

OPEN ACCESS

APPROVED BY

Frontiers Editorial Office, Frontiers Media SA, Switzerland

*CORRESPONDENCE

Chaojun Song

⊠ cj6005@nwpu.edu.cn

Li Fan

xxfanny@fmmu.edu.cn

[†]These authors have contributed equally to this work and share first authorship

RECEIVED 06 November 2025 ACCEPTED 07 November 2025 PUBLISHED 26 November 2025

CITATION

Xi J, Cui M, Shi Z, Wan Z, Hou Y, Sun N, Li M, Ma Z, Zhu Y, He X, Yang Q, Shi Z, Nie H, Song C and Fan L (2025) Correction: Synergistic nano-vaccine strategy for comprehensive activation of adaptive and innate immunity against *Staphylococcus aureus* infection.

Front. Immunol. 16:1740490. doi: 10.3389/fimmu.2025.1740490

COPYRIGHT

© 2025 Xi, Cui, Shi, Wan, Hou, Sun, Li, Ma, Zhu, He, Yang, Shi, Nie, Song and Fan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Correction: Synergistic nano-vaccine strategy for comprehensive activation of adaptive and innate immunity against *Staphylococcus* aureus infection

Jiayue Xi^{1,2†}, Minxuan Cui^{1,2†}, Zhuoyue Shi^{1,2}, Zhuo Wan³, Yufei Hou^{1,2}, Nan Sun^{1,2}, Muqiong Li^{1,2}, Zhengjun Ma^{1,2}, Yupu Zhu^{1,2}, Xin He^{1,2}, Qian Yang⁴, Zhuojun Shi⁵, Huifang Nie^{1,2}, Chaojun Song^{6*} and Li Fan^{1,2*}

¹Shaanxi Key Laboratory of Chiral Drug and Vaccine Adjuvants, Department of Pharmaceutical Chemistry, Air Force Medical University, Xi'an, China, ²Analysis, School of Pharmacy, Air Force Medical University, Xi'an, China, ³Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi'an, China, ⁴Department of Chinese Materia Medical and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, China, ⁵Teaching and Research Support Center, Airforce Medical University, Xi'an, China, ⁶School of Life Science, Northwestern Polytechnical University, Xi'an, China

KEYWORDS

PLGA nanoparticle, ESAT-6-like antigens, combination nanovaccine, comprehensive immune responses, *Staphylococcus aureus*

A Correction on

Synergistic nano-vaccine strategy for comprehensive activation of adaptive and innate immunity against *Staphylococcus aureus* infection

By Xi J, Cui M, Shi Z, Wan Z, Hou Y, Sun N, Li M, Ma Z, Zhu Y, He X, Yang Q, Shi Z, Nie H, Song C and Fan L (2025) *Front. Immunol.* 16:1665710. doi: 10.3389/fimmu.2025.1665710

Figures 6F, G were wrongly cited in the following section instead of **Figures 5F, G**. A correction has been made to the section **3 Results**, 3.4 The cellular immune response activation efficacy by the nanovaccines, paragraph 4:

"Similar trend was found in the IL-17A ELISPOT assay compared with the IFN- γ secretion results. For single antigen loading, 25% NPs vaccines elicited 249 (25% NPs-rEsxA) and 203 (25% NPs-rEsxB) IL-17A spots, about 4.4-fold higher than Alum ones (**Figures 5F, G, Supplementary Figure S5**)".

Figure 7 was erroneously cited in the following section, instead of **Figure 6**. A correction has been made to the section **3 Results**, 3.5 Bacteriolysis assay evaluates vaccine-induced antibody-dependent bactericidal activity:

"As shown in **Figure 6**, antibodies from mice immunized with the 25% NPs vaccines exhibited a significantly enhanced capacity to promote bacterial clearance compared to those from the Alum group".

Xi et al. 10.3389/fimmu.2025.1740490

Figure 6 was erroneously cited in the following paragraph, instead of **Figure 7**. A correction has been made to the section **3 Results**, 3.6 The animal protection ability against S. aureus by the nanovaccines, paragraph 1:

"In order to investigate the body protection ability of the nanovaccines, we challenged the mice with the lethal dose (1×LD100) of S. aureus via vein tail administration at 35 days after the first immunization (Figure 7A). As respected, all mice in the PBS and free antigen groups died within 8 days (Supplementary Figure S6). In Alum adjuvant vaccine groups, the survival percentage was only 20% and 40% in Alum-rEsxA and AlumrEsxB, respectively. Even in the Alum-rEsxA and Alum-rEsxB combined vaccination group, the survival percentage just reached 50% (Figures 7B-D). However, in 25% NPs adjuvant vaccines groups, no matter for single antigen loaded vaccine groups nor the combined vaccination group, the survival percentage was much higher than the corresponding Alum ones. Moreover, for 25% NPsrEsxB and 25% NPs-rEsxA and 25% NPs-rEsxB combined vaccination groups, all animals survived in the lethal challenge experiment (Figure 7E)".

Figure 6 was erroneously cited in the following paragraph, instead of **Figure 7**. A correction has been made to the section **3 Results**, 3.6 The animal protection ability against S. aureus by the nanovaccines, paragraph 3:

"Thus, we further double the challenge dose of *S. aureus* to test the difference of protection ability between the single antigen loaded and the combined vaccine groups when 25% NPs served as adjuvants. Undoubtedly, the animals of all PBS and free antigen vaccination groups died out within 5 days after challenge (**Supplementary Figure S7**). Moreover, the Alum vaccine groups, either for single antigen loaded or the combined vaccines groups, the animals died out within 8 days (**Figures 7F–H**). In contrast, some of the animals in 25% NPs vaccine groups kept alive till the end of the challenge experiment. 20% and 30% of the animals in 25% NPs-rEsxA and 25% NPs-rEsxA while the survival percentage reached 80% in 25% NPs-rEsxA and 25% NPs-rEsxB combined vaccination group (**Figure 7I**)".

The original version of this article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.