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Inflammatory bowel disease (IBD) is a chronic relapsing disorder driven by
complex interactions between genetic susceptibility, immune dysregulation,
and environmental factors. Ferroptosis has been identified as a key regulator in
the progression of IBD. While much research focuses on endogenous signaling
pathways, extrinsic mechanisms—particularly the modulation of IBD through the
gut microbiota-induced ferroptosis remain underexplored. Dysregulated
ferroptosis, influenced by gut microbiota, exacerbates microbial imbalance,
creating a vicious cycle. Notably, the gut microbiota plays a critical role in IBD
progression through multidimensional mechanisms, including regulation of
metabolites, maintenance of immune homeostasis, and protection of the
intestinal barrier. This review examines the microbiota—ferroptosis axis in I1BD
pathogenesis, aiming to provide insights into potential therapeutic strategies. In
particular, we discuss emerging treatments targeting ferroptosis inhibition, iron
homeostasis regulation, and microbiota interventions, which hold promise for
improving clinical outcomes and promoting pathological recovery in
IBD patients.
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GRAPHICAL ABSTRACT

Schematic illustration of the interplay mechanisms between gut microbiota and ferroptosis in inflammatory bowel disease.

1 Introduction

Inflammatory bowel disease (IBD) is an immune-mediated
disease characterized by chronic, recurrent inflammation of the
intestinal tract. The clinical subtypes mainly comprise ulcerative
colitis (UC) and Crohn’s disease (CD), and their incidence is
particularly significant in adolescents and young adults (1). In the
process of IBD, factors such as host genetics, environment, and
microbes act on the local intestinal microenvironment, leading to a
localized immune response in the intestinal mucosa of genetically
susceptible hosts against dysbiosis of the commensal gut microbiota
(2). Its typical clinical symptoms include bloody diarrhea,
abdominal pain, and progressive weight loss, which seriously
impair patients’ quality of life and long-term prognosis (3).
Current clinical management strategies for IBD primarily focus
on symptom control, with commonly used pharmacological agents
including aminosalicylates (5-ASA), corticosteroids,
immunomodulators, and biologics (4). Other general measures
should be supplemented when necessary, according to the
patient’s clinical symptoms (5), and combined surgical
intervention should be performed for patients with concurrent
intestinal stenosis or perforation (6). However, the existing
therapies have significant limitations, often resulting in serious
drug side effects and surgical complications. Studies have shown
that long-term use of glucocorticoids can induce metabolic
syndrome and increase the risk of opportunistic infections. At the
same time, immunosuppressants may weaken the efficacy of
vaccination and lead to increased susceptibility to viruses (3).

Frontiers in Immunology

Although biologics have improved outcomes in moderate-to-
severe IBD, their high cost can impose a substantial financial
burden, prompting growing interest in biosimilars with
comparable efficacy and safety at lower cost. Moreover, most
biologics are administered parenterally, which may increase the
risks of infections and hypersensitivity and complicate long-term
management (7). What is particularly serious is that with the
increasing global prevalence of IBD and the aggravation of drug
resistance, the conventional treatment modalities are facing a
bottleneck, and it is urgent to explore novel therapeutic strategies.

Ferroptosis, a novel form of programmed cell death, differs
from traditional types, including apoptosis, pyroptosis, and
autophagic cell death. It involves multiple physiological metabolic
processes, including iron metabolism, lipid metabolism, oxidative
stress, amino acid metabolism, and biosynthesis. It is primarily
manifested by increased intracellular iron levels and enhanced lipid
peroxidation, ultimately leading to cell death characterized by
mitochondrial shrinkage, loss of cristae, and disruption of
membrane integrity (8). Ferroptosis has been implicated in the
pathogenesis of a broad spectrum of diseases, including
inflammatory diseases (9, 10), cancer (11, 12), neurodegenerative
(13, 14), and cardiovascular diseases (15), as well as infectious and
systemic illnesses (16). Studies have demonstrated that targeting
ferroptosis with pathway-specific inhibitors or activators can help
ameliorate disease progression (17). However, excessive ferroptosis
exacerbates colitis symptoms, as confirmed in both a dextran sulfate
sodium (DSS)-induced murine model and clinical specimens from
IBD patients. Administration of ferroptosis-related factor inhibitors
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has demonstrated therapeutic efficacy in ameliorating IBD (18).
The proposed mechanism may involve several pathways, including
the inhibition of ferroptosis-related proteins, enhancement of local
iron metabolism, and restoration of the intestinal epithelial
barrier integrity.

The Gut Microbiota, as a vital component of the intestinal
microenvironment, plays a pivotal role in maintaining intestinal
homeostasis, modulating host immune responses, participating in
metabolic regulation, and promoting nutrient absorption.
Breakthroughs in multi-omics technologies have confirmed that
gut microbiota and their metabolites play a crucial role in regulating
the pathological progression of IBD (19). According to the latest
research, IBD is considered to result from abnormal immune
responses triggered by genetically susceptible hosts against
intestinal symbiotic microorganisms (20). The gut microbiome
serves as a metabolic organ, promoting host wellness by executing
a variety of biological activities. Alterations in the gut microbiome
composition can lead to several pathological conditions, including
IBD (21). This theory is of great significance in promoting the
transformation of clinical IBD treatment strategies to microbial-
targeted therapy. Currently, microecological regulatory therapies,
represented by precise probiotic interventions and standardized
fecal microbiota transplantation, have demonstrated promising
clinical potential in alleviating intestinal inflammation through
the restoration of gut microbiota homeostasis (22). However, the
precise molecular mechanisms through which the gut microbiota
contributes to IBD development are not fully understood. In
particular, the regulation of ferroptosis in intestinal epithelial cells
by microbial metabolites—such as short-chain fatty acids (SCFAs)
and bile acids—through epigenetic modifications and metabolic
reprogramming requires further investigation. The association
between microbiome dysbiosis (including the bacteriome, virome,
and mycobiome) and IBD progression is an area of growing
interest. Given the critical role of ferroptosis in intestinal
epithelial damage and the amplification of inflammatory
responses, targeting the gut microbiota—ferroptosis axis may
represent a novel therapeutic direction for IBD in the future.

This review focuses on describing local intestinal iron
metabolism, the regulation of iron homeostasis, and host-
microbiota interactions based on current research findings, while
also elucidating the underlying molecular mechanism of
metabolite-modulated ferroptosis plasticity. Additionally, it
discusses strategies to reduce the susceptibility of intestinal cells
to ferroptosis by targeting these pathways and manipulating them,
offering promising avenues for addressing current challenges in
IBD treatment.

2 Intestinal iron metabolism and
regulation

As an essential trace element, iron is integral to numerous
biological processes, including oxygen transport, ATP production,
immune regulation, DNA synthesis, and repair (23). It is
indispensable for proper cellular function. However,
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paradoxically, iron overload can induce oxidative stress, causing
damage to cellular membranes, proteins, and DNA. Which, in turn,
may trigger inflammatory responses, apoptosis, and ultimately,
tissue destruction. Additionally, oxidative stress impairs immune
function and increases susceptibility to infections (24). To maintain
functional homeostasis across tissues and cells, the body tightly
orchestrates systemic iron balance through the expression and
activity of iron carriers, transporters, as well as regulatory and
storage proteins (25). A network of hormones, cytokines, and
regulatory proteins dynamically sustains this equilibrium.

2.1 Intestinal iron absorption and
homeostasis

The available iron in the body mainly comes from dietary intake
and the phagocytosis of senescent red blood cells by macrophages
(26). According to the different forms and absorption mechanisms,
dietary iron can be divided into heme iron and non-heme iron.
Following dietary intake, the duodenum absorbs non-heme iron
primarily as Ferric iron (Fe**) at the brush border membrane of
epithelial cells. Duodenal cytochrome B (DcytB), potentially in
concert with other reductants, ultimately reduces Fe** to ferrous
iron (Fe**). The reduced Fe?* is then transported into the labile iron
pool (LIP) within duodenal cells via divalent metal transporter 1
(DMT1) (27). A portion of Fe*" is stored intracellularly in the form
of ferritin, which plays a critical role in the strict regulation of iron
absorption (28). Simultaneously, the remaining Fe*" is released
from the basal membrane of intestinal epithelial cells into the
circulatory system via the ferroportin (FPN). The body mainly
absorbs heme iron through endocytosis (29). After entering the
small intestinal epithelial cells, free Fe?' is released into the
cytoplasm by the heme oxygenase-1 (HO-1) and stored in the
active iron pool. When the body requires iron, Fe** is transported to
the portal vein by the ferroportin 1 (FPN1) protein. Plasma
ceruloplasmin (CP) and other membrane iron transport auxiliary
proteins oxidize these iron ions into Fe*". The resulting iron ions
then circulate in the plasma as Fe’*, binding with transferrin (Tf) to
form iron-transferrin complexes (30). The acidic environment of
the endosomes promotes the release of Fe®* from Tf, which is then
reduced to Fe** by prostate six transmembrane epithelial antigen 3
(STEAP3) (31). This process maintains iron in a soluble form,
enabling its delivery via transferrin receptors to tissues and cells
with functional demand.

The gut exhibits precise regulation of iron homeostasis. These
regulatory factors maintain iron concentrations within optimal
physiological ranges by controlling iron absorption, storage, and
utilization. This process directly meets physiological iron demands
without inducing the pathological changes associated with iron
overload or deficiency. Research on localized intestinal iron
metabolism reveals a connection between oxidative stress within
the gut and iron-dependent Fenton reactions. During iron overload,
excess Fe’" generates substantial reactive oxygen species (ROS)
through the Fenton reaction, inducing localized oxidative stress.
This heightens susceptibility to the toxic effects of iron overload,
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disrupting intestinal mucosal homeostasis and triggering local
inflammation and cell death, ultimately precipitating the onset of
gut-associated diseases (32).

2.2 Iron overload, deficiency, and IBD
pathogenesis

In the intestinal microenvironment of IBD, iron overload or
functional iron deficiency not only serves as a source of oxidative
stress but also acts as a critical factor triggering ferroptosis in
intestinal epithelial cells. When intestinal inflammation disrupts
the body’s iron balance, abnormal iron metabolism may lead to the
formation of excessive activated iron, causing iron deposition and
lipid peroxidation. This heightens susceptibility to the toxic effects
of iron overload, disrupting intestinal mucosal homeostasis and
triggering local inflammation and cell death, ultimately
precipitating the onset of gut-associated diseases (8, 32).

Iron overload-related diseases rank among the most prevalent
genetic disorders in humans, characterized pathologically by
systemic iron accumulation resulting from excessive dietary iron
absorption and iron-induced oxidative stress responses (33). Excess
iron catalyzes the production of ROS through the Fenton reaction,
disrupting colonic mucosal homeostasis, compromising epithelial
integrity, and impairing the gut microbiota interaction. These
mechanisms exacerbate colonic inflammation and may even
promote colorectal cancer development (34). Conversely, while
iron deficiency may partially inhibit pathogen growth by limiting
bacterial iron uptake, it simultaneously leads to iron-deficiency
anemia and compromises intestinal barrier function (35). As the
most common form of anemia globally, iron-deficiency anemia
(IDA) develops from chronic iron deficiency, persistent blood loss,
or impaired iron absorption (36). Notably, the prevalence of
concomitant iron deficiency anemia in IBD patients reaches 6-
74% (37). Although iron supplementation is the standard treatment
for IDA, its use in IBD patients requires caution. Oral iron
supplements may disrupt local iron balance due to intestinal free
iron accumulation, which increases oxidative stress and ultimately
worsens IBD progression (38).

3 Ferroptosis and inflammatory bowel
disease

The imbalance in ferroptosis regulation plays a key role in the
pathogenesis of various diseases. Evidence clearly indicates that
ferroptosis plays a pivotal regulatory role in intestinal disorders.
Specifically, gut dysfunction is closely associated with ferroptosis,
which exhibits dual roles across different cell types and disease
contexts. It may function as a positive regulator of intestinal disease
while also undertaking negative regulatory functions (39). In IBD,
abnormal activation of ferroptosis serves as a critical driver of
disease progression. Studies indicate that inhibiting ferroptosis
can effectively alleviate IBD-related pathological changes, with
protective mechanisms including reduced inflammatory cell
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infiltration, decreased levels of pro-inflammatory factors, and
maintenance of intestinal epithelial barrier integrity. Given these
findings, targeted regulation of ferroptosis has emerged as a highly
promising novel therapeutic strategy in IBD clinical management.

3.1 Ferroptosis

Ferroptosis is a form of regulated cell death characterized by its
high dependence on iron; its core mechanism involves iron ion-
catalyzed lipid peroxidation. When excessive iron ions accumulate
in cells, the resulting free Fe**triggers Fenton reactions that generate
ROS. These ROS then attack phospholipids rich in polyunsaturated
fatty acids (PUFAs) on cell membranes, leading to the accumulation
of lipid peroxides (LPOs) and compromising membrane integrity
(8). Growing evidence suggests that the ferroptosis process is
regulated by a complex signaling network involving glutathione
(GSH) metabolism, iron metabolism, and the control of oxidative
stress (Figure 1).

One of the core characteristics of ferroptosis is the collapse of
the antioxidant defense system. Glutathione peroxidase 4 (GPX4), a
key enzyme in lipid peroxide repair, reduces lipid peroxides by
consuming GSH, thereby converting potentially toxic lipid
hydroperoxides into non-toxic lipid alcohols (40). When GPX4
activity is lost, or its substrate GSH becomes increasingly depleted,
ferroptosis progresses more rapidly. The Conrad team (41)
employed a conditional GPX4 knockout mouse model to
investigate the role of GPX4 in ferroptosis, revealing that GSH
levels and GPX4 activity are key regulators of this process, whose
depletion or inactivation in intestinal tissues leads to unchecked
lipid peroxidation and epithelial cell vulnerability, a hallmark
observed in IBD patients and experimental colitis models (42).
Cystine/glutamate antiporter (System Xc-), acting as a System Xc-
on the cell membrane, regulates the upstream pathways of
ferroptosis by primarily transporting extracellular cystine into the
cell for GSH synthesis. Inhibition of System Xc- using sorafenib
reduces cystine uptake and indirectly suppresses GPX4 activity by
depleting GSH, thereby inducing ferroptosis (43).

In recent years, understanding of ferroptosis-related
mechanisms has progressively deepened. In 2019, Sebastian Doll’s
team (44) identified ferroptosis suppressor protein 1(FSP1) as a key
molecule mediating ferroptosis resistance via a GPX4-independent
pathway. Its expression levels correlate strongly with cellular
resistance to ferroptosis. Even in cells lacking GPX4 or GSH, the
FSP1/CoQ10 pathway still provides ferroptosis protection, forming
a ‘dual safeguard’ for cellular defense. Building upon this, the team
further elucidated that FSPI’s inhibitory effect on ferroptosis
depends on the mediation of ubiquinone, also known as
coenzyme Q10 (CoQ10). FSP1 reduces exogenous CoQl0 to its
hydroquinone form (CoQl0H2), which subsequently eliminates
lipid peroxides to suppress ferroptosis and ultimately alleviate
intestinal ischemia-reperfusion (I/R) injury, establishing the FSP1/
CoQ10 axis as a defined molecular mechanism against ferroptosis.
Furthermore, the study demonstrates that the anti-ferroptotic effect
of CoQl0 in intestinal epithelial cells (IECs) is strictly FSP1-
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dependent, as FSP1 knockout markedly sensitizes IECs to
ferroptosis (45). These findings suggest the potential for the
combined use of GPX4 and FSP1 activators or inhibitors to
regulate ferroptosis in the treatment of intestinal disorders in a
synergistic manner.

The gut exhibits heightened susceptibility to oxidative stress due
to its unique physiological structure and function (46). In response
to such stress, Nuclear factor erythroid 2-related factor 2 (NRF2)
acts as a key transcription factor, coordinating multiple intracellular
antioxidant defense systems by directly or indirectly regulating the
expression of downstream target genes such as GPX4, thereby
safeguarding cells from ferroptosis. Under resting conditions, the
KEAP1 protein strictly represses the activity of NRF2. Its protein
levels are maintained at low levels through the ubiquitin-
proteasome pathway, mediated by Kelch-like ECH-associated
protein 1 (Keapl) (47). Meanwhile, the core NF-xB signaling
complex (typically composed of RelA, IxBo, and p50 subunits)
remains inactive in the cytoplasm. When cells encounter oxidative
stress or ferroptosis-inducing stimuli, a series of activation events is
triggered (48).

The NRF2 protein initiates multiple activation pathways,
including nuclear translocation. On one hand, such stimuli can
activate the IKK complex (IKKo/IKKB/IKKY) through pathways
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like TNF-R1-TRAF2 or ROS-RIPK1. Activated IKKP further
phosphorylates Ser32/36 sites on IxBo, leading to its ubiquitin-
dependent degradation. This process releases the inhibition on the
NE-xB (RelA/p50) dimer, exposing the nuclear localization signal
(NLS) of the RelA/p50 dimer and driving its nuclear translocation.
On the other hand, the key stress response adapter protein p62
competitively binds to Keapl through its N-terminal Keapl-
interacting region (KIR motif), forming a p62-Keapl complex.
This interaction blocks Keapl’s ubiquitin-dependent degradation
of NRF2, stabilizing the protein and promoting its nuclear
translocation and transcription of target genes, thereby forming a
p62-Keapl-NRF2 positive feedback loop. Nuclear translocation of
NREF?2 upregulates its own expression and that of the p62 gene (also
known as SQSTM1). The newly synthesized p62 protein further
binds to and inhibits Keap1, thereby amplifying the NRF2 signaling
pathway (49). Following nuclear translocation, NRF2 significantly
enhances cellular antioxidant defenses by inducing the expression
of downstream antioxidant genes, such as GPX4, GCLC, and
GCLM (50).

Activation of the NRF2 pathway effectively suppresses intestinal
ferroptosis. In clinical applications, numerous natural compounds,
acting as endogenous activators of NRF2, demonstrate significant
potential in alleviating intestinal disorders by promoting nuclear
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translocation and the expression of downstream antioxidant and
anti-ferroptotic genes (51). NRF2 activation serves as a fundamental
cellular protective response. However, its mechanism of action
exhibits considerable complexity. Under conditions such as
chronic inflammation or specific tissue microenvironments, NRF2
activation may promote ferroptosis by upregulating genes involved
in iron metabolism and lipid peroxidation, particularly when
antioxidant defenses are overwhelmed. Research suggests that
Astragalus polysaccharides can downregulate overactivated NRF2/
HO-1 signaling, restoring redox homeostasis and blocking
ferroptosis, thereby alleviating the progression of experimental
colitis (52). Thus, whether NRF2 acts as a protector or a
promoter of ferroptosis in IBD is influenced by factors such as
cellular metabolism, microbial metabolites, and tissue-
specific conditions.

Uncontrolled lipid peroxidation is a hallmark of ferroptosis,
with Acyl-CoA synthetase long-chain family member 4 (ACSL4)
playing a central regulatory role in this process. Through whole-
genome CRISPR screening, Dixon’s team (53) identified ACSL4 as a
gene essential for GPX4-induced ferroptosis. Emerging evidence
suggests that inhibition of ACSL4 alleviates epithelial ferroptosis
and subsequent inflammation in IBD models (54). Beyond the
ACSL4 pathway, mitochondria also actively participate in the
regulation of ferroptosis. Additionally, the regulation of
ferroptosis involves other critical systems, such as the
tetrahydrobiopterin (BH4)-GCH1 system (55) and the
dihydrofolate reductase-reduced coenzyme Q (DHFR-CoQH,)
system (56, 57). FUN14 domain-containing 2 (FUNDC2), a
mitochondrial receptor protein, participates in regulating
mitochondrial dynamics and metabolic homeostasis. FUNDC2
participates in this regulatory process by interacting with
SLC25A11 to modulate mitochondrial GSH levels (58).

The above studies systematically reveal a close connection
between ferroptosis and various metabolic pathways, providing a
theoretical basis for further understanding its pathological
mechanisms in colitis and other related diseases.

3.2 Iron dysregulation in modulating
ferroptosis susceptibility

Iron overload, as a key inducer of ferroptosis, disrupts cellular
iron homeostasis by interfering with critical components of iron
metabolism at both transcriptional and post-transcriptional levels,
thereby significantly increasing cellular susceptibility to ferroptosis
(59). Iron not only constitutes a prerequisite for lipid peroxide
accumulation but also directly participates in the execution of
ferroptosis (60); in other words, abnormal accumulation of
extracellular iron ions under physiological conditions can serve as
a natural trigger for ferroptosis.

In IBD, such as UC and CD, accumulation of iron ions has been
identified as a key mechanism underlying intestinal epithelial cell
damage (61). Inflammatory factors (e.g., TNF-a, IL-6) and ROS
associated with IBD impair the capacity of cells to repair lipid
peroxidation by inhibiting the activity or expression of GPX4,
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synergizing with iron overload to significantly lower the threshold
for epithelial cells to undergo ferroptosis. Clinical observations
suggest that oral iron chelator deferoxamine can promote
intestinal epithelial repair and alleviate clinical symptoms in IBD
patients (62). Building on these findings, the role of iron ion-
mediated ferroptosis in the pathogenesis and treatment of IBD is
attracting increasing attention from researchers. The unique
regulation of iron homeostasis in the gut serves as a bridge
connecting ‘microbial iron regulation’ with ‘local
intestinal ferroptosis’.

3.3 Ferroptosis and IBD

Acute inflammation constitutes a protective response to
infection or tissue injury; yet, excessive or persistent
inflammatory reactions may cause tissue damage and even
exacerbate disease progression (63). Research by D. J. Cui et al.
(64) indicates that the onset of IBD involves the overactivation of
ferroptosis. Furthermore, studies have shown that dysregulation of
key ferroptosis genes affects disease susceptibility, progression, and
severity in the DSS-induced murine colitis model. Clinical trials
have demonstrated that ferroptosis inhibitors can significantly
alleviate the typical clinical manifestations of IBD, specifically by
enhancing intestinal barrier function, promoting weight
restoration, optimizing microbial community structure, and
reducing the disease activity index (65, 66).

In recent years, research into the regulatory mechanisms of
ferroptosis in the progression of intestinal diseases has made
significant advancements. Studies have shown that impaired
GPX4 function promotes the development of colorectal cancer.
Activating GPX4 can significantly reduce ferroptosis in intestinal
epithelial cells (IECs) and improve IBD symptoms (66). Relative
investigations revealed that the combined use of GPX4 inhibitors
and ferroptosis inducers enhances the immunotherapeutic efficacy
in colorectal cancer-associated intestinal diseases (67). Additionally,
in human and murine IBD models, upregulated ferroptosis-related
gene expression and elevated malondialdehyde (MDA) levels
confirm the association between ferroptosis and UC (68).

The role of ferroptosis in the pathogenesis of IBD involves
multiple pathways, including iron metabolism disorders, intestinal
epithelial barrier damage, genetic susceptibility, immune
dysregulation, and gut microbiota imbalance. Among upstream
regulators of ferroptosis in IBD, hypoxia-inducible factors (HIFs)
occupy a unique position by integrating hypoxic stress, iron
homeostasis, and inflammatory signaling, thereby setting the
threshold at which epithelial ferroptosis is triggered. Intestinal
microcirculatory hypoxia is widely recognized as a permissive
condition for the onset and progression of UC (69). At the
mechanistic level, intracellular iron availability is coordinated by
HIF signaling together with iron regulatory proteins (IRPs) (70),
linking oxygen sensing to epithelial redox vulnerability.

A central component of this coupling is HIF-20., an oxygen-
and iron-responsive transcription factor that directly regulates key
intestinal iron transport genes, including DMT1, Dcytb, and FPN.
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As a principal transcriptional regulator of intestinal iron
transporters, HIF-2o. plays a crucial role in maintaining systemic
iron balance after birth (71). Importantly, in active intestinal
inflammation, HIF-20. may exert context-dependent effects on
ferroptosis susceptibility: even under systemic iron deficiency,
local inflammatory cues can paradoxically enhance epithelial iron
uptake and/or perturb subcellular iron distribution, thereby
increasing the labile iron pool and promoting lipid peroxidation.
Consistent with isoform specificity, HIF-2a. (rather than HIF-1or)
enhances iron absorption in mice (72), and human tissue analyses
have reported discrete yet overlapping expression patterns of HIF-
1o and HIF-2a (73). Although iron-dependent prolyl hydroxylases
(PHDs) regulate both isoforms and iron chelation can stabilize HIF-
1o and HIF-2a in vitro (74), these observations collectively suggest
that the gut may implement additional, tissue-specific mechanisms
that bias HIF isoform activity and downstream iron handling.

Beyond iron transport, HIF signaling also shapes IBD through
cell-type-specific immune programs, which helps reconcile
seemingly conflicting findings across models. HIF-20. has been
proposed to alleviate inflammation in certain contexts by
reducing intracellular iron overload and limiting ferroptosis. The
inflammatory microenvironment in active IBD can markedly
upregulate HIF-2ot in colonic tissues (75). In parallel, HIF-1o
exhibits distinct immune regulatory functions depending on
lineage: HIF-1a. deficiency in myeloid cells alleviates DSS-induced
colitis with increased regulatory T cells (Tregs) (76), whereas HIF-
1o deficiency in dendritic cells (DCs) exacerbates colitis with
reduced Tregs (77). Conditional knockout studies further indicate
opposing roles for myeloid HIF-1o. and HIF-20o in DSS colitis,
where HIF-1a. deficiency ameliorates inflammation but HIF-2c
deficiency worsens disease (78). Collectively, these data argue that
HIF signaling should not be treated as a single “protective” or
“pathogenic” pathway; rather, isoform-, cell type-, and stage-
dependent wiring likely determines whether HIF shifts the system
toward or away from a ferroptosis-permissive state.

Finally, ferroptosis itself can reinforce HIF activation and
disease progression. Ferroptotic injury promotes the release of
pro-inflammatory mediators and amplifies oxidative stress (79),
which can aggravate microcirculatory dysfunction and hypoxia,
thereby reactivating HIF programs and further perturbing iron
handling. This establishes a self-reinforcing loop, highlighting why
precision strategies targeting iron metabolism and HIF-iron
coupling may require careful stratification by tissue niche,
inflammatory stage, and cellular compartment in colitis.

Downstream of HIF-iron remodeling, ferroptosis in intestinal
epithelial cells (IECs) constitutes a key mechanism that converts
upstream threshold shifts into epithelial barrier failure and
inflammatory amplification in IBD. At the molecular level, this
process is shaped by both genetic programs and disease-associated
perturbations in ferroptosis checkpoints. Genetic regulation plays a
pivotal role in ferroptosis-mediated IBD pathogenesis. Both clinical
IBD patients and the DSS-induced murine colitis model exhibit
significant alterations in ferroptosis-associated gene expression
profiles (80). Mechanistic studies reveal that inflamed intestinal
tissues in IBD patients and corresponding animal models display
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characteristic ferroptosis features, including GSH depletion,
suppression of GPX4 activity, and abnormal iron deposition.
Ferroptosis is implicated in IBD, particularly in the death of
intestinal epithelial cells (68). Through bioinformatics analysis of
UC-related genes, we identified that acyl-CoA synthetase family
member 2 (ACSF2) exhibited significantly downregulated
expression in DSS-induced colitis models, Salmonella typhi colitis
models in mice, and various lipopolysaccharide (LPS)-induced
colitis models. Notably, the application of the ferroptosis inhibitor
Ferrostatin-1 reversed this phenotype (81). These findings suggest
that ACSF2 may alleviate inflammatory responses in IBD and delay
the progression of experimental colitis by inhibiting
ferroptosis pathways.

Given the critical role of ferroptosis in the pathogenesis of
colitis, targeting ferroptosis signaling pathways may become a
potential therapeutic strategy for IBD. Currently, certain drugs
that alleviate oxidative stress and inflammation by eliminating
ROS, such as thioproline and N-acetylcysteine, have been applied
in IBD clinical treatments (82), providing valuable references for
developing novel ferroptosis inhibitors to improve
intestinal diseases.

4 The regulatory role of gut
microbiota dysbiosis in the
pathogenesis of IBD

Clinical data indicate a significant positive correlation between
gut microbiota dysbiosis and the onset and progression of IBD,
manifested specifically as reduced o-diversity, depletion of
commensal probiotic bacteria, and abnormal proliferation of pro-
inflammatory pathogens (83). Notably, clinical antibiotic use
frequently exacerbates colitis symptoms (84), further
underscoring the critical role of microbial homeostasis in
maintaining intestinal health. Compared to healthy individuals,
IBD patients exhibit universally reduced levels of the microbially
derived aryl hydrocarbon receptor (AhR), which may also exert
effects by inhibiting the NF-«kB/p65 signaling pathway (85). AhR
agonist supplementation can significantly enhance intestinal barrier
integrity and alleviate IBD-related symptoms (86). Within the
pathological state of IBD, gut dysbiosis exacerbates intestinal
inflammatory responses through multiple mechanisms. This
section will explore its potential role in IBD pathogenesis from
the perspective of microbe-host interactions, elucidating the critical
function of gut dysbiosis in the disease process.

4.1 Immune imbalance

Immune imbalance is the key amplifier that converts dysbiosis
and epithelial stress into sustained inflammatory signaling, which
subsequently perturbs iron regulation and favors ferroptosis-prone
states. Following the excessive proliferation of pathogenic bacteria,
the cytotoxins they secrete can directly damage intestinal epithelial
cells (87). Additionally, they may activate pattern recognition
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receptors (PRRs), such as Toll-like receptors (TLRs), thereby
promoting the release of pro-inflammatory factors (88).
Simultaneously, microbial dysbiosis disrupts intestinal immune
tolerance, leading to enhanced Th1/Thl7 immune responses
while impairing the function of Tregs (89). Research by Read
et al. (90) further demonstrates that immune cell dysfunction can
lead to intestinal immune regulation disorders. Certain probiotics,
however, can restore intestinal immune homeostasis by inducing
IgG production and modulating T-cell-mediated immune
responses, thereby alleviating colitis (91). For instance,
Akkermansia muciniphila in the gut can induce immune
homeostasis in mice, promote IgG production, and initiate
antigen-specific T-cell responses, thereby improving symptoms of
DSS-induced colitis (92).

4.2 Genetic susceptibility and microbiota
interaction

The impact of genetic polymorphism on IBD is primarily
mediated by gut microbiota, highlighting the significance of host
genetic variations in disease progression. Genetic factors can
modulate the pathogenicity of specific bacteria, with certain
pathogens being particularly capable of triggering chronic
inflammation under specific genetic conditions (93). Emerging
research has also highlighted the critical role of epigenetic and
post-transcriptional regulation, particularly through microRNAs
(miRNAs), which serve as key modulators of immune responses
and microbial interactions in IBD, influencing not only immune
modulation but also iron metabolism, oxidative stress, and
epithelial integrity, all of which are critical to ferroptosis in IBD
(94, 95). To date, genetic research has identified over 100 genetic
loci associated with IBD susceptibility, many of which regulate the
host’s immune response to bacteria, such as NOD2, TLR5, and IL-
10. Taking the NOD2 and CYBB genes as examples, both are
susceptibility genes for IBD (96, 97). Mutations in the NOD2 gene
are particularly crucial in regulating the pathogenesis of CD’s
disease (98). Genetic defects in the innate immune system (such
as loss of NOD2 function) lead to dysregulation of the host’s
immune response to the gut microbiota, constituting a key driver
of chronic inflammation (99).

As a pattern recognition receptor (PRR), NOD2 recognizes
bacterial peptidoglycan and regulates the expression of
antimicrobial peptides by activating the NF-«B signaling pathway,
thereby promoting their production. Notably, NOD2 gene
mutations are closely associated with structural alterations in the
gut microbiota, further demonstrating that IBD development
depends on the interaction between the genetic background and
microbial communities (100). In individuals with NOD2 mutations,
the gut microbiota exhibits compositional and diversity
dysregulation, characterized by a decreased abundance of certain
beneficial bacteria and an excessive proliferation of harmful
bacteria, which may exacerbate intestinal inflammatory responses.
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Additionally, under specific pathogen-free (SPF) conditions, H.
hepaticus can induce chronic colitis in IL-10—-/— mice, whereas no
corresponding pathological changes were observed in wild-type
mice (101).

4.3 Microbial translocation and disruption
of the intestinal barrier

In the process by which pathogenic symbionts (pathobionts)
induce IBD, the stability of the gut microbiota is crucial. Under
healthy conditions, commensal bacteria and pathogens within the
gut maintain an appropriate dynamic equilibrium. The microbiota
regulates the expression of tight junction proteins (such as ZO-1
and occludin) in intestinal epithelial cells by releasing specific
metabolites and signaling molecules, thereby safeguarding the
structural and functional integrity of the intestinal barrier (86). In
IBD patients, significant dysbiosis frequently occurs. This
imbalance leads to downregulation of tight junction protein
expression, increased intestinal mucosal permeability, and the
initiation and exacerbation of inflammatory cascades. For
instance, studies reveal an expansion of mucus-degrading bacteria
(such as Akkermansia) in the gut of IBD patients. The mucin-
degrading enzymes secreted by these bacteria disrupt the mucus
layer’s structure, leading to heightened intestinal mucosal
permeability (102). Concurrently, the compromised intestinal
barrier facilitates the translocation of microbial components,
including LPS and flagellar proteins, along with secondary bile
acids, into the systemic circulation, thereby triggering systemic
inflammatory responses (103). Studies have also revealed that
astragaloside IV, derived from traditional Chinese medicine, can
enhance the abundance of Akkermansia muciniphila, repair
intestinal mucosal barriers, improve the gut immune
environment, and reduce LPS blood entry, thereby suppressing
systemic inflammatory responses (104).

Studies demonstrate that when TLR5”~ germ-free mice are
infected with adherent-invasive Escherichia coli (AIEC) and
subsequently exposed to a specific SPF microbial environment,
they develop colitis symptoms (105). In contrast, mice inoculated
with the altered Schaedler flora (ASF), a pathogen-free microbial
community, exhibit no significant intestinal inflammation after
AIEC infection (106). This suggests that AIEC induces chronic
intestinal inflammation in susceptible hosts by promoting microbial
dysbiosis. Specifically, this pathogenic process depends on a
complex microbiota defined by specific species, functions, and
interactions. Clinical studies indicate that AIEC exhibits
synergistic effects during pathogen infection; its colonization
exacerbates clinical outcomes in Salmonella typhimurium-
induced infectious gastroenteritis, suggesting pathogenic bacteria
may modulate acute infection progression (107).

The gut microbiota of IBD patients exhibits a trend towards
reduced diversity, manifested explicitly by a decrease in the
abundance of commensal Clostridia and a significant enrichment
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of pathogenic bacteria. These pathogenic bacteria can colonize the
gut by exploiting epithelial damage and activate TH1/TH17
immune responses through virulence factors, such as the type III
secretion system (108). Meanwhile, fungal species such as Candida
and Malassezia secrete candidalysin, which activates IL-1f, thereby
exacerbating inflammatory responses (109). Research by G.
Pontarollo’s team (102) has revealed a novel mechanism by which
gut microbiota modulate intestinal barrier function: symbiotic
bacteria activate TLR-2 signaling in the innate immune receptors
of intestinal epithelium, thereby downregulating neuropilin-1
(NRP1) and the Hedgehog signaling pathway it regulates, thus
impairing intestinal barrier function.

The data mentioned above indicate that the pathogenic
potential of specific microorganisms in IBD is subject to
multifactorial regulation, encompassing genetic background,
environmental factors, and the composition of the gut microbiota.
Diet, as another critical determinant, can rapidly modulate the
structure and function of the microbiota, thereby exerting specific
effects on the pathogenesis of IBD. Research indicates that a high-fat
diet can promote the proliferation of pro-inflammatory
Enterobacteriaceae by altering bile acid metabolism, thereby
inducing pathogenic translocation (110). In IBD mouse models,
high-fat and high-sugar feeding lead to dysbiosis, manifested as
excessive proliferation of Escherichia coli, accompanied by
destruction of the mucosal layer structure and increased intestinal
permeability (111).

Interestingly, the gut virome, consisting of a variety of viruses,
also contributes to microbial dysbiosis and immune modulation in
IBD. Studies suggest that viral communities can interact with gut
bacteria, potentially exacerbating inflammation or influencing
immune cell behavior (112). Although most studies have
concentrated on bacterial dysbiosis, the virome is emerging as an
essential player in the pathogenesis of IBD. Exploring the
interactions between bacterial and viral communities in the gut
may uncover novel therapeutic targets for modulating the immune
system and restoring intestinal homeostasis (113).

5 The interaction mechanism between
gut microbiota and ferroptosis in IBD

The gut microbiota regulates ferroptosis-related signaling
pathways through multiple mechanisms, including (i) remodeling
luminal iron availability and epithelial iron handling, (ii) rewiring
host antioxidant capacity and lipid peroxidation tone via microbial
metabolites, and (iii) modulating mucosal immune programs that
determine the ferroptosis threshold of distinct cell types. These
effects arise from both “direct microbe-host interactions.” Dysbiosis
markedly diminishes the physiological tolerance of intestinal tissues
to ferroptosis, thereby compromising the intestinal barrier function
and exacerbating colitis (114). Conversely, ferroptosis-driven
epithelial injury and iron perturbations can reshape the microbial
ecosystem, forming a self-amplifying inflammatory loop.
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5.1 Ferroptosis regulation based on
microbiota-host interaction

Iron competition in the gut is a core ecological force that links
microbial fitness to host ferroptosis susceptibility. Using high-
throughput screening of microbial metabolites, Das et al. (115)
reported that microbiota-derived metabolites suppress HIF-20., a
master regulator of intestinal iron absorption, and increase ferritin
levels, thereby limiting host iron uptake and potentially reducing
the labile iron pool that fuels lipid peroxidation. Related research
has demonstrated that Candida albicans accelerates atherosclerosis
by activating intestinal HIF-2at signaling (116). Another piece of
evidence that intestinal oxygen dynamics plays a key role in
ferroptosis-mediated microbe-host interactions is that the oxygen
gradient established in the gut under physiological conditions is
crucial for maintaining microbial ecological balance. When elevated
host oxygenation disrupts the intestinal radial oxygen gradient, it
alters the microbial composition, promoting the enrichment of
oxygen-tolerant bacteria while significantly suppressing strict
anaerobes, such as Anaerostipes, which produce SCFAs (117).
Because SCFAs and other anaerobe-associated metabolites
contribute to epithelial redox homeostasis, oxygen-driven
community shifts may lower antioxidant buffering and thereby
increase ferroptotic vulnerability during inflammation (118).

5.2 Specific regulation of the ferroptosis
pathway by intestinal metabolites

Ferroptosis is driven by an iron metabolism imbalance and
antioxidant system collapse, with immune cells exhibiting high
heterogeneity in the response process. The gut microbiota
influences ferroptosis by modulating the intestinal antioxidant
system, serving as a key factor in the pathogenesis and
progression of ferroptosis in IBD. The differential susceptibility of
various immune cells to ferroptosis determines their roles in iron
homeostasis and antioxidant defense. For instance, Dendritic cells
(DCs) play a critical role in antitumor immunity by activating T
cells, yet ferroptosis inhibits DC maturation and impairs their
antitumor function (119). RSL3-induced ferroptosis leads to the
loss of DCs’ ability to secrete pro-inflammatory cytokines and
further suppresses T cell activation. Proliferator-Activated
Receptor Gamma, PPARy (PPARG/PPARY) plays a central role in
this process, and knockout of PPARG restores DC function (120).
Macrophages and intestinal epithelial cells play critical roles in iron
metabolism, which can mediate ROS generation (121). While the
function of T cells depends on the iron environment. Compared to
effector T cells, regulatory T cells (Tregs) exhibit a greater
preference for lipid metabolism and demonstrate resistance to
ferroptosis, whereas effector T cells rely on glutamine metabolism,
rendering them more susceptible to ferroptosis (122). By knocking
out ACSL4 in T cells, D. J. Collins et al. found that reduced levels of
PUFA-PLs could promote resistance to ferroptosis, while decreased
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PUFA-PLs in neutrophils could enhance ferroptosis susceptibility,
indicating that PUFA-PLs are the primary factors determining
ferroptosis sensitivity in lymphocytes and myeloid cells (123).

At the antioxidant level, commensals can reinforce host redox
buffering. For example, Bifidobacteria metabolize and produce
antioxidant substances such as vitamin K and GSH precursors,
which can reduce cellular sensitivity to ferroptosis by regulating
lipid metabolism (124). When pathogenic bacteria invade, they
effectively mitigate lipid peroxidation-induced PUFA oxidative
damage caused by LPS (125). Another metabolic product of
intestinal bacteria, urolithins (UA), is produced through the
conversion of dietary ellagitannins and ellagic acid by specific gut
microbiota. It can activate the Keapl -NRF2/HO-1 axis to suppress
lipid peroxidation and ferroptosis (126), and can also enhance
mitophagy and dampen excessive inflammation (127), processes
that may converge on ferroptosis control. Microbial signals can also
affect epithelial stress-response pathways. Intestinal-origin
Lactobacillus rhamnosus GG (LGG) activates the intestinal
epithelial AKT-STAT signaling pathway, helping to restore a
balanced gut microbiota, promote intestinal epithelial cell
proliferation, and repair damage (128). In addition, capsaicin
(CAP), another gut microbiota metabolite, alleviates ventilator-
induced lung injury by activating Sirtuin 3 (SIRT3) to inhibit
ferroptosis and maintain mitochondrial redox homeostasis (129).

In summary, Current studies suggest that certain monomeric
components derived from traditional Chinese herbal medicines
may exert protective effects through mechanisms such as
modulating gut microbiota, improving the microenvironment,
alleviating oxidative stress, and inhibiting ferroptosis. Paeoniflorin
(PA), a monomeric component of traditional Chinese medicine,
improves impaired glucose tolerance and myocardial injury
symptoms. It exhibits potent effects against ferroptosis and
modifies the composition and structure of the gut microbiota,
offering protective benefits in diabetic cardiomyopathy mice
(130). Zhang et al. (131) demonstrated that supplementing with
Lachnospiraceae bacterium strains significantly alleviated
neutrophil infiltration and oxidative stress in ethanol-exposed
mouse livers, exhibiting remarkable hepatoprotective effects. The
differential metabolite N-acetylglutamate (NAG) activates the
KEAPI-NRF2 pathway and concurrently inhibits ferroptosis,
thereby mediating a protective effect. However, these findings are
primarily based on models such as diabetic cardiomyopathy or liver
injury. Translating them into effective strategies for the prevention
or treatment of IBD remains a promising scientific hypothesis that
urgently requires direct validation of efficacy and specific
mechanisms in IBD animal models and clinical studies.

5.3 Microbial-ferroptosis interaction as a
therapeutic target of IBD

Collectively, accumulating studies suggest that the “microbiota—
metabolite-ferroptosis axis” contributes to IBD pathogenesis
(Table 1) (132). Below, we highlight representative microbiota-
dependent metabolites that modulate ferroptosis-relevant nodes
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(iron handling, lipid peroxidation, antioxidant systems) and
discuss their translational potential.

5.3.1 Vitamin

Microbiota-related vitamins contribute to barrier integrity by
regulating tight junctions, epithelial permeability, and epigenetic
programs (133, 134). Microbial synthesis or microbial-shaping of
vitamin availability (e.g., B vitamins, vitamin K) may influence host
redox and immune programs (135, 136). For instance, VB,
(riboflavin) alleviates fluoride-induced ferroptosis by regulating
the SLC7A11 system and iron metabolism via an IL-17A-
independent pathway (137). Vitamin D deficiency is associated
with dysbiosis and worsened colitis, while supplementation can
improve microbial composition and barrier-related pathways (138).
Mechanistically, VD maintains colonic barrier integrity by
regulating the abundance of Akkermansia and muciniphila (139).
Additionally, VD-related signaling pathways, such as the NF-kB
pathway, regulate antimicrobial peptide expression and immune
tolerance, thereby optimizing gut microbiota composition (140).
Clinical trials further support these conclusions. A cohort study by
M. Marangos’ team (141) revealed a positive correlation between
serum VD levels and Faecalibacterium abundance in IBD patients.
Patients with lower VD levels exhibited more pronounced microbial
dysbiosis. Daily VD supplementation significantly increased
butyrate-producing bacteria in the intestines of IBD patients,
while reducing the abundance of pathogenic bacteria (140).

Vitamin C can modulate microbiota-immune interactions,
promote Treg differentiation via epigenetic mechanisms, reduce
oxidative stress, and suppress pathogen colonization (142-144).

5.3.2 a-Tocopherol

o-Tocopherol, as a natural phenolic compound, is the most
abundant and potent isomeric form of vitamin E in the human
body. Compounds within the vitamin E family directly inhibit
ferroptosis by competing with the lipoxygenase (LOX) PUFA
substrate site. As an effective antioxidant, a-tocopherol can
specifically block lipid peroxidation chain reactions and inhibit
LOX activity (145). Research confirms that o-tocopherol synergizes
with GPX4 through an electron donor-mediated chain-breaking
mechanism to jointly maintain cellular membrane lipid redox
homeostasis, thereby effectively inhibiting ferroptosis (146).

o-Tocopherol exhibits significant anti-inflammatory activity,
with reports indicating that it ameliorates symptoms in
experimental IBD models by protecting intestinal barrier
function, modulating the gut microbiota, accelerating intestinal
tissue healing, and regulating the immune system (147).
Furthermore, iron overload significantly reduces o.-tocopherol
concentrations in mice. Notably, dietary supplementation with
vitamin E alleviates the ferroptosis phenotype induced by GPX4
deficiency (148). Mice with GPX4 gene defects rapidly succumb
under vitamin E-deficient conditions, whereas reintroduction of
vitamin E-supplemented diets for four weeks reverses this
phenotype (149). These observations support the concept that
nutritional antioxidant status can buffer ferroptotic stress in the
gut (150). Moreover, y-tocopherol, the predominant vitamin E
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TABLE 1 Overview of metabolites and their effect on ferroptosis and IBD progression.

Metabolites and target(s)

Vitamin
[Target(s): GPX4/GSH, NRF2/HO-1, Lipid
peroxidation modulators)]

Specific types

VBI2

VB2(Riboflavin)

Adenine

VB5(Pantothenic Acid)

Related intestinal
microbiota

Bifidobacterium, Lactobacillus (136)

Mechanisms of regulating
microbes in ferroptosis

Increase lipogenesis and lipid
peroxidation (200).

Role of metabolites in IBD

Maintaining homeostasis of intestinal
epithelial cells leads to exacerbation of
inflammation (201)

Mitigate ROS levels and SLC3A2
protein levels (137)

Reduce intestinal epithelial oxidative
damage by the antioxidant effect (202)

As a cofactor to combat ferroptosis
(203)

Affects IBD progression (204)

Inhibited inflammatory response and
ferroptosis through the SIRT1/NRF2
signaling pathway (205)

Restrain Th17 cell differentiation as well as
related autoimmune diseases (206)

Upregulate CBS, GSH and GPX4

Regulates the tryptophan metabolic

VB6(Pyridoxine) 07) pathway and affects AhR receptor
activation (208)
Regulate ferroptosis through the Clear free radicals, reduce oxidative stress,
vC Escherichia coli, Lactobacillus (209, 210) amino acid and carbohydrate and relieve intestinal inflammation (82,
metabolic pathways (211) 212)
VD Bifidobacterium longum, Coprococcus, Activate NRF2/HO-1 signaling Regulate immune response and intestinal
Actinobacteria (213) pathway (214) barrier function (215, 216)
Antioxidant, red idati it . . . .
VE Cetobacterium (217) nhioxidant, re (;lcze)om ative stress Maintain intestinal barrier function (218)
Reduce the level of ROS b
L . N uce- ¢ evelo R Y Maintain intestinal coagulation and barrier
VK Clostridium and lactobacillus (219) modulating the expression of R )
L function through y-carboxylation (221)
antioxidant enzymes (220)
Enh: intestinal epithelial barri
VA Lactobacillus (222) Antioxidant (223) nhance intestinal epithelial barrier

function (224)

GPX4 signaling (237)

Bile acid Primary bile acids include chenodeoxycholic acid, . . . Inhibit the FXR receptor to block The deficiency leads to increased
X . . G . Clostridium scindens and Clostridium . . . . . K
[target(s): FXR/GPX4 axis, NRF2 activation while secondary bile acids include ursodeoxycholic ACSL4-mediated lipid peroxidation proliferation of pathogenic bacteria,
! R R sporogenes (226) K
(225)] acid and lithocholic acid. (227) thereby exacerbating IBD (228).
Activate the hepatic AMPK/SIRT1
L ctivate e' epatic K K/ ,/ Promote Tregs differentiation and alleviate
Acetate Paenibacillus polymyxa (231) PGC-1o axis to alleviate ferroptosis . L
immune hyperactivation (233)
(232)
SCFAs
[target(s): Histone deacetylase (HDAC) Propionate Cause the imbalance of ROS (235) Contribute to IBD (236)
inhibition, NF-xB (229, 230)] Lactobacillaceae, Ruminococcaceae, and
> ? Ameliorate ferroptosis in Maintain the integrity of the intestinal
Butyrate Lachnospiraceae (234) experimental colitis through NRF2/ epithelial barrier and reduce inflammatory

response (238)

(Continued)
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isomer in the American diet, has shown promising therapeutic
potential in IBD treatment due to its unique anti-inflammatory
properties (151).

On the other hand, arachidonic acid (AA) metabolism is
considered a potential target for regulation in CRC. Studies have
shown that low doses of AA can promote ferroptosis and enhance
the anti-tumor immune effects induced by immune checkpoint
blockade (ICB) therapy (55). LOX can oxidize AA at different
carbon positions, participating in the regulation of cellular redox
homeostasis and thereby influencing ferroptosis. Thus, LOX

Role of metabolites in IBD
Promote the growth of probiotics and
inhibit the growth of pathogens (240)

inhibitors, such as vitamin E family members (tocopherol and
tocotrienol), can effectively prevent ferroptosis (145).

5.3.3 Bile acids

High-fat diet (HFD) reshapes microbiota-dependent bile acid
metabolism and promotes the accumulation of secondary bile acids
such as deoxycholic acid (DCA) (152). DCA can activate HIF-20.
signaling, increase DMT1 expression, elevate epithelial Fe*"

microbes in ferroptosis
inhibit ROS accumulation and
ferroptosis (239)

Activate the AhR/NRF2 pathway to

accumulation, and trigger ferroptosis; ferrostatin-1 reverses these
effects (153). Accordingly, disrupted interactions between the gut

Mechanisms of regulating

microbiota and bile acids impair intestinal barrier function and
activate inflammation-related signaling pathways, exacerbating the
progression of IBD.

Interestingly, the metabolic dysregulation induced by an HFD
manifests multifaceted pathogenic effects. In IBD mouse models fed
a high-fat, high-sugar diet, prolonged HFD intake not only induces

microbiota

gut microbiota dysbiosis but also compromises the integrity of the

©
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i
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intestinal mucosal barrier, increasing intestinal permeability. This
alteration further promotes the adhesion and colonization of
invasive AIEC, thereby exacerbating intestinal inflammatory

Peptostreptococcus anaerobius (135)

responses (154). Such dysregulated microbiota-host interactions
may disrupt immune homeostasis by affecting iron metabolism
and subsequently reshape the body’s immune tolerance state by
driving the differentiation of Tregs.

In the DCA-induced intestinal inflammation process, 16S
rRNA gene sequencing results showed significantly reduced
intestinal microbial diversity, specifically manifested as increased

IDA

proportions of Bacteroidetes and decreased proportions of

Specific types

Firmicutes, indicating that DCA-induced microbial imbalance
may be a key factor in the development of intestinal
inflammation (155). Additionally, HFD can stimulate hepatic bile
acid secretion, promoting increased DCA synthesis and excretion.
When DCA accumulates excessively in the intestine, it may cause
damage to the mucosal barrier, abnormal immune activation, and
microbial dysbiosis, ultimately inducing or exacerbating colitis
progression (156). Furthermore, Clostridium hiranonis can
alleviate DSS-induced colitis by promoting the production of
secondary bile acids (157).

5.3.4 SCFAs
SCFAs are reduced in IBD and are tightly linked to barrier
integrity and anti-inflammatory programs (158). As key metabolic

Tryptophan metabolites

Metabolites and target(s)
[target(s): AhR/NRF2 axis, Indoleamine 2,3-
dioxygenase (IDO)-kynurenine signaling,
antioxidant gene modulation]

products of gut symbiotic microorganisms (such as Bacteroides and
Lactobacillus), SCFAs not only help maintain the integrity of the

TABLE 1 Continued

intestinal mucosal barrier but also effectively suppress intestinal
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inflammation. Furthermore, the microbiota optimizes dietary iron
bioavailability by producing essential amino acids and SCFAs,
thereby lowering the pH within the intestinal lumen. For
instance, the ingestion of non-digestible carbohydrates, such as
fructooligosaccharides, promotes SCFA production, which lowers
intestinal pH and reduces iron to soluble Fe** forms. This may
further alter ligand composition (159, 160), potentially constituting
a key mechanism for high-fat diet-mediated iron overload.

Butyrate, serving as the primary energy source for intestinal
epithelial cells, not only maintains colonic barrier function but also
alleviates inflammatory responses by inhibiting the NF-kB signaling
pathway (161, 162). Gamma-aminobutyric acid (GABA), a
derivative of butyric acid derived from gut microbiota, alleviates
hepatic ischemia-reperfusion injury by inhibiting ferroptosis.
However, antibiotic treatment eliminates the beneficial effects of
GABA by depleting gut bacteria (163). Butyrate also promotes Treg
homeostasis and may intersect with iron-related pathways relevant
to mucosal tolerance (164).

In addition to butyrate, another short-chain fatty acid, valerate,
may also enhance iron absorption through multiple mechanisms.
For instance, valerate can lower intestinal pH, thereby promoting
the reduction of Fe’" to the more bioavailable Fe** form while
simultaneously increasing iron solubility; Secondly, it may activate
short-chain fatty acid receptors (SCFA receptors) and inhibit
histone deacetylase (HDAC) activity, thereby lifting
transcriptional repression on key iron absorption genes (such as
Dcytb and Ferroportin) and consequently upregulating intestinal
iron uptake.

Furthermore, propionate in SCFAs demonstrates protective
effects on the cardiovascular system. Through mechanisms of gut
microbiota remodeling, it significantly inhibits vascular calcification
(165). Remarkably, low dietary fiber intake reduces beneficial
bacteria capable of fermenting dietary fiber to produce SCFAs.
SCFAs possess anti-inflammatory properties, promoting the
differentiation of Tregs and enhancing intestinal barrier function.
Consequently, a low-fiber diet diminishes the gut’s anti-
inflammatory capacity, increasing the risk of IBD. Overall, the
high intake of fat, sugar, and carbohydrates characteristic of
Western dietary patterns correlates positively with IBD risk (166).

5.3.5 Selenium

Selenium is an essential trace element for the human body,
whose core biological function lies in its role as a constituent of
selenocysteine (Sec). Selenocysteine serves as a key component of
the active centers in numerous selenoproteins. Within the
selenoprotein family, GPX4 has garnered significant attention due
to its pivotal role in catalyzing the reduction of hydrogen peroxide
and lipid peroxides, thereby maintaining cellular redox homeostasis
(167). Notably, the enzymatic activity of GPX4 is strictly dependent
on its active-site selenocysteine residue (168), implying that dietary
selenium intake directly regulates GPX4 protein expression and
functional activity, thereby determining cellular susceptibility to
ferroptosis. Within the antioxidant defense system, the fat-soluble
vitamin E directly neutralizes lipid radicals within membrane
phospholipids, effectively halting the chain reaction of lipid
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peroxidation. Consequently, when GPX4 function is
compromised, vitamin E provides crucial compensatory
protection. Research indicates that combined supplementation
with selenium and vitamin E synergistically enhances the
antioxidant defense capacity of colonic epithelium, reducing
ferroptosis levels induced by dysbiosis and thereby significantly
alleviating the pathological progression of experimental
colitis (169).

Furthermore, the gut microbiota plays a crucial role in selenium
metabolism. Specific bacteria, such as Bacteroides and Lactobacillus
species, enhance the host intestinal epithelial utilization of selenium
by secreting selenoproteins or selenoreductases that convert
inorganic selenium into bioavailable organic forms, like
selenomethionine (170). In summary, adequate selenium supply
effectively inhibits lipid peroxidation and ferroptosis in intestinal
epithelial cells by upregulating GPX4 expression, thereby
maintaining intestinal barrier integrity. Conversely, selenium
deficiency reduces GPX4 activity, increasing cellular susceptibility
to ferroptosis and exacerbating intestinal mucosal damage induced
by microbial metabolites such as DCA.

5.3.6 Dopamine

Recent studies have demonstrated that certain gut microbes can
synthesize dopamine or its precursors through specific metabolic
pathways, thereby indirectly regulating host physiological
functions, and dopamine can stabilize GPX4 and mitigate
ferroptosis-related oxidative stress (171).

In mammals, the central nervous system and enteric chromaffin
cells are the primary producers of dopamine. This synthesis process
involves sequential catalysis by tyrosine hydroxylase (TH) and
aromatic amino acid decarboxylase (AADC), which progressively
convert tyrosine into dopamine (172). Furthermore, gut microbiota
can produce SCFAs and other metabolites by breaking down dietary
fiber, thereby indirectly regulating dopamine synthesis in host
intestinal chromaffin cells. Studies further demonstrate that the
alleviation of erastin-induced intracellular ferrochrome
accumulation and GSH depletion, indicating its potential anti-
ferroptotic effects. Clinical observations suggest that decreased
intestinal dopamine levels are closely associated with the onset
and progression of IBD (173); however, the precise mechanisms
underlying this association are not yet fully understood. Notably,
dopamine exhibits tissue-specific regulation of iron metabolism and
ferroptosis. For instance, in the central nervous system, dopamine
may prioritize protecting dopaminergic neurons from ferroptosis,
whereas its mechanisms in peripheral tissues, such as the gut, may
differ (8). Moreover, dopamine’s biological effects demonstrate
dose-dependent characteristics: at low doses, it primarily exerts
antioxidant functions, whereas high doses may induce auto-
oxidation to generate quinone compounds, which promote ROS
production and paradoxically increase the risks of oxidative stress
and ferroptosis (174).

5.3.7 Tryptophan

As an essential amino acid, tryptophan plays a pivotal role in
metabolic pathways involved in various physiological and
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pathological processes. The gut microbiota metabolizes tryptophan
to produce indole compounds, which inhibit ferroptosis by
activating the AhR or exerting direct antioxidant effects.
Tryptophan’s regulation of ferroptosis involves mechanisms such
as the kynurenine pathway (KP) (Figure 2), where host cells
generate multiple tryptophan metabolites, including L-kynurenine
(L-KYN), kynurenine (KYN), 3-hydroxykynurenine (3-HK), 3-
hydroxyanthranilic acid (3-HA), and KYN. These metabolites
activate the AhR signaling pathway, conferring ferroptosis
resistance to cancer cells and inducing T-cell dysfunction (175).
Additionally, gut microbiota regulate tryptophan metabolism to
produce indole derivatives and modulate the host’s KP pathway,
playing a crucial role in immune homeostasis, neural signaling, and
energy metabolism balance. Imbalances in this system have been
identified as a daily pathological basis for various diseases (176).
In summary, Metabolomics studies have consistently
demonstrated that the intestinal metabolite profiles of IBD

10.3389/fimmu.2026.1753617

patients differ significantly from those of healthy controls,
including alterations in short-chain fatty acids (SCFAs), bile
acids, and tryptophan-derived metabolites, which are repeatedly
observed across independent cohorts (177, 178). Additionally,
several studies indicate that although most metabolic changes
show common trends in both UC and CD, distinct patterns can
also be identified: for example, alterations in the bile acid pool, such
as differential shifts in primary versus secondary bile acids. The
enrichment of primary bile acids was more obvious in CD. And UC
exhibited higher levels of protein fermentation-related metabolites,
suggesting these profiles may reflect underlying disease-specific
mechanisms (179). While current metabolomic evidence remains
insufficient to fully delineate all disease stages or IBD subtypes solely
on metabolic profiles, it clearly indicates that individual metabolites
exhibit unique association characteristics that may emerge as a
critical analytical approach for differentiating disease types and
probing underlying mechanisms.

5HT, serotonin.
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Summary of the mechanisms by which bile acid, selenium, SCFAs, and tryptophan metabolism regulate ferroptosis. (a) Several bile acids—such as
cholic acid (CA), ursodeoxycholic acid (UDCA), deoxycholic acid (DCA), and chenodeoxycholic acid (CDCA)—
and NRF2 pathways, thereby alleviating oxidative stress and attenuating ferroptosis. In contrast, DCA promotes ferroptosis by inducing HIF-2a:-
mediated labile iron accumulation. (b) Selenium counteracts lipid peroxidation directly through GPX4 and may also suppress LOX activity, thereby
reducing peroxidation of PUFAs. (c) SCFAs, including propionic acid, butyric acid, and acetic acid, modulate cellular antioxidant responses and
influence the pathogenesis of colitis. (d) Tryptophan and its metabolites suppress ferroptosis through multiple direct and indirect mechanisms
involving various metabolic pathways. ALDH1A3, aldehyde dehydrogenase 1 family member A3; ferroptosis suppressor protein 1; IDA, trans-3-
indoleacrylic acid; I13P, inositol triphosphate; IL4l1, interleukin-4-induced 1; MT, melatonin; TCA, tricarboxylic acid cycle; Tfh, T follicular helper cells;

activate the Farnesoid X receptor (FXR)
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5.4 Regulation of gut microbial by
ferroptosis

Ferroptosis reshapes the gut microbiota composition by altering
the intestinal microenvironment. This may subsequently induce
alterations in local gut microbial structure and metabolic products,
thereby establishing and exacerbating a vicious cycle of ferroptosis.
Relevant mechanisms involve iron metabolism disruption,
oxidative stress, intestinal barrier damage, and immune
microenvironment imbalance. Under pathological conditions,
ferroptosis causes intestinal epithelial damage, characterized by
crypt disruption, a reduction in goblet cells, and degradation of
tight junction proteins. This compromised barrier function
facilitates bacterial translocation while recruiting and activating
pro-inflammatory immune cells, such as neutrophils and Th17
cells, thereby intensifying the inflammatory process (180).

Cells undergoing ferroptosis release substantial amounts of
labile iron. A high-iron environment promotes the growth of
certain pathogenic bacteria while suppressing the growth of
beneficial ones. Gu et al. (181) established a high-iron diet mouse
model, demonstrating that iron overload significantly increases iron
levels in serum, colonic tissue, and feces, and successfully induces
colitis phenotypes and ferroptosis. Non-targeted fecal
metabolomics analysis revealed significant metabolic differences
between iron-deficient, normal, and iron-overloaded groups. Both
iron deficiency and iron overload-induced metabolic disorders are
closely associated with the genus Dubosiella, with specific genera,
such as Akkermansia and Alistipes, showing significant correlations
with colitis severity. Iron overload mediates colitis development in
mice by simultaneously activating intestinal epithelial cell
ferroptosis and disrupting gut microbiota homeostasis.
Concurrently, microbial dysbiosis reduces the production of
beneficial metabolites such as SCFAs, further compromising
intestinal epithelial energy supply and anti-inflammatory defenses.

6 Probiotics

Disrupted gut microbiota induces ferroptosis within the
gastrointestinal tract. In contrast, probiotic intervention
antagonizes ferroptosis through mechanisms such as reducing
inflammation, repairing intestinal barrier, releasing antimicrobial
peptides (cAMPs), regulating iron overload, and inhibiting lipid
peroxidation (182, 183), thereby ameliorating the pathological
phenotype of IBD (Figure 3). Research indicates that probiotics
enhance antibody production through pathways including Toll-like
receptor (TLR) activation and helper T cell (Th cell) responses,
thereby modulating intestinal mucosal immune system function
and participating in the regulation of IBD-associated ferroptosis.

Regarding iron homeostasis regulation, increased levels of
Lactobacillus and Bifidobacterium species are correlated with
reduced inflammation (184). Both genera can competitively bind
free iron in the gut to lower local iron ion concentrations, while
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simultaneously lowering intestinal pH through the formation of
essential amino acids or SCFAs, thereby diminishing iron-
dependent lipid peroxidation reactions (185). Furthermore, the
probiotic metabolite butyric acid can downregulate intestinal
epithelial DMT1 expression and inhibit iron ion influx. Notably,
the combined intervention of Clostridium butyricum (C.
butyricum) or its metabolite butyrate with ferroptosis-inducing
agent RSL3 significantly suppresses pancreatic ductal
adenocarcinoma (PDAC) progression. Clinical data also
demonstrate a positive correlation between C. butyricum
colonization in tumor tissues and a favorable prognosis and low
invasiveness in patients with PDAC. This mechanism may involve
C. butyricum and its metabolites inducing superoxide stress and
intracellular lipid accumulation, thereby enhancing tumor cell
susceptibility to ferroptosis (186).

Probiotic intervention significantly enhances the abundance of
beneficial bacteria and the a-diversity of the gut microbiota, a key
biomarker for clinical remission in inflammatory bowel disease. A.
muciniphila (pAKK), a mucosal-associated gut symbiotic
bacterium, demonstrates the ability to address multiple metabolic
disorders (Zhang et al., 2019). pAKK shows remarkable potential in
combating Salmonella infections by upregulating intestinal barrier
genes and secreting antimicrobial peptides (187). The outer
membrane protein Amuc_1100 (Amuc) is a key bioactive
component of Akkermansia muciniphila, contributing to its
ability to regulate obesity and maintain gut homeostasis (188). In
various disease models, A. muciniphila, also known as Amuc, has
been observed to improve intestinal health. Colorectal cancer (189),
immune-mediated IBD (190, 191), irritable bowel syndrome (IBS)
caused by increased intestinal permeability (192), and intestinal
damage and inflammation due to excessive irradiation (IR) during
abdominal radiotherapy (193). Research indicates that genetically
engineered Lactobacillus gasseri strains exhibiting high expression
of specific genes demonstrate more pronounced anti-inflammatory
effects in DSS-induced IBD mouse models compared to wild-type
strains, suggesting that modifying antioxidant enzymes in
probiotics may enhance their anti-inflammatory activity (194).

Dietary factors play a role in regulating IBD progression, with
mechanisms likely involving the regulation of gut microbiota by
dietary fiber and its impact on intestinal mucosal barrier function.
HEFD is recognized as a significant risk factor for UC development
and progression (195). A prebiotic-rich diet selectively promotes the
growth of beneficial gut bacteria, and their metabolic products can be
regulated, significantly improving the intestinal microenvironment in
IBD. Notably, studies have linked widely used food additives in
modern Western diets to the promotion of intestinal inflammation.
Polysorbate, a common food emulsifier, has recently been found to
enhance the invasiveness of pathogens, facilitating their adhesion to
M cells and Peyer’s patches, thereby inducing inflammatory
responses (196). Emerging evidence also suggests that artificial
sweeteners (NNS) and ultra-processed foods can disrupt the gut
microbiota, potentially leading to dysbiosis and increased oxidative
stress. This dysbiosis may indirectly promote ferroptosis by impairing
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Commensal gut probiotics alleviate IBD through multifaceted mechanisms. Probiotics ameliorate colonic inflammation via coordinated actions,
including enhancing intestinal mucosal barrier integrity by upregulating tight junction proteins; directly secreting antimicrobial peptides (AMPs) to
neutralize pathogenic bacteria and inhibit their invasion into intestinal epithelial cells; reducing intracellular ROS generation and the secretion of pro-
inflammatory cytokines such as TNF-a, IL-1B, and IL-6; competing with pathobionts to restore microbial homeostasis, and modulating intestinal
immune responses by promoting regulatory Treg and DCs, while simultaneously suppressing Th17 cell activity. Collectively, these mechanisms
reshape the gut microbiota composition and alleviate intestinal inflammation.

microbial-derived antioxidant defenses and enhancing oxidative
stress, contributing to IBD progression (197).

These findings provide new insights into the relationship
between diet and intestinal inflammation. Targeted delivery of
probiotics and their metabolites, based on the pathological link
between intestinal microbiota metabolites and ferroptosis, may help
inhibit ferroptosis, correct microbiota dysregulation, and restore
immune homeostasis, offering a promising precision intervention
strategy to alleviate IBD inflammation. Integrating precision
medicine into IBD treatment, guided by biomarkers such as
inflammatory markers and miRNAs, holds significant potential to
optimize therapeutic outcomes. By tailoring treatments to
individual profiles, biomarker-driven therapies can enhance
efficacy, reduce adverse effects, and provide more personalized
care for IBD patients.
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7 Conclusions and perspectives

In recent years, with the increasing exploration of the intestinal
microenvironment, there is growing evidence that dysbiosis of the
gut microbiota and disorders of iron metabolism are closely
associated with the onset and progression of IBD. Of particular
note is ferroptosis, a novel form of programmed cell death, which
plays a pivotal role in the pathological process of IBD. As a complex
disease driven by multifactorial interactions, the pathogenesis of
IBD involves multidimensional pathological mechanisms
encompassing genetic susceptibility, immune dysregulation,
environmental exposures, and gut microbiota dysbiosis. The
dynamic interactive network formed between the gut microbiota
and ferroptosis exerts a crucial influence throughout the
progression of IBD.
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As key regulators of intestinal homeostasis, normal microbiota
maintain the integrity of the intestinal epithelial barrier and
immune tolerance through their metabolic products. However,
during dysbiosis, the abnormal proliferation of pathogenic
bacteria not only directly triggers the excessive release of pro-
inflammatory factors but also exacerbates the host’s iron
metabolism imbalance. On one hand, iron carriers secreted by
pathogens competitively sequester free iron within the host,
intensifying iron starvation in intestinal epithelial cells. On the
other hand, disrupted iron homeostasis permits excess free iron to
catalyze lipid peroxidation via the Fenton reaction, thereby
activating core ferroptosis regulatory pathways. This vicious cycle
of microbiota-induced ferroptosis ultimately leads to intestinal
barrier disruption, pathogen translocation, and sustained
amplification of the inflammatory cascade.

It is noteworthy that iron metabolism, serving as a bridge
linking the microbiota to host pathological processes, exhibits
bidirectional regulatory properties: the host’s iron reserve status
can significantly influence gut microbiota composition, while
specific bacterial strains can reshape host iron distribution by
modulating the expression of iron absorption-related proteins.
Thus, the interplay among these three components collectively
regulates intestinal ferroptosis. This review focuses on the
dynamic, interactive network between ferroptosis and the gut
microbiota, and its influence on disease progression. It posits that
the gut microbiota and its metabolites impact ferroptosis in IBD by
regulating intestinal barrier function, modulating inflammatory
factors, and maintaining immune homeostasis.

Clinical studies have demonstrated that colonization with
specific probiotics is crucial for alleviating clinical symptoms in
patients with colitis. Fecal microbiota transplantation (FMT) shows
great potential in treating refractory colitis, particularly for recurrent
or refractory Clostridium difficile infections, where the core
mechanism may involve the donor microbiota’s reprogramming of
host iron metabolism. With recent advances in gut microbiota
research, Clinicians are now applying personalized fecal microbiota
transplantation (FMT) therapies that target the gut-brain axis to treat
neuroinflammation. Mechanistically address the question of specific
receptors and signaling networks regulating ferroptosis through
microbial metabolites, technically explain how to utilize organoids,
multi-omics integration, and spatial transcriptomics to analyze in
situ interactions, and identify biomarkers for predicting ferroptosis
and microbial intervention efficacy in clinical applications (198). In
line with biomarker-driven precision medicine, recent clinical
evidence suggests that stratifying patients by predominant
inflammatory pathways (e.g, TNF-0) can meaningfully influence
responses to biologics. Relevant studies indicate that TNF-ou can
serve as a biomarker for IBD (198). supporting the feasibility of
“treat-smart” personalized therapy rather than non-specific
escalation. Existing preclinical studies in animal models have
shown promising results with ferroptosis inhibitors, iron chelation,
and microbiota-based therapies such as probiotics, dietary
interventions, and fecal microbiota transplantation (FMT).
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However, the clinical application of these approaches is still in its
early stages, and significant gaps remain in our understanding of
their feasibility, risks, and challenges. For example, while ferroptosis
inhibitors show potential in preclinical models, their safety and
efficacy in humans are not yet established. The risk of unwanted
side effects, such as oxidative damage due to over-inhibition of
ferroptosis, requires careful consideration. Similarly, iron chelation
therapies offer promise in regulating iron homeostasis. For instance,
the inappropriate use of certain iron chelators may cause liver and
kidney damage (199). In patients with IBD, excessive iron removal
can lead to malnutrition or other metabolic disorders. Therefore, it is
clinically necessary to find an appropriate “balance point” that
alleviates inflammation caused by iron overload without impairing
normal iron function or inducing adverse effects.

In summary, elucidating the molecular mechanisms by which
the gut microbiota influences IBD through ferroptosis not only
offers new insights into the disease’s underlying nature but also
establishes a theoretical foundation for developing targeted
microbiome-based therapeutic strategies. Targeting the ‘gut
microbiota-metabolite-ferroptosis’ axis holds significant potential,
emerging as an auspicious novel approach for future IBD treatment.
Notably, incorporating ferroptosis and microbiota-related
biomarkers into such biomarker panels can further optimize
patient screening and monitoring. Linking mechanistic
understanding with individualized interventions will provide
more precise strategies for the clinical treatment of IBD.
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