

OPEN ACCESS

EDITED AND REVIEWED BY Stanislaw Stepkowski, University of Toledo, United States

*CORRESPONDENCE Richard N. Pierson III

Richard N. Pierson III

rpierson@mgh.harvard.edu

†PRESENT ADDRESS
Lars Burdorf,
Revivicor, Inc, Blacksburg, VA, United States

[‡]These authors have contributed equally to this work

Deceased

RECEIVED 26 October 2025 ACCEPTED 03 November 2025 PUBLISHED 03 December 2025

CITATION

Braileanu G, Azimzadeh AM, Zhang T, Burdorf L and Pierson III RN (2025) Correction: Leukocyte dynamics in *Cynomolgus* monkeys following heterotopic heart allotransplantation under costimulation pathway blockade. *Front. Immunol.* 16:1732897. doi: 10.3389/fimmu.2025.1732897

COPYRIGHT

© 2025 Braileanu, Azimzadeh, Zhang, Burdorf and Pierson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Correction: Leukocyte dynamics in *Cynomolgus* monkeys following heterotopic heart allotransplantation under costimulation pathway blockade

Gheorghe Braileanu^{1‡}, Agnes M. Azimzadeh^{1,2‡§}, Tianshu Zhang¹, Lars Burdorf^{1,2†} and Richard N. Pierson III^{1,2*‡}

¹Department of Surgery, University of Maryland Medical Center, Baltimore, MD, United States, ²Division of Cardiac Surgery, Department of Surgery and Center for Transplantation Science, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States

KEYWORDS

leucocyte dynamics, cynomolgus macaque, heart heterotopic allotransplantation, intragraft lymphocytes, T cells subpopulation

A Correction on

Leukocyte dynamics in *Cynomolgus* monkeys following heterotopic heart allotransplantation under costimulation pathway blockade

By Braileanu G, Azimzadeh AM, Zhang T, Burdorf L and Pierson III RN (2025) Front. Immunol. 16:1664463. doi: 10.3389/fimmu.2025.1664463

There was a mistake in Table 4 as published. The misplacement of horizontal lines in column 1 changes repartition of events in each compartment making it impossible to substantiate interpretations of data from the results section. In addition, the published PDF table is spread on 3 pages instead of one (as it was initially submitted or as it appears on my projects site); it should be on one page. Besides, in published PDF format the horizontal and vertical lines specifically indicated in Q11 are not bold, making it very difficult to read the table. The corrected Table 4 appears below.

Also, there was a mistake in the caption of Table 4 as published. Some numbers are wrong: ...5-replace with 8; eight-replace with 6; 1 replace with 3; 2.7-replace with 1; Some abbreviations were misplaced: ... blood-replace with PB; add "PB or" in front of LNs.

"For each monkey (rows) for each corresponding sample, flow cytometry results for CD3 population were downsized to same number of 10–000 cells as described (SI-4 step 5). For further analysis of the 62 unmerged files (No samples obtained for 3 BL and 10 EXP LN) it was used SOM tool of FCSExpress 7. Each CD127 lowCD25 highFoxp3+ cells subpopulation (CD8, CD4, CD4+CD8+) were divided into 14 clusters (columns) as illustrated

For CD4+CD8+ CD127lowCD25highFoxp3+ cells in GILS it was observed a significant difference (p<0.001), regarding the size of cluster 2 (bold) that included a mean of 82 cells, compared with PB where the same cluster consists of only 5 cells, or LN that included 8 cells. In cluster 3 (bold) the differences were smaller (17 cells in GILS, compared with 1 in

Braileanu et al. 10.3389/fimmu.2025.1732897

blood and 2.7 in LN) but still significant (p<0.05). Likewise, for CD8 +CD127lowCD25highFoxp3+ cells, the number in GILS (bold) was increased (p<0.01) in clusters 1, 3, and 5 compared with LNs."

The corrected caption of Table 4 appears below.

"For each monkey (rows) for each corresponding sample, flow cytometry results for CD3 population were downsized to same number of 10–000 cells as described (SI-4 step 5). For further analysis of the 62 unmerged files (No samples obtained for 3 BL and 10 EXP LN) it was used SOM tool of FCSExpress 7. Each CD127lowCD25highFoxp3+ cells subpopulation (CD8, CD4, CD4+CD8+) were divided into 14 clusters (columns) as illustrated.

For CD4+CD8+ CD127lowCD25highFoxp3+ cells in GILS it was observed a significant difference (p<0.001), regarding the size of cluster 2 (bold) that included a mean of 82 cells, compared with PB where the same cluster consists of only 8 cells, or LN that included 6

cells. In cluster 3 (bold) the differences were smaller (17 cells in GILS, compared with 3 in PB and 1 in LN) but still significant (p<0.05). Likewise, for CD8+CD127lowCD25highFoxp3+ cells, the number in GILS (bold) was increased (p<0.01) in clusters 1, 3, and 5 compared with PB or LNs."

The original version of this article has been updated.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Braileanu et al. 10.3389/fimmu.2025.1732897

TABLE 4 Cluster analysis of CD3 CD127lowCD25highFoxp3+ cells subpopulations.

Cells	_		-	-			-	0.0		-	_		_	_	_		CD:	3 CC			vCD.	25h	igh	Fox	φЗ	•	_						00.	- 0	2.0		_	_	-
Clusters		-	+	+	4	5	6	7	8 9	10	11	12	142	14	1	2	3	4		CD 6 7		_	10		• • •	13		1	2	3	4	5	CD4			0 1		12 1	13
lusters	0	0	_	_	6	2	0	٥	0 0	10	1.0	10	13	0	0	0	32	98	0	0 0	_	0	٥	1	12	4	0	3	0	2	6	_	0 0	2	0	0 1	_		0
	0	2			03	2	0	٥	0 0	0	0	0	٥	0	0	9	0	196	0	0 0	228	٥	٥	0	0	29	0	0	6	0	103	0	0 0	6	0	0 0			٥
	0	2			78	1	0	٥	0 1	0	0	0	0	0	0	11	0	145	0	0 0	336	0	0	1	0	33	0	0	2	1	92	0	0 0	2	0	0 0	0	0	٥
	1	1	Ţ,	1	20	0	0	0	0 0	0	0	0	0	1	0	2	3	141	0	0 0	105	0	0	5	0	9	0	1	4	3	152	0	0 0	3	0	0 '	1	0	0
	0	7	(1	34	1	0	0	0 0	0	0	0	0	0	0	22	1	432	0	0 0	166	0	0	0	0	50	0	0	5	2	202	0	0 0	1	0	0	1	0	0
N BL	٥	0		1	8	6	0	٥	0 0	0	0	0	0	0	1	1	13	118	0	0 0	128	0	0	1	2	5	0	2	1	2	26	0	0 0	0	0	0	-	0	0
	٥	0			15	4	0	٥	1 0	0	0	0	0	0	0	0	32	235	0	0 0	145	0	٥	2	1	11	٥	0	1	.1	11	0	0 0	0	0	0 0	-	-	0
	0 0	3		0 1	02	3	0	0	0 0	0	10	0	0	0	1	7	0	446	0	0 0	195	0	۰		0	43	0	0	0	1	192	0	0 0	1	0	0 3		0	0
	0	6			31	÷	0	٥	3 6	. 0			0	0	0	27	0	37	0	0.0	200	0	0	1	0	15	0	0	26	0	166	0	0 0	35	0	0 1		-	0
	0	2	4		a	7	0	0	0 3	0	0	0	0	0	0	12	0	68	0	0 0	7	0	0	5		315	0	0	6	0	2	0	0 0	0	0	0 0			0
	0	4		5	14	0	0	0	0 0	0	0	0	0	0	0	12	0	433	0	0 0	321	0	0	3	-	122	0	1	21	0	58	1	0 0	3	0	0 :		-olo	0
	0	2	1 () 1	19	3	0	0	0 1	0	0	0	0	0	0	23	1	277	0	0 0	300	0	0	2	1	24	0	0	1	1	185	0	0 0	2	0	0 0	0.1		0
	0	6	1	1	54	2	0	0	0 3	0	0	0	0	0	0	22	1	285	0	0 0	287	0	0	0	0	25	0	0	4	0	201	0	0 0	12	0	0 0	0	0	0
LN EXP	٥	1	1	1	22	٥	0	0	0.0	0	٥	0	٥	0	0	3	2	73	0	0 0	157	0	٥	٥	0	16	٥	0	2	0	24	0	0 0	0	0	0 0	٥	0	0
	0	6	4		64	2	0	0	1 2	0	0	0	0	0	0	43	0	225	0	0 0	257	0	0	0	0	7	٥	0	7	2	268	0	0 0	11	0	0 0			0
	0	2	i l'	_	38	1	0	0	0 0	0	0	10	0	0	1	23	1	283	0	0 0	290	0	0	2	0	45	0	1	13	1	69	1	0 0	3	0	0 0	-	_	0
	6	3	1	4	21	11	0	0	0 0	0	0	0	0	0	0	31	2	64	0	0 0	12	0	0	1	0	13	0	1000	108	10	68	1	0 0	2	0	0 2			0
	0	13	43	4	04	,	0	0	0 0	0	0	0	0	0	0	5	1	35	0	0 0	35	0	0		0	10	0	5	100	35	129	0	0 0	2	0	0		- de	0
	1	11	+		10	,	0	0	0 0	0	0	0	0	0	0	11	,	15	0	0 0	20	0	0	5	0	7	0	2	148	13	12	0	0 0	0	0	0 4		-	0
	5	10		1	50	17	0	0	0 0	0	0	0	0	0	0	17	2	60	0	0 0	27	0	0	0	0	33	0	3	140	33	123	0	0 0	0	0	0 1		-	0
	4	21		5 1	18	64	0	0	0 4	0	0	0	0	0	0	62	0	39	0	0 0	18	0	٥	٥	0	21	0	1	88	13	67	3	0 0	3	0	0 4	4	0	0
	1	5	()	15	1	0	٥	0 0	0	٥	0	0	0	0	50	0	33	0	0 0	21	0	٥	٥	٥	10	0	34	38	14	33	0	0 0	4	0	0 '	1	٥	0
SILS	0	5		1	18	2	0	0	0 1	0	0	0	0	0	2	2	7	44	0	0 0	7	0	٥	1	0	11	0	16	41	41	91	0	0 0	0	0	0 5	5	0	0
	7	1	1	1	15	1	0	0	0 1	0	0	0	0	1	0	4	1	22	0	0 0		0	0	2	0	16	0	87	20	2	29	4	0 0	2	0	0 9	5	0	0
	1	1	()	5	1	0	0	0 0	0	0	0	0	0	1	4	2	11	0	0 0	18	0	0	1	0	7	0	0	8	2	9	0	0 0	1	0	0 1	1	0	0
	0	2	13	3	76	2	0	0	0 0	0	0	0	0	0	0	24	1	46	0	0 0	26	0	0	0	0	14	0	0	21	9	103	0	0 0	0	0	0 0	-	-	0
	1	1	4		19	1	0	٥	0 0	0		0	0	0	ll°	17	4	81	0	0 0	24	0	٥	1	0	16	٥	1	133	4	88	0	0 0	1	0	0		-	0
	4	7		3 1	41	•	0	0	0 0	9	0	0	0	0	0	2	3	136	0	0 0	43	0	0	-	0	15	0	12	215 51	39	200	0	0 0	3	0	0 0	-		0
	48	7		2 1	34	39	0	0	0 2	. 0			0	0	2	133	30	231	0	0 0	65	0	0	i	0	7	0	-	110	11	196	0	0 0	5	0	1 6			0
	1	0	1 (_	3	0	0	0	0 0	0 0	10	10	10	0	0	1	14	56	0	0 0	64	0	0	0	0	3	0	1	1	3	9	0	0 0	0	0	0 0	_	_	0
	0	1		0	2	3	0	0	0 0	0	0	0	0	0	0	2	7	12	0	0 0	16	0	0	0	0	0	0	1	3	4	1	0	0 0	3	0	0 0	0	0	0
	٥	0	Ī	1	2	0	0	0	0 0	0	0	0	0	0	0	0	0	10	0	0 0	12	0	0	٥	0	0	0	0	0	2	9	0	0 0	1	0	0 '	1	0	0
	1	3	. ()	0	1	0	0	0 0	0	0	0	0	0	1	0	2	3	0	0 0	7	0	0	0	0	0	0	1	20	0	2	0	0 0	0	0	0 2	2	0	0
	0	0		3	12	2	0	0	0 0	0	0	0	0	0	0	6	22	54	0	0 0	28	0	0	0	0	1	0	5	2	9	20	0	0 0	0	0	0 '	1	0	0
B BL	٥	1	(-	27	3	0	٥	0 0	0	0	0	0	0	0	0	5	66	0	0 0	119	0	٥	1	1	12	٥	1	1	0	4	1	0 0	0	0	0 0	٥	-	٥
	0	0	1	-	0	•	0	٥	0 0	0	0	0	0	0	ll°	0	1	0	0	0 0	3	0	٥	٥	0	0	٥	0	3	0	٥	1	0 0	0	0	0 0	0	•	0
	•	0	1	-	0	1	0	0	0 0	9	9	0	0	0	0	0	4	12	0	0 0	16	0	0	0	0	3	0	0	7	3	1	0	0 0	2	0	0		-	0
	0	0	۰		3	1	0	٥	0 0	0	0	0	٥	0	ll o	0	1		0	0 0	16	0	٥	٥	٥	1	0	0	1	0	2	0	0 0	0	0	0	-		٥
	0	0		5	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	٥	0	٥	0	0	0	0	0	0	0	0 0	0	0	0 0	-	-	0
	٥	2		5	1	0	0	٥	0 0	0	0	0	0	0	0	1	0	0	0	0 0	1	0	٥	0	0	12	0	0	9	0	1	0	0 0	0	0	0 :	2	0	0
	٥	0)	0	1	0	٥	0 1	0	0	0	0	0	0	1	0	1	0	0 0	1	0	٥	1	0	28	0	0	2	0	1	0	0 0	0	0	0 '	1	٥	٥
	0	0			0	0	0	0	0 0	0	0	0	0	0	0	2	4	1	0	0 0	2	0	0	0	0	1	0	0	19	3	0	0	0 0	0	0	1 1			0
	0	1	_	_	10	1	0	_	0 0	_	. 0	0	0	0	0	1	0	22	_	0 0	_		0	0	0	17	0	0	1	1	2	_	0 0	0	_	_	_		0
	٥	0			3	1	0		0 0				0	0	0		11	41		0 0		0	٥	0	0	2	0	0	0	3	20		0 0	1					0
_	0 0	0			6	3	0		0 0	0	0	0	0	0	0	3	13	15	0	0 0	34	0	0	0	0	7	0	1	2	5	33		0 0	2					0
_	1	1			10	2	0	0	0 1	0	0	0	0	0	1 0	9	9	21	0	0 0	134	0	0	0	0	3	0	5	2	6	5		0 0	0	-				0
	4	2			75	0	0	0	0 0	0	0	0	0	0	1	0	94	82	0	0 0	36	0	0	0	0	6	0	32	2	10	35		0 0	0	-				0
	0	14			06	4	0	0	0 0	0	0	0	0	0	2	1	21	18	0	0 0	34	0	٥	1	0	7	0	3	4	2	2	4-54	0 0	0	-	-			0
EXP	٥	1			16	٥	0	٥	0 0	0	0	0	0	0	0	2	0	6	0	0 0	9	0	٥	1	0	0	0	0	26	19	81	0	0 0	0					0
	0	2			8	0	0	0	1 1	0	0	0	0	0	0	5	5	15	0	0 0	23	0	0	1	1	3	0		17	0	54	0	0 0	0	0	0 '			0
	0	0			5	0	0	0	0 0	0	0	0	0	0	0	1	15	12	0	0 0		0	0	1	0	2	0	0	2	1	5	0	0 0	0					0
	1	0		-4-	1	٥	0	-	0 0	-	0	0	0	0	0	0	3	2	0	0 0		0	0	0	0	0	0	0	10	1	1	+	0 0	0					0
	٥	2			9	٥	0	0	1 0	0	0	0	0	0	0	3	0	20	0	0 0	49	0	0	0	0	3	0	0	1	0	8	-	0 0	0					0
	0	2			8	0	0	0	0 0	0	0	0	0	0	0	0	7	38	0	0 0	27	0	0	0	0	3	0	0	0	0	10		0 0	0	-	-			0
	0	17			3	6	0		0 0	0	0	0	0	0	0	3	27	6 47	0	0 0	1	0	0	8	1	22	0	0	105	0 8	1 22	+	0 0	0	-				0
	0	0			2	0	0	-	0 0	-	0	0	0	0	0	0	1			0 0	4	0	0	0	0	2	0	0	3	0	3	0		0	-				0
	*	. 4	- 1			¥			4:4	- w	- 4	- w	· •		U.V						- 40	- w					v	1.0	Ψ.	4			4 . 4			e : 1		9 1	

For each monkey (rows) for each corresponding sample, flow cytometry results for CD3 population were downsized to same number of 10 000 cells as described (SI-4 step 5). For further analysis of the 62 unmerged files (No samples obtained for 3 BL and 10 EXP LN) it was used SOM tool of FCSExpress 7. Each CD127lowCD25highFoxp3+ cells subpopulation (CD8, CD4, CD4+CD8+) were divided into 14 clusters (columns) as illustrated.

For CD4+CD8+ CD127lowCD25highFoxp3+ cells in GILS it was observed a significant difference (p<0.001), regarding the size of cluster 2 (bold) that included a mean of 82 cells, compared with PB where the same cluster consists of only 8 cells, or LN that included 6 cells. In cluster 3 (bold) the differences were smaller (17 cells in GILS, compared with 3 in PB and 1 in LN) but still significant (p<0.05). Likewise, for CD8+CD127lowCD25highFoxp3+ cells, the number in GILS (bold) was increased (p<0.01) in clusters 1, 3, and 5 compared with PB or LNs.