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7Réseau de l’arc, Hôpital de Moutier, Berne, Switzerland, 8Department of Physiology, The “Carol
Davila” University of Medicine and Pharmacy, Bucharest, Romania, 9Department of Dermatology,
“Prof. N.C. Paulescu, National Institute of Diabetes, Nutrition and Metabolic Diseases,
Bucharest, Romania

KEYWORDS

autoimmune diseases, autoantibodies, immunoregulatory proteins, biomarkers,
diagnosis, immunomodulatory therapies
Editorial on the Research Topic

Autoimmunity: novel insights and future perspectives
This Research Topic on autoimmunity was a success, attracting the attention of many

research teams worldwide and resulting in no fewer than 40 articles, of which 60% were

original studies. The work presented focuses on rheumatoid arthritis, psoriatic arthritis,

psoriasis, lupus, and several other autoimmune diseases and autoimmune-related

conditions. As recent large cohort studies have shown that one in 10 individuals is

diagnosed with an autoimmune disease, and their incidence is rising, especially in Western

countries (1, 2), this Research Topic gathers the most recent original studies and review

articles on this important human condition.

Autoimmune diseases represent a complex and heterogeneous group of disorders

characterized by immune dysregulation, chronic inflammation, and multiorgan involvement

(2–8). Over the past decades, advances in immunology, genetics, and systems biology have

deepened our understanding of the mechanisms underlying these diseases (4–17), while

simultaneously uncovering novel biomarkers and therapeutic targets (4, 18–28).

This Research Topic brings together cutting-edge studies that collectively provide new

insights into the pathogenesis, systemic consequences, and emerging treatment strategies for

autoimmune diseases, with a focus on rheumatoid arthritis (RA), psoriatic arthritis (PsA),

ankylosing spondylitis (AS), psoriasis (PsO), and antiphospholipid syndrome (APS). By

integrating insights from immunology, microbiology, proteomics, genetics, and innovative

modeling platforms, these articles offer multidimensional perspectives on autoimmunity.

The majority of the contributions focus on rheumatoid arthritis and psoriatic arthritis. A

central theme in thisResearchTopic is immunedysregulationasadriverofdisease (9,29–31).Yan

et al. explored the immunological landscape of difficult-to-treat RA (D2T RA), revealing a

marked reduction in regulatory T cells (Tregs) accompanied by an increased Th17/Treg

ratio, reflecting a disrupted immune balance that correlates with heightened disease
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activity. Importantly, low-dose interleukin-2 therapy successfully

restored Treg populations without significant adverse effects,

highlighting the potential of targeted immunomodulation to

re-establish immune homeostasis in refractory RA. This

study emphasizes the pivotal role of Tregs as a hallmark of

severe disease and underscores the therapeutic promise

of restoring immune equilibrium rather than broadly

suppressing inflammation.

Complement activation is another dimension of immune

dysregulation that is particularly relevant in systemic

autoimmune pathologies (32–35). Erkan et al. investigated

complement activation in patients positive for antiphospholipid

antibodies (aPLs) who did not have other systemic autoimmune

rheumatic diseases. They demonstrated that cell-bound

complement activation products (CB-CAPs) on B lymphocytes,

erythrocytes, and platelets are more sensitive indicators of

complement activity than traditional C3/C4 measurements.

Elevated CB-CAPs were most pronounced in patients with

microvascular APS, thrombocytopenia, or hemolytic anemia, and

they remained stable over 6 to 12 months. These findings suggest

that CB-CAPs could serve as reliable biomarkers for monitoring

disease activity and thrombosis risk, providing a tool for more

precise clinical management of APS, where conventional

complement measures may underestimate activation. Feng et al.

highlighted the crucial role of endothelial cells (ECs) in the

pathogenesis of APS, an autoimmune disease associated with

recurrent thromboses and recurrent pregnancy losses (36–42).

Antiphospholipid antibodies (aPLs) were found to act as both

biomarkers and pathogenic factors, directly interacting with EC

receptors and activating intracellular pathways involved in various

pathophysiological mechanisms (37, 43–47). In vitro and in vivo

studies have described multiple molecular mechanisms through

which ECs mediate the effects of aPLs on vascular function (48–50).

These findings provide an integrated understanding of the role of

ECs in APS and identify new potential targets for diagnosis and the

development of personalized therapies.

Wang et al. explored the role of the ubiquitin-proteasome

system (UPS) in the pathogenesis of APS, an autoimmune disease

characterized by thromboses and pregnancy complications

associated with persistent elevation of aPLs (51). UPS imbalance

promotes the activation of proinflammatory and prothrombotic

pathways, contributing to disease progression (52, 53). The

summarized in vivo studies presented in their work suggest that

low-dose proteasome inhibitors may alleviate the clinical

manifestations of APS by reducing inflammatory mediators (54,

55). These results indicate that targeting the UPS could represent a

novel therapeutic strategy for controlling the inflammatory and

thrombotic processes associated with this condition.

Expanding the scope of autoimmune interactions, Duan et al.

employed bidirectional Mendelian randomization to elucidate

causal relationships between psoriasis, psoriatic arthritis, and

multiple autoimmune diseases, including systemic lupus

erythematosus (SLE), Crohn’s disease (CD), Hashimoto’s

thyroiditis (HT), RA, vitiligo, and AS. Their analysis revealed that

CD and vitiligo increase the risk of developing psoriasis (PsO),
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whereas bullous pemphigoid appears to reduce it. For PsA, risk

factors extended to CD, HT, RA, AS, SLE, and vitiligo. These results

underscore the interconnectivity of autoimmune disorders and

highlight the importance of carefully monitoring for disease

progression, particularly in patients presenting with coexisting

autoimmune conditions. This study exemplifies how genetic

epidemiology can contribute to risk stratification and early

intervention strategies, guiding personalized patient management.

Proteome-wide analyses complement genetic studies by identifying

causal proteins that may serve as biomarkers or therapeutic targets.

Zhao et al. performed a Mendelian randomization study

examining 1,837 plasma proteins in relation to PsA risk. They

identified seven proteins associated with disease susceptibility,

notably interleukin-10 (IL-10), which is inversely linked with

PsA, and apolipoprotein F (APOF), which is positively associated

with the disease. Colocalization analyses confirmed genetic overlap

with disease risk, while phenome-wide assessments suggested

broader systemic effects. These findings provide novel insights

into PsA etiology and highlight IL-10 and APOF as potential

targets for therapeutic intervention, bridging the gap between

molecular discovery and clinical translation.

Similarly, in AS, a chronic immune-mediated arthritis with an

incompletely understood pathogenesis that primarily affects the

axial joints (56–58), Zhao et al. identified eight plasma proteins

causally associated with disease risk, including AIF1, TNF, FKBPL,

AGER, ALDH5A1, and ACOT13. Colocalization analyses

confirmed these as shared causal variants, while phenome-wide

assessments highlighted potential adverse effects, offering guidance

for drug development. Together, these studies illustrate the power

of multi-omics approaches in elucidating the molecular

mechanisms underlying autoimmune diseases and supporting the

design of targeted therapies.

The role of the microbiome is emerging as a critical modifier of

autoimmune pathogenesis (59–66). Lu et al. reviewed the

contributions of the gut and oral microbiota to RA, emphasizing

that dysbiosis in the gut—including the expansion of Prevotella

species—and colonization by oral pathogens, such as

Porphyromonas gingivalis and Aggregatibacter actinomycetem

comitans, can promote the production of anti-citrullinated

protein antibodies (ACPAs), a hallmark of RA.

Bacterial extracellular vesicles were also highlighted as potent

mediators of systemic inflammation, suggesting that microbial

communities at mucosal sites can modulate systemic autoimmunity.

Complementing this, Yang et al. demonstrated in a collagen-

induced arthritis rat model that oral administration of

Bifidobacterium animalis BD400 alleviates disease progression by

modulating gut microbiota composition, enhancing intestinal

barrier proteins, and downregulating histidine metabolites

implicated in inflammation. This dual approach—mechanistic

understanding of microbial contributions and experimental

manipulation—provides compelling evidence for microbiota-

targeted interventions as potential preventive or adjunctive

strategies in autoimmune disorders. Bridging molecular and

clinical perspectives, Liu et al. explored the systemic consequences

of RA and revealed a causal association with increased epilepsy risk
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through Mendelian randomization. This finding underscores the

fact that autoimmune inflammation extends beyond the affected

joints, necessitating comprehensive patient management that

considers neurological comorbidities. Similarly, Guo et al.

evaluated therapeutic interventions in severe systemic rheumatic

diseases by comparing plasma exchange alone with a combination

of IVIG and methylprednisolone pulse therapy. Their retrospective

analysis demonstrates that adding IVIG/IVMP does not improve

survival or ICU stay but increases infection rates, suggesting that

simplified monotherapy may suffice in critical care contexts,

reducing complications while maintaining efficacy.

Innovative technological platforms further expand the toolkit for

understanding autoimmune pathogenesis. Zhang et al. introduced a

synovial joint-on-a-chip model that accurately mimics the joint

microenvironment by integrating fluid dynamics, mechanical

stimulation, and intercellular communication. This platform

facilitates preclinical modeling of RA, enabling precise evaluation

of inflammation, drug efficacy, and personalized therapeutic

strategies. Coupled with mechanistic and molecular insights from

the other studies, such platforms can accelerate translational

research, bridging the gap between bench and bedside.

Collectively, these contributions highlight a unifying theme:

autoimmunity is a multidimensional process shaped by immune

dysregulation, genetic predisposition, proteomic signatures, microbial

interactions, and systemic consequences. Across RA, PsA, PsO, AS, and

APS, these studies underscore the importance of integrating molecular,

microbiological, and clinical data to contribute to risk stratification,

biomarker discovery, and targeted interventions.

The convergence of genetic epidemiology, proteomics, microbiome

research, and advanced modeling technologies emphasizes that

autoimmune diseases are not single-organ pathologies but rather a

networked, systemic phenomenon. Furthermore, the research

presented in this Research Topic emphasizes translational and

clinical implications. Targeted immunotherapies, such as low-dose

IL-2 in D2T RA, demonstrate the potential to restore immune

balance with precision. Proteomic analyses identify actionable

biomarkers and druggable targets in PsA and AS, paving the way for

personalized therapeutics. Microbiota interventions show promise for

disease prevention or modulation of progression, while organ-on-a-

chip platforms provide realistic preclinical models to optimize drug

development and predict adverse effects. Together, these advances

signify a paradigm shift toward integrated, precision medicine

approaches in autoimmune disease management.

Lupus is another chronic autoimmune disease discussed in this

Research Topic. It is characterized by dysregulated immune responses

that lead to inflammation and immune-mediated injury, which may

affect various organs (67–69). There are four original papers dedicated

to lupus in this Research Topic. The serological profile of SLE was

explored by Nicola et al. and anti-dsDNA antibodies were found to

be statistically significant for both malar rash and proteinuria; anti-

Ro/SSA antibodies were also found to have an association with

photosensitivity and pericarditis; additionally, an association was

found between anti-Ro antibodies and proteinuria, but only when

anti-dsDNA antibodies were present. A similar study focusing on

another circulatory marker, the Myc-induced nuclear antigen
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(Mina) 53 protein, was evaluated in SLE patients by Zamani et al.

The study showed that SLE patients have significant increases in

Mina53 serum levels along with Mina53 gene expression. Moreover,

Mina53 serum levels and gene expression correlated with SLE

disease and its severity. Szabó et al. studied circulating immune

cell subsets in SLE. Peripheral T-cells, NK-cells, NKT-cells, B-cells,

and monocytes were investigated for their glycosylation patterns,

and the authors reported that these alterations correlate with disease

severity in SLE, which may have implications for the pathogenesis

of this condition. Circulatory neutrophils are important players in

SLE (70–72) and were investigated by Wang et al. Their report

shows that immune complex-driven RNA-sensing by TLR8 in

neutrophils is a major mechanism of neutrophil activation in this

systemic autoimmune disease. Moreover, the study emphasizes that

patients with elevated neutrophil activation and the presence of

RNA-containing immune complexes can undergo therapies that

rely on TLR8 inhibition and RNA removal. In their complex study,

Kramer et al. have evaluated IgE autoantibodies to nuclear antigens

in patients with different connective tissue diseases (CTDs), such as

SLE, Sjögren’s syndrome (SS), and mixed connective tissue disease

(MCTD). Serum analysis of 342 subjects revealed that IgE anti-SSA/

Ro-, -SSB/La-, -RNP-, and -dsDNA antibodies exhibit high

frequency and specificity for the evaluated CTDs. Moreover, the

authors showed that the investigated antibodies may correlate with

disease activity and cutaneous or pulmonary involvement. These

results demonstrate the potential value of IgE autoantibodies as

biomarkers of disease activity and severity, suggesting new

directions for the differential diagnosis and therapeutic

monitoring of systemic autoimmune diseases.

The review by Xu et al. examined the implications of sterol

regulatory element-binding proteins (SREBPs) transcription factors

in the pathogenesis of autoimmune rheumatic diseases, such as SLE,

RA, and gout. SREBPs regulate lipid metabolism and cholesterol

synthesis, thereby influencing cytokine production, inflammation,

and the proliferation of germinal center B (GCB) cells.

Dysregulation of these pathways contributes to pathological

immune activation and the tissue damage characteristic of these

diseases (73–77). Identifying the role of SREBPs in the interaction

between metabolism and the immune response opens innovative

therapeutic perspectives that aim to control inflammation through

the regulation of cellular metabolic processes.

Psoriasis, one of the most common inflammatory skin diseases

involving both autoimmune and autoinflammatory mechanisms (78–

84), was also presented in our Research Topic with two original papers.

Raam et al. described the results of the CRYSTAL study

(EUPAS36459), a cross-sectional, retrospective study of Pso adult

patients from several Central and Eastern European countries. The

patients were evaluated while undergoing treatment with either

biological or conventional agents. The Psoriasis Area and Severity

Index (PASI), Dermatology Life Quality Index (DLQI), and

Psoriasis Work Productivity and Activity Impairment (WPAI-

PSO) were evaluated upon therapies. The study showed better

disease control in the biological treatment group compared to the

non-biological treatment group. Another contribution to our

Research Topic regarding psoriasis was the original study by Shi
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et al., who investigated the role of odd-chain fatty acids (OCFAs)in

Pso. The authors found that high plasma levels of total OCFAs were

positively associated with white blood cell (WBC) and neutrophil

counts. This study highlights that plasma OCFAs may have an

immunomodulatory role in immune regulation, disease

progression, and comorbidity management in psoriasis.

Other original studies cover various topics in autoimmunity. In a

two-sample bidirectional Mendelian randomization study by Yuan

et al., reciprocal causality was shown between plasma metabolites

and autoimmune diseases. For example, four metabolites were

associated with inflammatory bowel disease (IBD), and the

highest number of associated metabolites was 37 in type 1

diabetes. The study provides data on discovering new therapeutic

targets from the metabolite domain in autoimmunity. The study by

Chang et al. investigated the genetic link between inflammatory

bowel disease with IBD and conjunctivitis—two frequently

associated conditions (85, 86) whose connection remains

insufficiently understood from a genetic perspective. Genome-

wide association studies (GWAS) and Mendelian randomization

methods revealed a significant genomic correlation between IBD

and conjunctivitis, limited to chromosome 11. These results support

the existence of a shared causal mechanism, reinforcing the genetic

basis of immunoinflammatory comorbidities. These findings

contribute to a broader understanding of the common etiology of

autoimmune diseases and may support the development of

integrated diagnostic and therapeutic strategies.

Klekotka et al. conducted a systematic literature review to

examine clinical evidence on therapies that aim to restore

immune homeostasis in autoimmune diseases such as asthma,

atopic dermatitis, RA, SLE, and ulcerative colitis. Their analysis of

26 publications revealed a lack of consensus regarding markers and

criteria for assessing immune resolution; however, it identified

associations between T-cell regulatory biomarkers and clinical

remission. The study highlights the potential of the “immune

resolution” concept as a marker of durable remissions, along with

the urgent need for methodological standardization in clinical studies.

Pemphigus vulgaris, an autoimmune disease affecting the skin

and mucous membranes (87–91), was studied by Zakrzewicz et al.

Their original study focused on IgG autoantibodies directed against

desmosomal adhesion proteins (e.g., desmoglein-3 and -1), which

cause loss of keratinocyte adhesion. Their results show that FcRn

(neonatal Fc receptor) binding is necessary for the pathogenicity of

recombinant anti-desmoglein-3 antibodies in keratinocytes. The

data suggest that the role of FcRn in autoimmune diseases is

versatile and cell-type dependent. The report of Hou and Chen

described a rare case of pemphigus vegetans, a distinct form of

pemphigus characterized by vegetative lesions in intertriginous

areas. In this condition, the most common autoantibodies target

desmoglein 3 (92, 93). This case underscores the importance of

prompt diagnosis and appropriate immunosuppressive therapy,

demonstrating the effectiveness of modern therapeutic approaches

in treating severe forms of pemphigus.

Severe burn injury can generate autoantigens, and Turan et al.

focused their study on the liver-derived selenium (Se) transporter

selenoprotein P (SELENOP) as a marker of severe inflammation in
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the acute post-burn phase. The study presented the presence of

SELENOP-aAb correlated with severe burn injury, which could be

relevant for severely affected patients.

Our Research Topic also hosts several insightful reviews on this

topic. Gong et al. reviewed the hypoxic microenvironment and the

role of hypoxia-inducible factor-1 (HIF-1)in RA, SLE, multiple

sclerosis (MS), and dermatomyositis (DM). Therapeutic strategies

that aim at targeting hypoxic pathways may highlight new avenues

for intervention. Immune tolerance is a popular topic in

autoimmunity (94–98) and Wixler et al. reviewed the role of

small spleen polypeptides (SSPs), which regulate peripheral

immune tolerance. For example, SSPs reduced the progression of

experimental psoriasis or arthritis in animal models (99). Complex

mechanisms triggered by SSPs induce a tolerogenic state in

dendritic cells, generating Foxp3+ immunosuppressive regulatory

Treg cells. T cells are also the subject of the review by Dwyer et al.,

but in the context of autoimmune diabetes. Key antigenic T

lymphocyte epitopes were identified as contributors to this

autoimmune pathology, and the role of islet-specific T

lymphocyte populations was also discussed.

An interesting opinion article by Mustelin and Andrade offered

a different perspective on the ‘loss of tolerance’ concept in

autoimmunity. The authors discussed four dilemmas regarding

loss of tolerance, and their neoantigen hypothesis brought a

critical rethinking and re-examination of the current loss of

tolerance concept.

The involvement of gut microbiota is a recent and important

topic of discussion in autoimmunity (61, 100–109) and Wang et al.

reviewed its influence in this domain. The authors showed the

complex interplay between the gut microbiota, the host, and the

immune system, particularly in diseases such as SLE, RA, Sjögren’s

syndrome, T1DM, ulcerative colitis, and Pso (110–125).

The topic of the gut microbiota was also discussed in the

contribution by Freuchet et al., which addressed the importance

of inflammation and biological variability in synucleinopathies,

such as Parkinson’s disease, dementia with Lewy bodies, and

multiple system atrophy. This review highlights the central role of

neuroinflammation, which is mediated by central nervous system-

resident cells, peripheral immune cells, and gut dysbiosis, in

triggering and progressing neurodegeneration (126–129). Sex-

based differences in prevalence and immune response are

also emphasized, with major therapeutic implications. The

article supports the need for personalized approaches and

specific biomarkers for the diagnosis and tailored treatment

of synucleinopathies.

Shi et al. reviewed the role of one type of mesenchymal cell,

fibroblasts, in autoimmune diseases and their involvement in

dermatological autoimmune conditions such as Pso, vitiligo, and

atopic dermatitis. Fibroblast heterogeneity was highlighted in each

of these autoimmune diseases, implying new future research

directions and possibly new therapeutic targets. Also in the

dermatological field, Ungureanu et al. reviewed the autoimmune

mechanisms of melanoma (130–132), the most severe form of skin

cancer (133), with a very complex pathogenesis (134–140). They

emphasized that patients with vitiligo are less likely to develop
frontiersin.org
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melanoma (141, 142). Moreover, their article highlighted that drug-

associated leukoderma (DAL) is a marker of prolonged disease-free

survival in melanoma patients treated with immune checkpoint

inhibitors (143, 144).

A more exotic form of autoimmunity, acute non-biliary

pancreatitis (ANBP), was investigated in an original study by

Anılır et al. Toll-Like Receptor 4 (TLR4) and Toll-Like Receptor

2 (TLR2) gene polymorphisms were studied, and their research

findings point to TLR-4 Rs4986790 polymorphism groups that can

have diagnostic value in ANBP.

The study by Barzilai et al. investigated the role of vasculitis as a

potential marker of disease severity in familial Mediterranean fever

(FMF), a genetic autoinflammatory condition (145, 146). A

comparative analysis of 27 FMF patients with vasculitis and 100

without vasculitis revealed an association with earlier disease onset,

increased severity, higher colchicine doses, and a higher frequency

of homozygosity for the M694V mutation. Although vasculitis was

not identified as an independent factor of severity, its presence may

indicate a more aggressive disease course. The results highlight the

clinical value of vasculitis as a monitoring and risk-stratification

indicator in the management of FMF patients.

The study by Li et al. explored the role of ferroptosis, a form of

cell death dependent on oxidative stress (147, 148), in the

pathogenesis of thyroid-associated orbitopathy (TAO), a complex

autoimmune inflammatory disease (149, 150). Through

bioinformatic analysis of gene datasets and experimental

validation, the genes ACO1 and HCAR1 were identified as

significant molecular markers, showing reduced expression in the

orbital adipose tissue of patients. Correlations with immune cell

infiltration suggested a pathogenic mechanism in which

macrophages play a key role. These findings provide new insights

into the pathophysiological processes underlying TAO and propose

ACO1 and HCAR1 as optimal feature genes (OFGs) of ferroptosis,

suggesting their potential as diagnostic and therapeutic molecular

targets in TAO.

Wang et al. proposed a nomogram-based model to estimate the

risk of arteriolar lesions in patients with IgA nephropathy, which is

a major cause of chronic kidney disease (151–153). Based on a

retrospective analysis of 547 cases, predictive factors such as age,

mean arterial pressure, eGFR, and serum uric acid were identified.

The model demonstrated good performance (C-index 0.72–0.78)

and accuracy in predicting arteriolar damage. This tool provides a

simple and reliable method for assessing renal prognosis, enabling

early intervention in the management of patients with IgA

nephropathy. Also in the nephropathy domain, the review by

Zhang et al. synthesized evidence regarding the involvement of

the complement system in anti-glomerular basement membrane

glomerulonephritis (anti-GBM GN), a rare autoimmune disease

that often progresses to end-stage renal disease (154). Prior studies

have demonstrated the activation of all three complement pathways

and a correlation between complement-related proteins and lesion

severity. The identification of biomarkers of complement activation

enables risk stratification of renal deterioration and paves the way

for the use of complement inhibition as a novel therapeutic strategy

(155–159). These findings underscore the importance of
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complement function assessment in the prognosis and

management of patients with anti-GBM GN.

In the therapy domain, the study by Zhang and Sun evaluated

the potential of genetically engineered T-cell therapies (CAR-T and

CAR-Treg) for treating autoimmune kidney diseases that are

refractory to conventional therapies. By reprogramming T cells to

target autoreactive B cells or antibody-secreting plasma cells, these

therapies can modulate inflammation and prevent tissue damage

(160, 161). The review summarizes recent fundamental and clinical

research, highlighting the efficacy of precise targeting in immune

regulation. These advances open revolutionary therapeutic

perspectives in immune-mediated kidney diseases, marking a

transition toward personalized cellular medicine.

In conclusion, this Research Topic captures the dynamic

landscape of autoimmune research, emphasizing mechanistic

understanding, biomarker discovery, and innovative therapeutic

strategies. By linking immunology, genetics, proteomics,

microbiology, and technology, these studies collectively advance

our understanding of autoimmune pathogenesis and offer new

avenues for personalized interventions. As the field moves

forward, these interdisciplinary approaches will be essential for

translating mechanistic discoveries into clinical impact, ultimately

improving patient outcomes and fostering the development of

novel, targeted therapies for autoimmune diseases.
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122. Guerreiro CS, Calado Â, Sousa J, Fonseca JE. Diet, microbiota, and gut
permeability—The unknown triad in rheumatoid arthritis. Front Med. (2018) 5:349.
doi: 10.3389/fmed.2018.00349

123. Schaefer L, Trujillo-Vargas CM, Midani FS, Pflugfelder SC, Britton RA, de
Paiva CS. Gut microbiota from Sjögren syndrome patients causes decreased T
regulatory cells in the lymphoid organs and desiccation-induced corneal barrier
disruption in mice. Front Med. (2022) 9:852918. doi: 10.3389/fmed.2022.852918

124. Mandl T, Marsal J, Olsson P, Ohlsson B, Andréasson K. Severe intestinal
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