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Hybrid heuristic approach for
generalized police officer
patrolling problem

Fumito Kudo?, Hiroaki Tohyama? and Masaki Tomisawa?*

'Department of Life Science and Informatics, Graduate School of Engineering, Maebashi Institute of
Technology, Maebashi, Gunma, Japan, Department of Life Engineering, Faculty of Engineering,
Maebashi Institute of Technology, Maebashi, Gunma, Japan

In urban areas with many commercial facilities, patrolling by police officers or
security guards is essential for crime prevention, in addition to the use of
surveillance cameras. To address the challenge of planning effective patrol
routes, Tohyama and Tomisawa introduced the Police Officer Patrolling
Problem (POPP), an arc routing problem that allows for visual monitoring
from intersections and is proven to be NP-complete. Building on this work,
we propose the Generalized POPP (GPOPP), a more realistic bi-objective
combinatorial optimization model. This model simultaneously minimizes the
total patrol route length and maximizes the coverage of surveillance areas.
The contributions of this paper are threefold: (1) we formulate the GPOPP by
incorporating practical constraints, such as mandatory patrolling of high-security
roads and visibility-based coverage from intersections; (2) we develop a novel
hybrid heuristic method that combines a multi-objective evolutionary algorithm
(MoEA-HSS) with an improved Jaya algorithm to solve the GPOPP effectively; and
(3) we conduct comprehensive computational experiments using benchmark
instances to evaluate the effectiveness and competitiveness of the proposed
method. These contributions demonstrate the practicality and efficiency of our
approach for addressing realistic urban patrolling problems.

KEYWORDS

arc routing problem, police officer patrolling problem, genetic algorithm, MoEA-HSS,
Jaya algorithm

1 Introduction

In the fields of information engineering and science, to solve various social and
economic problems, these problems are generally structured as mathematical models,
and solutions are found using algorithms that are suited to that structure. Many of these
problems are modeled using discrete graphs, and there are many studies on them.

One of the problems modeled by discrete graphs is the routing problem. Routing
problems are classified as node routing problems (NRPs), which traverse the nodes of a
graph, and arc routing problems (ARPs), which traverse the edges (or arcs). A typical NRP
is the traveling salesperson problem (TSP). The TSP is a problem that involves finding the
minimum-cost route that visits every vertex exactly once. The vehicle routing problem
(VRP) (Dantzig and Ramser, 1959) is a generalization of the TSP. This problem involves
planning transportation from a distribution center to multiple customers using trucks or
other transportation methods. Both the TSP and VRP are NP-hard; thus, evolutionary
algorithms, such as genetic algorithms (GAs), have been studied (Elatar et al.,, 2023).
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The most famous ARP is probably the Euler circuit problem.
This problem determines whether there exists a circuit that traverses
all edges exactly once for a given graph, and this problem is solvable
in polynomial time. The Chinese postman problem (CPP) (Mei-Ko,
1962), which is a generalization of the Euler circuit problem,
involves determining whether a tour exists for a post officer in a
given area within a given amount of time that starts and ends at the
post office. The post officer must traverse every street in the area at
least once; however, they may traverse any street several times. The
CPP on undirected or directed graphs can be solved in polynomial
time (Edmonds and Johnson, 1973). Papadimitriou (1976) showed
that the CPP on mixed graphs is NP-complete. Mixed graphs
represent realistic situations in urban areas with both two- and
one-way streets. The rural postman problem (RPP) is a
generalization of the CPP with a given set of edges that must be
traversed by a post officer. This problem considers the fact that, in
rural areas, not every street has a delivery destination. Lenstra and
Rinnooy-Kan (1976) and Lenstra and Rinnooy-Kan (1981) showed
that the optimization version of the RPP on undirected or directed
graphs is NP-hard. The capacitated ARP (CARP) is an ARP
corresponding to the VRP, which belongs to the NRP. The CPP,
RPP, and CARP correspond to mathematical models of real social
problems such as postal delivery, delivery planning, snow shoveling,
and garbage collection. Finding exact solutions for the CPP and RPP
optimization problems is intractable, along with the TSP and VRP;
thus, various heuristic methods have been proposed for these
problems. Recent examples include methods using GAs (Gil-Gala
et al,, 2023), the Tabu search algorithm (Tang et al., 2024), and ant
colony optimization (Sgarro and Grilli, 2024).

Police patrols play a crucial role in preventing crimes and
accidents, thereby ensuring public safety within their
jurisdictions. Recent studies such as (Kim et al.,, 2023; Dewinter
et al., 2020; Samanta et al, 2022) have proposed methods for
optimizing patrol routes. These approaches primarily employ
heuristic algorithms to generate efficient patrol routes for
multiple officers operating within the shared area.

Recently, Tohyama and Tomisawa (2022) proposed the police
officer patrol problem (POPP) as a mathematical model of the
patrolling route problem of police officers (or security guards), and
showed that the decision problem is NP-complete (Tohyama and
Tomisawa, 2022). Patrolling areas generally include one- and two-
way streets; thus, the POPP is modeled using a mixed graph. At each
intersection, police officers may conduct security checks visually
even if they do not traverse the streets connecting to it. If the POPP is
considered a CPP model, it is necessary to find a patrolling route that
traverses all streets. The POPP model allows some streets to conduct
visual security checks without traversing, making it possible to find
more efficient patrolling routes. In addition, Tomisawa and
Tohyama showed that the POPP on weighted digraphs is NP-
complete (Tomisawa and Tohyama, 2024).

In this study, we introduce the generalized POPP (GPOPP) as a
model to adapt the POPP to more realistic patrolling routes by police
officers. The POPP model requires that all areas be guarded.
However, in reality, some streets require security because
important facilities are located there, and some roads do not
necessarily require security (Chainey et al., 2021). In addition,
there are cases where a patrolling route needs to be found that
can be patrolled within a given time. Therefore, we define the
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GPOPP as an optimization problem with the following two
objectives. The first objective is to find the shortest patrolling
route among the routes that traverse all high-security streets. The
second objective is to find a patrolling route that guards as large a
given area as possible (maximizes coverage).

Many GAs have been proposed to solve multi-objective
problems (Deb et al., 2002; Sardinas et al., 2006; Pizzuti, 2009;
Ghoseiri and Ghannadpour, 2010; Aiello et al., 2012; Akyurt et al.,
2015; Yu et al,, 2015; Lu et al,, 2019). The hybrid sampling strategy
based multi-objective evolutionary algorithm (MoEA-HSS) (Zhang
et al., 2014) is based on a hybrid sampling strategy that combines a
vector-valued GA (VEGA) (Schaffer, 2014) and a sampling strategy
according to the Pareto dominating and dominated relationship-
based fitness function (PDDR-FF) (a goodness-of-fit function based
on Pareto dominance-dominance relations). The MoEA-HSS has
demonstrated effectiveness for several problems. The Jaya algorithm
(Rao, 2016) is a meta-heuristic algorithm with a very simple
structure based on the concept that solutions obtained for a
particular problem progress toward the best solution and avoid
the worst solution. We propose a hybrid heuristic approach that
combines the MoEA-HSS with an improved Jaya algorithm, and
demonstrate its effectiveness through numerical experiments.

The remainder of this paper is organized as follows. In Section 2,
we formally define the Generalized Police Officer Patrolling Problem
(GPOPP) and present the necessary graph-theoretical concepts.
Section 3 provides a mathematical formulation of the GPOPP as
a bi-objective optimization problem. In Section 4, we describe the
proposed hybrid heuristic method that combines the MoEA-HSS
and an improved Jaya algorithm. Section 5 presents the results of the
numerical experiments conducted to evaluate the performance of
the proposed method. Finally, Section 6 concludes the paper and
discusses potential directions for future research.

2 Generalized Bolice officer patrolling
problem (GPOPP)

In this study, we introduce a bi-objective problem that can be
applied to more realistic problems based on the POPP, which is NP-
complete edge routing decision problem, and propose a heuristic
algorithm to solve the problem. One police officer (or security guard
or robot) is assigned to a security area, and each officer patrols his/
her assigned area. Each street through which a police officer is
traversed during a patrol is considered guarded. In addition, except
for streets with important facilities, police officers are allowed to
visually confirm each street adjacent to an intersection without
traversing it. The GPOPP is a bi-objective optimization problem
with the following two objectives: One is to find the patrolling route
with the shortest length, and the other is to find the route with the
largest guarded area. Here, we note that all high-security streets must
be traversed. In this section, we define the notion in graph theory
necessary to formulate the GPOPP.

Throughout this paper, let N = {1, 2, 3, ---} be the set of all
natural numbers. Let I, =1{0, 1, 2, -=-, k—1} and I} =
{1, 2, 3, -, k} for each keN. Let G=(V,E,A) be a
connected simple mixed graph, where V is the set of vertices, E
is the set of undirected edges and A is the set of arcs. Hereafter, the
number of vertices in G is denoted asnand fixedto V' = {1,2, ..., n}.
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Here, we denote an undirected edge by {u, v} and an arc by (u, v).
The term “edge” refers to either an undirected edge or an arc,
denoted by <(u,v). Thus, if <{u,v) is an undirected edge,
{u, vy = {v,u); if it is an arc, {v,u) ¢ A.

Let mq, be a sufficiently large positive integer. Then, let d be a
function from V? to N satisfying the following conditions: for all
u,vev

1. d(u,v) =d(v,u),
2. {u,v) e EUA or {v,uy e EUA = d(u,v) <,
3. {u,vy, (vu)y ¢ EUA = d(u,v) = mg,.

Here, d (1, v) denotes the distance between u and v if there exists
an edge {u,v) (or {v,u)). For convenience, d(u,v) = my when
there is no edge between u and v.

Let H be a subset of EU A. We consider that there exist
important facilities on each edge in H that must be stopped at.
Each edge in H is considered a high-security edge. A sequence s: v,
V1, V2, *+*, Vi of vertices is considered a patrolling route on G if the
following conditions hold:

1. The sequence s is a walk. That is, {v;, vi11) € E U A for each
i€l

2. All edges in H are on s. That is, if {u, v} € H, there exists i € I
satisfying u=v; and v=vu4; or u=vy, and v=v. If
(u,v) € H, there exists i € I satisfying u = v; and v = vj,.

3. vk = vo. That is, the walk s is closed.

The length L(s) of a patrolling route s is the total sum of the
distances of all edges on s and is calculated as follows:

k-1

L(s)= Z d (Vi Vis1).

i=0

For a patrolling route s, let Vi={v;eV |iel} and
E, = {{v;,vis1y € EUA |ie€l}. Here, V; denotes the set of
vertices on s, and E; denotes the set of edges traversed in s. Let
{u,v) be an edge of G. If u € V; or v € V, the edge is considered
guarded. In particular, if {u,v) € E,, said the edge is considered
guarded by traversing; otherwise, if exactly one vertex of u and v is in
V,, the edge is considered guarded by visual confirmation.

Let E9 = {{u,v) e EUA |u eV orve Vg be a set of edges
guarded by a patrolling route s. Then, the total sum of the distances
of all edges guarded by s is denoted as ¥’ ,, ,seped (1, v). The total sum
of the distances of all edges of G is denoted as Y, yepad (4, V);
thus, the covered ratio cov(s) of G by s is defined as follows:

cov(s)=< z d(u,v))( Z d(u,v)) )
(uvyeE? (u,vye€EUA

Similarly, cov(s) = 1 — cov(s) is called the noncovered ratio of G
by s. For any patrolling route s of G, 0<cov(s)<1 and
0<cov(s) <1 holds.

An example of a patrolling route for a mixed graph is illustrated
in Figure 1. The red edges represent high-security edges, and the
blue line indicates a patrolling route. The green area is guarded by
this patrolling route. In particular, the green area not on the
patrolling route is guarded by visual confirmation. The graph
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shown in Figure 1 has 60 vertices and 104 edges. Let us assume
that the distance between any two vertices is one. Then, the length of
the patrolling route is 44. The total sum of the distances of the
guarded edges is 84, and the covered and noncovered ratios are
0.808 and 0.192, respectively.

Let v; (i € It) be a vertex on a patrolling route s: vy, v1, v2, ***, Vi
of a mixed graph G = (V,E, A). If {vi_1,v;), {vi,viz1) ¢ H and
{vi-1,vis1y € E U A, then the sequence s”: vo, Vi, v, *** s Vi1, Vi1, "+

V-1, Vk by removing v; from s is also a patrolling route of G (In the
casei =0,s": vy, v, v3, =, Vi1, v1 is @ patrolling route if (vi_y, i),
vo,viy ¢ H and (-1, v1) € EU A). Some edges guarded by
visual confirmation from v; on s may not be guarded on s/,
although two edges removing from s are guarded by visual
confirmation. That is, cov(s) <cov(s') holds. On the other hand,
the increase or decrease in the length of the sequence vo, vy, v2, -+, vk
does not determine the increase or decrease in the length of the
patrolling route. That is, L(s") < L(s) holds if the triangle inequality
d(vits vie1) <d (v, vi) + d (v, vigr) (d(viens vi) < d (v, vi) +
d(vg, v1) in the case i = 0) is satisfied, otherwise, L (s) < L(s’) holds.

3 Formulation

The GPOPP is a bi-objective optimization problem that obtains
a patrolling route with the shortest length and the lowest noncovered
ratio for a given connected simple mixed graph G = (V, E, A), a set
HCEUA of high-security edges, and a distance function
d: V? — Z*. The parameters n, ¢,,, h,,, and d,,, for the GPOPP
are defined as follows:

(i) n: number of vertices.

.. |1, if<u,v) e EUA,
(i) cuy = {O, otherwise.

If G has an undirected edge {u, v}, c,,, = ¢,, = 1;if G has an arc
(u,v), cyy =1 and ¢,,, = 0.

1, if{u,v) € H or {v,u) € H,
0, otherwise.

(111) hu,v = {
Note that h,, = h,, =1 even if {u,v) is an arc in H.

(iv) dy, = d(u,v) for each (u,v) € V2.

1, ifcy,+¢pu>0
! > u,v v\u >
V) Chy = .

V) Cuy {0, otherwise.

In other words, c,;,, = 1 when there is an edge that has endpoints
u and v; ¢, = 0 when there is no edge between them in the mixed
graph G. c,;, is immediately obtained from c,,,.

The decision variables for the GPOPP are x,,, and y,,. The
decision variable x,,, represents the number of times the edge {u, v)
is traversed from u to v. If there exists no edge between u and v,
Xuy = 0. The decision variable y,,, is expressed as follows:

13 S
> if kz Xy, >0 and Z Xk >0,
=1 k=1
(Vi) Yuy = . = <
1, if Z Xuk > 0 and Z Xyk = 0,

k=1 k=1

0, otherwise.
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FIGURE 1

Patrolling route (blue line) on mixed graph. The red edges represent high-security edges, and the green area indicates a guarded area.

We remark that Y_;x, is strictly positive if and only if the
vertex u is in V. Thus, y,, = y,, = % when both u and v are on s;
Yuy =1 and y,,, = 0 when u is on s even though v is not on s. Note
that y,, = yyu = % does not mean that {u,v) or {v,u) are in E;.
Then, Y7 _ 3" _ it yduy Yy denotes the total length of edges guarded
by the patrolling route s.

Let x = (x11, X12, ***» Xna) be an n’-tuple of nonnegative
integers. The mathematical model for the GPOPP is formulated
as follows:

n

n
3 Y o
u=1 v=1
n-1 n !
! !
Cup iy Yu z z Cup@uy | -
u=1 v=u+l

n
minimize f,(x) = 1- (Z
The objective function f; is the function that minimizes the

minimize f; (x)

M=

I
—

u=1 v:

total length of the patrolling route, and f, is the function that
minimizes the noncovered ratio.
The following constraints must be satisfied:

Xy 20 (VY u,veV), (1)
cy=0=x,,=0 (Vu,veV), (2)
hyy=1= x4, +%,,>0 (Yu,veV), (3)
Y Xpu=Y xuy (Yuev), (4)

v=1 v=1

W+PAW 2V, = Z qu’,,>0 (YW cV,), (5)

uew v¢w

where Vo ={u eV | Y'_ x,, >0} is the same as V defined in the
previous section. Equation 1: The number of times to directly
traverse from u to v is nonnegative. Equation 2: If there exists no
edge between u and v or even if there exists an arc from v to u, it is
not possible to directly traverse from u to v. Equation 3: The edge
{u,v) (or {v,uy) must be traversed if it is a high-security edge.
Equation 4: For any vertex u, the number of times traversed from
other vertices to u is the same as the number of times traversed from
u to other vertices.

Frontiers in Industrial Engineering

Suppose that x does not satisfy Equation 5. Then, there exists a
nonempty proper subset W of V, that satisfies ', .Y e Xuy = 0.
This means that any edge {u, v) incidenttou € Wandv eV, -W
is not traversed; therefore, x represents two or more separate walks.
In other words, based on Equation 5, the patrolling route is a
continuous closed walk.
mathematical

The notation used in formulating the

programming model for GPOPP is summarized as follows:

Parameters
Cuy 1if (u,v) € EU A, 0 otherwise
Ciny 1if (u,v) € EU Aor {v,u) € EU A, 0 otherwise
dyy same as d (u,v)
hyy 1if (u,v) € H or {v,u) € H, 0 otherwise
n number of vertices

Decision variables
Xy number of traversing from u to v
Vuy % if both u, v on s, 1 if only one of u or
vis on s0 otherwise,
Objective functions
f1 minimize the length of the patrolling route L(s)

fa minimize the length of the non-covered ratio cov (s)

4 Proposed methods
4.1 Framework

The GPOPP requires two conflicting objectives to be considered
simultaneously: minimizing the total length of the patrolling route
and minimizing its noncoverage ratio. Many Pareto-optimal
solutions with incomparable qualities must be generated for the
decision-maker. In this section, we introduce a hybrid heuristic
approach based on the MoEA-HSS and the improved Jaya algorithm
for the GPOPP.

The MoEA-HSS is based on a hybrid sampling strategy that
combines the VEGA and a sampling strategy according to the

frontiersin.org
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Procedure: Hybrid MoEA-HSS and Improved Jaya Algorithm
Input: data set of problem and parameters used by evolutionary algorithm

Output: Pareto-optimal solutions £
begin
t.=1;

set archive A(t) to be empty and randomly create P(¢) by Initial Population ;
calculate the objective functions f1(p) and f2(p) for each individual p in P(t);
calculate the fitness eval(p) for each individual p in P(¢);

create Pareto F(P(t)) and keep the best Pareto solution;

while (¢t < MaxGen) do
// Phase 1:

create mating pools M (¢) and M»(t) from P(t) by VEGA,
combine mating pools M (t), Ms(t) and the archive A(t) as integrated mating pool M (t);

// Phase 2:

create P(¢ + 1) from M (t) by Crossover, Mutation, and Improved Jaya algorithm;

// Phase 3:

calculate objective functions f1(p) and fa(p) for each p in A(¢) and P(t + 1);
calculate fitness eval(p) for each p in A(¢) and P(¢t + 1);

update archive A(t + 1) from P(¢ + 1) and A(¢);

update Pareto E(P(t + 1)) and the best Pareto solution;

t:=t+1;
return Pareto-optimal solutions E(P(t))
end;

FIGURE 2
Pseudocode for the proposed method.

A(t)

tion ¢ ol
geheration [ n, individuals ]

P(t)
[ n(t)(> nyp) individuals ]

Phase 1

Phase 2

[ n, individuals ]

g v 0
A(t) M (t) Ms(t)
[ no individuals | [[ n,/2 individuals | | [ n,/2 individuals |
Crossover
D Mutation & Jaya
A(t) P(t+1)

[ n(t+ 1)(> n,) individuals |

Phase 3 @

copy the best n, individuals into A(¢ + 1)
from A(t) & P(t + 1) by value of eval

At +1)

eneration t + 1
& [ n, individuals |

P(t+1)
[ n(t + 1)(> n,) individuals |

FIGURE 3
Phases 1-3 of the proposed method.

PDDR-FF. The sampling strategy of the VEGA is a natural
extension of simple GAs in the sense that the individuals are
divided and reproduced independently according to each
objective function. It prefers the edge region of the Pareto
front with less time complexity, and the qualities of the
solution are not good because of the selection bias.
Conversely, the PDDR-FF-based sampling strategy tends to
converge toward the central area of the Pareto front. The
combination of these two mechanisms is expected to maintain

both the convergence rate and distribution performance. The

Frontiers in Industrial Engineering

Jaya algorithm modifies a given individual to move closer to the
best solution and away from the worst solution based on the best
and worst candidates in the population. The Jaya algorithm is
expected to accelerate the convergence rate.

The main framework of the proposed method is shown in
Figure 2. The assemblage of chromosomes in each generation ¢ is
divided into two groups A(t) and P(t). A(t) and P(t) are called
Archive and Population, respectively. The Pareto solution set update
shown in the figure follows the same procedure as in the MoEA-HSS
(Zhang et al., 2014) framework.
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Procedure: Initial Population
Input: population size n,,
Output: initial population P(1)
begin
set P(1) to be empty;
t.=1;
while t < n), do
fore; e H=1{ei,e2, -+, en} do
if e; = (u, v) is an undirected edge then
randomly select either u or v and set it as u; 1, and set the unselected edge as u; 2;
else
setu; 1 := v and u; 9 = v;
randomly select a bijective function o on I,};
for: € I;;fl do
randomly select a gene v;; and find the shortest walk w(u, () 2, Vj; Ug(i41),1];

randomly select a gene vj,, and find the shortest walk w(uy (1) 2, Vj,n> Ug (1,13
generate a chromosome g from constructed m walks;
p := Improvement(q);
append p to P(1);
t:=t 5
return P(1)
end;

FIGURE 4
Pseudocode for the creation of the initial population.

U v
0=, —0
Vp—1i0o (V1 U2
I Vit2 [Vitl | Vi Vj—1 Vj4+2 Vj43
—> ‘ — ;

0=, —0
Vkp—11Vy V1 V2

—

o ©
Vj-1 ’U E'Uj+1 V542

- A

O o)
Vi+2 (Vi1 i Vi Vi—1

FIGURE 5
Construction of patrolling route from which redundant traversing of undirected edges is reduced: (a) case i < j, (b) case j < i.

Let 11, be a positive constant. Initially, archive is set to empty,
and the initial population consists of 7(0) (>#,) individuals. For
each individual p in population, the objective functions f, (p) and

eval (p) = ga (p) + m.

f2(p) and the evaluation function eval (p) are calculated. We adopt Based on these values, the Pareto-optimal solution in the
the PDDR-FF as the evaluation function eval. Let g;(p) be the  population is obtained and maintained.

number of individuals that can be dominated by the individual p and The following three phases are executed in each generation t. In each
gnd (p) be the number of individuals that can dominate the  generation t( > 1), archive A (t) contains 1, individuals and population
individual p. Then, P(t) contains n(t)(>n,) individuals generated by genetic operations
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Procedure: Improvement
Input: individual p = (vo, v1, v2, - - -, Vg—1)
Output: improved individual g

begin
Zyw = 0foru,v € V;
for i € I do

Zvvg = Rvg T L

q:=p;
forue{1,2,---,n—1}do
forve{u+1l,u+2,---,n}do
q = q;
if 2, p2p,u > 1 then
if 2y > 2y, then
let y =wvand v = v;
else
let u =vand v = u;

find a gene locus [ such that v; = p and v+ = v;

generate ¢'(1) from q’;

(Let the new chromosome ¢’ (1) be regarded as the sequence (v, v1, vz,

if 2, = 2z, then
=z — L
else
T:=|zup — 2l +1
t:=0;
while t < T do

) vk’—l) again)

find a gene locus ¢ such that v; = v and v; 11 = p;
find a gene locus j(# 0) such that v; = pand v = v;

if i < j then

generate ¢ = (U, U1, V2, ** 5 Vi—1, Ujr1s Vja2, ==+ » Vg1 Vit 1, Vig2 =+ * 5 Vj—1)
else
generate q — (uo, U]'_H, ’Uj.;,_g, s, Vi—1, V1,02, 000, Uj_1 Vit1s Vi42 """ 'Uk—l)
t:=t+1;
return g
end;

FIGURE 6
Pseudocode for the improvement of individual.

(Crossover and Mutation) and Improved Jaya algorithm in the previous
generation.

Phase 1: generating mating pools

1. Using the VEGA, two subpopulations M, (t) and M, (t),
called mating pools from P(t), are created. M;(t) is
created by 1n, individuals selected from P(t) based only
on the value of f;. Then, the value of f, is ignored. Similarly,
M, (t) is created by %np individuals selected from P(t) based
only on the value of f5.

. An M (t) created by
combining the two mating pools M, (t) and M,(t) and
Archive A(t).

integrated mating pool is

Phase 2: create P(t + 1)

For individuals in the integrated mating pool M (1),
Crossover and Mutation operations and the Improved
Jaya algorithm are applied, and the ft+ 1-th generation
population P(t + 1) consisting of n, or more individuals is
created. These three operations are described in detail in
the following.
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Phase 3: create A(t + 1)

1. For each p in A(t) and P (t + 1), the values f; (p), f» (p), and
eval (p) are computed.

. A(t +1) is created by selecting n, individuals from A(t) and
P(t + 1) in the order of decreasing eval value.

Phases 1 - 3 of the proposed method are depicted in Figure 3.

4.2 Chromosome representation and notation

The most natural route expression is adopted as the chromosome
expression in the proposed method. For example, if a sequence s: vy, v1, v2,
-++, v of vertices is a legal patrolling route, its chromosome representation
is a k-tuple p = (vo, v1, v2, ***, Vk-1). The first component of p is
considered the starting point. By rotating the genes in p, the chromosome

at which the starting point is replaced with v; is denoted by p (). That is,

P(’) = (Vir Viel, °°° 5 Vi—1)~

> V-1, Vo, Vi, "

Since GPOPP does not have a fixed starting point, all chromosomes
p(0), p(1), p(2), ---, p(k) represent the same patrolling route. This
representation p (i) obtained by routing the genes of chromosome p is
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FIGURE 7

Creation of offspring from parent individuals in Crossover operation: (a) original parent individuals p; and p,, (b) rotated chromosomes p; (i§) and

P, (j§). and (c) offspring q, created from p; (if) and p, (j§).

useful for explaining the genetic operations introduced below. Let V = V/
be the set of all genes and VP = {v; | 1<i<k} be the set of genes
contained in chromosome p. For each genev € V,let 72 = {i € I} | v; =
v} be the set of gene loci whose gene is v. Let £ = EU A and & =
{vi, vir1) | 0<i<k — 1} U {{vk_1, v} be a set of pairs of adjacent
genes in chromosome p and H = H. Genes vi_; and v, are also
considered adjacent. Here, VP =V and &P = E,. Let v and v
denote the previous and next genes of v; (0<i<k) in chromosome
P, respectively. Here, these gene loci are i~ =i—1 (modk) and
i" =i+ 1 (modk), where x (mod k) denotes the least nonnegative
remainder when x is divided by k. Then, the two sets WP and W’ of the
gene loci are defined as follows:

e For each gene u € VP,

WI; = {l €I | Vi =u, <Vif, V,‘>, <Vi> Vi+> € 5P\H, <V,‘f, Vi+> € g}.

e For each gene u ¢ VP,

W =lie I | (vve) € E\Hand (v, u), (u, v € EL.

4.3 Initial population

As mentioned in Section 4.1, an initial population consisting of
n, individuals is constructed. Each individual in the initial

population is generated as follows:
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1. First, the direction traversing each high-security undirected
edge is decided randomly, since because all high-security edges
are traversed on every patrolling route.

the of

edges randomly.

2. Determine order traversing  high-security

3. Generate chromosome q representing the patrolling route that
traverses high-security edges in the order determined in step 2.
Here, to maintain the diversity of the initial population, two
consecutive high-security edges are connected by a shortest
path via a randomly selected vertex. The shortest walk
wlu,v,u'] from vertex u to u' via v can be determined
using the Dijkstra’s algorithm.

4. The patrolling represented by the

chromosome q may be able to reduce the total length

route generated
without changing the noncoverage rate. Therefore, the
improvement procedure described below is used for

chromosome g generated in step 3.

The pseudocode for the procedure generating the initial
population P (1) consisting of 11, individuals is presented in Figure 4.
Let s: vg, vi, Vo, -~
thatvo = viy1 =v; =wuand v, =v; =vj;; =v (i, j € I, i # j). Then,
the edge connecting u and v is undirected. If i< j, the edge is

, V-1, Vk be a patrolling route, and assume

traversed three times on s, as shown in the left panel of Figure 5a,
and there exists a patrolling route that reduces the total length, as
shown in the right panel of Figure 5a. Such a patrolling route
traverses all edges on the original route; thus, the noncoverage rate
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Procedure: Crossover

Input: two parent individuals p; = (ug, ug, ug, - -+, ui_1) and ps = (vg, v1, V2, -+, V1)

Output: offspring g and g2
begin

randomly select one strictly guarded edge eg € H;

randomly select u;, € VP! such that eg = (u;,, uiar);

randomly select vj, € VP2 such that eg = (vj,, vAJr};

// create g} from pi (i ) and pa (i)

lete; = (i, uiir) be the strictly guarded edge that first appears in the rotated chromosome p (i ).

randomly select vj, € VP2 such that e; = (v, v.+);
1

if u;, = V3o and u;, = vj, then

I .
create ¢} 1= (UJ'J’ S U Uik Uip )
else if u;, = vj, and u;, # v;, then
/o 3 ).
create ¢} 1= (UJ'J’ S U s Ughs s Uip);
else if u;, # vj, and u;; = v;, then
1 } . .
create g| = (vjo+, S U U s Ui uiJ),
else
/I . . .
create ¢} = (ng, s Ujs Uy Uy < Ui uzg),

// create g from p1(i]) and p2(j;)

find the strictly guarded edge ex = (vj,, v g;r> that first appears in the rotated chromosome pa(jii );

randomly select (u;,, ui2+> € EP1 which equals eo;

if vj, = u;, and v;, = u;, then

I .
create g5 == (uzo+, s Uigs Ut Vjg )3
else if v, = Uiy and vj, # u;, then
create g5 == (uzo+, s Uigy Uik Uty Vjo)s
else if v, 7él Ui, and vj, = u;, then
create g5 == (u10+, s Uigy Uty e U vjo+);
else
I .
create g5 == (u10+, s Uiy Ui, Ut Vs U'Sr)’

g1 := Improvement(q});
g2 := Improvement(g});

return (q1, g2)
end;

FIGURE 8
Pseudocode for crossover operation.

remains unchanged. Similarly, even if j<i, the edge is traversed
three times, as shown in the left panel of Figure 5b, and there exists a
patrolling route that reduces the total length without changing the
noncoverage rate, as shown in the right panel of Figure 5b. In
general, assume that undirected edge {u, v} is traversed from u to
v I} (>1) timesand from vtou I, (> 1) times. If [ # [,, there exists a
patrolling route that reduces both the number of times traversing
from u to v and from v to u by min {I;, I} times without changing
the noncoverage rate. IfI; = I, > 1, there exists a patrolling route that
reduces both the number of times traversing from u to v and from v
to u by [; — 1 times without changing the noncoverage rate. The
pseudocode for the improvement procedure of the chromosome is
shown in Figure 6.

4.4 Crossover

Letp, = (ug, uy, -+, ug—1)and p, = (vo, vy, -+, vi_1) betwo

parent individuals. Then, the crossover operation is used in the

Frontiers in Industrial Engineering

proposed method to replace a partial walk on the patrolling route
corresponding to p; with that corresponding to p,. The procedure is
as follows:

(a) Any patrolling route requires that all high-security edges are
traversed. First, one high-security edge e, is randomly
selected from H, and one gene u;, in p, such that ey =
uip, ujzy and one gene vj, in p, such that ey = (v, vj:)
are selected (Figure 7a).

G

Find the high-security edge e; = {(u;,, u;+) that first appears
in the rotated chromosome p,(i§), and in the rotated
chromosome p, (j;), randomly select one gene v; such
that e; = (vj,, v;r) (Figure 7b).

In the patrolling route corresponding to the chromosome

(c

~

p, (ip), the partial walk between u;; and w;, does not include
high-security edges. Therefore, offspring q, can be created
by replacing this partial walk with the partial walk between
vj; and vj, in p, (j§). However, when selected high-security
edges ey or e, are undirected edges, the direction of
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Procedure: Mutation
Input: individual p = (vo, v1, v2, « - -, Vk—_1)
Output: individual q
begin
q :=p;
t:=0;
while (¢ < k) do
qd=q
randomly select one gene u € V;
ifu e V7 and WY # ¢ then

/
randomly select i € Wy ;

generate ¢ = (Vj+, ***, Ug_1, V0, V1,  * -, V;— ) from ¢’ (i + 1);
!

else if u ¢ V7 and W # ¢ then
randomly select i € WZ )
generate ¢ = (v;+, - -
t:=t+1;
q := Improvement(q);
return q
end;

FIGURE 9
Pseudocode for mutation operation.

traversing them on p, may differ from the direction of
traversing them on p,. In this case, simply exchanging
partial walks does not lead to creating an accurate
patrolling route. Based on the direction of traversing e,
and ey, the process of creating offspring q; can be divided
7¢): Let q' =
, uj,) be a chromosome to be

into four follows
(Vi
created by simply replacing the partial walk from u;; to
u;, on p, (ig) with the partial walk v;: to v;, on p, (j5). Then,
(1) When both e and e; are traversed in the same direction
on p, (i) and p, (j§) (that is, u;, = v, and w; = v;)), let
q; be q'.

When e, is traversed in the opposite direction although e

steps as (Figure

s Vie Win,

@
is traversed in the same direction (that is, u;, = vj, and
ui, # vj,), let q{ be the chromosome created by inserting
gene v;: between v; and u;: on ¢'.

(3) When ey is traversed in the opposite direction although e;

is traversed in the same direction (that is, u;, # v;, and

u;, = vj,), let g/ be the chromosome created by appending

gene u;: at the end on q'.

When both ey and e; are traversed in the opposite

direction (that is, u;, # vj, and u;, # v;,), let q{ be the

created by
between v;, and u;; and by appending gene u;; at

chromosome inserting gene v
the end on q'.
Find the high-security edge e, = (v;,, v;;) that first appears

in the rotated chromosome p,(jj), and in the rotated

(d)

chromosome p, (if), randomly select one gene u;, such
that e; = {u;,, w;;). Following the procedure used to create
offspring q,, offspring g, is created.

(e) Create offspring g, and g, by applying the improvement

procedure described in Section 4.3 to q; and q;.

The pseudocode for the proposed crossover operation is
presented in Figure 8.
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©, Uk—1, V0, UL, * -+, V;—, U3, u) from q' (i + 1);

4.5 Mutation

In the crossover operation, the walk of parent individuals tends
to be inherited by their offspring. Therefore, it is seldom that
generated offspring will traverse vertices or edges that their
parents do not. To maintain the diversity of the population, we
introduce a mutation operation (Figure 9).

In this operation, the following steps are executed repeatedly:
randomly select a gene (vertex) u and

1. if gene u exists on the patrolling route corresponding to the
chromosome, select one locus i such that v; = u, and if there
exists an edge (v;-, v;+) connecting vertices v;- and v;+ before
and after u, remove gene v; from the chromosome

(see Figure 10a).

. if gene u does not exist on the patrolling route corresponding to
the chromosome and succsessive genes v; and v;+ exist on the
route such that both {(v;, u) and {u, v;+) arein &, insert gene u

between v; and v;- (see Figure 10b).

4.6 Local search strategy based on the
Jaya algorithm

The crossover operation introduced in Section 4.4 is an order-
based operation in which the orders of traversing the high-security
edges of parents and other edges are inherited by offspring. To
compensate for the ability to converge the solutions of this
crossover, we introduce an improvement strategy that moves
dominated solutions closer to a Pareto-optimal solution by
combining the strategy used in the mutation operation with the
Jaya algorithm.

As mention in Section 2, if the triangle inequality holds,
removing a vertex v from the patrolling route tends to reduce the
noncovered ratio since edges may be no longer guarded by visual
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FIGURE 10

Mutation operation in which a vertex u is selected. (a) the case that u is on the patrolling route and there exists an edge (v;-,

Vi y connecting vertices

before and after u; (b) the case that u is not on the route and there exist edges {v;, u) and {u, vi) for some vertex v; on the route.
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FIGURE 11
Behavior of the improved Jaya algorithm in the criterion space.

confirmation from v, although the total length of the patrolling route
becomes shorter. Conversely, adding a vertex that is not on the
patrolling route increases the total length; however, this is expected
to improve the noncovered ratio because edges guarded by visual
confirmation may increase.

The approach we propose here (called the improved Jaya
algorithm below) modifies a given individual to move closer to
the best solution and away from the worst solution based on the best
and worst candidates in the population. The outline of the proposed
strategy is presented in Figure 11. Let p” and p* be the best and worst
chromosomes in the current population, respectively, and let s” and
s¥ be the patrolling routes corresponding to p® and p¥, respectively.
Let € be a sufficiently small positive real number. By putting

fo=L(sh),  fh=cov(sh), fY=L(s), fY=cov(s¥), the
coordinates of s’ and s are (fY f9) and (fY, fY),
respectively. Then, to modify a certain dominated solution

s(f1, f2) to be closer to s* and away from s¥, a hypothetical
solution s°(0y,0,) is computed based on the strategy of the
improved Jaya algorithm. To move s closer to the hypothetical
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solution s°, the mutation strategy is strategically repeated as follows:
Let g; = f—lll,,lfl —oiland g, = ﬁ|fz — 05|, which are normalizations
of | f1 — o] and | f, — 02|, respectively. If all edges are high-security
edges, set g, =0 because f3 =0. The following operations are
performed if the triangle inequality holds.

e if g,>g,, an operation is performed to move the first
component of point (f, f2) closer to the first component
of point (o0, 0,). Specifically, if f; >0,, vertices are removed
from the patrolling route to reduce the total distance; if
f1<o1, vertices are added not on the patrolling route
increase the total distance.

e If g; < g,, an operation is performed to move the second
component of point (f1, f,) closer to the second component
of point (01, 0,). Specifically, if f, <o0,, vertices are removed
from the patrolling route to reduce the noncovered ratio; if
f2=0,, vertices are added not on the patrolling route to
increase the noncovered ratio.

Remark that s° is a hypothetical solution that does not always
exist; thus, the operation is repeated until approaching the
neighborhood of s° (inside a circle of radius € centered on s°), or
the operation is repeated until the terminal condition is reached. The
pseudocode for the improved Jaya algorithm is presented in Figure 12.

5 Numerical experiments

In this section, we report the results of numerical experiments
conducted to verify the effectiveness of the proposed method (the
hybrid strategy of MoEA-HSS and the improved Jaya algorithm) for
the GPOPP. In these experiments, we compared the proposed
method (called pMH) with the NSGA-II (called NSGA-II)
proposed by Deb et al. (2002) and the original MoEA-HSS
without the improved Jaya algorithm (called MoEA-HSS). All
these methods the
operations proposed in this paper.

incorporated crossover and mutation
Evaluating the performance of multi-objective optimization
methods is not easy since it is difficult to compare the Pareto-

optimal solutions (also called the nondominated solutions) obtained
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Procedure: Improved Jaya algorithm
Input: individual p = (vg, v1, va, -+, vx_1) and (f2, f2), (fi*, f) € N2
Output: one individual g
begin
t:=0;
=p;
// et s be a patrolling route corresponding to q
f1:=L(s);
fo :="7ou(s);
randomly generate 711, 71,2, 72,1, 72,2 € [0, 1];
o1 = max(0, fi +r11(ff — f1) —ria(fi = f1));
02 := max(0, fa + ra1(f§ — fa) —roa(fs’ — f2));
1
g1 = Tu|f1 — 015
fi
if f3" > 0 then

1
g2 = —=|fo — 02f;
TR

else
92 :=0;
while g7 + g3 > ¢ and t < T do
randomly select one gene u € V;
if (91 > g2 and f1 > 01) or (g1 < g2 and f2 < 02) then
if u € V9 and W # ¢ then
randomly select i € Wy,
if d'Ui—lyviJrl < dyy g + dvz‘aviﬂ then
generate ¢' = (vi41, *++, Vp_1, V0, V1, - - -, Vj—1) from q(i + 1);
elseif (g1 > g9 and f; < 01) or (g1 < g2 and fo > 07) then
if u & V9 and W # ¢ then
randomly select i € W
if d'ui,'ui+1 < dvi,u + du,’l)7j+1
generate ¢’ = (vj41, - -

then

-, Vk—1, V0, U1, * =+, Vi—1, ¥j, w) from q(i + 1);
/.

=4q;
/I Let the new chromosome g be regarded as the sequence (v, v1, v, -
patrolling route corresponding to it.

f1 = L(S);
fa :==7ou(s);
1

g1 = S5 lfi —o1l;
i
if f3” > 0 then

g2 = iw|f2 —oaf;
else ?
g2 :=0;
t:=1+1;
q := Improvement(q);
return q
end;

-, Ux_1) and let s be a

FIGURE 12
Pseudocode for the improved Jaya algorithm.

by different methods. We compared pMH with NSGA-II and
MOoEA-HSS using three representative comparison methods. Let
N.x be the number of numerical experiments for each method. Let
S oa SVl i s and S E\AH be the Pareto-optimal solution sets
of NSGA-II, MoEA-HSS and pMH obtained by the i-th experiment,

respectively. The reference solution set S* is defined as the set of important evaluation criterion.

1. Number of nondominated solutions. For each method
a e{NSGA-II, MoEA-HSS, pMH}, |SY| is the number of
nondominated solutions obtained by the i-th experiment for
a. In general, the selection of the final solution is left to human
judgment; thus, the number of Pareto-optimal solutions is an

nondominated solutions in the union of all Pareto-optimal solution 2. Generational distance. For the nondominated solution set S

[i] [i] [i]
sets Uislfw (SNsca-i1 Y S Moka-nss Y S pmm)-
The three evaluation criteria we used are as follows:

Frontiers in Industrial Engineering 12

obtained by each method «a €{NSGA-II, MoEA-HSS, pMH}
and the reference solution set S*, the generational distance GD
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TABLE 1 Comparison of pMH with NSGA-Il and MoEA-HSS during evolution (benchmark problem: RB422_10).

(@) The number of nondominated solutions, generational distance and CPU time

Method ISt GD (S CPU time [sec]
max i max ave Ave

10 NSGA-II 77 117 94.0 11.06 294.56 1046.94 605.26 233.76 10.78
MoEA-HSS 75 107 92.9 8.99 316.14 817.49 576.30 204.65 20.65
pMH 82 114 98.2 9.57 160.83 679.28 410.87 161.01 51.21
50 NSGA-II 176 222 201.9 16.16 327.51 1073.80 569.54 197.75 58.68
MoEA-HSS 164 224 197.7 16.49 362.05 756.20 520.69 135.20 107.50
pMH 204 269 233.2 20.83 179.55 648.16 393.76 134.40 348.96
150 NSGA-II 309 375 328.8 22.04 59.82 267.04 141.39 64.16 148.78
MoEA-HSS 243 347 307.0 26.68 46.49 251.71 122.88 71.29 276.16
pMH 306 431 353.4 36.27 43.48 332.89 156.66 93.84 994.56
300 NSGA-II 380 602 471.3 69.23 9.61 141.21 51.38 38.63 264.40
MoEA-HSS 346 487 396.5 34.23 17.52 193.08 76.36 46.31 518.72
pMH 382 603 453.3 56.59 3.17 306.90 119.06 91.86 1935.45

(b) The coverage of two sets

Methods cshsh Methods csh,sph

max ave std i max ave std
10 pMH NSGA-II 0.20 1.00 0.75 0.15 pMH MoEA-HSS 0.17 0.98 0.65 0.17
NSGA-II pMH 0.00 0.51 021 0.13  MoEA-HSS pMH 0.06 0.73 0.31 0.16
50 pMH NSGA-II 0.17 1.00 0.69 0.21 pMH MoEA-HSS 023 1.00 0.68 0.19
NSGA-II pMH 0.00 0.75 0.25 0.18  MoEA-HSS pMH 0.00 0.67 0.26 0.17
150 pMH NSGA-II 0.17 1.00 0.65 0.22 pMH MoEA-HSS 0.14 1.00 0.61 0.23
NSGA-II pMH 0.00 0.78 033 022 MoEA-HSS pMH 0.00 0.88 0.34 0.22
300 pMH NSGA-II 0.02 1.00 0.59 0.26 pMH MoEA-HSS 0.02 1.00 0.58 0.28
NSGA-II pMH 0.00 0.95 0.38 025  MoEA-HSS pMH 0.00 0.92 0.39 0.27

is defined as follows (Van Veldhuizen, 1999; Ishibuchi H xe S[j] |3y esiy< xH

et al, 2015): c(s[il,s[j]> - F e )

SRR
5 B

i 1
GD S[l] = - i 6x S* P >
( ¢ ) |SH| xgﬂ (min{dsy |y € 5%) where y < x means that f (y) < f (x) holds for any objective function
" f. The value C(SY,8§") is in the interval [0,1], with values

where p=2 and &, = \/( f10) = f1(®)* + (f2(») - f2(x))*  approaching 1 indicating that a greater number of solutions in
denotes the Euclidean distance between a solution x in S and a SI[?J] are covered by those in S{.

reference solution y in S*. A smaller GD (Sg]) value implies that SE] The benchmark problems used in the experiments were created
is closer to S*. based on the Mixed Rural Postman Problem (MRPP) benchmark
problems RB422 (|V| =357, |E|=674, |A|=210), RB452

3. Coverage of two sets. For two  (IVI =465, |E| =796, |A|=259), RB472 (V| =498, |E| =849,
o, 3 € {NSGA - I, MoEA — HSS,pMH}, where a#f, the [|Al=265), RB522 (|V|=388, |E|=828, |A]=278), RB552
coverage C is defined as follows (Zitzler and Thiele, 1999): (IV] = 488, |E| = 987, |A| = 331) and RB572 (|V| = 498, |E| = 986,
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FIGURE 13

Evolution of nondominated solutions when executing NSGA-Il, MOEA-HSS and pMH for RB422_10. (a) gen = 10 (b) gen = 50 (c) gen = 150 (d)

gen = 300.

|A| = 340) shown in Arc Routing Problems: Data Instances (https://
www.uv.es/corberan/instancias.htm). The number of high-security
edges (called required edges) defined in the MRPP benchmark
problems is sufficiently large. Therefore, they are not suitable for
use as benchmarks for methods against the GPOPP in which visual
confirmation is allowed. To confirm the effect of visual
confirmation, in these experiments, we changed the required
edges of each benchmark problem to non-required edges,
creating four patterns of benchmark problems with 10, 20, 30,
and 40 high-security edges. We used these edges in the
experiments. In addition, the ratio of the number of high-
security undirected edges to high-security arcs was set to 4: 1.
The experiments were conducted on a PC with Windows 11, an
AMD Ryzen 5 3500 CPU, 3.59 GHz, and 16.0 GB RAM. We
conducted preliminary experiments using the benchmark
problem RB422_10 with eight high-security undirected edges and
two high-security arcs. The parameters were set as follows: the
positive constant n, = 150, the archive size n, = 300, the initial
1(0) = 300,
the terminating

size the crossover rate = 0.3,

population
the mutation rate = 0.05, condition for the

improved Jaya algorithm T =50, the radius € = 0.1 of a circle
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centered on the hypothetical solution s° and the maximum
generations MaxGen = 300. When using the improved Jaya

b is selected from the

algorithm in pMH, the best solution s
nondominated solution set S EH\AH If many nondominated
solutions in SZ]MH are concentrated in close proximity, the
probability that s be these

concentrated individuals increases. Consequently, the individuals

s7 will selected from among
generated by the improved Jaya algorithm also tend to move in the
direction of the concentrated population. To distribute the location
of the individuals generated by the improved Jaya algorithm to some

S +10
—MH T and

b was selected as follows: Let m = [‘ o

extent, s

1= Sl (mod m). Then

L If m =1, then let S, = Sl .

2. If m> 1, then partition SE%\,[H into m subsets Sy, S, *+*, Sis
which satisfy the following conditions:
° Uiel;nsi = S[;H\/IH»
° Siﬂszgb(i,jten,i#j),
1SWly 0 oy 1S9l o e
o [Sil =[50 G elp), |S;] = =571 (j € LM\).

m

: +
e Foreachiel} |,
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TABLE 2 Comparison of pMH with NSGA-Il and MoEA-HSS by the number of nondominated solutions, generational distance and CPU time (gen = 300).

Problem Method GD(S!) CPU time [sec]
max ave std Ave
RB422_10 NSGA-II 380 602 471.3 69.23 9.61 141.21 51.38 38.63 264.40
MoEA-HSS 346 487 396.5 34.23 17.52 193.08 76.36 46.31 518.72
pMH 382 603 453.3 56.59 3.17 306.90 119.06 91.86 1935.45
RB422_20 NSGA-II 262 481 369.4 59.40 5.61 162.38 74.24 53.30 375.92
MoEA-HSS 264 421 324.7 43.54 5.26 199.14 100.44 68.67 651.91
pMH 254 414 357.1 50.74 2.48 212.85 123.89 60.97 2036.05
RB422_30 NSGA-II 152 323 214.0 48.24 41.17 239.79 132.88 56.13 489.67
MoEA-HSS 145 264 208.4 32.63 54.19 274.29 119.93 67.00 767.79
pMH 193 301 236.5 38.91 34.76 313.97 165.31 89.84 2340.67
RB422_40 NSGA-II 129 390 207.0 76.84 18.56 125.78 65.43 35.55 626.15
MoEA-HSS 113 245 175.5 35.93 15.12 134.20 76.34 39.70 1021.97
pMH 168 271 210.4 30.58 11.13 301.42 90.95 79.47 2609.41
RB452_10 NSGA-II 409 580 481.6 48.96 7.12 28.18 19.44 7.78 459.99
MoEA-HSS 345 429 398.2 25.21 8.84 64.65 29.00 19.70 828.12
pMH 423 506 454.6 28.84 6.69 165.06 58.78 52.18 3095.65
RB452_20 NSGA-II 269 412 338.4 49.93 17.39 254.83 64.91 69.65 678.07
MoEA-HSS 226 332 272.1 32.53 15.65 510.43 154.60 154.38 1255.28
pMH 268 441 3529 46.15 12.06 546.01 186.63 180.61 3855.40
RB452_30 NSGA-II 158 330 237.1 54.69 24.62 233.80 127.72 68.65 889.09
MoEA-HSS 186 283 227.5 28.82 26.47 412.35 172.84 110.71 1471.48
pMH 245 380 298.5 39.55 22.86 559.41 243.63 166.04 4346.86
RB452_40 NSGA-II 129 238 175.1 31.41 60.63 436.12 255.00 115.72 1099.45
MoEA-HSS 126 233 163.9 31.97 65.13 507.44 227.02 145.80 1748.62
pMH 172 264 222.8 33.74 52.26 248.59 155.26 58.32 5117.44
RB472_10 NSGA-II 525 685 604.1 55.70 7.11 150.77 38.78 42.20 593.61
MoEA-HSS 405 508 463.1 36.36 18.50 204.54 73.27 64.95 904.46
pMH 421 597 497.1 44.95 4.85 175.62 43.97 51.60 2850.32
RB472_20 NSGA-II 322 423 370.6 30.89 85.91 838.67 307.09 234.65 1114.77
MoEA-HSS 275 426 329.6 43.93 93.13 556.72 240.50 129.08 1795.23
pMH 281 399 341.0 39.31 13.98 440.36 156.16 122.68 3966.87
RB472_30 NSGA-II 196 374 274.2 46.82 77.76 706.68 400.50 182.09 1486.01
MoEA-HSS 168 321 245.3 44.29 141.41 913.16 365.27 227.03 2419.09
pMH 180 294 259.1 34.15 12.81 435.61 175.33 123.11 4964.62
RB472_40 NSGA-II 99 272 180.4 45.17 263.60 1072.71 586.71 258.87 1888.19
MoEA-HSS 161 242 187.8 28.20 164.50 912.41 420.79 199.80 3115.36
pMH 110 262 184.7 53.48 29.16 524.68 242.39 151.61 6235.13
(Continued on following page)
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TABLE 2 (Continued) Comparison of pMH with NSGA-1l and MoEA-HSS by the number of nondominated solutions, generational distance and CPU time

(gen =300) .
Problem Method GD(S!) CPU time [sec]
max ave std Ave
RB522_10 NSGA-II 528 633 562.4 36.67 4.05 67.74 25.74 20.94 298.48
MoEA-HSS 393 486 441.2 32.17 5.23 192.04 47.89 51.94 589.38
pMH 428 575 492.4 38.31 1.43 109.03 34.00 32.35 2422.35
RB522_20 NSGA-II 283 423 357.5 35.05 24.87 50.94 35.25 9.45 412.07
MoEA-HSS 201 331 261.2 45.00 10.65 105.69 40.91 32.72 511.92
pMH 244 373 311.3 43.49 3.45 66.84 28.43 18.13 2345.58
RB522_30 NSGA-II 155 336 250.2 58.69 15.76 164.57 74.84 45.32 507.85
MoEA-HSS 179 298 243.8 39.74 14.20 103.95 59.66 30.82 639.69
pMH 126 270 193.5 38.71 1.80 211.54 75.44 65.55 3419.29
RB522_40 NSGA-II 132 300 209.9 52.08 94.27 308.58 158.19 61.62 629.45
MoEA-HSS 110 196 160.6 26.50 21.78 214.40 121.46 49.36 729.41
pMH 110 248 181.4 38.93 0.89 229.42 134.67 68.10 2994.47
RB552_10 NSGA-II 441 578 520.7 46.44 12.03 66.23 36.23 21.71 363.79
MoEA-HSS 362 464 435.4 28.95 14.06 130.60 42.45 38.14 634.52
pMH 417 522 475.4 30.80 11.98 195.67 49.70 51.69 4273.26
RB552_20 NSGA-II 269 406 324.9 41.96 12.63 288.89 69.49 76.71 493.70
MoEA-HSS 251 344 307.2 27.99 12.84 243.47 111.28 68.44 982.66
pMH 330 408 368.6 27.92 12.17 462.37 174.80 128.41 5186.40
RB552_30 NSGA-II 190 334 2722 44.52 27.32 226.11 124.58 61.44 606.83
MoEA-HSS 153 308 212.9 51.19 30.41 234.74 152.43 57.37 984.32
pMH 249 375 303.8 32.03 18.59 493.17 207.32 141.31 5069.98
RB552_40 NSGA-II 124 229 184.2 33.68 39.87 460.09 133.89 114.07 939.13
MoEA-HSS 135 273 187.1 40.84 25.67 296.67 125.01 92.27 1153.40
pMH 188 327 250.2 38.14 20.82 244.69 118.60 66.34 5472.13
RB572_10 NSGA-II 428 589 520.1 48.10 18.18 76.48 39.99 17.82 478.17
MoEA-HSS 372 475 416.1 29.46 3.34 431.67 93.25 119.77 622.80
pMH 406 499 445.6 28.46 2.09 156.54 63.03 48.49 3710.57
RB572_20 NSGA-II 281 402 334.7 32.96 16.98 139.31 51.33 34.76 536.94
MoEA-HSS 231 334 285.5 29.64 9.57 268.10 67.75 75.43 825.95
pMH 290 374 344.5 24.74 7.92 115.86 53.32 3491 4368.54
RB572_30 NSGA-II 163 254 212.7 25.97 26.61 222.26 93.67 53.94 600.63
MoEA-HSS 156 260 218.6 30.93 19.42 85.66 53.82 21.80 1356.75
pMH 244 346 284.5 33.21 3.48 140.03 60.36 35.76 5328.90
RB572_40 NSGA-II 146 255 177.9 29.71 9.18 273.45 103.84 77.19 715.96
MoEA-HSS 149 231 190.9 28.41 11.64 452.21 91.76 122.21 1610.60
pMH 180 302 243.0 36.25 6.15 222.99 83.88 59.41 5029.07
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TABLE 3 Comparison of pMH with NSGA-Il and MoEA-HSS by the coverage (gen = 300).

Problem Methods c(si,sfh Methods c(si,sih
B i max ave i max ave
RB422_10 pMH NSGA-II 0.02 1.00 0.59 0.26 pMH MoEA-HSS 0.02 1.00 0.58 0.28
NSGA-II pMH 0.00 0.95 0.38 0.25 MoEA-HSS pMH 0.00 0.92 0.39 0.27
RB422_20 pMH NSGA-II 0.00 1.00 0.66 0.28 pMH MoEA-HSS 0.00 0.97 0.57 0.29
NSGA-II pMH 0.00 0.98 0.31 0.28 MoEA-HSS pMH 0.01 1.00 0.40 0.28
RB422_30 pMH NSGA-II 0.00 1.00 0.65 0.31 pMH MoEA-HSS 0.00 1.00 0.47 0.34
NSGA-II pMH 0.00 1.00 0.30 0.29 MoEA-HSS pMH 0.01 1.00 0.47 0.34
RB422_40 pMH NSGA-II 0.00 1.00 0.73 0.29 pMH MoEA-HSS 0.00 1.00 0.61 0.29
NSGA-II pMH 0.00 0.99 0.20 0.25 MoEA-HSS pMH 0.00 0.98 0.27 0.26
RB452_10 pMH NSGA-II 0.06 1.00 0.63 0.21 pMH MoEA-HSS 0.00 1.00 0.52 0.28
NSGA-II pMH 0.00 0.83 0.32 0.21 MoEA-HSS pMH 0.00 1.00 0.41 0.27
RB452_20 pMH NSGA-II 0.00 0.98 0.49 0.29 pMH MoEA-HSS 0.00 0.96 0.38 0.30
NSGA-II pMH 0.00 1.00 0.44 0.30 MoEA-HSS pMH 0.03 1.00 0.54 0.31
RB452_30 pMH NSGA-II 0.00 1.00 0.44 0.37 pMH MoEA-HSS 0.00 1.00 0.40 0.37
NSGA-II pMH 0.00 1.00 0.50 0.36 MoEA-HSS pMH 0.00 1.00 0.55 0.37
RB452_40 pMH NSGA-II 0.00 1.00 0.59 0.36 pMH MoEA-HSS 0.00 1.00 0.49 0.38
NSGA-II pMH 0.00 1.00 0.34 0.34 MoEA-HSS pMH 0.00 1.00 0.40 0.35
RB472_10 pMH NSGA-II 0.19 1.00 0.61 0.24 pMH MoEA-HSS 0.01 1.00 0.65 0.28
NSGA-II pMH 0.00 0.71 0.31 0.21 MoEA-HSS pMH 0.00 0.92 0.30 0.27
RB472_20 pMH NSGA-II 0.00 1.00 0.78 0.31 pMH MoEA-HSS 0.02 1.00 0.65 0.36
NSGA-II pMH 0.00 1.00 0.20 0.31 MoEA-HSS pMH 0.00 0.98 0.31 0.35
RB472_30 pMH NSGA-II 0.00 1.00 0.78 0.29 pMH MoEA-HSS 0.02 1.00 0.83 0.25
NSGA-II pMH 0.00 1.00 0.19 0.27 MoEA-HSS pMH 0.00 0.92 0.12 0.21
RB472_40 pMH NSGA-II 0.05 1.00 0.78 0.32 pMH MoEA-HSS 0.01 1.00 0.65 0.36
NSGA-II pMH 0.00 0.98 0.17 0.28 MoEA-HSS pMH 0.00 0.99 0.30 0.34
RB522_10 pMH NSGA-II 0.00 0.94 0.44 0.22 pMH MoEA-HSS 0.04 1.00 0.53 0.28
NSGA-II pMH 0.02 1.00 0.47 0.24 MoEA-HSS pMH 0.00 0.96 0.44 0.27
RB522_20 pMH NSGA-II 0.00 1.00 0.59 0.28 pMH MoEA-HSS 0.00 1.00 0.46 0.31
NSGA-II pMH 0.00 0.98 0.37 0.29 MoEA-HSS pMH 0.00 1.00 0.50 0.32
RB522_30 pMH NSGA-II 0.00 1.00 0.67 0.33 pMH MoEA-HSS 0.00 1.00 0.77 0.28
NSGA-II pMH 0.00 1.00 0.27 0.29 MoEA-HSS pMH 0.00 1.00 0.18 0.26
RB522_40 pMH NSGA-II 0.00 1.00 0.65 0.37 pMH MoEA-HSS 0.00 1.00 0.53 0.40
NSGA-II pMH 0.00 0.99 0.31 0.36 MoEA-HSS pMH 0.00 1.00 0.43 0.40
RB552_10 pMH NSGA-II 0.21 1.00 0.66 0.17 pMH MoEA-HSS 0.02 0.95 0.56 0.26
NSGA-II pMH 0.00 0.68 0.29 0.17 MoEA-HSS pMH 0.02 0.98 0.38 0.25
RB552_20 pMH NSGA-II 0.01 1.00 0.79 0.20 pMH MoEA-HSS 0.01 0.99 0.66 0.26
NSGA-II pMH 0.00 0.90 0.19 0.20 MoEA-HSS pMH 0.01 0.99 0.30 0.24

(Continued on following page)
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TABLE 3 (Continued) Comparison of pMH with NSGA-1l and MoEA-HSS by the coverage (gen = 300) .

Problem Methods c(si, s Methods csi,sh
B i max ave i max ave
RB552_30 pMH NSGA-II 0.00 0.99 0.62 0.29 pMH MoEA-HSS 0.00 1.00 0.44 0.28
NSGA-II pMH 0.00 1.00 0.32 0.26 MoEA-HSS pMH 0.01 1.00 0.42 0.24
RB552_40 pMH NSGA-II 0.00 1.00 0.61 0.29 pMH MoEA-HSS 0.00 1.00 0.59 0.32
NSGA-II pMH 0.00 0.98 0.30 0.26 MoEA-HSS pMH 0.00 1.00 0.31 0.31
RB572_10 pMH NSGA-II 0.09 1.00 0.52 0.22 pMH MoEA-HSS 0.02 0.98 0.55 0.26
NSGA-II pMH 0.00 0.86 0.42 0.23 MoEA-HSS pMH 0.02 0.95 0.41 0.24
RB572_20 pMH NSGA-II 0.05 0.99 0.64 0.29 pMH MoEA-HSS 0.00 0.97 0.39 0.29
NSGA-II pMH 0.00 0.96 0.34 0.29 MoEA-HSS pMH 0.01 0.97 0.55 0.29
RB572_30 pMH NSGA-II 0.00 1.00 0.62 0.26 pMH MoEA-HSS 0.02 1.00 0.57 0.27
NSGA-II pMH 0.00 0.91 0.31 0.23 MoEA-HSS pMH 0.00 0.95 0.36 0.25
RB572_40 pMH NSGA-II 0.02 1.00 0.74 0.25 pMH MoEA-HSS 0.00 0.98 0.60 0.24
NSGA-II pMH 0.00 0.97 0.20 0.23 MoEA-HSS pMH 0.00 1.00 0.31 0.23

implies that the ability of local search for the improved Jaya algorithm

e\

comparison between MoEA-HSS and pMH based on these criteria
fHi®<fily) (vxeS, e U S;

has achieved the expected results.

The coverage C (S, u S Lj ]) is the rate that solutions in S%”
covered by solutions in S [’] . Hence, if the average of C (S!! »Sg Ly ]) is
select one solution x from &;, and put s* = x. higher than the average of C(Sg W s 1), S can be cons1dered as
better than Sy U under this cr1ter10n Therefore, by companng the
: : average of two coverages C(S [};%v[w S U]) and C(SY,S pMH)
Ny = 10). Comparison results of pMH with NSGA-II and MoEA- (B €{NSGA-II, MoEA-HSS}), the Pareto optimal solution set

HSS at 10, 50, 150 and 300 generations are shown in Table 1. The SE}VIH is considered statistically superior to S[J]

other methods at every generations.

3. Randomly select one subset S; from the m subsets, randomly

We ran 10 numerical experiments for each method (that is,

obtained by
number of nondominated solutions, generational distance and CPU

time are shown in (a) and these are the maximum, minimum, average The experiment results of comparing pMH with NSGA-II and

and standard deviation obtained by 10 experiments. Here, the  \foEA-HSS when we ran each method until 300 generations for all
GD (S for each generation gen € {10,50, 150,300} is calculated benchmark problems are shown in Tables 2, 3.

using the Pareto-optimal solution sets S at the gen-th generation Our method pMH achieved better results than other methods in all
and the reference solution set S* at the 300th generation. The  penchmark problems with respect to the generational distance and the

comparison results for the coverage are shown in (b) and these are coverage of two sets, although pMH and NSGA-II are evenly-matched
calculated by 100 values of C(SY,S§") (1<i, j<Ne). The

at the criterion the number of nondominated solutions. Here, even if
evolution of the Pareto-optimal solutlon set SIU at the 1st

PMH is inferior to that of other methods « at the criteria the number of
experiment for each method is shown in Figure 13.

The number of nondominated solutions |S, ,L’ | for NSGA-II and
pMH are no significant difference, although the value for MoEA-HSS
is slightly lower. If the Pareto-optimal solution set S! contains even a
single solution that is far from &%, the generational distance will have a

nondominated solutions, since it is considered that the ratio of solutions
in SU/ covered by solutions in S [[;%\AH is high, SPMH is not necessarily
inferior to SV Nsgan or S M]oE A-nss- Based on these numerical
experiments, we confirmed that the local search based on the
improved Jaya algorithm is effective and that pMH can generate
large value. Therefore, method « cannot be considered inferior simply superior Pareto-optimal solutions.
because the generational distance has a large value. On the other hand,

when the minimum value of the generational distance is sufficiently

small, method « is considered superior because the nondominated 6 Conclusion

solutions obtained by method « are likely to be close to the solutions in

the reference solution set S*. For these reasons, it is more appropriate In this study, we defined a new arc routing bi-objective
to use the minimum value, rather than the average or maximum,  optimization problem (GPOPP) that models the patrol security of
when conducting evaluations with the generational distance.  police officers (or security guards) based on the POPP and proposed a
Therefore, from these experimental results, in evaluations based on ~ hybrid heuristic approach for the GPOPP. The proposed method
the number of nondominated solutions and the generational distance, ~ combines the hybrid sampling strategy MoEA-HSS, which combines

PMH can be considered superior to other methods. In particular, the ~ sampling strategies based on the VEGA and PDDR-FF, with a
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solution improvement strategy based on the improved Jaya algorithm.
The solutions of the MoEA-HSS approach to the true Pareto differ in
various directions because the VEGA-based sampling strategy has a
preference for the edge region of the Pareto front and the PDDR-FF-
based sampling strategy tends to converge toward the center area of
the Pareto front. The proposed method (pMH) improves convergence
by combining the MoEA-HSS with the improved Jaya algorithm-
based local search method. The numerical experimental results
demonstrate that the proposed method can obtain better solutions
than the NSGA-II and the MoEA-HSS. The remaining challenge for
us is to improve efficiency by reducing CPU time while maintaining
high solution quality. In addition, extending GPOPP model will
enable us to more accurately replicate the complex challenges of
real-world urban policing. One extension would be to model
situations where multiple officers work together, and we consider
to adapt our method to address such extended problems.
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