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In the open capacitated location-routing problem (OCLRP), a fleet of distribution
vehicles departs from selected depots to satisfy customers’ demands, but they do
not need to return to their starting depots after serving all customers. Comparing
the solutions of the OCLRP and its corresponding capacitated location-routing
problem (CLRP) can provide valuable insights for companies considering whether
to outsource their delivery activities. To effectively solve the OCLRP, this study
proposes a novel discrete fireworks algorithm (DFWA) with two key innovations.
(1) An adaptive search mechanism: embedding swap, insertion, and reverse
operations into explosion/mutation breaks the limitations of traditional
fireworks algorithms in discrete optimization by expanding the search space
while enhancing local tuning, thus boosting global optimal solution discovery. (2)
A diversified selection strategy: integrating fitness value and Hamming distance
improves the “premature convergence from single fitness selection” defect in
existing algorithms. It retains high-performance solutions while maintaining
population diversity. Evaluated on OCLRP instances adapted from standard
CLRP benchmarks, the DFWA shows strong competitiveness, consistently
generating high-quality solutions within reasonable computation time. A real-
world OCLRP case further verifies its practical applicability in complex industrial
scenarios.
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1 Introduction

In the current highly competitive economic environment, companies aim for improved
supply chain management, including efficient decision-making about depot locations and
delivery route design, as these may entail important cost and time savings (Dai, Aglan, Gao
and Zhou, 2019; Zhang et al., 2022b). As a consequence, there is extensive research on both
facility location (FLP) (Garcia-Diaz and Smith, 2024) and vehicle routing (VRP) (Niu, Shao,
Xiao, Song and Cao, 2022; Zhang et al., 2022a; Garside, Ahmad and Muhtazaruddin, 2024)
problems. However, solving these problems as silos may lead to inferior solutions. Location
routing problems (LRP) combine both problems and typically lead to more flexible and
efficient logistics systems (Mohamed, Klibi, Sadykov, Sen and Vanderbeck, 2022; Yu and
Lin, 2015).

A major consequence of the current competitive environment is that companies are
increasingly focusing on their core value-added capabilities and activities and tend to
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FIGURE 1
CLRP and OCLRP solutions with three depots, three routes, and
nine customers.

outsource their logistics to third-party (TPL) providers (Yu and
Lin, 2015). In such cases, TPL provider vehicles usually start their
service from the company’s depots (or distribution centers) and
return to the TPL installations instead of the depots or
distribution  centers  after  delivering to  customers;
consequently, classic capacitated location-routing problems
(CLRPs) are not applicable. To handle these situations, open
capacitated location routing problems (OCLRPs) were proposed
by Yu and Lin (2015). OCLRPs do not consider the costs
associated with the starting trip from the TPL company to its
depot nor the return trip from a vehicle’s last customer to the TPL
facilities. Thus, the company only considers the costs of locating
its depots and those associated with the number of hired vehicles
and the trips between depots and the last customer that the
vehicle served (Nucamendi-Guillén, Padilla and Moreno-
Vega, 2021).

This study provides a novel approach to OCLRPs. We assume
that each candidate depot and vehicle have limited capacities and
that vehicles return to TPL installations instead of the company’s
OCLRPs

simultaneously search for depot locations and vehicle routes to

depots after having served their last customer.

satisfy customers’ demands. The main difference between CLRPs
and OCLRPs is that each route in an OCLRP is a Hamiltonian path
(vehicles do not return to the starting depot), whereas each route in
a CLRP is a Hamiltonian cycle (vehicles return to the starting
depot) (Yu and Lin, 2015). Figure 1 illustrates the differences
between CLRP and OCLRP solutions in a problem with three
depots (triangles), nine customers (circles), and three routes. Both
solutions are constructed on a complete directed graph G = (V, E)
where the vertex set E = { <1, j> i, j € V,i # j}. Critically, the cost
of each arc <i, j>e€ E corresponds to the straight-line distance
between the spatial positions of vertex i and vertex j (spatial
of all
calculation). In Figure 1, for visual clarity (especially in printed

positions points are meaningful for route cost
form), we use solid arcs to represent the OCLRP solution
(Hamiltonian paths starting from depots and ending at
customers) and solid arcs plus red dashed arcs to represent the
corresponding CLRP solution (Hamiltonian cycles that return to

the starting depot after serving all customers on the route).
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FIGURE 2
[lustration of the differences between the optimal solutions of a

CLRP and that of its corresponding OCLRP. (a) Optimal solution of
CLRP instance. (b) Optimal solution of OCLRP instance.

Importantly, the difference between the solution values of a
CLRP and its corresponding OCLRP provides a benchmark to
support a company’s decision on whether to outsource delivery
activities (Yu and Lin, 2015). While OCLRP and CLRP solutions
only differ in the “depot-last customer” arc cost (OCLRP omits this
cost), a good CLRP cycle does not guarantee a good OCLRP path;
this is because the optimal OCLRP path depends on both inter-
customer distances and customer-depot distance, rather than just
the closed-loop cost of CLRP. Figure 2 further validates this
discrepancy, where 2(a) shows the optimal solution of a CLRP
and 2(b) shows the optimal solution of its corresponding OCLRP
(both with three candidate depots and nine customers). In Figure 2,
depots are marked as triangles and customers are marked as circles.
Both 2(a) and 2(b) are built on the same weighted complete directed
graph, so that their vertex set, spatial positions of all vertices, and arc
costs (straight-line distances) are identical. Solid arcs in Figure 2a
form three CLRP cycles, while the red dashed arcs in Figure 2b form
two OCLRP paths. This figure helps illustrate that the optimal
solution for an OCLRP cannot simply be derived by removing
the edge between the depot and the last customer from the optimal
solution of the CLRP.

As the VRP (Ergao and Mingyong, 2009) and FLP (Garcia-Diaz
and Smith, 2024) are both NP-hard problems, so the CLRP is also
NP-hard (Dai et al., 2019). Given its important practical applications
and high computational complexity, the CLRP has attracted the
interest of numerous researchers who have proposed a wide variety
of algorithms, including genetic algorithms (Bootaki and Zhang,
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FIGURE 3
Flowchart of discrete fireworks algorithm for OCLRP.

2024; Arifuddin, Utamima, Mahananto, Vinarti and Fernanda,
2024), simulated annealing (SA) (Ferreira and Alves de Queiroz,
2022), particle swarm optimization (Kechmane, Nsiri and Baalal,
2018; Wang et al., 2021), tabu search (Kyriakakis, Sevastopoulos,
Marinaki and Marinakis, 2022), ant colony optimization (Ting and
Chen, 2013), greedy randomized adaptive search procedures (Prins,
Prodhon and Calvo, 2006), and memetic algorithms with population
management (Shi, Zhou, Boudouh and Grunder, 2022). Moreover,
some exact algorithms have been also proposed, based on dynamic
programming, column generation (Farham, Siiral and Iyigun, 2018),
branch-and-cut (Marques, Sadykov, Deschamps and Dupas, 2020),
and branch pricing algorithms. In contrast, the OCLRP has received
comparatively less attention, and there is still much scope to
improve available models and solutions. Nucamendi-Guillén
et al. (2021) proposed a multi-start metaheuristic algorithm to
solve the multi-depot open location routing problem with a
heterogeneous fixed fleet. Yu and Lin (2015) proposed an
effective simulated annealing heuristic for solving OCLRPs based
on a special solution representation enlarging the search space and
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facilitating its exploration. Toro, Franco, Granada-Echeverri,
(2016)
environmental issues and proposed the green open location-

Guimaraes, and Rendoén took into account current
routing problem. Nucamendi-Guillén et al. (2021) were inspired
by a real case and proposed a multi-depot OLRP with a fixed
heterogeneous fleet.

As a variant of the CLRP, the OCLRP retains the same
computational challenge. Moreover, existing mainstreams for
similar routing problems face notable limitations when adapted
to the OCLRP’s unique characteristics (i.e., Hamiltonian path
constraints and depot-customer-vehicle coupling). For instance,
simulated annealing heuristics such as proposed by Yu and Lin
(2015) expand the search space via special solution representation
but often stagnate in local optima for large-scale instances (e.g., 100+
customers), as their single-solution iterative update lacks sufficient
local exploitation. Genetic algorithms, though widely applied to the
CLRP (Bootaki and Zhang, 2024), struggle with the OCLRP’s path-
specific constraints, as their crossover operators often disrupt valid
route structures, leading to a high proportion of infeasible solutions
that require additional repair mechanisms. Even neighborhood-
based methods such as adaptive large neighborhood search
(ALNS) and tabu search (TS), while excellent at neighborhood
exploration for VRPs, lack the targeted handling of the OCLRP’s
triple coupling of depot selection, customer assignment, and vehicle
routing, resulting in inefficient search processes and suboptimal cost
performance.

In contrast, fireworks algorithms (FWAs) have shown accurate
and consistent performance in complex optimization (Y. Tan and
Zhu, 2010; Chen et al., 2019) but are rarely applied to NP-hard
combinatorial problems like OCLRP, FLP, VRP, or LRP and their
variants. This study aims to fill this gap by proposing a novel discrete
fireworks algorithm (DFWA) for solving the OCLRP, motivated by
three key advantages of the FWA. First, as a heuristic approach, the
FWA provides an effective algorithmic framework that delivers
acceptable solutions in reasonable computing time to NP-hard
optimization problems (Niu et al, 2022). Second, as a meta-
heuristic, it allows the flexible integration of local search
operators (Zhang et al, 2019; Tan et al,, 2025)—a feature that
can mitigate SA’s local stagnation and GA’s infeasibility issues.
Third, the performance of FWAs have been found accurate and
consistent, and they can achieve competitive results in comparison
to other well-known optimization algorithms (Tan and Zhu, 2010;
Chen et al,, 2019). They have been applied in domains such as
multimodal function optimization (Meng and Tan, 2024), radar
deployment for UAV swarms defense coverage (Ding et al., 2025),
and heterogeneous multi-project multi-task allocation in mobile
crowdsensing (Shen et al., 2023), indicating their potential to handle
the OCLRP’s complex constraints.

The key contributions of this study are the following. Firstly, it
proposes a mathematical programming model for the OCLRP.
Second, it presents an efficient DFW algorithm for solving the
OCLRP. This entails providing an effective initialization and
convenient explosion and mutation operators to respectively
enhance the exploitation and exploration of the search space.
Third, in-depth numerical experiments are conducted to facilitate
parameter choice and evaluate the operational gains obtained using
the proposed OCLRP model and DFWA. Such experiments and a
real case study clearly showcase the effectiveness of our proposal.
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FIGURE 4
Example of solution representation.

The rest of this study covers the following issues. Section 2 states
the details of the OCLRP model. Section 3 proposes and discusses
our DFWA. Section 4 then provides an in-depth computational
analysis, including a real case study. Conclusions and future research
are presented in Section 5.

2 Mathematical model for the OCLRP

We present here the formulation of the OCLRP for which we
shall develop an efficient algorithm. A set of customers with known
locations is available. Their known demands should be satisfied from
a set of depots with known locations and opening costs. For this,
there is a fleet of homogeneous vehicles with known capacity.
Customers must be serviced once, and only once, by a single
vehicle. A route load cannot exceed the vehicle capacity, with
each route starting from a depot and ending at a customer.
Similarly, the demands allocated to a depot cannot surpass its
capacity. The OCLRP is typically formulated to minimize total
distribution costs, which cover the costs of opening the depots,
the fixed vehicle costs, and the routing costs.

The underlying structure to formulate the problem is a complete
directed graph (V, E). Its vertex set V is V, | J V4 | V. where V,,
V4, and V., respectively, represent the set of locations of the parking
lots of the TPL company, of m candidate depots, and of n customers.
Its arc setis E = {{i, j)|i, j € Vand i # j}. The rest of the notation is
as follows.

Sets and parameters:

Va:=1{1,2,...,m}.
Vae=im+1,m+2,..
K: set of homogeneous vehicles with common capacity P.

L, m+nl.

O;: i-th depot fixed opening cost.

d;: i-th customer demand.

Q;: i-th depot capacity.

cij: distance from node i to node j.

e: transportation cost per unit distance.
w: vehicle fixed cost.

Decision Variables:

o = { ,  if k — thvehicle travels directly from i — th to j — th node.
k=70, otherwise
_ ) 1, if j —th customer is served by i — th depot.
Yij = {0, otherwise
1, ifi- thdepotisopened.
0, otherwise
uj : Auxiliary variables for sub — tour elimination constraints in route k.

Using the above notation, the OCLRP may be modeled through
the following integer linear programming problem:
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min Z O;z; + Z z z WXiji + z Z Z Cij€Xijk (

i€Vy i€Vy jeVe keK ieVyve jeVe keK
subject to:
> Y xp=1  VjeV, 2
ieVyUve keK
Y Y dxu<P VkeK ©)
ieVaUVe jeve
Y diy;<Qzi  VieVy 4)
jeve
Y xx- Y xw=0 VjeV,VkeK )
ieV Uve iev.Uvy
z injk=z ijik=0 VjéVd (6)
i€eVy keK ieVy keK
Y xijp=0VvieV, Vk € K 7)
Jj€Va
Y yy=1  VjeV, (8)
i€Vy
injk—ziso VieVy VkeK )
Jj€Ve

ulk—ujk+nxljk3n—1 VieV,, VjEVC, Vk € K (10)

Xijk €10,1} VieVauV, VjeV,UuV, VkeK (11)
yij €{0,1} VieVy VjeV, (12)
z; €{0,1} VieVy, (13)

uj €1{0,1,2,...,n} VjeV,, VkeK (14)

As mentioned, the objective function (1) aggregates the costs of
opening the depots, the fixed costs of employing vehicles, and the
routing costs. Constraint (2) reflects the fact that customers are
serviced only once by one vehicle and that they should have just one
predecessor. Constraints (3) and (4) ensure, correspondingly, that
vehicle and depot capacities are respected. Route continuity is
guaranteed through constraint (5). In turn, constraint (6) models
the fact that there should be no connection between any two depots,
and constraint (7) that each route ends at the last customer. The
group of constraints (8) models the issue that each and any customer
should be assigned to exactly one depot, whereas (9) guarantees the
fact that vehicles dispatch from depots that are open. Constraint (10)
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eliminates sub-tours within vehicle routes. Finally, constraints
(11)-(13) specify the binary character of some of the variables,
and (14) is auxiliary variables.

3 Discrete fireworks algorithm for
the OCLRP

To facilitate understanding of the proposed algorithm, we
first clarify two core technical terms specific to a fireworks
algorithm (FWA). (a) Firework: each firework represents a
feasible solution within the search space. (b) Spark: a spark is
a new candidate solution generated by applying algorithm-
specific operators (e.g., explosion) to an existing firework.
Sparks represent potential improvements over the original
firework, and their quality is evaluated via the fitness
function, which in this study is defined as the OCLRP’s
objective function.

Tan and Zhu (2010) and Tan (2015) introduced the FWA for
optimization problems, inspired by how fireworks explosions
resemble optimal solution searches in swarm intelligence
algorithms, with each spark generated by a firework explosion
assimilated to a feasible solution. It runs iteratively according to
the following scheme until certain stopping conditions are met.
For each explosion generation, N fireworks are set off from N
given locations, from which a certain number of sparks are
generated and their fitness assessed. The number and
amplitude of the sparks depend on the explosion operator
implemented, with some further sparks generated through a
mutation operator. A mapping rule eventually maps infeasible
sparks into feasible ones. Lastly, a selection strategy is used to
select N sparks for the next explosion generation. The original
FWA was designed for continuous optimization problems and
cannot be directly used to solve the OCLRP (and other discrete
optimization problems). For this, we need to modify the
explosion and mutation operators used to explore the
feasible space.

We now present a DFWA to efficiently solve OCLRPs. The
basic steps of our DFWA for solving the OCLRP are presented as
pseudocode in Algorithm 1. The input to the algorithm includes
the maximum number G of iterations, the number N of
fireworks, the number Musparks of mutation sparks, the
maximum explosion amplitude A, and a coefficient M
controlling the number of explosion sparks generated by each
firework. After the fireworks’ initialization (line 1), each
firework’s fitness is assessed (line 2) and the best one is
determined (line 3). Lines 4-22 cover the DFWA iterations,
including the initialization of the sets of sparks generated by
the explosion and mutation operators (line 5), the generation of
explosion sparks (lines 6-10), the update of individuals (lines
11 and 19), the calculation of the number of fireworks and
explosion sparks (line 12), the generation of mutation sparks
(lines 13-18), the resetting of the best individual (line 20), and
the selection of the next generation of sparks (line 21). Note that
the mapping rule is called upon in lines 9 and 16. To facilitate
understanding, Figure 3 illustrates the overall logical flow of the
The
algorithmic details.

algorithm. forthcoming subsections provide core
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Input: G=no. iterations, N =no. fireworks, Musparks =
no. mutation sparks, A = max. explosion amplitude, M =
parameter controllingno. explosion sparks generated by
each firework.
Output: best = best OCLRP solution.
7: Initialize set F of fireworks;

Evaluate each firework sol; e F (i=1,2,...,N);

2
3: best\coloneq firework with best fitness in F;
4: forg=1toGdo

5 Esparks =@ ; Msparks:=@;//At beginning of each

iteration, Esparks and Msparks, sets of sparks

generated respectively by the explosion and
mutation procedures, initialized as empty.
6: for i:=1toNdo
Calculate no. sparks ns; for firework
sol;;
8: Calculate
firework sol;;

amplitude of sparks A; for

9: Esparks = Esparks |J Explosion
(solj,A;,nS:);//Firework sol; explodes within
amplitude A; generating ns; sparks.

10: end for

11 F=F|JEsparks;

12 M:=size(F);//Calculating no. sparks in set F.

13: j=0; //jcounts no. mutation sparks.

14: while j <Musparks do

15: i=randint(1,M); //Randomly

integer in range (1,M).

generate an

16: Msparks = Msparks |JMutation
(solj);//Generating sparks using
mutation operator.

17 J=J+1;

18: end while

19: F=F |JMsparks;

20: best:= firework with best fitness in

F;//Updating best firework.

21: F =select(F,N);//Select N fireworks for next-
generation according to selection strategy.

22: end for

return best

Algorithm 1. Discrete fireworks algorithm for the OCLRP.

3.1 Representation of OCLRP solutions

A compact solution representation is crucial for efficiently
implementing a DFWA. In the OCLRP, it should characterize
the customer-vehicle assignment, the chosen depots, and the
sequence of customers served by a specific vehicle starting at a
given depot. Given m and n, our representation uses N gummy dummy
zeros (with N qummy < [Z,-Evc (d;)/P], where [x] represents the ceiling
of x) and all of the elements within sets V4 and V. The first number
in the representation is in V; and indicates the first depot in the
route; then the customers assigned to each depot appear between it
and the next different depot in the order they are serviced, respecting
the vehicle capacity constraint. No customers after a depot indicates
that such a depot is not open. The end of a route and the start of a
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FIGURE 5
Fireworks explosion. (a) Good explosion. (b) Bad explosion.
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Firework before swap moves
Exchange sites 1 and 5
CsTm o] 1 [ [ [0 [a = [ [ [ e 7 o o s e
Fitness=358
1 Exchange sites 6 and 14
|1’10|9|l6|5’2|25|12|l3’24|23|14|26’3|17|6|7‘8
Fitness=320
l Exchange sites 17 and 22
‘1‘10|9|16|5‘3|25|12|13‘24|23|14‘26‘2|17|6|7‘8
|1‘10|9|16|5’3|25|12|13‘24|23|14‘26‘2|17|6|21‘8
Fitness=346
[ ool s Jue]s[aas]uafisfa]as]rafas]s [ur]o 7] s | u [Fo o BufRotist s Jus 0]

Individual with best fitness is chosen as the spark for the subsequent procedure

FIGURE 6
[llustration of spark generation with A; = 4.

new one are marked with dummy zeros, even if additional customers
may be served by a vehicle with sufficient capacity. Thus, vehicle
routes can be randomly terminated with dummy zeros in the
representation. As a consequence, the search space is larger and
better solutions can be found (Yu and Lin, 2015; Yu and Lin, 2016).

As an illustration, Figure 4 presents a feasible solution of an
OCLRP with five depots and 21 customers. Observe that depot 1 is
not open (no customers after it). The routes served from the four
open depots (2, 3, 4, 5) are

D 5—c¢ 10—c 9—c 16.

D 2—c 6—c 12—c¢ 13—c¢ 24—c¢ 23—c 14—c 26.
D 3—c 17—c¢ 25—c 7—c 8—c 11.

D 3—c¢ 22—c 21—c¢ 19—c 15.

D 4—c 18—c 20.
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3.2 DFWA initial solutions

We construct a set of good initial solutions by randomly
generating the open depots and assigning their customers with a
greedy approach that promotes use of the maximum capacity of a
vehicle; this initialization process corresponds to line 1 of Algorithm
1 ("Initialize set F of fireworks”). The detailed steps are as follows:

Step 1. Randomly generate a permutation Per of the m depots in
V 4. Denote the i-th element in Per as per; and seti = 1. Let C be
the full set of all customers in V. Since no customer is assigned
initially, set Cus:=C (where Cus represents the set of
unassigned customers).

Step 2. Designate C(per;) € Cus as the subset of unassigned

customers whose individual demands do not exceed the
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FIGURE 7

[lustration of insertion move.
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Inversing
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FIGURE 8
[llustration of inversion move.
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[t]zsfas]2]s[s]s]s]s]2]a]a]sfs[s[efs]a]s]s]2]2][s]2]

FIGURE 9 .
Transformation from sol; to sol;.

remaining capacity of per;. To initially allocate the unassigned
customers and start a new route from per;, its closest customer in
C (per;) is assigned, followed by the nearest customer to the one
last selected. This is repeated while the vehicle’s capacity may
satisfy the demand of the selected nearest customer. Otherwise,
such a customer will be excluded from the current route, and the
closest to the last assigned customer will be searched among those
unassigned until the vehicle’s remaining capacity is not sufficient
to serve new customers. A new route is launched for unassigned
customers. This is repeated until C(per;) is empty.

Step 3. If Cus is not empty, increment i returning to step 2 based
on depot per; in the permutation Per is considered. Otherwise,
the solution found is codified as in Subsection 3.1.

Step 4. While the number of solutions/fireworks is smaller than
the required N, return to step 1; otherwise, terminate the process.

3.3 Explosion operator
Based on the N initial fireworks, the explosion operator is used

to generate sparks within different amplitudes. This has a key role in
FWAs (Tan, 2015) and is inspired by how fireworks actually

Frontiers in Industrial Engineering

explode. As Figure 5 depicts, well-designed fireworks blast and
produce numerous sparks around the explosion center; in turn,
bad fireworks explode and generate few sparks scattered around.
Algorithmically, a good firework portrays a firework with good
fitness value located in a promising area possibly close to an optimal
solution; thus, it seems sensible to generate additional sparks around
it. On the other hand, bad fireworks suggest that the optimal
solution may be far away and, consequently, fewer sparks should
be generated at a larger search radius.

3.3.1 Explosion amplitude and number of sparks
In our DFWA, the explosion amplitude and number of sparks
associated with a firework (a feasible solution of formulation
(1)-(14)) depends on its fitness (objective function value)
through Formulas 15 and 16 (Tan, 2015; Tan and Zhu, 2010)

9 Objworst - f(SOl,‘) + f

ns; =M - : (15)
Z;\il(ob]wm, - f(solj)) +&
A = 4 . f(SOl,‘) - Objhest +E (16)
2?1:1 (f(solj) - objbes,) +&
07 frontiersin.org
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TABLE 1 Average results with different number of fireworks for Gaskell67-21x5 and Gaskell67-29x5.

No. Of Gap,ye Average computing time (s) Number of runs that generated
fireworks the best-known solution
Gaskell67- Gaskell67- Gaskell67- Gaskell67- Gaskell67- Gaskell67-
21x5 29%5 2x15 29%5 21x5 29%5

0.5(n+m) 1.89 2.05 15.41 23.78 6 3

ntm 1.23 1.64 17.28 27.19 7 4
L.5(n+m) 023 0.50 24.09 32.76 11 7

2(n+m) 029 0.53 31.36 39.58 10 7
2.5(n+m) 0.22 0.52 39.15 48.93 12 8

3(n+m) 023 0.46 47.66 56.42 11 8

TABLE 2 Average results using different values of M for Gaskell67-21x5 and Gaskell67-29x5.

Gap,ye

Gaskell67-21x5  Gaskell67-29x5  Gaskell67-21x5

Average computing time (s)

Number of runs that generated the
best-known solution
Gaskell67-29x5

Gaskell67-21x5 = Gaskell67-29%5

0.5N 2.40 2.33 16.87 22.15 4 4
N 122 1.01 23.25 26.39 6 5
15N 0.47 0.23 29.16 32.18 10 7
2N 0.94 0.26 36.37 40.73 11 6
2.5N 0.51 0.82 42.33 46.9 9 8
3N 0.58 0.37 49.12 57.88 10 7

TABLE 3 Average results using different number of mutation sparks for Gaskell67-21x5 and Gaskell67-29x5.

No. Of mut. Gap,ye Average computing time (s) Number of runs that generated
sparks the best-known solution
Gaskell67- Gaskell67- Gaskell67- Gaskell67- Gaskell67- Gaskell67-
21x5 29x5 21x5 29x5 21x5 29x5

0.5(n +m) 1.73 1.79 24.91 28.13 6 4

n+m 0.60 0.46 28.12 32.55 10 8
L.5(n+m) 0.69 0.85 36.48 39.03 9 7

2(n+m) 1.02 1.05 39.19 45.28 11 7
2.5(n+m) 055 1.10 46.78 50.77 10 6

3(n+m) 1.25 0.49 53.04 58.29 8 8

where sol; refers to the i-th firework (i=1,2,...,N), f(sol;)
represents its fitness, M controls the number of sparks generated
by each firework, A denotes the maximum explosion amplitude, £ is
a small constant that avoids division by zero errors, and 0bjyorst =
maxigjen{f (sol;)} 0b jpest = minycjen{f (sol;)}
respectively, the worst and best values of the objective function

and are,

among the N incumbent fireworks.
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To avoid too many or too few sparks using Equation 15, an
upper bound #s; on the number of sparks (Tan, 2015) is defined
through (with round () the rounding function)

ifns;<a x M
ifnsi>be,a<b<1
otherwise

round(u X M),

round(b x M ),
round (ns;),

ns; = (17)
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for properly chosen constants a and b.

3.3.2 Generation of sparks

Our algorithm generates a spark from sol; through the swap
move. We use a simple swap by randomly selecting two sites and
swapping the corresponding elements. This is repeated A; times.

As mentioned, good sparks suggest closeness to an optimal or
near-optimal solution. Thus, the explosion process should preserve
features of good solutions, and hence only the best-fit spark is
selected from the A; swapped solutions. One spark can be obtained
from each swap move, and 7s; sparks are generated thereafter,
iteratively carrying out A;##s; swap moves. Note that the
iterative swap move used in the explosion operator essentially
entails a local search to generate relatively better sparks, possibly
improving the performance of our DFWA. Figure 6 illustrates the
generation of a spark with A; = 4. Pseudo-code for generating one
spark is available in Algorithm 2, whereas Algorithm 3 details
pseudo-code for the explosion procedure called by Algorithm 1.

1: function GenerateSpark (sol;,A;,n)//n—the number of
elements in the individual sol;.
fitness=oo; s0l; =s0l;;
fori=11toA; do
t1:=randint(1,n); //Randomly
integer number in the range [1,0].
5: if t1==1
selected,

generate an

then //If the first position is
then the other position must be a
depot to maintain feasibility.

6: repeat

7 t2 :=randint(1,n);

8: until t2 # t1 and s?ﬂiﬂ e Vy

9: temp = $01s¢1; SOlie1=501li10; SOlie :=temp;

//Swapping the elements assigned to sites t1
and t2.

10: ;ojl ::mapping(s?)ji); //If the generated spark
is infeasible, it will be mapped back to the
feasible space.

11 else

12 t2 =randint(1,n);

13: if t2==1 then

14 repeat

15: t1:=randint(1,n);

16: until t1# t2 and s0ls € Vy

17 temp = 5014,¢1; SOLi1 = S01ls0; SOLiry = temp;

18: 5071 ::mapping(ggii);

19: end if

20: end if

21: if fitness> f(§51) then

22: fitness:= f(soly); 501, =501, //The
generated spark with better fitness is saved
as sol; .

23: end if

24 end for

25: return s/ﬁi;

26: end function

Algorithm 2. Pseudo-code to generate one spark.
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1: function Explosion (sol;,A;,NS;:)

//Calculating the
elements in the individual sol;.

3: Spark; = ;
generated by the firework sol;.

2: n:=size(sol;); number of
//Initializing the set of sparks

for 1:=1 tons; do

a

SingleSpark =GenerateSpark(sol;,A;,N);
//Generating one spark.

6 Spark; = Spark; |J SingleSpark;

7 end for

8: return Spark; ;

9: end function

Algorithm 3. Explosion procedure pseudo-code.

Recall that once a move is executed, the new solution might need
to be recodified to ensure its feasibility. For example, if the first
position is selected for a swap, it should be replaced by
another depot.

3.4 Mutation operator
As  with
maintaining population diversity is crucial for the efficiency

other swarm intelligence  algorithms,
of the DFWA to promote full exploration of the most
interesting regions of the search space. Mutation is a major
diversification technique employed within swarm heuristic
algorithms. It refers to the process of increasing population
diversity to mitigate stagnation in unpromising areas and
promote the exploration of new search regions by
introducing random variations in the individual solutions
(Zhang et al,, 2022b). In this study, the mutation operator is
implemented through two search mechanisms—insertion
and inversion moves—which are chosen with equal
probabilities. Algorithm 4 presents pseudo-code for the

mutation procedure.

1: function Mutation (sol;)

2: n:=size(sol;); //Calculating the number of
elements in the individual sol;.

3: r=rand(@,1); //Randomly generating a number in
the range (0,1);

4 f r<0.5 then

5 MSpark = InsertionMove(sols,n);

6 else

7 MSpark = InverseMove(sol;,N);

8 end if

9 return MSpark ;

10: end function

Algorithm 4. Pseudo-code for the mutation procedure.

3.4.1 Insertion move

This move randomly selects the i-th and j-th positions (i # 1
and i < j) from a solution permutation and then inserts the element
in the i-th position in front of the element in the j-th position.
Figure 7 and Algorithm 5 show an illustration and pseudo-code of
the insertion move, respectively.
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1: function InsertionMove (sol;,n)

2: InsertSpark =sol;;

3: repeat

4: t1:=randint(1,n-1);

5: t2 =randint(1,A-1);

6: until t2-t1>1

7 tl=t1+1; t2=1t2+1; //Updating t1 and t2. To
maintain feasibility, the first position is not
selected in insertion move.

8: temp = InsertSparkys ;

9: fort=t1+1tot2-1do

10: InsertSparks 1= InsertSparks;

11: end for

12 InsertSparky 1= temp;

13: InverseSpark :=mapping(InsertSpark);

14 return InsertSpark;

15: end function

Algorithm 5. Pseudo code for insertion move.

1: function InverseMove (sol;,n)

2: InverseSpark =sol;;

3: t1:=randint(1,n);

4: if t1==1then//If thefirstpositionisselected,
then the other positionmust be a depot tomaintain
feasibility.

5: repeat

6: t2 :=randint(1,n);

7 until t2 # t1 and InverseSparks, € Vy

8: else

9: t2 :=randint(1,n);

10: if t2==1 then

11: repeat

12 : t1:=randint(1,n);

13: until t1 + t2 and InverseSparke € Vy

14: end if

15: end if

16 t=min{t1,t2}; t2:= max{t1,t2};

t1=t; t3:=[H52];

17: for t:=1t1 to t3 do

18: temp = InverseSparks ;

InverseSpark: = InverseSparky; ;
InverseSparky, = temp;

19: t2=t2-1;

20: end for

21: InverseSpark :=mapping(InverseSpark);

22: return InverseSpark;

23: end function

Algorithm 6. Pseudo code for inversion move.

3.4.2 Inversion move

Inversion move. This move randomly selects the i-th and j-th
positions (i # 1 and i< j) from a solution permutation and then
inverts the sub-permutation between both positions. Figure 8 and
Algorithm 6 illustrate the inversion move and its pseudo-code,
respectively.
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3.5 Mapping rule

Some of the generated sparks using the swap move and mutation
procedures could be infeasible, and they should be mapped back to
the feasible region. Indeed, if a spark generated by a move is
infeasible, at least one of the following two cases holds.

Case 1. The resulting customers’ demand assigned to the i-th
depot exceeds its capacity. In this case, a customer is randomly
selected from the set Cusd (i) of customers allocated to depot i
and assigned to a randomly selected open depot j, the remaining
capacity of which can satisfy the demand of the selected
customer. If no open depot can satisfy the selected customer,
a closed depot is randomly selected to serve such customer. This
procedure is repeatedly carried out until all open depots may
satisfy their customers’ demand.

Case 2. The resulting customers’ demand served by the k-th
vehicle exceeds its capacity. In this case, a customer is randomly
selected from the set Cusv (k) of customers served by the k-th
vehicle and assigned to a randomly selected vehicle starting at the
same depot as vehicle k, with remaining capacity available to
satisfy the selected customer’s demand. If no such vehicle exists, a
new vehicle will be launched in the same parking lot as vehicle k
to serve the selected customers. This procedure is repeated until
all vehicles may satisfy the demands of the customers they serve.

Algorithm 7 presents pseudo-code for dealing with both cases. The
random selection mechanism in the mapping rule ensures simplicity and
avoids excessive computation for small-to-medium OCLRP instances
but may lead to inefficiencies in large-scale cases (e.g., 100+ customers or
10+ depots). Repeated random selections can result in redundant
reallocations, such as frequently reassigning small-demand customers
or choosing depots and vehicles with minimal residual capacity, thus
increasing the need for additional repair steps. To address this issue, two
optimized strategies are proposed for future implementation while
preserving the core logic of the mapping rule:

1. Residual capacity-greedy selection: for depot-level capacity
violations (Case 1), prioritize reallocating the customer with the
highest demand from the overloaded depot to an open depot with
the largest available capacity; for vehicle-level violations (Case 2),
assign the largest-demand customer to the vehicle within the same
depot that has the maximum residual capacity.

. Distance-aware selection: when reallocating, combine residual
capacity with routing distance by selecting the depot or vehicle
that offers sufficient capacity and the smallest additional travel
distance (either from the customer or from the last customer in
the vehicle’s current route).

It is worth noting that the current random selection plays a crucial
role in maintaining population diversity in DFWA, thus helping avoid
premature convergence to local optima. For large-scale problems, a
hybrid approach (e.g., 80% greedy selection and 20% random selection)
could potentially balance computational efficiency and solution
diversity. However, such an approach would require further
parameter tuning and validation using large-scale benchmarks (e.g.,
instances with 200+ customers); this is reserved for future research to
avoid complicating the current DFWA framework.
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10
11
12

13:
14

15:

16

17

18:

19:

20

21:

22

23:

24
25:

26:

27

28:

29:

30:
31:

32:

33:

34:

35:

function Mapping (8)

Odep = the set of open depots included in the
solution permutation §;
Cdep = the set of closed depots included in the
solution permutation S;
Onum = the number of open depots included in Odep;
for 1:=1 to Onum do
Sum_Cus_dep = the total demand of the customers
allocated to depot Odep; ;
Set_Cus_dep = the set of customers allocated to
depot Odep; ;
while Sum_Cus_dep>Q; do //Eliminating the case
1: the total demand of the customers assigned to
depot i (i€ Vy) exceed its capacity Q;.
Cus_dep :=randomly select one customer fromthe
set Set_Cus_dep;
Sum_Cus_dep = Sum_Cus_dep — deys_dep ;
Set_Cus_dep = Set_Cus_dep - {Cus_dep};
Set_Cus_dep = the set of opening depots whose
remaining capacity satisfy the demand doys_dep ;
if Set_Cus_dep # @ then
dep = randomly select one depot
from Set_Cus_dep ;
Randomly insert customer Cus_dep intoone of

the distribution routes starting at
depotaewp;
else

dep = randomly select one depot from Cdep;
Allocate the customer Cus_dep to depot 855;
Odep = Odep |J {dep} ;
end if
end while
Vdepot = the set of vehicles which start at the
depot Odep; ;
Vnum = the number of the vehicles which start at
the depot Odep; ;
for j:=1 to Vnum do
Sum_Cus_V:= the total demand of the customers
assigned to vehicle Vdepot; ;
Set_Cus_V:= the set of customers assigned to
vehicle Vdepot;;
while Sum_Cus_V>P do //Eliminating the case 2:
the total demand of the customers served by
vehicle k (k € K) exceed its capacity P.
Cus_V:= randomly select one customer from the
set Set_Cus_V;
Sum_Cus_V = Sum_Cus_V —dcys_v ;
Set_Cus_V:=Set_Cus_V-{Cus_V};
Set_Cus_V:= the set of vehicles that start at

depot Odep; and whose remaining capacity
satisfy the demand deys v;

if Set_Cus_V # @ then

EV:= randomly select one vehicle
from Set_Cus_V;

Randomly insert customer Cus_V into the

distribution route of vehicle EV;
else
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36: A new vehicle denoted as VN is employed to serve
the customer Cus_V;

37: Set_Cus_V |J {VN};

38: end if

39:end while

40: end for

47: end for

42 return the mapped feasible solution;
43: end function

Algorithm 7. Pseudo-code of the mapping rule.

3.6 Improving the routes

For each solution generated using the explosion and
mutation operators, the distribution routes included in it are
improved using a greedy search method. The customers
assigned to the same distribution route may be rerouted in
this step. First, for each route, the customer nearest the depot
which provides service to it is routed. Next, the customer
nearest the last rerouted is selected. This is repeated until all
customers assigned to the current vehicle are rerouted.
Algorithm 8
distribution routes.

presents pseudo-code to improve the

1: function ImprovingRoutes (S)
2: Odep = the set of open depots included in the
solution permutation S;
3: Onum = the number of open depots included in Odep;
: for 1:=1 to Onum do
5: Vdepot = the set of vehicles which start at the
depot Odep; ;

6: Vnum == the number of the vehicles which start at
the depot Odep; ;

7: for j =1 to Vnhum do

8: Set_Cus_V:= the set of customers assigned to
vehicle Vdepot;;

9: Cusnum = the number of the customers assigned
to vehicle Vdepot;;

10: for k=1 to Cusnum do

11: if k==1 then

12 the nearest customer from the set

Set_Cus_V to the depot Odep;, denoted as
Ncus, is routed;
13: else
14: the
Set_Cus_V to the last rerouted customer,

nearest customer from the set

denoted as Ncus, is selected;

15: end if

16 Set_Cus_V:=Set_Cus_V -{Ncus};
17: end for

18: end for

19: end for

20: return the improved solution;

21: end function

Algorithm 8. Pseudo-code to improve routes.
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TABLE 4 Average results using different values of A for Gaskell67-21x5 and Gaskell67-29x5.

Gap,ye

Gaskell67-21x5 = Gaskell67-29%5

Average computing time (s)

Gaskell67-21x5

Number of runs that generated the
best-known solution
Gaskell67-29%5

Gaskell67-21x5  Gaskell67-29%5

0.5N 121 1.32 19.12 25.73 6 4
N 1.05 1.01 24.46 29.3 9 5
1.5N 0.89 0.63 29.1 3245 10 6
2N 0.93 0.59 33.96 37.67 9 7
2.5N 1.02 0.78 39.14 42.82 9 7
3N 0.72 0.75 44.33 49.59 10 6

3.7 Selection strategy

Based on the explosion and mutation sparks and the current
fireworks, N solutions are selected to form the next generation of
fireworks. The selection uses a fitness-and-Hamming-distance-
based strategy aimed at promoting good solution features as well
as diversity.

Prior to calculating the Hamming distance, each candidate sol; is
rewritten as gz;li, encoded through the depots’ indices and including
m + n elements. In sol;, the m depots (numbered 1 to m) are placed
in the first m positions in order, with the element gbjij (j>m)
representing the depot to which the j-th customer is allocated.
Figure 9 illustrates the transformation from sol; to ;&i. In it,
customers 10, 9, and 16 are allocated to depot 5 in sol;. Thus,
the sol; elements located in positions 10, 9, and 16 are five. Then, for
each solution sol;, an index R (sol;) is computed defined as the sum
of Hamming distances from sol; to the other individuals,
computed through

R(sol;) = (18)

jeF, j#i

Dis(soli,solj)= Z Dis(;gli,;dolj),
jeF, j#

where Dis (sol;, sol;) is the Hamming distance between sol; and sol;
(the Hamming distance between two permutations is the number of
positions at which the corresponding elements are different) and F
denotes the set of candidate solutions (consistent with the notation
in line 21 of Algorithm 1 and line 1 of Algorithm 9).

Our implementation passes down the individual with the best
fitness value down to the next generation. The remaining N -1
next-generation individuals are selected using the roulette wheel
principle, with probability Pro (sol;) of choosing the individual sol;
computed through Formula 19:

W + R(sol;)

1 5 N
Yier (7 Gol)” + Y rR(sol;)

Pro(sol;) = (19)

From Equation 19, observe that individuals with larger distances
and better fitness will have more chances of being passed on to the
next generation. Thus, this selection strategy promotes both the
good characteristics and diversity of the population. In Equation 19,
the quadratic power increases the probability of selecting good
individuals compared to the first power. Algorithm 9 presents
the pseudo-code implementing the selection strategy.
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1: function Select (F, N)//F is the set of candidate
individuals.

2: F=0; //F is the set of selected individuals for
next generation.
3: sumfitness =0;
4 Num =size(F); //Calculating the number of sparks
in the set F.
best =the firework with best fitness in the set F;
F=F|J{best}; //The individual with best fitness
value is passed down to the next generation.
7: F=F - {best};
8: for i:=1 toNum-1 do
9: Calculate the probability Pro(sol;) for each
firework or spark sol;jeF by using the
Equation 18;
10 : sumfitness = sumfitness +Pro(sol;);
11: end for
12: for i=1 to N-1 do //N-1 individuals are
selected using the roulette wheel principle.
13: pick :=random(@,1); //Randomly generate a
number in the range (0,1).
14 sum:=9;
15: Jj=1;
16: while sum< =pick do
17 sum:=sum+ Pro(solj)/sumfitness;
18: Jj=7+1;
19: end while
20: F=F{soljq}
21: end for
22 return F;
23: end function

Algorithm 9. Pseudo-code to select next-generation fireworks.

4 Computational analysis

This section reports extensive computational experiments
undertaken to assess the performance of the DFWA proposed to
solve OCLRPs. For reasons outlined above, we use the data of
benchmark CLRP instances without any adjustment to test our
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TABLE 5 Parameter combinations.

10.3389/fieng.2025.1686126

\[o} No.of fireworks M No. Of mut. sparks A

1 1.5(m +n) 1.5N m+n 1.5N
2 1.5(m+n) 1.5N m+n 2N
3 1.5(m+n) 1.5N 1.5(m+n) 1.5N
4 1.5(m+n) 1.5N 1.5(m+n) 2N
5 1.5(m+n) 2N m+n 1.5N
6 1.5(m+n) 2N m+n 2N
7 1.5(m+n) 2N 1.5(m+n) 1.5N
8 1.5(m+n) 2N 1.5(m+n) 2N
9 1.5(m+n) 2.5N m+n 1.5N
10 1.5(m +n) 2.5N m+n 2N
11 1.5(m+n) 2.5N 1.5(m+n) 1.5N
12 1.5(m+n) 2.5N 1.5(m+n) 2N
13 2(m+n) 1.5N m+n 1.5N
14 2(m+n) 1.5N m+n 2N
15 2(m+n) 1.5N 1.5(m+n) 1.5N
16 2(m+n) 1.5N 1.5(m + n) 2N
17 2(m+n) 2N m+n 1.5N
18 2(m+n) 2N m+n 2N
19 2(m+n) 2N 1.5(m+n) 1.5N
20 2(m+n) 2N 1.5(m + n) 2N
21 2(m+n) 2.5N m+n 1.5N
22 2(m+n) 2.5N m+n 2N
23 2(m+n) 2.5N 1.5(m +n) 1.5N
24 2(m+n) 2.5N 1.5(m+n) 2N
25 2.5(m+n) 1.5N m+n 1.5N
26 2.5(m+n) 1.5N m+n 2N
27 2.5(m+n) 1.5N 1.5(m+n) 1.5N
28 2.5(m+n) 1.5N 1.5(m+n) 2N
29 2.5(m+n) 2N m+n 1.5N
30 2.5(m+n) 2N m+n 2N
31 2.5(m+n) 2N 1.5(m +n) 1.5N
32 2.5(m+n) 2N 1.5(m+n) 2N
33 2.5(m+n) 2.5N m+n 1.5N
34 2.5(m+n) 2.5N m+n 2N
35 2.5(m+n) 2.5N 1.5(m+n) 1.5N
36 2.5(m+n) 2.5N 1.5(m + n) 2N
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TABLE 6 Results for parameter combinations.

Gap,e Average computing time (s) Number of runs that
generated the best-known solution

Gaskell67-21x5  Gaskell67-29x5  Gaskell67-21x5 Gaskell67-29x5  Gaskell67-21x5  Gaskell67-29x5

1 0.13 0.2 9.5 30.56 15 12
2 0.24 0.23 14.7 37.98 13 11
3 0.23 0.24 139 35.66 13 10
4 0.22 0.24 21.5 42.32 13 10
5 0.17 0.22 17.9 38.73 14 11
6 0.25 0.25 20.8 47.98 12 9
7 0.26 0.21 22.3 44.35 12 12
8 0.26 0.22 26.72 50.63 12 11
9 0.17 0.21 15.07 34.98 14 12
10 0.24 0.24 20.32 48.55 13 10
11 0.25 0.25 19.84 50.65 12 12
12 0.27 0.25 27.52 54.52 10 10
13 0.28 0.25 34.26 45.63 10 9
14 0.25 0.24 37.28 59.53 12 10
15 0.28 0.25 3543 50.46 10 8
16 0.27 0.25 39.82 62.73 11 10
17 0.17 0.24 33.36 47.66 14 10
18 0.14 0.2 38.58 53.75 15 12
19 0.23 0.21 39.18 48.23 13 11
20 0.17 0.21 42.37 55.36 14 11
21 0.26 0.23 41.56 57.64 12 11
22 0.28 0.26 48.29 66.27 10 10
23 0.27 0.27 43.38 53.81 11 10
24 0.13 0.22 47.53 64.78 15 11
25 0.23 0.21 40.27 47.96 13 12
26 0.13 0.19 44.32 56.38 15 12
27 0.25 0.22 48.45 66.43 12 11
28 0.27 0.25 53.75 72.48 11 9
29 0.18 0.24 45.23 52.34 14 10
30 0.24 0.23 54.92 63.66 13 10
31 0.27 0.26 50.69 67.23 10 9
32 0.28 0.27 59.85 75.86 10 10
33 0.27 0.27 63.83 68.57 11 10
34 0.29 0.32 61.18 67.33 9 9
35 0.29 0.3 66.29 71.92 10 10
36 0.31 0.31 73.67 79.64 9 9

The best results are indicated in bold in the tables.
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TABLE 7 Comparison among DFWA, FWA1, FWA2, FWA3, and FWA4.

Instance Metric DFWA FWA1 FWA2 FWA3 FWA4

Gaskell67-21 x 5 Mean obj 321.85 330.84 355.82 325.86 325.35
SD 2.90 8.49 19.52 5.70 4.79

Avg. time (s) 9.51 8.48 8.05 8.15 8.96

Best runs 15.00 6.00 1.00 8.00 7.00

p-value (vs. DFWA) 0.00 0.00 0.02 0.00

Gaskell67-22 x 5 | Mean obj 460.77 475.44 505.33 470.71 471.13

SD 4.08 9.85 15.75 7.00 7.04

Avg. time (s) 17.28 16.37 15.48 16.32 16.83

Best runs 14.00 3.00 0.00 4.00 4.00

p-value (vs. DFWA) 0.00 0.00 0.00 0.00

Gaskell67-29 x 5 Mean obj 389.46 402.93 418.75 392.70 393.35
SD 5.43 10.48 10.88 6.15 6.08

Avg. time (s) 30.58 28.45 28.03 28.25 29.17

Best runs 14.00 4.00 0.00 9.00 8.00

p-value (vs. DFWA) 0.00 0.00 0.06 0.03

50-5-1 Mean obj 64421.67 65432.32 65470.69 64880.50 64949.55
SD 158.03 579.78 635.39 386.65 431.31

Avg. time (s) 87.41 83.21 81.72 84.66 85.82

Best runs 5.00 2.00 1.00 3.00 3.00

p-value (vs. DFWA) 0.00 0.00 0.00 0.00

50-5-3b Mean obj 47615.66 48610.24 49230.19 48849.98 48600.44
SD 708.87 1,005.38 1,604.08 795.62 1,163.28

Avg. time (s) 93.68 86.24 88.58 89.07 90.85

Best runs 2.00 0.00 0.00 0.00 1.00

p-value (vs. DFWA) 0.01 0.00 0.00 0.01

100-5-1 Mean obj 224980.44 230378.59 239404.28 231091.49 229701.55
SD 2,411.08 6,196.99 6,119.07 4,825.30 4,706.74

Avg. time (s) 185.94 162.27 173.81 176.68 178.47

Best runs 4.00 0.00 0.00 0.00 2.00

p-value (vs. DFWA) 0.00 0.00 0.00 0.00

100-10-1 Mean obj 277251.15 279615.43 281385.79 279598.79 279483.10
SD 444.62 1806.06 2,467.45 1,635.20 1,470.96

Avg. time (s) 308.19 272.53 285.67 290.94 297.63

Best runs 0.00 0.00 0.00 0.00 0.00

p-value (vs. DFWA) 0.00 0.00 0.00 0.00

100-10-3b Mean obj 188834.81 191321.05 193503.69 190572.50 190050.84
SD 465.63 1,509.92 1775.70 1,186.42 1,034.21

Avg. time (s) 234.48 200.86 213.92 220.54 228.84

(Continued on following page)
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TABLE 7 (Continued) Comparison among DFWA, FWA1, FWA2, FWA3, and FWA4.

Instance Metric

Best runs 5.00

p-value (vs. DFWA)

algorithm. Implementation is based on Matlab R2016a, and
experiments were conducted on a laptop equipped with an A10-
7400P CPU at 3.40 GHz and 4 GB of RAM under Windows 10.

4.1 Parameter setting and sensitivity analysis

It is well-known that the proper tuning of parameters may
considerably affect the performance of most meta-heuristic
algorithms (Zhang et al.,, 2022a). In our DFWA case, we carried
out experiments with two randomly selected benchmark
instances—Gaskell67-21x5 and Gaskell67-29x5 (Yu and Lin,
2015) —averaged over 20 independent runs over each instance,
using the average gap with respect to the best known solution, the
average computing time, and the average number of runs to reach
the best solution depending on the following key parameters:
number of fireworks, parameter controlling the number of
explosion sparks, maximum explosion amplitude, and number of
mutation sparks. Only one parameter was modified at a time.

4.1.1 Number of fireworks

To properly set the number of fireworks, we investigated six
different values (0.5, 1, 1.5, 2, 2.5, 3) as multipliers of the number
n+m of customers and depots in the instance (i.e., 0.5(n + m),
n+m,....). Table 1 presents, for each number of fireworks, average
results over the 20 runs for both instances for the percent deviation
from the best-known solution (Gap,,, = w x 100%),
where BOV,,. is the average objective value over 20 runs and
BKOV is the best-known objective value reported in the
literature, the average computing time in seconds, and the
number of runs until generating the best solution.

According to this table, the number of fireworks plays a key role
in the performance of our DFWA. When a small number is
employed (like 0.5(n + m)), the algorithm tends to end up in a
local optimum, with a worse average objective value and a smaller
number of runs. On the other hand, for large numbers of fireworks
(like 3 (n +m)), better average results are attained, albeit at much
longer computational times. Based on the solution quality and
computing time, we would suggest using N = 1.5(n+m),
2(n+m), or 2.5(n + m) fireworks in our framework.

4.1.2 Parameter M

The number of explosion sparks is also a crucial parameter in
searching for good solutions. A small number of explosion sparks
might not strengthen exploration in a promising search region,
decreasing the possibility of obtaining the optimal solution.
However, a larger number of explosion sparks typically ends up
being very similar to an exhaustive method, greatly increasing
computing time. Table 2 presents average results over 20 runs
for both instances using different values of M which controls the
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number of sparks generated by a firework as a multiple of the
number N of fireworks, from 0.5N to 3N. This table suggests that
better values for M in our experiments are 1.5N, 2N, and 2.5N,
based on the number of runs and the values of Gap,,,.

4.1.3 Number of mutation sparks

For the proposed DFWA, properly balancing exploration and
exploitation critically depends on choosing a suitable number of
mutation sparks. A small number hinders the procurement of the
optimal solution as the entailed lower population diversity interferes
with escaping from a local optimum toward novel unexplored areas.
However, a larger number of mutation sparks resembles a naive
random multi-start approach. To select a suitable number of
mutation sparks, six different multiples of (n+m) were
considered. Table 3 presents average results over 20 runs for
both test instances, depending on the number of mutation
sparks. Comparatively better number of runs and optimality gaps

were globally obtained with n +m and 1.5(n + m).

4.1.4 Parameter A

In our algorithm, this parameter denotes the maximum swap
moves for generating one explosion spark. When A is small, the
sparks generated using swap moves cannot be sufficiently improved;
however, when A is too large, it is also possible to become trapped in
meaningless iterations. To properly set A, six values are considered
(as multiples of N). Table 4 presents average results over 20 runs for
our test instances. Comparatively better values of A are obtained in
our experiments with 1.5N and 2N based on the relatively better
average number of runs and value of Gap,,..

4.1.5 Parameter combinations

We undertook additional experiments to identify good
parameter combinations. Table 5 lists the 36 combinations tested,
based on those found above, for which ten runs over our two selected
Gaskell instances took place.

Table 6 presents the average results for each parameter
combination.

A closer look at Table 6 reveals that combination 26 shows
marginal advantages in solution quality and success rate—its Gap,,,
for Gaskell67-21x5 and Gaskell67-29x5 is 0.13% and 0.19% (slightly
lower than combination 20s 0.17% and 0.21%), and the number of
runs generating the best-known solution is 15 and 12 (same as
combination 20s 14 and 11). However, combination 20, associated
with parameter choices 2(m +n), 2N, 1.5(m + n), and 2N, was
ultimately selected as the optimal parameter set, the rationale lying
in the balance between computational efficiency and solution
quality, especially considering practical application scenarios. For
the two test instances, combination 20 exhibits slightly shorter
computation time than combination 26: 42.37 s vs. 44.32 s for
Gaskell67-21x5 (=2-s difference) and 55.36 s vs. 56.38 s for
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TABLE 8 Comparison of results with the OCLRP solved with CPLEX and best-known results of corresponding CLRP.

Instance CPLEX (
CPU (s) Gapcrp (%)

Srivastava86-8 x 2 8 2 200 - 377.09 0.05 -
Perl83-12 x 2 12 2 140 204.00 176.34 0.08 ~13.56
Gaskell67-21 x 5 21 5 6,000 424.90 320.17 0.64 —24.65
Gaskell67-22 x 5 22 5 4,500 585.10 458.33 0.92 -21.67
Gaskell67-29 x 5 29 5 4,500 512.10 386.26 39.13 -24.57
Gaskell67-32 x 5_1 32 5 8,000 562.22 395.57 116.11 —29.64
Gaskell67-32 x 5_2 32 5 11000 504.30 374.70 11.25 -25.70
Min92-27 x 5 27 5 2,500 3,062.00 2,110.03 19.19 -31.09
Daskin95-88 x 8 88 8 9000000 355.80 288.54 14400.00 ~18.90
20-5-1 20 5 70 54793.00 43849.00 3327 -19.97
20-5-1b 20 5 150 39104.00 33564.00 236 ~14.17
20-5-2 20 5 70 48908.00 41125.00 11.58 -1591
20-5-2b 20 5 150 37542.00 32520.00 1.53 -13.38
50-5-1 50 5 70 90111.00 64358.00 14400.00 -28.58
50-5-1b 50 5 150 63242.00 49114.00 3,400.59 -22.34
50-5-2 50 5 70 88298.00 68121.00 11171.33 -22.85
50-5-2b 50 5 150 67308.00 57815.00 14400.00 ~14.10
50-5-2bBIS 50 5 70 51822.00 41193.00 1,608.70 -20.51
50-5-2BIS 50 5 150 84055.00 60052.00 14400.00 ~28.56
50-5-3 50 5 70 86203.00 62581.00 14400.00 —27.40
50-5-3b 50 5 150 61830.00 46584.00 11238.06 —24.66
100-5-1 100 5 70 274814.00 228085.00 14400.00 ~17.00
100-5-1b 100 5 150 213615.00 190417.00 14400.00 -10.86
100-5-2 100 5 70 193671.00 167991.00 14400.00 -13.26
100-5-2b 100 5 150 157095.00 146668.00 14400.00 —6.64
100-5-3 100 5 70 200079.00 252087.00 14400.00 25.99
100-5-3b 100 5 150 152441.00 138364.00 14400.00 —9.23
100-10-1 100 10 70 287983.00 308507.00 14400.00 7.13
100-10-1b 100 10 150 231763.00 273445.00 14400.00 17.98
100-10-2 100 10 70 243590.00 295374.00 14400.00 21.26
100-10-2b 100 10 150 203988.00 260437.00 14400.00 27.67
100-10-3 100 10 70 250882.00 265158.00 14400.00 5.69
100-10-3b 100 10 150 204317.00 197206.00 14400.00 -3.48
Average 59.12 5.82 273923.64 106052.01 100894.00 8,256.21 ~12.41

The best results are indicated in bold in the tables.
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TABLE 9 Comparison between simulated annealing and the proposed DFWA.

Instance SA DFWA
CPU (s)  Gapcigp (%)  Gapcpiex (%) j CPU (s)  Gapcgp (%)  Gapcpiex (%)

Srivastava86-8 x 2 | 377.09 5.74 - 0.00 377.09 0.13 - 0.00
Perl83-12 x 2 176.34 1.33 ~13.56 0.00 176.34 037 -13.56 0.00
Gaskell67-21 x 5 320.17 3831 ~24.65 0.00 320.17 9.50 -24.65 0.00
Gaskell67-22 x 5 458.33 1.51 -21.67 0.00 458.33 17.30 -21.67 0.00
Gaskell67-29 x 5 386.26 47.03 ~24.57 0.00 386.26 3058 -24.57 0.00
Gaskell67-32 x 5_1 | 395.57 23.06 ~29.64 0.00 395.57 57.66 -29.64 0.00
Gaskell67-32 x 5.2 | 374.70 50.44 ~25.70 0.00 374.70 3231 -25.70 0.00
Min92-27 x 5 2,110.03 8.11 ~31.09 0.00 2,110.03 30.62 -31.09 0.00
Daskin95-88 x 8 285.91 763.58 ~19.64 -0.91 285.91 101.50 ~19.64 -091
20-5-1 43849.00 418 ~19.97 0.00 43849.00  31.59 -19.97 0.00
20-5-1b 33564.00  58.88 ~14.17 0.00 33564.00  31.45 ~14.17 0.00
20-5-2 41125.00 10.02 ~15.91 0.00 4112500 3498 -15.91 0.00
20-5-2b 32520.00 | 39.51 ~13.38 0.00 3252000  30.65 ~13.38 0.00
50-5-1 64217.00 | 34211 ~28.74 -0.22 64217.00 | 87.41 -28.74 -0.22
50-5-1b 49114.00 | 333.68 -22.34 0.00 49114.00  86.59 -22.34 0.00
50-5-2 68121.00 | 609.51 -22.85 0.00 68121.00  90.13 -22.85 0.00
50-5-2b 57355.00  582.93 ~14.79 -0.80 57355.00  88.47 ~14.79 -0.80
50-5-2bBIS 41193.00 | 866.25 -20.51 0.00 41193.00  91.92 -2051 0.00
50-5-2BIS 60045.00 576.05 ~28.56 -0.01 60038.00  86.55 -28.57 -0.02
50-5-3 62581.00 | 240.85 ~27.40 0.00 62581.00 8278 ~27.40 0.00
50-5-3b 46756.00 725.89 -24.38 037 46584.00  93.68 ~24.66 0.00
100-5-1 22369400 | 1,451.64 ~18.60 -1.93 222634.00 | 185.94 ~18.99 -2.39
100-5-1b 189208.00 | 8638 ~11.43 ~0.63 189208.00  97.42 ~11.43 ~0.63
100-5-2 16644500 | 190.98 ~14.06 -0.92 166328.00  69.97 ~14.12 -0.99
100-5-2b 144777.00  1840.07 ~7.84 -1.29 144689.00  205.83 ~7.90 -1.35
100-5-3 162805.00 | 2,351.64 ~18.63 -35.42 162746.00 | 291.57 ~18.66 ~35.44
100-5-3b 134632.00 | 472.71 ~11.68 -2.70 134632.00  97.85 ~11.68 -2.70
100-10-1 27741500  1,424.05 -3.67 ~10.08 276859.00 | 308.19 -3.86 ~10.26
100-10-1b 250198.00 | 2433.87 7.95 -8.50 220134.00 | 317.06 -5.02 ~19.50
100-10-2 213627.00 | 2,652.10 ~12.30 -27.68 213627.00 | 323.55 ~12.30 ~27.68
100-10-2b 190891.00 | 1895.08 -6.42 ~26.70 189818.00 | 311.62 -6.95 -27.12
100-10-3 21552600 | 2077.16 ~14.09 ~18.72 214056.00 | 319.96 ~14.68 ~19.27
100-10-3b 188243.00 | 1,461.79 -7.87 ~4.54 188243.00 | 234.48 -7.87 —4.54
Average 89781.38 717.16 ~17.57 ~4.26 88730.89 117.56 ~18.04 ~4.66

The best results are indicated in bold in the tables.

Gaskell67-29x5 (=1-s difference). While this time gap seems  benchmark testing (e.g., 10,000 runs for 33 OCLRP instances in
minimal in a single run, it accumulates significantly when the  Section 4.3) or real-world dynamic logistics scenarios (e.g., daily
algorithm is executed repeatedly—for example, in large-scale  route optimization for a company with 100+ delivery points), the
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TABLE 10 Current distribution routes and delivery costs.

Depots Distribution routes

1 1-18-17-6-1
1-9-13-8-1
1-16-12-7-1

2 2-14-15-19-11-2
2-20-10-5-2

Monthly delivery cost 93615 Yuan

TABLE 11 Capacities and rental costs of four potential depots.

Capacity Monthly rental
(Tons) cost (Yuan)
1 400 31000
2 300 35000
3 300 32000
4 300 32000

total time saved by combination 20 would be approximately
10,000%(2 + 1)/2 = 15,000 s (=4.2 h) for the two instances alone.
For larger instances (e.g., 100-5-1 with 100 customers), this
cumulative advantage would be even more pronounced, as
computation time scales with problem size.

In all these preliminary experiments, the best solution
obtained by the proposed DFWA could not be further
improved after 400 iterations where we had included a

10.3389/fieng.2025.1686126

maximum number G =500 of iterations and a termination
condition for the search process if the best solution thus far
found could not be improved after 100 iterations.

4.2 Comparative performance

As described, our DFWA was initially based on a greedy
initialization and iterated swap, insertion, and inverse moves
respectively employed to generate good initial solutions,
strengthen local search, and enhance population diversity. To
further investigate the effectiveness of the proposed search
strategies, we compared it with four alternative DFWAs by
solving eight representative OCLRP instances (small-scall:
Gaskell67-21x5, Gaskell67-22x5, Gaskell67-29 x 5. medium-scale:
50-5-1, 50-5-3b. large-scale: 100-5-1, 100-10-1, 100-10-3b)
systematically selected from 33 benchmark instances (Tables 7
and 8). These instances cover different scales and customer/depot
ratios to ensure generalizability. The alternative algorithms were

as follows

FWAL: initial solution is randomly generated rather than
through greedy search. This serves to evaluate whether the
proposed greedy approach enhances the overall performance
of the DFWA.

FWA2: proposed DFWA except for the iterated swap move
imitates the explosion operator, which is removed. This serves
to assess the effectiveness of such a move.

FWA3: proposed DFWA except for the insertion move, which is
dropped. This serves to assess the effectiveness of the
insertion move.

FWA4: proposed DFWA without inverse move, which is
therefore assessed.

FIGURE 11

Map with four potential depots (1-4) and 16 delivery points (5-20) (supermarkets).
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TABLE 12 Demand at each delivery point.

10.3389/fieng.2025.1686126

6 5.20 14 4.00
7 4.90 15 3.00
8 3.20 16 4.50
9 4.80 17 2.00
10 2.00 18 3.00
11 1.80 19 3.00
12 2.50 20 4.80

TABLE 13 Transportation distance in km between pairs of points.

1 8.4 3.4 32 4.1 5.5 14.0 16.6 12.1 10.1 16.8 27.2 4.6 152 3.1 22.8 16.7
2 4.2 13.8 9.7 12.5 10.2 6.4 10.6 9.0 16.4 4.8 16.2 9.8 25.3 9.7 14.1 6.1
3 13.4 2.9 8.8 9.0 11.1 19.4 22.2 17.8 13.9 21.2 325 10.1 9.6 7.0 28.3 21.8
4 7.4 5.6 6.8 9.1 9.0 13.8 17.5 13.9 15.6 13.3 25.5 8.2 16.0 32 22.6 15.1
5 0.0 10.6 5.6 8.3 6.0 6.4 10.1 6.8 12.7 9.1 18.9 5.6 22.6 6.7 15.3 8.5
6 0.0 6.5 7.3 8.9 16.7 19.7 15.2 14.4 18.3 29.6 7.8 12.1 43 25.5 19.0
7 0.0 29 2.7 10.8 133 8.7 8.8 14.6 242 1.5 23.1 3.7 19.4 13.7
8 0.0 2.6 12.3 14.0 9.4 6.1 17.1 259 2.6 18.6 6.2 20.5 15.6
9 0.0 9.7 114 6.8 6.7 15.0 23.3 13 20.8 6.5 17.9 13.1
10 0.0 4.3 44 14.2 8.3 13.6 10.0 28.8 12.7 8.9 3.7
11 0.0 4.6 13.9 12.0 13.2 12.1 31.8 16.1 6.6 6.5
12 0.0 9.9 12.2 17.1 7.6 27.4 11.8 11.2 8.0
13 0.0 21.0 27.1 7.8 232 12.4 20.4 17.9
14 0.0 13.1 14.5 29.3 14.3 13.2 5.8
15 0.0 235 41.4 25.5 7.4 10.6
16 0.0 19.8 52 18.5 13.1
17 0.0 16.1 37.8 30.8
18 0.0 21.7 15.0
19 0.0 8.3
20 0.0

To ensure a fair comparison, all four alternative algorithms
(FWA1-FWA4) adopt the same parameter combination as the
original DFWA. No separate parameter tuning was performed
for FWA1-FWA4; this eliminates the interference of parameter
differences on performance and ensures that any observed gaps in
results are attributed to the absence of specific components (greedy
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initialization, swap/insertion/inverse moves) rather than parameter
adjustments.

Table 7 reports the comprehensive performance metrics of the five
algorithms over 20 independent runs per instance, including mean
objective value, standard deviation (SD) of objective value, average
computation time (s), number of runs that found the best-known
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TABLE 14 Results obtained by implementing OCLRP and CLRP.

OCLRP

Distribution route

10.3389/fieng.2025.1686126

CLRP

Distribution route

3 3-7-16-12 3 3-8-9-13-3
3-6-18-8 3-7-18-17-3
3-17 3-6-3
2 2-14-20 2 2-15-19-11-10-2
2-5-9-13 2-12-16-5-2
2-10-11-19-15 2-14-20-2
Monthly delivery cost 82965 Yuan 93030 Yuan

TABLE 15 Monthly routing costs in Yuan at different fixed vehicle costs for the OCLRP.

Fixed vehicle cost

1,000

1,200 1,500

1,800 2,000 2,500 2,600 2,700

Delivery cost 82965 84165 85965

87765 88965 91965 92565 93165

solution, and p-values (vs. DFWA from Wilcoxon signed-rank test).
Except for the instance Gaskell67-29 x 5, in which the p-value for the
comparison between FWA3 and DFWA is larger than 0.05, all other
p-values were less than 0.05, indicating statistically significant
differences among FWA1-FWA4 and DFWA. Table 7 clearly shows
that DFWA outperforms the other four algorithms in all instances in
terms of both statistics. FWA2 provides the worst mean and SDj
additionally, pairwise differences between the original DFWA and
the four modifications seem significant according to the boxplots in
Figure 10. Table 7 also suggests that: (1) the combination of the
insertion and inversion move not only effectively improves DFWA
population diversity, allowing it to escape from a current local optimum
and move to non-previously visited spaces, but also enhances the
exploration capabilities of the algorithm; (2) besides effectively
strengthening the local search of the DFWA, the iterated swap move
also enhances the exploitation capabilities of the DFWA; (3) the greedy
approach tends to generate a relatively good-quality initial population,
playing a significant role in improving the DFWA performance. To sum
up, DFWA achieves better performance than FWA1-FWAA4.
Moreover, Table 7 also suggests that DFWA seems more stable
than the four variants, as also reported through the box plots in
Figure 10 portraying the results of the five FWAs on eight instances.

4.3 Benchmarking our DFWA

To assess the performance of our DFWA in solving OCLRPs, we
obtained 33 instances from the corresponding CLRP benchmark
instances, solved them, and compared their results with those in Yu
and Lin (2015) and their best-known solution.

Table 8 presents the benchmark results obtained by solving the
OCLRP with CPLEX and the best-known CLRP solution. Each row
provides the number 7 of customers, the number m of depots, the
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capacity Q of each depot, the best known objective value of the CLRP
instance (from Ting and Chen, 2013), the best objective value
obtained with CPLEX (from Yu and Lin, 2015), the CPU seconds

spent by CPLEX, and the percent deviation from the best-known
_ Obj. obtained using CPLEX-Obj. of CLRP
CLRP (Gapeige = Obj. of CLRP

% 100%). The last row provides average values. Values in bold

solution

indicate that the optimal solution is obtained within 14,400 s for
each instance. Yu and Lin (2015) used CPLEX 12.0 and a simulated
annealing heuristic implemented in Microsoft Visual C++ 2008 to
solve the OCLRP instances on a laptop equipped with A10-7400P
CPU at 3.40 GHz and 4 GB of RAM under Windows 10. These are
key parameters in the SA (Yu and Lin, 2015): the iteration number
equals 5000L, where L is the coding length of the solution
representation; the maximum allowable number of consecutive
temperature reductions without improvement in the solution
value is 100; the initial temperature is 30, and the final
temperature is 0.1; the Boltzmann constant used in calculating
the probability of accepting a worse solution is 1/9; the
coefficient of the cooling schedule is 0.99.

Some might question whether the objective function values
between the CLRP and OCLRP are comparable. After all, the
OCLRP vehicle costs should differ from those in the CLRP, since
the vehicles in the OCLRP are leased and are thus not owned by the
company. However, the objective values in Table 8 are only used to
explain that the logistics costs of the OCLRP are lower than those of
the CLRP when vehicle costs are the same. In reality, should the
logistics costs of the TPL company be lower than the logistics cost of
the company’s own distribution, the company would outsource its
logistics activities to the TPL provider. Otherwise, the company
would not outsource such activities. This provides a decision-
support argument in relation to outsourcing logistics.

As Table 8 shows, CPLEX finds feasible solutions for all
33 instances, with 16 of them optimally solved within 14,400 s.
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However, the computing time grows considerably with instance size.
For 26 out of 33 test instances, CPLEX provided lower objective
values than the corresponding CLRP instances. Such value
difference could suggest potential benefits of outsourcing logistics
(Yu and Lin, 2015). In particular, we can observe that the percentage
deviation from the best-known objective value of the CLRP varies
from -13.38% to —31.09%, indicating that the OCLRP can save
important costs by outsourcing logistics (about 19.33% for the
above-mentioned 26 instances).

Table 9 compares the results attained over the 33 OCLRP instances
with our DFWA and SA—a powerful state-of-the-art heuristic
algorithm for solving the OCLRP (Yu and Lin, 2015). As
mentioned, the OCLRP has been significantly less investigated in the
literature. Thus, we only compare the proposed algorithm with a
heuristic in our study, as it is difficult to find other heuristic
algorithms used to solve the OCLRP. Besides the objective value
(Obj.) and CPU time spent by both algorithms, the table also
provides the percentage deviation from the best-known solution of
the CLRP (Gapgp) and the percentage deviation from the best

solution obtained with CPLEX
_ Obj.obtained usingSA (or DFWA)-Obj. obtained using CPLEX 0
(Gapeprex = Obj. obtained using CPLEX x100%).

Values in bold indicate the best result between both algorithms. Note
that the best objective values obtained using SA are calculated using the
distribution routes found in Yu and Lin (2015).

From Table 9, we appreciate that SA and DFWA obtained the
same results in 23 instances, whereas DFWA produced better
solutions (and lower percentage deviations) in the remaining ten.
Moreover, the average percentage deviations (Gapgppx and
Gapg rp) produced by DFWA over the 33 instances are lower
than the corresponding values generated by SA. Thus, the
proposed DEWA slightly outperforms SA in terms of solution
quality. Concerning CPU times, we observe that, except for
instances Gaskell67-22 x 5, Gaskell67-32 x 5_1, Min92-27 x 5,
20-5-1, 20-5-2, and 100-5-1b, the DFWA spent far less
computational time in solving the instances. Note that different
hardware, compilers, and programming languages could have a
significant impact on the comparison. For our proposed DFWA, the
slower MATLAB code did not seem to result in very large
computational times.

Moreover, the results presented in Tables 7 and 8 enable a
comparison between our DFWA and the CPLEX implementation.
DFWA provides the same or better solutions. On the other hand,
CPLEX spent slightly less computational time than our DFWA in
most instances, with the number of customers smaller than 32.
However, for instances with 50 or more customers, CPLEX spent
much more computational time, and our DFWA provides better
solutions within less than 330 s. The average computational time
spent by CPLEX is about 8,256.21 s—much longer than DFWA’s
average 117.56 s. Thus, compared to CPLEX and SA, our DFWA
seems to provide good solutions in a reasonable time for large-size
OCLRP instances.

We also performed non-parametric Friedman and Wilcoxon
signed-rank tests (at a significance level 0.05) to assess the statistical
significance of the observed differences between DFWA and SA
based on the Gapip gy in Table 9. The average ranks for the
Friedman test are 1.35 and 1.65, respectively, for the DFWA and
SA, and the corresponding Friedman x? statistic and p-value are 10
(critical value is 3.84) and 0.002. This suggests a rejection of the null
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hypothesis and indicates a significant difference between DFWA
and SA results. Similarly, the Wilcoxon signed-ranks non-
parametric test was applied to detect differences between DFWA
and SA at instance level (pairwise comparison). The p-value was
0.005, suggesting the rejection of the null hypothesis and, again,
statistical differences between our DFWA and the compared SA.
Hence, the proposed algorithm seems truly competitive when
solving OCLRPs.

4.4 A real case

Given the successful benchmarking of our DFWA for OCLRP,
we tested it in a real case for a company that delivers to fruit and
vegetable supermarkets in Shanghai, China. This company has been
using five 12-ton capacity vehicles for daily distribution of
merchandise from two depots to 16 supermarkets in the city.
The transportation and monthly fixed costs (including only
monthly depreciation) are, respectively, 5 Yuan per kilometer
and 1,000 Yuan. Table 10 presents the current five distribution
routes and monthly delivery costs (covering routing, fixed vehicle,
depot rental costs). Depots are numbered 1 to 4 (the current two,
plus an additional two), with their features in Table 11, and
supermarkets are numbered 5 to 20.

In order to strengthen its competitive ability and save
distribution costs, this company considers optimizing its logistics
system. Besides the two current depots, two additional potential
depots numbered 3 and 4 are contemplated. Figure 11 illustrates the
locations of the depots and the supermarkets. Table 12 shows the
daily demand of these. Table 13 lists the distances between each pair
of points. The company needs to determine which depots from the
four candidates should be open to provide service to the
16 supermarkets and whether it should outsource its delivery
activities to a TPL company.

We solve the corresponding OCLRP and CLRP with our DFWA
with results in Table 14. Compared with Table 10, we observe the
differences between the current distribution routes and those
obtained using the OCLRP and CLRP formulations. These two
not only suggest the same open depots (2 and 3) but also produce the
same number of distribution vehicles (six). However, as the last row
in Table 14 shows, the monthly delivery cost using OCLRP is
82965 Yuan, which is less than 93030 Yuan produced with the
CLRP formulation. The savings with respect to the current
distribution routes are 11.38% (OCLRP) and 0.62% (CLRP).
These results indicate that large distribution costs can be saved if
the company outsources its delivery activities to a TPL company.

The same transportation and fixed vehicle costs are used for OCLRP
and CLRP in the above discussion. We now analyze whether the
company would still need to cooperate with a TPL provider should
the unit transportation and fixed vehicle costs of the TPL company be
larger than those used by the company-owned logistics. For different
fixed vehicle costs, we obtained the same distribution routes shown in
Table 14. Table 15 presents the monthly routing costs at different fixed
vehicle costs for the OCLRP. As shown there, so long as the fixed vehicle
costs are less than 2,700 Yuan, cooperation with a TPL provider seems a
good option because the monthly delivery costs generated using OCLRP
are less than the 93030 Yuan required if in-company logistics are used.
However, when such costs are larger than 2,700 Yuan, it is better for the
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company to deliver the merchandise to the supermarkets through its
own logistics.

5 Discussion

We have studied the OCLRP, a variant of the classical CLRP, in
which vehicles do not return to distribution centers or depots after
having served the customers, and we proposed an effective DFWA to
solve the OCLRP. This algorithm includes repeated swap moves to
strengthen local search and improve solution quality. Moreover, to
guarantee fireworks diversity, we implemented not only insertion and
inversion moves in the mutation process but also a fitness-and-
Hamming-distance-based ~selection strategy to select the next-
generation fireworks. To verify the performance of the proposed
DFWA, an extensive numerical experiment was carried out with
33 benchmark CLRP instances. Numerical results suggest that the
proposed algorithm is quite competitive compared with the best-
published results both in terms of solution quality and
computational time. In addition, the differences between the CLRP
and OCLRP solutions are further illustrated through a real case study
providing improved distribution routes as well as information to
support logistics outsourcing decisions.

Several potential extensions for this work include (1) developing
other variants of the OCLRP, such as OCLRP with time windows,
multi-objective OCLRP, and OCLRP with stochastic or fuzzy
demands; (2) designing other meta-heuristic algorithms to solve
the OCLRP and its variants; and (3) adapting the DFWA to solve
other variants of FLPs and VRPs.
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