

OPEN ACCESS

EDITED AND REVIEWED BY
Antoine Toubert,
Université Paris Cité. France

*CORRESPONDENCE

Jasper Iske

sduyuanxd@126.com

RECEIVED 03 November 2025 ACCEPTED 14 November 2025 PUBLISHED 28 November 2025

CITATION

Nian Y, Iske J and Yuan X (2025) Editorial: Finding new hope in old treatments: repurposing immunotherapy in transplantation. *Front. Immunol.* 16:1738636. doi: 10.3389/fimmu.2025.1738636

COPYRIGHT

© 2025 Nian, Iske and Yuan. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Finding new hope in old treatments: repurposing immunotherapy in transplantation

Yeqi Nian¹, Jasper Iske^{2*} and Xiaodong Yuan^{3*}

¹Department of Kidney Transplantation, Tianjin First Central Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China, ²Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany, ³Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China

KEYWORDS

transplantation, immunity, drug repurposing, immunotherapy, transplant rejection

Editorial on the Research Topic

Finding new hope in old treatments: repurposing immunotherapy in transplantation

Organ transplantation has transformed the management of end-stage organ failure; however, long-term graft survival continues to be limited by persistent obstacles such as ischemia-reperfusion injury, refractory rejection, chronic allograft dysfunction, and *de novo* malignancies. Although the introduction of immunosuppressive agents like tacrolimus and cyclosporine in the 1970s represented a major advance, current therapeutic regimens remain insufficient to fully resolve these complex issues, highlighting the ongoing need for innovative approaches (1). Drug repurposing—the application of existing drugs to new clinical indications—has emerged as a promising strategy to accelerate therapeutic discovery in transplantation. By harnessing immunomodulatory agents already approved for oncology and autoimmune conditions, this approach bypasses lengthy drug development pathways and offers novel solutions for immune dysregulation following transplantation (2). This Research Topic, "Finding New Hope in Old Treatments: Repurposing Immunotherapy in Transplantation," explores the immunological intersections between transplantation, cancer, and autoimmunity, and illustrates how repurposed drugs may help overcome critical barriers in clinical practice.

A fundamental requirement for successful drug repurposing is a deep understanding of shared immune mechanisms. Several articles in this Topic delve into such pathways. The review by Xu et al. elucidates how chemokine networks—central to both autoimmunity and cancer—drive alloreactive T-cell trafficking in graft-versus-host disease, highlighting potential targets for therapeutic intervention. Similarly, Wang et al. examine the role of innate immune signaling, a key contributor to sterile inflammation, in orchestrating oxidative stress and cell death following transplantation, positioning TLR4 as a viable target for mitigating early graft injury. Complementing these insights, Lu et al. employ bioinformatics approaches to bridge concepts from onco-immunology, identifying immunogenic cell death-related genes as diagnostic biomarkers and reinforcing the molecular overlap between tissue damage and immune activation.

Nian et al. 10.3389/fimmu.2025.1738636

Translating these mechanistic insights into therapeutic strategies represents a crucial next step. Hu et al. exemplify the repurposing paradigm by defining a T-cell-mediated rejection (TCMR)-associated cytokine gene signature and screening drug databases to identify the PPARγ agonist rosiglitazone—an antidiabetic agent—as a potent suppressor of T-cell activation, demonstrating its synergistic efficacy with rapamycin in prolonging graft survival. This integrated computational and experimental pipeline underscores the power of systematic repurposing. In parallel, Zhang et al. investigate glycine transporter 1 (GlyT1) as a metabolic checkpoint, revealing its role in Th1 differentiation and proposing ALX-5407 as a novel agent that attenuates alloimmune responses when combined with standard therapy.

Clinical applications and patient-specific scenarios further bring the promise of repurposing to life. A recent clinical trial provides compelling evidence supporting the repurposing of the anti-CD38 antibody felzartamab—originally developed for multiple myeloma—for the depletion of plasma cells and mitigation of antibody-mediated rejection, with a favorable safety profile (3). In the setting of transplant complications, Xiong et al. report the successful off-label use of baricitinib, a JAK1/2 inhibitor approved for rheumatoid arthritis, to manage life-threatening steroid-refractory chronic graft-versus-host disease, offering a new therapeutic avenue for this challenging condition. Furthermore, Kong et al. review the pressing need for agents that provide both immunosuppressive and anti-tumor effects, discussing the dual potential of mTOR inhibitors and chemotherapeutic drugs such as capecitabine in transplant recipients with oncological risk factors.

The development of non-genotoxic conditioning regimens is also critical, particularly in hematopoietic stem cell transplantation. Okalova et al. discuss how monoclonal antibodies and antibodydrug conjugates may replace traditional alkylating agents or irradiation, potentially reducing the risks of secondary malignancies and organ toxicity.

The collective work in this Topic underscores that drug repurposing is not merely about finding new uses for old drugs; it is a strategic inquiry into the universality of immunological principles. By mining the rich landscape of approved immunotherapies, the transplant community can accelerate the development of precise, effective, and safer regimens. The studies presented here—spanning bioinformatics discovery, mechanistic validation in models, and proof-of-concept clinical trials—chart a

course for this integrated future. We hope this Research Topic inspires continued collaboration across immunology, oncology, and computational biology to overcome the enduring barriers in transplantation and improve long-term outcomes for recipients worldwide.

Author contributions

YN: Writing – original draft, Conceptualization. JI: Conceptualization, Writing – review & editing. XY: Investigation, Conceptualization, Writing – review & editing, Resources, Funding acquisition, Supervision, Software, Project administration, Validation, Visualization, Data curation, Methodology, Formal Analysis.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Jonkman I, Jacobs MME, Negishi Y, Yanginlar C, Martens JHA, Baltissen M, et al. Trained immunity suppression determines kidney allograft survival. *Am J Transplant*. (2024) 24:2022–33. doi: 10.1016/j.ajt.2024.08.006
- 2. Jordan SC, Ammerman N, Choi J, Huang E, Peng A, Sethi S, et al. The role of novel therapeutic approaches for prevention of allosensitization and antibody-
- mediated rejection. Am J Transplant. (2020) 20 Suppl 4:42–56. doi: 10.1111/ajt.15913
- 3. Mayer KA, Schrezenmeier E, Diebold M, Halloran PF, Schatzl M, Schranz S, et al. A randomized phase 2 trial of felzartamab in antibody-mediated rejection. *N Engl J Med.* (2024) 391:122–32. doi: 10.1056/NEJMoa2400763