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In urban areas with many commercial facilities, patrolling by police officers or
security guards is essential for crime prevention, in addition to the use of
surveillance cameras. To address the challenge of planning effective patrol
routes, Tohyama and Tomisawa introduced the Police Officer Patrolling
Problem (POPP), an arc routing problem that allows for visual monitoring
from intersections and is proven to be NP-complete. Building on this work,
we propose the Generalized POPP (GPOPP), a more realistic bi-objective
combinatorial optimization model. This model simultaneously minimizes the
total patrol route length and maximizes the coverage of surveillance areas.
The contributions of this paper are threefold: (1) we formulate the GPOPP by
incorporating practical constraints, such as mandatory patrolling of high-security
roads and visibility-based coverage from intersections; (2) we develop a novel
hybrid heuristic method that combines a multi-objective evolutionary algorithm
(MoEA-HSS) with an improved Jaya algorithm to solve the GPOPP effectively; and
(3) we conduct comprehensive computational experiments using benchmark
instances to evaluate the effectiveness and competitiveness of the proposed
method. These contributions demonstrate the practicality and efficiency of our
approach for addressing realistic urban patrolling problems.
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1 Introduction

In the fields of information engineering and science, to solve various social and
economic problems, these problems are generally structured as mathematical models,
and solutions are found using algorithms that are suited to that structure. Many of these
problems are modeled using discrete graphs, and there are many studies on them.

One of the problems modeled by discrete graphs is the routing problem. Routing
problems are classified as node routing problems (NRPs), which traverse the nodes of a
graph, and arc routing problems (ARPs), which traverse the edges (or arcs). A typical NRP
is the traveling salesperson problem (TSP). The TSP is a problem that involves finding the
minimum-cost route that visits every vertex exactly once. The vehicle routing problem
(VRP) (Dantzig and Ramser, 1959) is a generalization of the TSP. This problem involves
planning transportation from a distribution center to multiple customers using trucks or
other transportation methods. Both the TSP and VRP are NP-hard; thus, evolutionary
algorithms, such as genetic algorithms (GAs), have been studied (Elatar et al., 2023).
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The most famous ARP is probably the Euler circuit problem.
This problem determines whether there exists a circuit that traverses
all edges exactly once for a given graph, and this problem is solvable
in polynomial time. The Chinese postman problem (CPP) (Mei-Ko,
1962), which is a generalization of the Euler circuit problem,
involves determining whether a tour exists for a post officer in a
given area within a given amount of time that starts and ends at the
post office. The post officer must traverse every street in the area at
least once; however, they may traverse any street several times. The
CPP on undirected or directed graphs can be solved in polynomial
time (Edmonds and Johnson, 1973). Papadimitriou (1976) showed
that the CPP on mixed graphs is NP-complete. Mixed graphs
represent realistic situations in urban areas with both two- and
one-way streets. The rural postman problem (RPP) is a
generalization of the CPP with a given set of edges that must be
traversed by a post officer. This problem considers the fact that, in
rural areas, not every street has a delivery destination. Lenstra and
Rinnooy-Kan (1976) and Lenstra and Rinnooy-Kan (1981) showed
that the optimization version of the RPP on undirected or directed
graphs is NP-hard. The capacitated ARP (CARP) is an ARP
corresponding to the VRP, which belongs to the NRP. The CPP,
RPP, and CARP correspond to mathematical models of real social
problems such as postal delivery, delivery planning, snow shoveling,
and garbage collection. Finding exact solutions for the CPP and RPP
optimization problems is intractable, along with the TSP and VRP;
thus, various heuristic methods have been proposed for these
problems. Recent examples include methods using GAs (Gil-Gala
et al., 2023), the Tabu search algorithm (Tang et al., 2024), and ant
colony optimization (Sgarro and Grilli, 2024).

Police patrols play a crucial role in preventing crimes and
accidents, thereby ensuring public safety within their
jurisdictions. Recent studies such as (Kim et al., 2023; Dewinter
et al., 2020; Samanta et al., 2022) have proposed methods for
optimizing patrol routes. These approaches primarily employ
heuristic algorithms to generate efficient patrol routes for
multiple officers operating within the shared area.

Recently, Tohyama and Tomisawa (2022) proposed the police
officer patrol problem (POPP) as a mathematical model of the
patrolling route problem of police officers (or security guards), and
showed that the decision problem is NP-complete (Tohyama and
Tomisawa, 2022). Patrolling areas generally include one- and two-
way streets; thus, the POPP is modeled using a mixed graph. At each
intersection, police officers may conduct security checks visually
even if they do not traverse the streets connecting to it. If the POPP is
considered a CPPmodel, it is necessary to find a patrolling route that
traverses all streets. The POPP model allows some streets to conduct
visual security checks without traversing, making it possible to find
more efficient patrolling routes. In addition, Tomisawa and
Tohyama showed that the POPP on weighted digraphs is NP-
complete (Tomisawa and Tohyama, 2024).

In this study, we introduce the generalized POPP (GPOPP) as a
model to adapt the POPP tomore realistic patrolling routes by police
officers. The POPP model requires that all areas be guarded.
However, in reality, some streets require security because
important facilities are located there, and some roads do not
necessarily require security (Chainey et al., 2021). In addition,
there are cases where a patrolling route needs to be found that
can be patrolled within a given time. Therefore, we define the

GPOPP as an optimization problem with the following two
objectives. The first objective is to find the shortest patrolling
route among the routes that traverse all high-security streets. The
second objective is to find a patrolling route that guards as large a
given area as possible (maximizes coverage).

Many GAs have been proposed to solve multi-objective
problems (Deb et al., 2002; Sardinas et al., 2006; Pizzuti, 2009;
Ghoseiri and Ghannadpour, 2010; Aiello et al., 2012; Akyurt et al.,
2015; Yu et al., 2015; Lu et al., 2019). The hybrid sampling strategy
based multi-objective evolutionary algorithm (MoEA-HSS) (Zhang
et al., 2014) is based on a hybrid sampling strategy that combines a
vector-valued GA (VEGA) (Schaffer, 2014) and a sampling strategy
according to the Pareto dominating and dominated relationship-
based fitness function (PDDR-FF) (a goodness-of-fit function based
on Pareto dominance–dominance relations). The MoEA-HSS has
demonstrated effectiveness for several problems. The Jaya algorithm
(Rao, 2016) is a meta-heuristic algorithm with a very simple
structure based on the concept that solutions obtained for a
particular problem progress toward the best solution and avoid
the worst solution. We propose a hybrid heuristic approach that
combines the MoEA-HSS with an improved Jaya algorithm, and
demonstrate its effectiveness through numerical experiments.

The remainder of this paper is organized as follows. In Section 2,
we formally define the Generalized Police Officer Patrolling Problem
(GPOPP) and present the necessary graph-theoretical concepts.
Section 3 provides a mathematical formulation of the GPOPP as
a bi-objective optimization problem. In Section 4, we describe the
proposed hybrid heuristic method that combines the MoEA-HSS
and an improved Jaya algorithm. Section 5 presents the results of the
numerical experiments conducted to evaluate the performance of
the proposed method. Finally, Section 6 concludes the paper and
discusses potential directions for future research.

2 Generalized police officer patrolling
problem (GPOPP)

In this study, we introduce a bi-objective problem that can be
applied to more realistic problems based on the POPP, which isNP-
complete edge routing decision problem, and propose a heuristic
algorithm to solve the problem. One police officer (or security guard
or robot) is assigned to a security area, and each officer patrols his/
her assigned area. Each street through which a police officer is
traversed during a patrol is considered guarded. In addition, except
for streets with important facilities, police officers are allowed to
visually confirm each street adjacent to an intersection without
traversing it. The GPOPP is a bi-objective optimization problem
with the following two objectives: One is to find the patrolling route
with the shortest length, and the other is to find the route with the
largest guarded area. Here, we note that all high-security streets must
be traversed. In this section, we define the notion in graph theory
necessary to formulate the GPOPP.

Throughout this paper, let N � {1, 2, 3, / } be the set of all
natural numbers. Let Ik � {0, 1, 2, / , k − 1} and I+k �
{1, 2, 3, / , k} for each k ∈ N. Let G � (V, E,A) be a
connected simple mixed graph, where V is the set of vertices, E
is the set of undirected edges and A is the set of arcs. Hereafter, the
number of vertices inG is denoted as n and fixed toV � {1, 2, . . . , n}.
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Here, we denote an undirected edge by {u, v} and an arc by (u, v).
The term “edge” refers to either an undirected edge or an arc,
denoted by 〈u, v〉. Thus, if 〈u, v〉 is an undirected edge,
〈u, v〉 � 〈v, u〉; if it is an arc, 〈v, u〉 ∉ A.

Let m∞ be a sufficiently large positive integer. Then, let d be a
function from V2 to N satisfying the following conditions: for all
u, v ∈ V

1. d(u, v) � d(v, u),
2. 〈u, v〉 ∈ E ∪ A or 〈v, u〉 ∈ E ∪ A 0 d(u, v)<m∞,
3. 〈u, v〉, 〈v, u〉 ∉ E ∪ A 0 d(u, v) � m∞.

Here, d(u, v) denotes the distance between u and v if there exists
an edge 〈u, v〉 (or 〈v, u〉). For convenience, d(u, v) � m∞ when
there is no edge between u and v.

Let H be a subset of E ∪ A. We consider that there exist
important facilities on each edge in H that must be stopped at.
Each edge inH is considered a high-security edge. A sequence s: v0,
v1, v2, / , vk of vertices is considered a patrolling route on G if the
following conditions hold:

1. The sequence s is a walk. That is, 〈vi, vi+1〉 ∈ E ∪ A for each
i ∈ Ik.

2. All edges inH are on s. That is, if {u, v} ∈ H, there exists i ∈ Ik
satisfying u � vi and v � vi+1 or u � vi+1 and v � vi. If
(u, v) ∈ H, there exists i ∈ Ik satisfying u � vi and v � vi+1.

3. vk � v0. That is, the walk s is closed.

The length L(s) of a patrolling route s is the total sum of the
distances of all edges on s and is calculated as follows:

L s( ) � ∑k−1
i�0

d vi, vi+1( ).

For a patrolling route s, let Vs � {vi ∈ V | i ∈ Ik} and
Es � {〈vi, vi+1〉 ∈ E ∪ A | i ∈ Ik}. Here, Vs denotes the set of
vertices on s, and Es denotes the set of edges traversed in s. Let
〈u, v〉 be an edge of G. If u ∈ Vs or v ∈ Vs, the edge is considered
guarded. In particular, if 〈u, v〉 ∈ Es, said the edge is considered
guarded by traversing; otherwise, if exactly one vertex of u and v is in
Vs, the edge is considered guarded by visual confirmation.

Let Eg
s � {〈u, v〉 ∈ E ∪ A | u ∈ Vs or v ∈ Vs} be a set of edges

guarded by a patrolling route s. Then, the total sum of the distances
of all edges guarded by s is denoted as∑〈u,v〉∈Eg

s
d(u, v). The total sum

of the distances of all edges of G is denoted as ∑〈u,v〉∈E∪Ad(u, v);
thus, the covered ratio cov(s) of G by s is defined as follows:

cov s( ) � ∑
〈u,v〉∈Eg

s

d u, v( )⎛⎜⎝ ⎞⎟⎠ ∑
〈u,v〉∈∈E∪A

d u, v( )⎛⎝ ⎞⎠−1

.

Similarly, cov(s) � 1 − cov(s) is called the noncovered ratio ofG
by s. For any patrolling route s of G, 0< cov(s)≤ 1 and
0≤ cov(s)< 1 holds.

An example of a patrolling route for a mixed graph is illustrated
in Figure 1. The red edges represent high-security edges, and the
blue line indicates a patrolling route. The green area is guarded by
this patrolling route. In particular, the green area not on the
patrolling route is guarded by visual confirmation. The graph

shown in Figure 1 has 60 vertices and 104 edges. Let us assume
that the distance between any two vertices is one. Then, the length of
the patrolling route is 44. The total sum of the distances of the
guarded edges is 84, and the covered and noncovered ratios are
0.808 and 0.192, respectively.

Let vi (i ∈ Ik) be a vertex on a patrolling route s: v0, v1, v2,/ , vk
of a mixed graph G � (V, E, A). If 〈vi−1, vi〉, 〈vi, vi+1〉 ∉ H and
〈vi−1, vi+1〉 ∈ E ∪ A, then the sequence s′: v0, v1, v2,/ , vi−1, vi+1,/ ,
vk−1, vk by removing vi from s is also a patrolling route of G (In the
case i � 0, s′: v1, v2, v3,/ , vk−1, v1 is a patrolling route if 〈vk−1, vk〉,
〈v0, v1〉 ∉ H and 〈vk−1, v1〉 ∈ E ∪ A). Some edges guarded by
visual confirmation from vi on s may not be guarded on s′,
although two edges removing from s are guarded by visual
confirmation. That is, cov(s)≤ cov(s′) holds. On the other hand,
the increase or decrease in the length of the sequence v0, v1, v2,/ , vk
does not determine the increase or decrease in the length of the
patrolling route. That is, L(s′)≤L(s) holds if the triangle inequality
d(vi−1, vi+1) ≤ d(vi−1, vi) + d(vi, vi+1) (d(vk−1, v1) ≤ d(vk−1, vk) +
d(v0, v1) in the case i � 0) is satisfied, otherwise, L(s) ≤ L(s′) holds.

3 Formulation

The GPOPP is a bi-objective optimization problem that obtains
a patrolling route with the shortest length and the lowest noncovered
ratio for a given connected simple mixed graph G � (V, E, A), a set
H ⊆ E ∪ A of high-security edges, and a distance function
d: V2 → Z+. The parameters n, cu,v, hu,v, and du,v for the GPOPP
are defined as follows:

(i) n: number of vertices.

(ii) cu,v � 1, if 〈u, v〉 ∈ E ∪ A,
0, otherwise.

{
If G has an undirected edge {u, v}, cu,v � cv,u � 1; if G has an arc

(u, v), cu,v � 1 and cv,u � 0.

(iii) hu,v � 1, if 〈u, v〉 ∈ H or 〈v, u〉 ∈ H,
0, otherwise.

{
Note that hu,v � hv,u � 1 even if 〈u, v〉 is an arc in H.

(iv) du,v � d(u, v) for each (u, v) ∈ V2.

(v) cu,v′ � 1, if cu,v + cv,u > 0,
0, otherwise.

{
In other words, cu,v′ � 1 when there is an edge that has endpoints

u and v; cu,v′ � 0 when there is no edge between them in the mixed
graph G. cu,v′ is immediately obtained from cu,v.

The decision variables for the GPOPP are xu,v and yu,v. The
decision variable xu,v represents the number of times the edge 〈u, v〉
is traversed from u to v. If there exists no edge between u and v,
xu,v � 0. The decision variable yu,v is expressed as follows:

(vi) yu,v �

1
2
, if ∑n

k�1
xu,k > 0 and ∑n

k�1
xv,k > 0,

1, if ∑n
k�1

xu,k > 0 and ∑n
k�1

xv,k � 0,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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We remark that ∑n
k�1xu,k is strictly positive if and only if the

vertex u is in Vs. Thus, yu,v � yv,u � 1
2 when both u and v are on s;

yu,v � 1 and yv,u � 0 when u is on s even though v is not on s. Note
that yu,v � yv,u � 1

2 does not mean that 〈u, v〉 or 〈v, u〉 are in Es.
Then,∑n

u�1∑n
v�1cu,v′ du,vyu,v denotes the total length of edges guarded

by the patrolling route s.
Let x � (x1,1, x1,2, / , xn,n) be an n2-tuple of nonnegative

integers. The mathematical model for the GPOPP is formulated
as follows:

minimize f1 x( ) � ∑n
u�1

∑n
v�1

du,vxu,v,

minimize f2 x( ) � 1 − ∑n
u�1

∑n
v�1

cu,v′ du,vyu,v
⎛⎝ ⎞⎠ ∑n−1

u�1
∑n

v�u+1
cu,v′ du,v

⎛⎝ ⎞⎠−1

.

The objective function f1 is the function that minimizes the
total length of the patrolling route, and f2 is the function that
minimizes the noncovered ratio.

The following constraints must be satisfied:

xu,v ≥ 0 ∀ u, v ∈ V( ), (1)
cu,v � 0 0 xu,v � 0 ∀u, v ∈ V( ), (2)

hu,v � 1 0 xu,v + xv,u > 0 ∀u, v ∈ V( ), (3)

∑n
v�1

xv,u � ∑n
v�1

xu,v ∀u ∈ V( ), (4)

W ≠ ϕ ∧ W ≠ Vx 0 ∑
u∈W

∑
v∉W

xu,v > 0 ∀W ⊆ Vx( ), (5)

where Vx � u ∈ V | ∑n
v�1xu,v > 0{ } is the same as Vs defined in the

previous section. Equation 1: The number of times to directly
traverse from u to v is nonnegative. Equation 2: If there exists no
edge between u and v or even if there exists an arc from v to u, it is
not possible to directly traverse from u to v. Equation 3: The edge
〈u, v〉 (or 〈v, u〉) must be traversed if it is a high-security edge.
Equation 4: For any vertex u, the number of times traversed from
other vertices to u is the same as the number of times traversed from
u to other vertices.

Suppose that x does not satisfy Equation 5. Then, there exists a
nonempty proper subset W of Vx that satisfies ∑u∈W∑v∉Wxu,v � 0.
This means that any edge 〈u, v〉 incident to u ∈ W and v ∈ Vx −W
is not traversed; therefore, x represents two or more separate walks.
In other words, based on Equation 5, the patrolling route is a
continuous closed walk.

The notation used in formulating the mathematical
programming model for GPOPP is summarized as follows:

Parameters
cu,v 1 if 〈u, v〉 ∈ E ∪ A, 0 otherwise
cu,v′ 1 if 〈u, v〉 ∈ E ∪ A or 〈v, u〉 ∈ E ∪ A, 0 otherwise
du,v same as d(u, v)
hu,v 1 if 〈u, v〉 ∈ H or 〈v, u〉 ∈ H, 0 otherwise
n number of vertices

Decision variables
xu,v number of traversing from u to v
yu,v

1
2 if both u, v on s, 1 if only one of u or
v is on s0 otherwise,

Objective functions
f1 minimize the length of the patrolling route L(s)
f2 minimize the length of the non-covered ratio cov(s)

4 Proposed methods

4.1 Framework

The GPOPP requires two conflicting objectives to be considered
simultaneously: minimizing the total length of the patrolling route
and minimizing its noncoverage ratio. Many Pareto-optimal
solutions with incomparable qualities must be generated for the
decision-maker. In this section, we introduce a hybrid heuristic
approach based on theMoEA-HSS and the improved Jaya algorithm
for the GPOPP.

The MoEA-HSS is based on a hybrid sampling strategy that
combines the VEGA and a sampling strategy according to the

FIGURE 1
Patrolling route (blue line) on mixed graph. The red edges represent high-security edges, and the green area indicates a guarded area.
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PDDR-FF. The sampling strategy of the VEGA is a natural
extension of simple GAs in the sense that the individuals are
divided and reproduced independently according to each
objective function. It prefers the edge region of the Pareto
front with less time complexity, and the qualities of the
solution are not good because of the selection bias.
Conversely, the PDDR-FF-based sampling strategy tends to
converge toward the central area of the Pareto front. The
combination of these two mechanisms is expected to maintain
both the convergence rate and distribution performance. The

Jaya algorithm modifies a given individual to move closer to the
best solution and away from the worst solution based on the best
and worst candidates in the population. The Jaya algorithm is
expected to accelerate the convergence rate.

The main framework of the proposed method is shown in
Figure 2. The assemblage of chromosomes in each generation t is
divided into two groups A(t) and P(t). A(t) and P(t) are called
Archive and Population, respectively. The Pareto solution set update
shown in the figure follows the same procedure as in the MoEA-HSS
(Zhang et al., 2014) framework.

FIGURE 2
Pseudocode for the proposed method.

FIGURE 3
Phases 1–3 of the proposed method.
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Let np be a positive constant. Initially, archive is set to empty,
and the initial population consists of n(0)(≥ np) individuals. For
each individual p in population, the objective functions f1(p) and
f2(p) and the evaluation function eval(p) are calculated. We adopt
the PDDR-FF as the evaluation function eval. Let gd(p) be the
number of individuals that can be dominated by the individual p and
gnd(p) be the number of individuals that can dominate the
individual p. Then,

eval p( ) � gd p( ) + 1
gnd p( ) + 1

.

Based on these values, the Pareto-optimal solution in the
population is obtained and maintained.

The following three phases are executed in each generation t. In each
generation t(> 1), archive A(t) contains na individuals and population
P(t) contains n(t)(≥ np) individuals generated by genetic operations

FIGURE 4
Pseudocode for the creation of the initial population.

FIGURE 5
Construction of patrolling route from which redundant traversing of undirected edges is reduced: (a) case i < j, (b) case j < i.

Frontiers in Industrial Engineering frontiersin.org06

Kudo et al. 10.3389/fieng.2025.1620422

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1620422


(Crossover and Mutation) and Improved Jaya algorithm in the previous
generation.

Phase 1: generating mating pools

1. Using the VEGA, two subpopulations M1(t) and M2(t),
called mating pools from P(t), are created. M1(t) is
created by 1

2np individuals selected from P(t) based only
on the value of f1. Then, the value of f2 is ignored. Similarly,
M2(t) is created by 1

2np individuals selected from P(t) based
only on the value of f2.

2. An integrated mating pool M(t) is created by
combining the two mating pools M1(t) and M2(t) and
Archive A(t).

Phase 2: create P(t + 1)

For individuals in the integrated mating pool M(t),
Crossover and Mutation operations and the Improved
Jaya algorithm are applied, and the t + 1-th generation
population P(t + 1) consisting of np or more individuals is
created. These three operations are described in detail in
the following.

Phase 3: create A(t + 1)

1. For each p in A(t) and P(t + 1), the values f1(p), f2(p), and
eval(p) are computed.

2. A(t + 1) is created by selecting na individuals from A(t) and
P(t + 1) in the order of decreasing eval value.

Phases 1 – 3 of the proposed method are depicted in Figure 3.

4.2 Chromosome representation and notation

The most natural route expression is adopted as the chromosome
expression in the proposedmethod. For example, if a sequence s: v0, v1, v2,
/ , vk of vertices is a legal patrolling route, its chromosome representation
is a k-tuple p � (v0, v1, v2, / , vk−1). The first component of p is
considered the starting point. By rotating the genes in p, the chromosome
at which the starting point is replaced with vi is denoted by p(i). That is,

p i( ) � vi, vi+1, / , vk−1, v0, v1, / , vi−1( ).

Since GPOPP does not have a fixed starting point, all chromosomes
p(0), p(1), p(2), / , p(k) represent the same patrolling route. This
representation p(i) obtained by routing the genes of chromosome p is

FIGURE 6
Pseudocode for the improvement of individual.
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useful for explaining the genetic operations introduced below. Let V � V
be the set of all genes and Vp � {vi | 1≤ i< k} be the set of genes
contained in chromosome p. For each gene v ∈ V , let Ip

v � {i ∈ Ik | vi �
v} be the set of gene loci whose gene is v. Let E � E ∪ A and Ep �
{〈vi, vi+1〉 | 0≤ i< k − 1} ∪ {〈vk−1, v0〉} be a set of pairs of adjacent
genes in chromosome p and H � H. Genes vk−1 and v0 are also
considered adjacent. Here, Vp � Vs and Ep � Es. Let vi− and vi+

denote the previous and next genes of vi (0≤ i< k) in chromosome
p, respectively. Here, these gene loci are i− � i − 1 (mod k) and
i+ � i + 1 (mod k), where x (mod k) denotes the least nonnegative
remainder when x is divided by k. Then, the two setsWp

u and �Wp
u of the

gene loci are defined as follows:

• For each gene u ∈ Vp,

Wp
u � i ∈ Ik | vi � u, 〈vi− , vi〉, 〈vi, vi+〉 ∈ Ep\H, 〈vi− , vi+〉 ∈ E{ }.

• For each gene u ∉ Vp,

�Wp
u � i ∈ Ik | 〈vi, vi+〉 ∈ Ep\H and 〈vi, u〉, 〈u, vi+〉 ∈ E{ }.

4.3 Initial population

As mentioned in Section 4.1, an initial population consisting of
np individuals is constructed. Each individual in the initial
population is generated as follows:

1. First, the direction traversing each high-security undirected
edge is decided randomly, since because all high-security edges
are traversed on every patrolling route.

2. Determine the order of traversing high-security
edges randomly.

3. Generate chromosome q representing the patrolling route that
traverses high-security edges in the order determined in step 2.
Here, to maintain the diversity of the initial population, two
consecutive high-security edges are connected by a shortest
path via a randomly selected vertex. The shortest walk
w[u, v, u′] from vertex u to u′ via v can be determined
using the Dijkstra’s algorithm.

4. The patrolling route represented by the generated
chromosome q may be able to reduce the total length
without changing the noncoverage rate. Therefore, the
improvement procedure described below is used for
chromosome q generated in step 3.

The pseudocode for the procedure generating the initial
population P(1) consisting of np individuals is presented in Figure 4.

Let s: v0, v1, v2, / , vk−1, vk be a patrolling route, and assume
that v0 � vi+1 � vj � u and v1 � vi � vj+1 � v (i, j ∈ Ik, i ≠ j). Then,
the edge connecting u and v is undirected. If i< j, the edge is
traversed three times on s, as shown in the left panel of Figure 5a,
and there exists a patrolling route that reduces the total length, as
shown in the right panel of Figure 5a. Such a patrolling route
traverses all edges on the original route; thus, the noncoverage rate

FIGURE 7
Creation of offspring from parent individuals in Crossover operation: (a) original parent individuals p1 and p2, (b) rotated chromosomes p1(i+0) and
p2( j+0), and (c) offspring q1 created from p1(i+0) and p2( j+0).
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remains unchanged. Similarly, even if j< i, the edge is traversed
three times, as shown in the left panel of Figure 5b, and there exists a
patrolling route that reduces the total length without changing the
noncoverage rate, as shown in the right panel of Figure 5b. In
general, assume that undirected edge {u, v} is traversed from u to
v l1(≥ 1) times and from v to u l2(≥ 1) times. If l1 ≠ l2, there exists a
patrolling route that reduces both the number of times traversing
from u to v and from v to u by min {l1, l2} times without changing
the noncoverage rate. If l1 � l2 > 1, there exists a patrolling route that
reduces both the number of times traversing from u to v and from v
to u by l1 − 1 times without changing the noncoverage rate. The
pseudocode for the improvement procedure of the chromosome is
shown in Figure 6.

4.4 Crossover

Let p1 � (u0, u1, / , uk−1) and p2 � (v0, v1, / , vl−1) be two
parent individuals. Then, the crossover operation is used in the

proposed method to replace a partial walk on the patrolling route
corresponding to p1 with that corresponding to p2. The procedure is
as follows:

(a) Any patrolling route requires that all high-security edges are
traversed. First, one high-security edge e0 is randomly
selected from H, and one gene ui0 in p1 such that e0 �
〈ui0, ui+0 〉 and one gene vj0 in p2 such that e0 � 〈vj0, vj+0 〉
are selected (Figure 7a).

(b) Find the high-security edge e1 � 〈ui1, ui+1 〉 that first appears
in the rotated chromosome p1(i+0 ), and in the rotated
chromosome p2(j+0 ), randomly select one gene vj1 such
that e1 � 〈vj1, vj+1 〉 (Figure 7b).

(c) In the patrolling route corresponding to the chromosome
p1(i+0 ), the partial walk between ui+0 and ui1 does not include
high-security edges. Therefore, offspring q1 can be created
by replacing this partial walk with the partial walk between
vj+0 and vj1 in p2(j+0 ). However, when selected high-security
edges e0 or e1 are undirected edges, the direction of

FIGURE 8
Pseudocode for crossover operation.
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traversing them on p1 may differ from the direction of
traversing them on p2. In this case, simply exchanging
partial walks does not lead to creating an accurate
patrolling route. Based on the direction of traversing e0
and e1, the process of creating offspring q1 can be divided
into four steps as follows (Figure 7c): Let q′ �
(vj+0 , / , vj1, ui+1 , / , ui0) be a chromosome to be
created by simply replacing the partial walk from ui+0 to
ui1 on p1(i+0 ) with the partial walk vj+0 to vj1 on p2(j+0 ). Then,
(1) When both e0 and e1 are traversed in the same direction

on p1(i+0 ) and p2(j+0 ) (that is, ui0 � vj0 and ui1 � vj1), let
q1′ be q′.

(2) When e1 is traversed in the opposite direction although e0
is traversed in the same direction (that is, ui0 � vj0 and
ui1 ≠ vj1), let q1′ be the chromosome created by inserting
gene vj+1 between vj1 and ui+1 on q′.

(3) When e0 is traversed in the opposite direction although e1
is traversed in the same direction (that is, ui0 ≠ vj0 and
ui1 � vj1), let q1′ be the chromosome created by appending
gene ui+0 at the end on q′.

(4) When both e0 and e1 are traversed in the opposite
direction (that is, ui0 ≠ vj0 and ui1 ≠ vj1), let q1′ be the
chromosome created by inserting gene vj+1
between vj1 and ui+1 and by appending gene ui+0 at
the end on q′.

(d) Find the high-security edge e2 � 〈vj2, vj+2 〉 that first appears
in the rotated chromosome p2(j+0 ), and in the rotated
chromosome p1(i+0 ), randomly select one gene ui2 such
that e2 � 〈ui2, ui+2 〉. Following the procedure used to create
offspring q1, offspring q2′ is created.

(e) Create offspring q1 and q2 by applying the improvement
procedure described in Section 4.3 to q1′ and q2′.

The pseudocode for the proposed crossover operation is
presented in Figure 8.

4.5 Mutation

In the crossover operation, the walk of parent individuals tends
to be inherited by their offspring. Therefore, it is seldom that
generated offspring will traverse vertices or edges that their
parents do not. To maintain the diversity of the population, we
introduce a mutation operation (Figure 9).

In this operation, the following steps are executed repeatedly:
randomly select a gene (vertex) u and

1. if gene u exists on the patrolling route corresponding to the
chromosome, select one locus i such that vi � u, and if there
exists an edge 〈vi− , vi+〉 connecting vertices vi− and vi+ before
and after u, remove gene vi from the chromosome
(see Figure 10a).

2. if gene u does not exist on the patrolling route corresponding to
the chromosome and succsessive genes vi and vi+ exist on the
route such that both 〈vi, u〉 and 〈u, vi+〉 are in E, insert gene u
between vi and vi+ (see Figure 10b).

4.6 Local search strategy based on the
Jaya algorithm

The crossover operation introduced in Section 4.4 is an order-
based operation in which the orders of traversing the high-security
edges of parents and other edges are inherited by offspring. To
compensate for the ability to converge the solutions of this
crossover, we introduce an improvement strategy that moves
dominated solutions closer to a Pareto-optimal solution by
combining the strategy used in the mutation operation with the
Jaya algorithm.

As mention in Section 2, if the triangle inequality holds,
removing a vertex v from the patrolling route tends to reduce the
noncovered ratio since edges may be no longer guarded by visual

FIGURE 9
Pseudocode for mutation operation.
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confirmation from v, although the total length of the patrolling route
becomes shorter. Conversely, adding a vertex that is not on the
patrolling route increases the total length; however, this is expected
to improve the noncovered ratio because edges guarded by visual
confirmation may increase.

The approach we propose here (called the improved Jaya
algorithm below) modifies a given individual to move closer to
the best solution and away from the worst solution based on the best
and worst candidates in the population. The outline of the proposed
strategy is presented in Figure 11. Let pb and pw be the best and worst
chromosomes in the current population, respectively, and let sb and
sw be the patrolling routes corresponding to pb and pw, respectively.
Let ϵ be a sufficiently small positive real number. By putting
fb
1 � L(sb), fb

2 � cov(sb), fw
1 � L(sw), fw

2 � cov(sw), the
coordinates of sb and sw are (fb

1, f
b
2) and (fw

1 , f
w
2 ),

respectively. Then, to modify a certain dominated solution
s(f1, f2) to be closer to sb and away from sw, a hypothetical
solution so(o1, o2) is computed based on the strategy of the
improved Jaya algorithm. To move s closer to the hypothetical

solution so, the mutation strategy is strategically repeated as follows:
Let g1 � 1

fw
1
|f1 − o1| and g2 � 1

fw
2
|f2 − o2|, which are normalizations

of |f1 − o1| and |f2 − o2|, respectively. If all edges are high-security
edges, set g2 � 0 because fw

2 � 0. The following operations are
performed if the triangle inequality holds.

• if g1 ≥g2, an operation is performed to move the first
component of point (f1, f2) closer to the first component
of point (o1, o2). Specifically, if f1 ≥ o1, vertices are removed
from the patrolling route to reduce the total distance; if
f1 < o1, vertices are added not on the patrolling route
increase the total distance.

• If g1 <g2, an operation is performed to move the second
component of point (f1, f2) closer to the second component
of point (o1, o2). Specifically, if f2 < o2, vertices are removed
from the patrolling route to reduce the noncovered ratio; if
f2 ≥ o2, vertices are added not on the patrolling route to
increase the noncovered ratio.

Remark that so is a hypothetical solution that does not always
exist; thus, the operation is repeated until approaching the
neighborhood of so (inside a circle of radius ϵ centered on so), or
the operation is repeated until the terminal condition is reached. The
pseudocode for the improved Jaya algorithm is presented in Figure 12.

5 Numerical experiments

In this section, we report the results of numerical experiments
conducted to verify the effectiveness of the proposed method (the
hybrid strategy of MoEA-HSS and the improved Jaya algorithm) for
the GPOPP. In these experiments, we compared the proposed
method (called pMH) with the NSGA-II (called NSGA-II)
proposed by Deb et al. (2002) and the original MoEA-HSS
without the improved Jaya algorithm (called MoEA-HSS). All
these methods incorporated the crossover and mutation
operations proposed in this paper.

Evaluating the performance of multi-objective optimization
methods is not easy since it is difficult to compare the Pareto-
optimal solutions (also called the nondominated solutions) obtained

FIGURE 11
Behavior of the improved Jaya algorithm in the criterion space.

FIGURE 10
Mutation operation in which a vertex u is selected. (a) the case that u is on the patrolling route and there exists an edge 〈vi− , vi+〉 connecting vertices
before and after u; (b) the case that u is not on the route and there exist edges 〈vi , u〉 and 〈u, vi+〉 for some vertex vi on the route.
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by different methods. We compared pMH with NSGA-II and
MoEA-HSS using three representative comparison methods. Let
Nex be the number of numerical experiments for each method. Let
S[i]

NSGA−II, S[i]
MoEA−HSS and S[i]

pMH be the Pareto-optimal solution sets
of NSGA-II, MoEA-HSS and pMH obtained by the i-th experiment,
respectively. The reference solution set S* is defined as the set of
nondominated solutions in the union of all Pareto-optimal solution
sets ⋃i∈I+Nex

(S[i]
NSGA−II ∪ S[i]

MoEA−HSS ∪ S[i]
pMH).

The three evaluation criteria we used are as follows:

1. Number of nondominated solutions. For each method
α ∈{NSGA-II, MoEA-HSS, pMH}, |S[i]

α | is the number of
nondominated solutions obtained by the i-th experiment for
α. In general, the selection of the final solution is left to human
judgment; thus, the number of Pareto-optimal solutions is an
important evaluation criterion.

2. Generational distance. For the nondominated solution set S[i]
α

obtained by each method α ∈{NSGA-II, MoEA-HSS, pMH}
and the reference solution set S*, the generational distance GD

FIGURE 12
Pseudocode for the improved Jaya algorithm.
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is defined as follows (Van Veldhuizen, 1999; Ishibuchi
et al., 2015):

GD S i[ ]
α( ) � 1

|S i[ ]
α | ∑

x∈S i[ ]
α

min δx,y | y ∈ S*{ }( )p⎛⎜⎜⎝ ⎞⎟⎟⎠
1
p

,

where p � 2 and δx,y �
�������������������������������
(f1(y) − f1(x))2 + (f2(y) − f2(x))2

√
denotes the Euclidean distance between a solution x in S[i]

α and a
reference solution y in S*. A smaller GD(S[i]

α ) value implies that S[i]
α

is closer to S*.

3. Coverage of two sets. For two
α, β ∈ {NSGA − II,MoEA −HSS, pMH}, where α ≠ β, the
coverage C is defined as follows (Zitzler and Thiele, 1999):

C S i[ ]
α ,S j[ ]

β( ) �
x ∈ S j[ ]

β | ∃y ∈ S i[ ]
α , y ⪯ x{ }∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
S j[ ]
β

∣∣∣∣∣∣ ∣∣∣∣∣∣ ,

where y ⪯ xmeans thatf(y)≤f(x) holds for any objective function
f. The value C(S[i]

α ,S[j]
β ) is in the interval [0,1], with values

approaching 1 indicating that a greater number of solutions in
S[j]
β are covered by those in S[i]

α .
The benchmark problems used in the experiments were created

based on the Mixed Rural Postman Problem (MRPP) benchmark
problems RB422 (|V| � 357, |E| � 674, |A| � 210), RB452
(|V| � 465, |E| � 796, |A| � 259), RB472 (|V| � 498, |E| � 849,
|A| � 265), RB522 (|V| � 388, |E| � 828, |A| � 278), RB552
(|V| � 488, |E| � 987, |A| � 331) and RB572 (|V| � 498, |E| � 986,

TABLE 1 Comparison of pMH with NSGA-II and MoEA-HSS during evolution (benchmark problem: RB422_10).

(a) The number of nondominated solutions, generational distance and CPU time

Gen Method |S[i]
α | GD(S[i]

α ) CPU time [sec]

min max ave std min max ave std Ave

10 NSGA-II 77 117 94.0 11.06 294.56 1046.94 605.26 233.76 10.78

MoEA-HSS 75 107 92.9 8.99 316.14 817.49 576.30 204.65 20.65

pMH 82 114 98.2 9.57 160.83 679.28 410.87 161.01 51.21

50 NSGA-II 176 222 201.9 16.16 327.51 1073.80 569.54 197.75 58.68

MoEA-HSS 164 224 197.7 16.49 362.05 756.20 520.69 135.20 107.50

pMH 204 269 233.2 20.83 179.55 648.16 393.76 134.40 348.96

150 NSGA-II 309 375 328.8 22.04 59.82 267.04 141.39 64.16 148.78

MoEA-HSS 243 347 307.0 26.68 46.49 251.71 122.88 71.29 276.16

pMH 306 431 353.4 36.27 43.48 332.89 156.66 93.84 994.56

300 NSGA-II 380 602 471.3 69.23 9.61 141.21 51.38 38.63 264.40

MoEA-HSS 346 487 396.5 34.23 17.52 193.08 76.36 46.31 518.72

pMH 382 603 453.3 56.59 3.17 306.90 119.06 91.86 1935.45

(b) The coverage of two sets

Gen Methods C(S[i]
α ,S[j]

β ) Methods C(S[i]
α ,S[j]

β )
α β min max ave std α β min max ave std

10 pMH NSGA-II 0.20 1.00 0.75 0.15 pMH MoEA-HSS 0.17 0.98 0.65 0.17

NSGA-II pMH 0.00 0.51 0.21 0.13 MoEA-HSS pMH 0.06 0.73 0.31 0.16

50 pMH NSGA-II 0.17 1.00 0.69 0.21 pMH MoEA-HSS 0.23 1.00 0.68 0.19

NSGA-II pMH 0.00 0.75 0.25 0.18 MoEA-HSS pMH 0.00 0.67 0.26 0.17

150 pMH NSGA-II 0.17 1.00 0.65 0.22 pMH MoEA-HSS 0.14 1.00 0.61 0.23

NSGA-II pMH 0.00 0.78 0.33 0.22 MoEA-HSS pMH 0.00 0.88 0.34 0.22

300 pMH NSGA-II 0.02 1.00 0.59 0.26 pMH MoEA-HSS 0.02 1.00 0.58 0.28

NSGA-II pMH 0.00 0.95 0.38 0.25 MoEA-HSS pMH 0.00 0.92 0.39 0.27
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|A| � 340) shown in Arc Routing Problems: Data Instances (https://
www.uv.es/corberan/instancias.htm). The number of high-security
edges (called required edges) defined in the MRPP benchmark
problems is sufficiently large. Therefore, they are not suitable for
use as benchmarks for methods against the GPOPP in which visual
confirmation is allowed. To confirm the effect of visual
confirmation, in these experiments, we changed the required
edges of each benchmark problem to non-required edges,
creating four patterns of benchmark problems with 10, 20, 30,
and 40 high-security edges. We used these edges in the
experiments. In addition, the ratio of the number of high-
security undirected edges to high-security arcs was set to 4: 1.

The experiments were conducted on a PC with Windows 11, an
AMD Ryzen 5 3500 CPU, 3.59 GHz, and 16.0 GB RAM. We
conducted preliminary experiments using the benchmark
problem RB422_10 with eight high-security undirected edges and
two high-security arcs. The parameters were set as follows: the
positive constant np � 150, the archive size na � 300, the initial
population size n(0) � 300, the crossover rate � 0.3,
themutation rate � 0.05, the terminating condition for the
improved Jaya algorithm T � 50, the radius ϵ � 0.1 of a circle

centered on the hypothetical solution so and the maximum
generations MaxGen � 300. When using the improved Jaya
algorithm in pMH, the best solution sb is selected from the
nondominated solution set S[i]

pMH. If many nondominated
solutions in S[i]

pMH are concentrated in close proximity, the
probability that sb will be selected from among these
concentrated individuals increases. Consequently, the individuals
generated by the improved Jaya algorithm also tend to move in the
direction of the concentrated population. To distribute the location
of the individuals generated by the improved Jaya algorithm to some

extent, sb was selected as follows: Let m � �|S
[i]
pMH |+10
10 � and

l � |S[i]
pMH| (mod m). Then

1. If m � 1, then let S1 � S[i]
pMH.

2. If m> 1, then partition S[i]
pMH into m subsets S1, S2, / , Sm,

which satisfy the following conditions:
• ⋃i∈I+m

Si � S[i]
pMH,

• Si ∩ Sj � ϕ (i, j ∈ I+m, i ≠ j),

• |Si| � �|S
[i]
pMH |
m � (i ∈ I+l ), |Sj| � �|S

[i]
pMH |
m � (j ∈ I+m\I

+
l ).

• For each i ∈ I+m−1,

FIGURE 13
Evolution of nondominated solutions when executing NSGA-II, MoEA-HSS and pMH for RB422_10. (a) gen = 10 (b) gen = 50 (c) gen = 150 (d)
gen = 300.

Frontiers in Industrial Engineering frontiersin.org14

Kudo et al. 10.3389/fieng.2025.1620422

https://www.uv.es/corberan/instancias.htm
https://www.uv.es/corberan/instancias.htm
https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1620422


TABLE 2 Comparison of pMH with NSGA-II and MoEA-HSS by the number of nondominated solutions, generational distance and CPU time (gen � 300).

Problem Method |S[i]
α | GD(S[i]

α ) CPU time [sec]

min max ave std min max ave std Ave

RB422_10 NSGA-II 380 602 471.3 69.23 9.61 141.21 51.38 38.63 264.40

MoEA-HSS 346 487 396.5 34.23 17.52 193.08 76.36 46.31 518.72

pMH 382 603 453.3 56.59 3.17 306.90 119.06 91.86 1935.45

RB422_20 NSGA-II 262 481 369.4 59.40 5.61 162.38 74.24 53.30 375.92

MoEA-HSS 264 421 324.7 43.54 5.26 199.14 100.44 68.67 651.91

pMH 254 414 357.1 50.74 2.48 212.85 123.89 60.97 2036.05

RB422_30 NSGA-II 152 323 214.0 48.24 41.17 239.79 132.88 56.13 489.67

MoEA-HSS 145 264 208.4 32.63 54.19 274.29 119.93 67.00 767.79

pMH 193 301 236.5 38.91 34.76 313.97 165.31 89.84 2340.67

RB422_40 NSGA-II 129 390 207.0 76.84 18.56 125.78 65.43 35.55 626.15

MoEA-HSS 113 245 175.5 35.93 15.12 134.20 76.34 39.70 1021.97

pMH 168 271 210.4 30.58 11.13 301.42 90.95 79.47 2609.41

RB452_10 NSGA-II 409 580 481.6 48.96 7.12 28.18 19.44 7.78 459.99

MoEA-HSS 345 429 398.2 25.21 8.84 64.65 29.00 19.70 828.12

pMH 423 506 454.6 28.84 6.69 165.06 58.78 52.18 3095.65

RB452_20 NSGA-II 269 412 338.4 49.93 17.39 254.83 64.91 69.65 678.07

MoEA-HSS 226 332 272.1 32.53 15.65 510.43 154.60 154.38 1255.28

pMH 268 441 352.9 46.15 12.06 546.01 186.63 180.61 3855.40

RB452_30 NSGA-II 158 330 237.1 54.69 24.62 233.80 127.72 68.65 889.09

MoEA-HSS 186 283 227.5 28.82 26.47 412.35 172.84 110.71 1471.48

pMH 245 380 298.5 39.55 22.86 559.41 243.63 166.04 4346.86

RB452_40 NSGA-II 129 238 175.1 31.41 60.63 436.12 255.00 115.72 1099.45

MoEA-HSS 126 233 163.9 31.97 65.13 507.44 227.02 145.80 1748.62

pMH 172 264 222.8 33.74 52.26 248.59 155.26 58.32 5117.44

RB472_10 NSGA-II 525 685 604.1 55.70 7.11 150.77 38.78 42.20 593.61

MoEA-HSS 405 508 463.1 36.36 18.50 204.54 73.27 64.95 904.46

pMH 421 597 497.1 44.95 4.85 175.62 43.97 51.60 2850.32

RB472_20 NSGA-II 322 423 370.6 30.89 85.91 838.67 307.09 234.65 1114.77

MoEA-HSS 275 426 329.6 43.93 93.13 556.72 240.50 129.08 1795.23

pMH 281 399 341.0 39.31 13.98 440.36 156.16 122.68 3966.87

RB472_30 NSGA-II 196 374 274.2 46.82 77.76 706.68 400.50 182.09 1486.01

MoEA-HSS 168 321 245.3 44.29 141.41 913.16 365.27 227.03 2419.09

pMH 180 294 259.1 34.15 12.81 435.61 175.33 123.11 4964.62

RB472_40 NSGA-II 99 272 180.4 45.17 263.60 1072.71 586.71 258.87 1888.19

MoEA-HSS 161 242 187.8 28.20 164.50 912.41 420.79 199.80 3115.36

pMH 110 262 184.7 53.48 29.16 524.68 242.39 151.61 6235.13
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TABLE 2 (Continued) Comparison of pMH with NSGA-II and MoEA-HSS by the number of nondominated solutions, generational distance and CPU time
(gen � 300)! .

Problem Method |S[i]
α | GD(S[i]

α ) CPU time [sec]

min max ave std min max ave std Ave

RB522_10 NSGA-II 528 633 562.4 36.67 4.05 67.74 25.74 20.94 298.48

MoEA-HSS 393 486 441.2 32.17 5.23 192.04 47.89 51.94 589.38

pMH 428 575 492.4 38.31 1.43 109.03 34.00 32.35 2422.35

RB522_20 NSGA-II 283 423 357.5 35.05 24.87 50.94 35.25 9.45 412.07

MoEA-HSS 201 331 261.2 45.00 10.65 105.69 40.91 32.72 511.92

pMH 244 373 311.3 43.49 3.45 66.84 28.43 18.13 2345.58

RB522_30 NSGA-II 155 336 250.2 58.69 15.76 164.57 74.84 45.32 507.85

MoEA-HSS 179 298 243.8 39.74 14.20 103.95 59.66 30.82 639.69

pMH 126 270 193.5 38.71 1.80 211.54 75.44 65.55 3419.29

RB522_40 NSGA-II 132 300 209.9 52.08 94.27 308.58 158.19 61.62 629.45

MoEA-HSS 110 196 160.6 26.50 21.78 214.40 121.46 49.36 729.41

pMH 110 248 181.4 38.93 0.89 229.42 134.67 68.10 2994.47

RB552_10 NSGA-II 441 578 520.7 46.44 12.03 66.23 36.23 21.71 363.79

MoEA-HSS 362 464 435.4 28.95 14.06 130.60 42.45 38.14 634.52

pMH 417 522 475.4 30.80 11.98 195.67 49.70 51.69 4273.26

RB552_20 NSGA-II 269 406 324.9 41.96 12.63 288.89 69.49 76.71 493.70

MoEA-HSS 251 344 307.2 27.99 12.84 243.47 111.28 68.44 982.66

pMH 330 408 368.6 27.92 12.17 462.37 174.80 128.41 5186.40

RB552_30 NSGA-II 190 334 272.2 44.52 27.32 226.11 124.58 61.44 606.83

MoEA-HSS 153 308 212.9 51.19 30.41 234.74 152.43 57.37 984.32

pMH 249 375 303.8 32.03 18.59 493.17 207.32 141.31 5069.98

RB552_40 NSGA-II 124 229 184.2 33.68 39.87 460.09 133.89 114.07 939.13

MoEA-HSS 135 273 187.1 40.84 25.67 296.67 125.01 92.27 1153.40

pMH 188 327 250.2 38.14 20.82 244.69 118.60 66.34 5472.13

RB572_10 NSGA-II 428 589 520.1 48.10 18.18 76.48 39.99 17.82 478.17

MoEA-HSS 372 475 416.1 29.46 3.34 431.67 93.25 119.77 622.80

pMH 406 499 445.6 28.46 2.09 156.54 63.03 48.49 3710.57

RB572_20 NSGA-II 281 402 334.7 32.96 16.98 139.31 51.33 34.76 536.94

MoEA-HSS 231 334 285.5 29.64 9.57 268.10 67.75 75.43 825.95

pMH 290 374 344.5 24.74 7.92 115.86 53.32 34.91 4368.54

RB572_30 NSGA-II 163 254 212.7 25.97 26.61 222.26 93.67 53.94 600.63

MoEA-HSS 156 260 218.6 30.93 19.42 85.66 53.82 21.80 1356.75

pMH 244 346 284.5 33.21 3.48 140.03 60.36 35.76 5328.90

RB572_40 NSGA-II 146 255 177.9 29.71 9.18 273.45 103.84 77.19 715.96

MoEA-HSS 149 231 190.9 28.41 11.64 452.21 91.76 122.21 1610.60

pMH 180 302 243.0 36.25 6.15 222.99 83.88 59.41 5029.07
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TABLE 3 Comparison of pMH with NSGA-II and MoEA-HSS by the coverage (gen � 300).

Problem Methods C(S[i]
α ,S[j]

β ) Methods C(S[i]
α ,S[j]

β )

α β min max ave std α β min max ave std

RB422_10 pMH NSGA-II 0.02 1.00 0.59 0.26 pMH MoEA-HSS 0.02 1.00 0.58 0.28

NSGA-II pMH 0.00 0.95 0.38 0.25 MoEA-HSS pMH 0.00 0.92 0.39 0.27

RB422_20 pMH NSGA-II 0.00 1.00 0.66 0.28 pMH MoEA-HSS 0.00 0.97 0.57 0.29

NSGA-II pMH 0.00 0.98 0.31 0.28 MoEA-HSS pMH 0.01 1.00 0.40 0.28

RB422_30 pMH NSGA-II 0.00 1.00 0.65 0.31 pMH MoEA-HSS 0.00 1.00 0.47 0.34

NSGA-II pMH 0.00 1.00 0.30 0.29 MoEA-HSS pMH 0.01 1.00 0.47 0.34

RB422_40 pMH NSGA-II 0.00 1.00 0.73 0.29 pMH MoEA-HSS 0.00 1.00 0.61 0.29

NSGA-II pMH 0.00 0.99 0.20 0.25 MoEA-HSS pMH 0.00 0.98 0.27 0.26

RB452_10 pMH NSGA-II 0.06 1.00 0.63 0.21 pMH MoEA-HSS 0.00 1.00 0.52 0.28

NSGA-II pMH 0.00 0.83 0.32 0.21 MoEA-HSS pMH 0.00 1.00 0.41 0.27

RB452_20 pMH NSGA-II 0.00 0.98 0.49 0.29 pMH MoEA-HSS 0.00 0.96 0.38 0.30

NSGA-II pMH 0.00 1.00 0.44 0.30 MoEA-HSS pMH 0.03 1.00 0.54 0.31

RB452_30 pMH NSGA-II 0.00 1.00 0.44 0.37 pMH MoEA-HSS 0.00 1.00 0.40 0.37

NSGA-II pMH 0.00 1.00 0.50 0.36 MoEA-HSS pMH 0.00 1.00 0.55 0.37

RB452_40 pMH NSGA-II 0.00 1.00 0.59 0.36 pMH MoEA-HSS 0.00 1.00 0.49 0.38

NSGA-II pMH 0.00 1.00 0.34 0.34 MoEA-HSS pMH 0.00 1.00 0.40 0.35

RB472_10 pMH NSGA-II 0.19 1.00 0.61 0.24 pMH MoEA-HSS 0.01 1.00 0.65 0.28

NSGA-II pMH 0.00 0.71 0.31 0.21 MoEA-HSS pMH 0.00 0.92 0.30 0.27

RB472_20 pMH NSGA-II 0.00 1.00 0.78 0.31 pMH MoEA-HSS 0.02 1.00 0.65 0.36

NSGA-II pMH 0.00 1.00 0.20 0.31 MoEA-HSS pMH 0.00 0.98 0.31 0.35

RB472_30 pMH NSGA-II 0.00 1.00 0.78 0.29 pMH MoEA-HSS 0.02 1.00 0.83 0.25

NSGA-II pMH 0.00 1.00 0.19 0.27 MoEA-HSS pMH 0.00 0.92 0.12 0.21

RB472_40 pMH NSGA-II 0.05 1.00 0.78 0.32 pMH MoEA-HSS 0.01 1.00 0.65 0.36

NSGA-II pMH 0.00 0.98 0.17 0.28 MoEA-HSS pMH 0.00 0.99 0.30 0.34

RB522_10 pMH NSGA-II 0.00 0.94 0.44 0.22 pMH MoEA-HSS 0.04 1.00 0.53 0.28

NSGA-II pMH 0.02 1.00 0.47 0.24 MoEA-HSS pMH 0.00 0.96 0.44 0.27

RB522_20 pMH NSGA-II 0.00 1.00 0.59 0.28 pMH MoEA-HSS 0.00 1.00 0.46 0.31

NSGA-II pMH 0.00 0.98 0.37 0.29 MoEA-HSS pMH 0.00 1.00 0.50 0.32

RB522_30 pMH NSGA-II 0.00 1.00 0.67 0.33 pMH MoEA-HSS 0.00 1.00 0.77 0.28

NSGA-II pMH 0.00 1.00 0.27 0.29 MoEA-HSS pMH 0.00 1.00 0.18 0.26

RB522_40 pMH NSGA-II 0.00 1.00 0.65 0.37 pMH MoEA-HSS 0.00 1.00 0.53 0.40

NSGA-II pMH 0.00 0.99 0.31 0.36 MoEA-HSS pMH 0.00 1.00 0.43 0.40

RB552_10 pMH NSGA-II 0.21 1.00 0.66 0.17 pMH MoEA-HSS 0.02 0.95 0.56 0.26

NSGA-II pMH 0.00 0.68 0.29 0.17 MoEA-HSS pMH 0.02 0.98 0.38 0.25

RB552_20 pMH NSGA-II 0.01 1.00 0.79 0.20 pMH MoEA-HSS 0.01 0.99 0.66 0.26

NSGA-II pMH 0.00 0.90 0.19 0.20 MoEA-HSS pMH 0.01 0.99 0.30 0.24
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f1 x( )<f1 y( ) ∀x ∈ Si, ∀y ∈ ⋃
j∈I+m\I+i

Sj
⎛⎝ ⎞⎠.

3. Randomly select one subset Si from the m subsets, randomly
select one solution x from Si, and put sb � x.

We ran 10 numerical experiments for each method (that is,
Nex � 10). Comparison results of pMH with NSGA-II and MoEA-
HSS at 10, 50, 150 and 300 generations are shown in Table 1. The
number of nondominated solutions, generational distance and CPU
time are shown in (a) and these are the maximum, minimum, average
and standard deviation obtained by 10 experiments. Here, the
GD(S[i]

α ) for each generation gen ∈ {10, 50, 150, 300} is calculated
using the Pareto-optimal solution sets S[i]

α at the gen-th generation
and the reference solution set S* at the 300th generation. The
comparison results for the coverage are shown in (b) and these are
calculated by 100 values of C(S[i]

α ,S[j]
β ) (1≤ i, j≤Nex). The

evolution of the Pareto-optimal solution set S[1]
α at the 1st

experiment for each method is shown in Figure 13.
The number of nondominated solutions |S[i]

α | for NSGA-II and
pMH are no significant difference, although the value for MoEA-HSS
is slightly lower. If the Pareto-optimal solution set S[i]

α contains even a
single solution that is far fromS*, the generational distance will have a
large value. Therefore, method α cannot be considered inferior simply
because the generational distance has a large value. On the other hand,
when the minimum value of the generational distance is sufficiently
small, method α is considered superior because the nondominated
solutions obtained bymethod α are likely to be close to the solutions in
the reference solution set S*. For these reasons, it is more appropriate
to use the minimum value, rather than the average or maximum,
when conducting evaluations with the generational distance.
Therefore, from these experimental results, in evaluations based on
the number of nondominated solutions and the generational distance,
pMH can be considered superior to other methods. In particular, the

comparison between MoEA-HSS and pMH based on these criteria
implies that the ability of local search for the improved Jaya algorithm
has achieved the expected results.

The coverage C(S[i]
α ,S[j]

β ) is the rate that solutions in S[j]
β are

covered by solutions in S[i]
α . Hence, if the average of C(S[i]

α ,S[j]
β ) is

higher than the average of C(S[j]
β ,S[i]

α ), S[i]
α can be considered as

better than S[i]
β under this criterion. Therefore, by comparing the

average of two coverages C(S[i]
pMH,S[j]

β ) and C(S[j]
β ,S[i]

pMH)
(β ∈{NSGA-II, MoEA-HSS}), the Pareto-optimal solution set
S[i]

pMH is considered statistically superior to S[j]
β obtained by

other methods at every generations.
The experiment results of comparing pMH with NSGA-II and

MoEA-HSS when we ran each method until 300 generations for all
benchmark problems are shown in Tables 2, 3.

Our method pMH achieved better results than other methods in all
benchmark problems with respect to the generational distance and the
coverage of two sets, although pMH and NSGA-II are evenly-matched
at the criterion the number of nondominated solutions. Here, even if
pMH is inferior to that of other methods α at the criteria the number of
nondominated solutions, since it is considered that the ratio of solutions
in S[j]

α covered by solutions in S[i]
pMH is high, S[i]

pMH is not necessarily
inferior to S[j]

NSGA−II or S[j]
MoEA−HSS. Based on these numerical

experiments, we confirmed that the local search based on the
improved Jaya algorithm is effective and that pMH can generate
superior Pareto-optimal solutions.

6 Conclusion

In this study, we defined a new arc routing bi-objective
optimization problem (GPOPP) that models the patrol security of
police officers (or security guards) based on the POPP and proposed a
hybrid heuristic approach for the GPOPP. The proposed method
combines the hybrid sampling strategy MoEA-HSS, which combines
sampling strategies based on the VEGA and PDDR-FF, with a

TABLE 3 (Continued) Comparison of pMH with NSGA-II and MoEA-HSS by the coverage (gen � 300)! .

Problem Methods C(S[i]
α ,S[j]

β ) Methods C(S[i]
α ,S[j]

β )
α β min max ave std α β min max ave std

RB552_30 pMH NSGA-II 0.00 0.99 0.62 0.29 pMH MoEA-HSS 0.00 1.00 0.44 0.28

NSGA-II pMH 0.00 1.00 0.32 0.26 MoEA-HSS pMH 0.01 1.00 0.42 0.24

RB552_40 pMH NSGA-II 0.00 1.00 0.61 0.29 pMH MoEA-HSS 0.00 1.00 0.59 0.32

NSGA-II pMH 0.00 0.98 0.30 0.26 MoEA-HSS pMH 0.00 1.00 0.31 0.31

RB572_10 pMH NSGA-II 0.09 1.00 0.52 0.22 pMH MoEA-HSS 0.02 0.98 0.55 0.26

NSGA-II pMH 0.00 0.86 0.42 0.23 MoEA-HSS pMH 0.02 0.95 0.41 0.24

RB572_20 pMH NSGA-II 0.05 0.99 0.64 0.29 pMH MoEA-HSS 0.00 0.97 0.39 0.29

NSGA-II pMH 0.00 0.96 0.34 0.29 MoEA-HSS pMH 0.01 0.97 0.55 0.29

RB572_30 pMH NSGA-II 0.00 1.00 0.62 0.26 pMH MoEA-HSS 0.02 1.00 0.57 0.27

NSGA-II pMH 0.00 0.91 0.31 0.23 MoEA-HSS pMH 0.00 0.95 0.36 0.25

RB572_40 pMH NSGA-II 0.02 1.00 0.74 0.25 pMH MoEA-HSS 0.00 0.98 0.60 0.24

NSGA-II pMH 0.00 0.97 0.20 0.23 MoEA-HSS pMH 0.00 1.00 0.31 0.23
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solution improvement strategy based on the improved Jaya algorithm.
The solutions of the MoEA-HSS approach to the true Pareto differ in
various directions because the VEGA-based sampling strategy has a
preference for the edge region of the Pareto front and the PDDR-FF-
based sampling strategy tends to converge toward the center area of
the Pareto front. The proposedmethod (pMH) improves convergence
by combining the MoEA-HSS with the improved Jaya algorithm-
based local search method. The numerical experimental results
demonstrate that the proposed method can obtain better solutions
than the NSGA-II and the MoEA-HSS. The remaining challenge for
us is to improve efficiency by reducing CPU time while maintaining
high solution quality. In addition, extending GPOPP model will
enable us to more accurately replicate the complex challenges of
real-world urban policing. One extension would be to model
situations where multiple officers work together, and we consider
to adapt our method to address such extended problems.
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