R* = 0.9960). As these
values were within or near the acceptable range for the comparative
Cq (AACt) method, no correction was applied. However, we
acknowledge that the actin primer exceeded the ideal efficiency
range, which may have introduced some slight bias in the
estimation. Melting temperatures were 79.03 °C for wsp (wAIbB)
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FIGURE 2

Relative densities of Wolbachia strains wAIbA (light blue) and wAIbB (orange) in ovaries and somatic tissues of Ae. albopictus females. Log10-
transformed mean Wolbachia density is expressed as the ratio of the Wolbachia copy numbers of the gene wsp to the Ae. albopictus gene Actin, as
estimated by gPCR on genomic DNA. A total of five biological replicates were used. Thick horizontal lines represent medians, box limits indicate first
and third quartiles, whiskers represent interquartile range. Individual data points (jittered) are shown to illustrate the distribution of values
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and 87.63 °C for actin. Melting curves showed specific amplification
(see Supplementary Material).

A total of five males were analyzed for each time point. One
sample from time = 14 days post-emergence was excluded due to >
35 Cq value, in accordance with our pre-established threshold. No
significant differences in wAIbB density were found between time =
0 days post-emergence (median relative density = 0.83) and 5 days
post-emergence (median relative density = 1.98), nor between 5 and
14 (median relative density = 0.66) (Kruskal-Wallis test,
p =0.3362) (Figure 3).

Amplification of wAIbA was excluded due to poor melting
curves, non-specific amplification, and high Cq values. One actin
negative control showed a left-shifted curve, likely due to primer
dimers, while the other showed no amplification. No such issues
were observed in test samples.

4 Discussion

Bacterial density plays a critical role in all the phenotypes
induced by Wolbachia in their hosts (74). Recent studies have
reinforced earlier observations suggesting that, beyond its
localization in the germline, somatic localization is a conserved
feature of Wolbachia infection, indicating that it is not incidental
but rather a key aspect of Wolbachia biology (51).

In this study, we examined the density of both wAIbA and
wAIDB strains in somatic and ovarian tissues of Ae. albopictus. Both

10.3389/finsc.2025.1655459

tissues were infected, with somatic tissues harboring only wAIbB,
while ovaries displayed a double infection. The negative result in
both tissues of a single sample may indicate that the infection is not
fixed in this host population or could be due to a technical
limitation. Increasing the sample size may help clarify this issue.
Nevertheless, our finding is consistent with Dobson et al. (52), who
reported that Ae. albopictus individuals infected solely with wAIbA
lacked Wolbachia in somatic tissues, suggesting that wAIbA is
restricted to reproductive tissues. Conversely, Zouache et al. (75)
found both strains (wAIbA and wAIbB) in somatic tissues (salivary
glands and gut) and ovaries of Ae. albopictus from Réunion Island.
They also reported higher Wolbachia densities in ovaries than in
somatic tissues, but did not observe significant differences between
the two strains in either tissue type—a result that aligns with our
findings in ovarian tissues.

Several studies have shown that the two strains differ
significantly in their within-host densities, with wAIbB often
reaching higher levels (44). This disparity may reflect differences
in replication rates, with the Wolbachia strains from supergroup A
(e.g., wAIbA) generally showing slower proliferation (56, 76).
Moreover, each Wolbachia strain replicates independently,
meaning that the growth rate of one strain is unaffected by the
presence of the other. One possible explanation is that supergroup B
strains may penetrate host cells more efficiently and replicate more
rapidly in reproductive tissues than supergroup A strains (77).
Possible cellular and molecular mechanisms that mediate
differential tissue localization include variation in the expression
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FIGURE 3

Relative densities of Wolbachia strain wAlbB (light blue) in O, 5, and 14 days-old Ae. Albopictus males. Log10-transformed mean Wolbachia density is
expressed as the ratio of the Wolbachia copy numbers of the gene wsp to the Ae. albopictus gene Actin, as estimated by gPCR on genomic DNA. A
total of five biological replicates were used. Thick horizontal lines represent medians, box limits indicate first and third quartiles, whiskers represent
interquartile range. Individual data points (jittered) are shown to illustrate the distribution of values
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of host receptors or cellular factors required for bacterial entry and
replication, differential activation of immune pathways, or
competition between strains for colonization niches (51, 75, 78,
79). Similar patterns of strain-specific tissue localization have been
reported in other Aedes species, supporting the hypothesis that
these differences are biologically driven rather than artifacts of our
sampling approach (80).

The presence of Wolbachia in specific somatic tissues suggests
that somatic tropism is a trait under selection, not a random
byproduct of infection. Somatic localization may be maintained
evolutionarily because it facilitates horizontal transmission within
and between species, contributing to genetic diversity (51).
Additionally, it may confer advantageous phenotypes on the host
that promote vertical transmission through the germline (51),
potentially increasing host fecundity or improving the vertical
transmission efficiency of Wolbachia (52). From the host
perspective, somatic infection may contribute to antiviral
protection by interfering with viral replication in tissues critical
for vector competence, thereby potentially increasing host survival
and reproductive success (81). These interactions suggest that
tissue-specific localization could be shaped by mutual
evolutionary benefits. Given the relevance of somatic localization
for biocontrol applications, it is important to rule out the possibility
that the target Wolbachia genes are actually nuclear insertions of
bacterial DNA fragments, as these would fail to generate the desired
effects (82, 83).

We also investigated the dynamics of wAIbB density over the
adult lifespan of male mosquitoes. Our results showed no significant
variation in wAIbB density throughout adult male aging. This
finding contrasts with that of Tortosa et al. (84), who observed a
positive correlation between wAIbB density and age in males from
Corsica and Reéunion Island, but a negative correlation in males
from Greece. They concluded that the association between wAIbB
density and age may vary depending on the population of origin. In
our study, however, these two variables appeared to be independent.
Since both experimental designs were fairly similar, it is likely that
the divergent results stem from intrinsic population factors. These
may include differences in the genetic background of the host (such
as variation in nuclear-Wolbachia interactions), local
environmental adaptation, and historical selective pressures acting
on both host and symbiont. For instance, Mejia et al. (85) showed
that relative Wolbachia densities can be predictable across tissues
and generations, but still vary depending on population origin.
Furthermore, host genetic background has been shown to influence
Wolbachia-mediated phenotypes: for example, wMel introgressed
into different Ae. aegypti genetic backgrounds in Brazil and
Vietnam produced differences in both mean and variance of
dengue virus susceptibility (86). These studies support the idea
that intrinsic variation among mosquito populations can
significantly modulate Wolbachia dynamics and
associated phenotypes.

Although this study did not quantify Wolbachia density in
females, it is well established that bacterial density plays a crucial
role in infection stability and the manifestation of Wolbachia-
induced phenotypes in the host (74). In females, Wolbachia

Frontiers in Insect Science

10.3389/finsc.2025.1655459

density may affect vector competence, while in males it could
influence the strength of CI. This may help explain the low
hatching rate observed in the Argentine Ae. albopictus population
(see 39). Low bacterial densities could impair vertical transmission,
leading to uninfected individuals, or in the case of co-infection,
result in the stochastic loss of one of the strains. Such dynamics
could underlie the infection polymorphism for Wolbachia infection
observed in this host population (39). On the other hand,
understanding strain density in females is particularly important,
as they are the vectors. It is essential to assess density across the
lifespan of adult females to determine whether antiviral activity
remains constant and can be sustained throughout their life. This is
especially relevant for a sustainable Wolbachia-based control
strategy, in which the symbiont must be maintained across
generations and vertical transmission reliably ensured.

We acknowledge that the relatively small sample size in our
study is a limitation. Small sample sizes can reduce statistical power,
making it more difficult to detect subtle differences and potentially
increasing the likelihood of Type II errors. In addition, some data
points were excluded due to technical issues in qPCR (e.g., failed
amplification or outlier Cq values, since we discarded results with
Cq = 35), which further reduced the number of observations. We
were also unable to include amplification of positive controls or
sequencing of PCR products, which, to a certain extent, might limit
the certainty of target specificity in our qPCR assays, although we
partially verified the specificity of the reaction using melting curves.
Despite these limitations, the observed trends were consistent
across the analyzed samples, and the results provide valuable
preliminary insights into tissue-specific Wolbachia densities.

In summary, the density of Wolbachia plays a critical role in
shaping host-symbiont evolutionary interactions and enhancing
the effectiveness of this bacterium as a biological control agent
against insect pests and vector-borne diseases (16). Based on the
results of this study, wAIbB emerges as a strong candidate for
transinfection of native Ae. aegypti populations because of its
somatic localization, which may enhance antiviral protection. If
the high wAIbB density is consistently maintained throughout the
female lifespan, we can expect both robust antiviral protection and
reliable vertical transmission, thereby ensuring the sustainability of
replacement biocontrol techniques.

Further experiments involving females—the sex that acts as
arbovirus vectors—should assess Wolbachia strain density across
the entire lifespan, which is relevant for antiviral activity; examine
the dependence of bacterial density on temperature, as high
temperatures can impair Wolbachia performance; and evaluate
the influence of blood feeding on Wolbachia density, since
arboviruses are acquired through blood meals, and it would be
interesting to determine whether blood feeding promotes bacterial
replication. Additionally, the main practical value of this work lies
in the methodological information it provides for studying this
strain, since we had to design several primer pairs and optimize
real-time PCR conditions for multiple assays.

Given that the densities of wAIbA and wAIbB have been shown
to differ across populations (87), it would be valuable to expand
surveys to other locations of Argentina and explore how these
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variations correlate with superinfection patterns. Considering that
wAIbB has demonstrated a strong potential to reduce dengue
incidence in high-transmission areas (88, 89), further insights into
this strain are of significant interest and importance. In order to
validate the use of this strain in field settings in Argentina, the next
steps would involve rearing native Ae. aegypti, as populations in
Argentina are peculiar and replacement by foreign populations may
be hindered by local adaptation and competition (90, 91),
transinfecting them with the native wAIbB strain (the focus of
our study), and conducting pre-release surveys.
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