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Editorial on the Research Topic
Autoimmunity: novel insights and future perspectives

This Research Topic on autoimmunity was a success, attracting the attention of many
research teams worldwide and resulting in no fewer than 40 articles, of which 60% were
original studies. The work presented focuses on rheumatoid arthritis, psoriatic arthritis,
psoriasis, lupus, and several other autoimmune diseases and autoimmune-related
conditions. As recent large cohort studies have shown that one in 10 individuals is
diagnosed with an autoimmune disease, and their incidence is rising, especially in Western
countries (1, 2), this Research Topic gathers the most recent original studies and review
articles on this important human condition.

Autoimmune diseases represent a complex and heterogeneous group of disorders
characterized by immune dysregulation, chronic inflammation, and multiorgan involvement
(2-8). Over the past decades, advances in immunology, genetics, and systems biology have
deepened our understanding of the mechanisms underlying these diseases (4-17), while
simultaneously uncovering novel biomarkers and therapeutic targets (4, 18-28).

This Research Topic brings together cutting-edge studies that collectively provide new
insights into the pathogenesis, systemic consequences, and emerging treatment strategies for
autoimmune diseases, with a focus on rheumatoid arthritis (RA), psoriatic arthritis (PsA),
ankylosing spondylitis (AS), psoriasis (PsO), and antiphospholipid syndrome (APS). By
integrating insights from immunology, microbiology, proteomics, genetics, and innovative
modeling platforms, these articles offer multidimensional perspectives on autoimmunity.

The majority of the contributions focus on rheumatoid arthritis and psoriatic arthritis. A
central theme in this Research Topic is immune dysregulation as a driver of disease (9,29-31). Yan
etal. explored the immunological landscape of difficult-to-treat RA (D2T RA), revealing a
marked reduction in regulatory T cells (Tregs) accompanied by an increased Th17/Treg
ratio, reflecting a disrupted immune balance that correlates with heightened disease

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1728233/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1728233/full
https://www.frontiersin.org/research-topics/62114/autoimmunity-novel-insights-and-future-perspectives
https://doi.org/10.3389/fimmu.2025.1522893
https://doi.org/10.3389/fimmu.2025.1522893
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1728233&domain=pdf&date_stamp=2025-10-31
mailto:costin.caruntu@gmail.com
mailto:neagu.monica@gmail.com
mailto:mihaelaadriana2005@yahoo.com
mailto:coca.ancuta@gmail.com
https://doi.org/10.3389/fimmu.2025.1728233
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1728233
https://www.frontiersin.org/journals/immunology

Neagu et al.

activity. Importantly, low-dose interleukin-2 therapy successfully
restored Treg populations without significant adverse effects,
highlighting the potential of targeted immunomodulation to
re-establish immune homeostasis in refractory RA. This
study emphasizes the pivotal role of Tregs as a hallmark of
severe disease and underscores the therapeutic promise
of restoring immune equilibrium rather than broadly
suppressing inflammation.

Complement activation is another dimension of immune
dysregulation that is particularly relevant in systemic
autoimmune pathologies (32-35). Erkan et al. investigated
complement activation in patients positive for antiphospholipid
antibodies (aPLs) who did not have other systemic autoimmune
rheumatic diseases. They demonstrated that cell-bound
complement activation products (CB-CAPs) on B lymphocytes,
erythrocytes, and platelets are more sensitive indicators of
complement activity than traditional C3/C4 measurements.
Elevated CB-CAPs were most pronounced in patients with
microvascular APS, thrombocytopenia, or hemolytic anemia, and
they remained stable over 6 to 12 months. These findings suggest
that CB-CAPs could serve as reliable biomarkers for monitoring
disease activity and thrombosis risk, providing a tool for more
precise clinical management of APS, where conventional
complement measures may underestimate activation. Feng et al.
highlighted the crucial role of endothelial cells (ECs) in the
pathogenesis of APS, an autoimmune disease associated with
recurrent thromboses and recurrent pregnancy losses (36-42).
Antiphospholipid antibodies (aPLs) were found to act as both
biomarkers and pathogenic factors, directly interacting with EC
receptors and activating intracellular pathways involved in various
pathophysiological mechanisms (37, 43-47). In vitro and in vivo
studies have described multiple molecular mechanisms through
which ECs mediate the effects of aPLs on vascular function (48-50).
These findings provide an integrated understanding of the role of
ECs in APS and identify new potential targets for diagnosis and the
development of personalized therapies.

Wang et al. explored the role of the ubiquitin-proteasome
system (UPS) in the pathogenesis of APS, an autoimmune disease
characterized by thromboses and pregnancy complications
associated with persistent elevation of aPLs (51). UPS imbalance
promotes the activation of proinflammatory and prothrombotic
pathways, contributing to disease progression (52, 53). The
summarized in vivo studies presented in their work suggest that
low-dose proteasome inhibitors may alleviate the clinical
manifestations of APS by reducing inflammatory mediators (54,
55). These results indicate that targeting the UPS could represent a
novel therapeutic strategy for controlling the inflammatory and
thrombotic processes associated with this condition.

Expanding the scope of autoimmune interactions, Duan et al.
employed bidirectional Mendelian randomization to elucidate
causal relationships between psoriasis, psoriatic arthritis, and
multiple autoimmune diseases, including systemic lupus
erythematosus (SLE), Crohn’s disease (CD), Hashimoto’s
thyroiditis (HT), RA, vitiligo, and AS. Their analysis revealed that
CD and vitiligo increase the risk of developing psoriasis (PsO),
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whereas bullous pemphigoid appears to reduce it. For PsA, risk
factors extended to CD, HT, RA, AS, SLE, and vitiligo. These results
underscore the interconnectivity of autoimmune disorders and
highlight the importance of carefully monitoring for disease
progression, particularly in patients presenting with coexisting
autoimmune conditions. This study exemplifies how genetic
epidemiology can contribute to risk stratification and early
intervention strategies, guiding personalized patient management.
Proteome-wide analyses complement genetic studies by identifying
causal proteins that may serve as biomarkers or therapeutic targets.

Zhao et al. performed a Mendelian randomization study
examining 1,837 plasma proteins in relation to PsA risk. They
identified seven proteins associated with disease susceptibility,
notably interleukin-10 (IL-10), which is inversely linked with
PsA, and apolipoprotein F (APOF), which is positively associated
with the disease. Colocalization analyses confirmed genetic overlap
with disease risk, while phenome-wide assessments suggested
broader systemic effects. These findings provide novel insights
into PsA etiology and highlight IL-10 and APOF as potential
targets for therapeutic intervention, bridging the gap between
molecular discovery and clinical translation.

Similarly, in AS, a chronic immune-mediated arthritis with an
incompletely understood pathogenesis that primarily affects the
axial joints (56-58), Zhao et al. identified eight plasma proteins
causally associated with disease risk, including AIF1, TNF, FKBPL,
AGER, ALDH5A1, and ACOT13. Colocalization analyses
confirmed these as shared causal variants, while phenome-wide
assessments highlighted potential adverse effects, offering guidance
for drug development. Together, these studies illustrate the power
of multi-omics approaches in elucidating the molecular
mechanisms underlying autoimmune diseases and supporting the
design of targeted therapies.

The role of the microbiome is emerging as a critical modifier of
autoimmune pathogenesis (59-66). Lu et al. reviewed the
contributions of the gut and oral microbiota to RA, emphasizing
that dysbiosis in the gut—including the expansion of Prevotella
species—and colonization by oral pathogens, such as
Porphyromonas gingivalis and Aggregatibacter actinomycetem
comitans, can promote the production of anti-citrullinated
protein antibodies (ACPAs), a hallmark of RA.

Bacterial extracellular vesicles were also highlighted as potent
mediators of systemic inflammation, suggesting that microbial
communities at mucosal sites can modulate systemic autoimmunity.

Complementing this, Yang et al. demonstrated in a collagen-
induced arthritis rat model that oral administration of
Bifidobacterium animalis BD400 alleviates disease progression by
modulating gut microbiota composition, enhancing intestinal
barrier proteins, and downregulating histidine metabolites
implicated in inflammation. This dual approach—mechanistic
understanding of microbial contributions and experimental
manipulation—provides compelling evidence for microbiota-
targeted interventions as potential preventive or adjunctive
strategies in autoimmune disorders. Bridging molecular and
clinical perspectives, Liu et al. explored the systemic consequences
of RA and revealed a causal association with increased epilepsy risk
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through Mendelian randomization. This finding underscores the
fact that autoimmune inflammation extends beyond the affected
joints, necessitating comprehensive patient management that
considers neurological comorbidities. Similarly, Guo et al.
evaluated therapeutic interventions in severe systemic rheumatic
diseases by comparing plasma exchange alone with a combination
of IVIG and methylprednisolone pulse therapy. Their retrospective
analysis demonstrates that adding IVIG/IVMP does not improve
survival or ICU stay but increases infection rates, suggesting that
simplified monotherapy may suffice in critical care contexts,
reducing complications while maintaining efficacy.

Innovative technological platforms further expand the toolkit for
understanding autoimmune pathogenesis. Zhang et al. introduced a
synovial joint-on-a-chip model that accurately mimics the joint
microenvironment by integrating fluid dynamics, mechanical
stimulation, and intercellular communication. This platform
facilitates preclinical modeling of RA, enabling precise evaluation
of inflammation, drug efficacy, and personalized therapeutic
strategies. Coupled with mechanistic and molecular insights from
the other studies, such platforms can accelerate translational
research, bridging the gap between bench and bedside.

Collectively, these contributions highlight a unifying theme:
autoimmunity is a multidimensional process shaped by immune
dysregulation, genetic predisposition, proteomic signatures, microbial
interactions, and systemic consequences. Across RA, PsA, PsO, AS, and
APS, these studies underscore the importance of integrating molecular,
microbiological, and clinical data to contribute to risk stratification,
biomarker discovery, and targeted interventions.

The convergence of genetic epidemiology, proteomics, microbiome
research, and advanced modeling technologies emphasizes that
autoimmune diseases are not single-organ pathologies but rather a
networked, systemic phenomenon. Furthermore, the research
presented in this Research Topic emphasizes translational and
clinical implications. Targeted immunotherapies, such as low-dose
IL-2 in D2T RA, demonstrate the potential to restore immune
balance with precision. Proteomic analyses identify actionable
biomarkers and druggable targets in PsA and AS, paving the way for
personalized therapeutics. Microbiota interventions show promise for
disease prevention or modulation of progression, while organ-on-a-
chip platforms provide realistic preclinical models to optimize drug
development and predict adverse effects. Together, these advances
signify a paradigm shift toward integrated, precision medicine
approaches in autoimmune disease management.

Lupus is another chronic autoimmune disease discussed in this
Research Topic. It is characterized by dysregulated immune responses
that lead to inflammation and immune-mediated injury, which may
affect various organs (67-69). There are four original papers dedicated
to lupus in this Research Topic. The serological profile of SLE was
explored by Nicola et al. and anti-dsDNA antibodies were found to
be statistically significant for both malar rash and proteinuria; anti-
Ro/SSA antibodies were also found to have an association with
photosensitivity and pericarditis; additionally, an association was
found between anti-Ro antibodies and proteinuria, but only when
anti-dsDNA antibodies were present. A similar study focusing on
another circulatory marker, the Myc-induced nuclear antigen
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(Mina) 53 protein, was evaluated in SLE patients by Zamani et al.
The study showed that SLE patients have significant increases in
Mina53 serum levels along with Mina53 gene expression. Moreover,
Mina53 serum levels and gene expression correlated with SLE
disease and its severity. Szabo et al. studied circulating immune
cell subsets in SLE. Peripheral T-cells, NK-cells, NKT-cells, B-cells,
and monocytes were investigated for their glycosylation patterns,
and the authors reported that these alterations correlate with disease
severity in SLE, which may have implications for the pathogenesis
of this condition. Circulatory neutrophils are important players in
SLE (70-72) and were investigated by Wang et al. Their report
shows that immune complex-driven RNA-sensing by TLR8 in
neutrophils is a major mechanism of neutrophil activation in this
systemic autoimmune disease. Moreover, the study emphasizes that
patients with elevated neutrophil activation and the presence of
RNA-containing immune complexes can undergo therapies that
rely on TLR8 inhibition and RNA removal. In their complex study,
Kramer et al. have evaluated IgE autoantibodies to nuclear antigens
in patients with different connective tissue diseases (CTDs), such as
SLE, Sjogren’s syndrome (SS), and mixed connective tissue disease
(MCTD). Serum analysis of 342 subjects revealed that IgE anti-SSA/
Ro-, -SSB/La-, -RNP-, and -dsDNA antibodies exhibit high
frequency and specificity for the evaluated CTDs. Moreover, the
authors showed that the investigated antibodies may correlate with
disease activity and cutaneous or pulmonary involvement. These
results demonstrate the potential value of IgE autoantibodies as
biomarkers of disease activity and severity, suggesting new
directions for the differential diagnosis and therapeutic
monitoring of systemic autoimmune diseases.

The review by Xu et al. examined the implications of sterol
regulatory element-binding proteins (SREBPs) transcription factors
in the pathogenesis of autoimmune rheumatic diseases, such as SLE,
RA, and gout. SREBPs regulate lipid metabolism and cholesterol
synthesis, thereby influencing cytokine production, inflammation,
and the proliferation of germinal center B (GCB) cells.
Dysregulation of these pathways contributes to pathological
immune activation and the tissue damage characteristic of these
diseases (73-77). Identifying the role of SREBPs in the interaction
between metabolism and the immune response opens innovative
therapeutic perspectives that aim to control inflammation through
the regulation of cellular metabolic processes.

Psoriasis, one of the most common inflammatory skin diseases
involving both autoimmune and autoinflammatory mechanisms (78—
84), was also presented in our Research Topic with two original papers.
Raam et al. described the results of the CRYSTAL study
(EUPAS36459), a cross-sectional, retrospective study of Pso adult
patients from several Central and Eastern European countries. The
patients were evaluated while undergoing treatment with either
biological or conventional agents. The Psoriasis Area and Severity
Index (PASI), Dermatology Life Quality Index (DLQI), and
Psoriasis Work Productivity and Activity Impairment (WPAI-
PSO) were evaluated upon therapies. The study showed better
disease control in the biological treatment group compared to the
non-biological treatment group. Another contribution to our
Research Topic regarding psoriasis was the original study by Shi
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et al., who investigated the role of odd-chain fatty acids (OCFAs)in
Pso. The authors found that high plasma levels of total OCFAs were
positively associated with white blood cell (WBC) and neutrophil
counts. This study highlights that plasma OCFAs may have an
immunomodulatory role in immune regulation, disease
progression, and comorbidity management in psoriasis.

Other original studies cover various topics in autoimmunity. In a
two-sample bidirectional Mendelian randomization study by Yuan
et al,, reciprocal causality was shown between plasma metabolites
and autoimmune diseases. For example, four metabolites were
associated with inflammatory bowel disease (IBD), and the
highest number of associated metabolites was 37 in type 1
diabetes. The study provides data on discovering new therapeutic
targets from the metabolite domain in autoimmunity. The study by
Chang et al. investigated the genetic link between inflammatory
bowel disease with IBD and conjunctivitis—two frequently
associated conditions (85, 86) whose connection remains
insufficiently understood from a genetic perspective. Genome-
wide association studies (GWAS) and Mendelian randomization
methods revealed a significant genomic correlation between IBD
and conjunctivitis, limited to chromosome 11. These results support
the existence of a shared causal mechanism, reinforcing the genetic
basis of immunoinflammatory comorbidities. These findings
contribute to a broader understanding of the common etiology of
autoimmune diseases and may support the development of
integrated diagnostic and therapeutic strategies.

Klekotka et al. conducted a systematic literature review to
examine clinical evidence on therapies that aim to restore
immune homeostasis in autoimmune diseases such as asthma,
atopic dermatitis, RA, SLE, and ulcerative colitis. Their analysis of
26 publications revealed a lack of consensus regarding markers and
criteria for assessing immune resolution; however, it identified
associations between T-cell regulatory biomarkers and clinical
remission. The study highlights the potential of the “immune
resolution” concept as a marker of durable remissions, along with
the urgent need for methodological standardization in clinical studies.

Pemphigus vulgaris, an autoimmune disease affecting the skin
and mucous membranes (87-91), was studied by Zakrzewicz et al.
Their original study focused on IgG autoantibodies directed against
desmosomal adhesion proteins (e.g., desmoglein-3 and -1), which
cause loss of keratinocyte adhesion. Their results show that FcRn
(neonatal Fc receptor) binding is necessary for the pathogenicity of
recombinant anti-desmoglein-3 antibodies in keratinocytes. The
data suggest that the role of FcRn in autoimmune diseases is
versatile and cell-type dependent. The report of Hou and Chen
described a rare case of pemphigus vegetans, a distinct form of
pemphigus characterized by vegetative lesions in intertriginous
areas. In this condition, the most common autoantibodies target
desmoglein 3 (92, 93). This case underscores the importance of
prompt diagnosis and appropriate immunosuppressive therapy,
demonstrating the effectiveness of modern therapeutic approaches
in treating severe forms of pemphigus.

Severe burn injury can generate autoantigens, and Turan et al.
focused their study on the liver-derived selenium (Se) transporter
selenoprotein P (SELENOP) as a marker of severe inflammation in
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the acute post-burn phase. The study presented the presence of
SELENOP-aAb correlated with severe burn injury, which could be
relevant for severely affected patients.

Our Research Topic also hosts several insightful reviews on this
topic. Gong et al. reviewed the hypoxic microenvironment and the
role of hypoxia-inducible factor-1 (HIF-1)in RA, SLE, multiple
sclerosis (MS), and dermatomyositis (DM). Therapeutic strategies
that aim at targeting hypoxic pathways may highlight new avenues
for intervention. Immune tolerance is a popular topic in
autoimmunity (94-98) and Wixler et al. reviewed the role of
small spleen polypeptides (SSPs), which regulate peripheral
immune tolerance. For example, SSPs reduced the progression of
experimental psoriasis or arthritis in animal models (99). Complex
mechanisms triggered by SSPs induce a tolerogenic state in
dendritic cells, generating Foxp3+ immunosuppressive regulatory
Treg cells. T cells are also the subject of the review by Dwyer et al.,
but in the context of autoimmune diabetes. Key antigenic T
lymphocyte epitopes were identified as contributors to this
autoimmune pathology, and the role of islet-specific T
lymphocyte populations was also discussed.

An interesting opinion article by Mustelin and Andrade offered
a different perspective on the ‘loss of tolerance’ concept in
autoimmunity. The authors discussed four dilemmas regarding
loss of tolerance, and their neoantigen hypothesis brought a
critical rethinking and re-examination of the current loss of
tolerance concept.

The involvement of gut microbiota is a recent and important
topic of discussion in autoimmunity (61, 100-109) and Wang et al.
reviewed its influence in this domain. The authors showed the
complex interplay between the gut microbiota, the host, and the
immune system, particularly in diseases such as SLE, RA, Sjogren’s
syndrome, T1IDM, ulcerative colitis, and Pso (110-125).

The topic of the gut microbiota was also discussed in the
contribution by Freuchet et al., which addressed the importance
of inflammation and biological variability in synucleinopathies,
such as Parkinson’s disease, dementia with Lewy bodies, and
multiple system atrophy. This review highlights the central role of
neuroinflammation, which is mediated by central nervous system-
resident cells, peripheral immune cells, and gut dysbiosis, in
triggering and progressing neurodegeneration (126-129). Sex-
based differences in prevalence and immune response are
also emphasized, with major therapeutic implications. The
article supports the need for personalized approaches and
specific biomarkers for the diagnosis and tailored treatment
of synucleinopathies.

Shi et al. reviewed the role of one type of mesenchymal cell,
fibroblasts, in autoimmune diseases and their involvement in
dermatological autoimmune conditions such as Pso, vitiligo, and
atopic dermatitis. Fibroblast heterogeneity was highlighted in each
of these autoimmune diseases, implying new future research
directions and possibly new therapeutic targets. Also in the
dermatological field, Ungureanu et al. reviewed the autoimmune
mechanisms of melanoma (130-132), the most severe form of skin
cancer (133), with a very complex pathogenesis (134-140). They
emphasized that patients with vitiligo are less likely to develop

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1500722
https://doi.org/10.3389/fimmu.2024.1437688
https://doi.org/10.3389/fimmu.2024.1437688
https://doi.org/10.3389/fimmu.2024.1409146
https://doi.org/10.3389/fimmu.2024.1425478
https://doi.org/10.3389/fimmu.2024.1473637
https://doi.org/10.3389/fimmu.2024.1481192
https://doi.org/10.3389/fimmu.2024.1422781
https://doi.org/10.3389/fimmu.2024.1435306
https://doi.org/10.3389/fimmu.2024.1449657
https://doi.org/10.3389/fimmu.2024.1440045
https://doi.org/10.3389/fimmu.2024.1432985
https://doi.org/10.3389/fimmu.2024.1365554
https://doi.org/10.3389/fimmu.2024.1432342
https://doi.org/10.3389/fimmu.2024.1379490
https://doi.org/10.3389/fimmu.2024.1417273
https://doi.org/10.3389/fimmu.2025.1728233
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Neagu et al.

melanoma (141, 142). Moreover, their article highlighted that drug-
associated leukoderma (DAL) is a marker of prolonged disease-free
survival in melanoma patients treated with immune checkpoint
inhibitors (143, 144).

A more exotic form of autoimmunity, acute non-biliary
pancreatitis (ANBP), was investigated in an original study by
Anilir et al. Toll-Like Receptor 4 (TLR4) and Toll-Like Receptor
2 (TLR2) gene polymorphisms were studied, and their research
findings point to TLR-4 Rs4986790 polymorphism groups that can
have diagnostic value in ANBP.

The study by Barzilai et al. investigated the role of vasculitis as a
potential marker of disease severity in familial Mediterranean fever
(FMF), a genetic autoinflammatory condition (145, 146). A
comparative analysis of 27 FMF patients with vasculitis and 100
without vasculitis revealed an association with earlier disease onset,
increased severity, higher colchicine doses, and a higher frequency
of homozygosity for the M694V mutation. Although vasculitis was
not identified as an independent factor of severity, its presence may
indicate a more aggressive disease course. The results highlight the
clinical value of vasculitis as a monitoring and risk-stratification
indicator in the management of FMF patients.

The study by Li et al. explored the role of ferroptosis, a form of
cell death dependent on oxidative stress (147, 148), in the
pathogenesis of thyroid-associated orbitopathy (TAO), a complex
autoimmune inflammatory disease (149, 150). Through
bioinformatic analysis of gene datasets and experimental
validation, the genes ACOl1 and HCARI were identified as
significant molecular markers, showing reduced expression in the
orbital adipose tissue of patients. Correlations with immune cell
infiltration suggested a pathogenic mechanism in which
macrophages play a key role. These findings provide new insights
into the pathophysiological processes underlying TAO and propose
ACOL1 and HCARI as optimal feature genes (OFGs) of ferroptosis,
suggesting their potential as diagnostic and therapeutic molecular
targets in TAO.

Wang et al. proposed a nomogram-based model to estimate the
risk of arteriolar lesions in patients with IgA nephropathy, which is
a major cause of chronic kidney disease (151-153). Based on a
retrospective analysis of 547 cases, predictive factors such as age,
mean arterial pressure, eGFR, and serum uric acid were identified.
The model demonstrated good performance (C-index 0.72-0.78)
and accuracy in predicting arteriolar damage. This tool provides a
simple and reliable method for assessing renal prognosis, enabling
early intervention in the management of patients with IgA
nephropathy. Also in the nephropathy domain, the review by
Zhang et al. synthesized evidence regarding the involvement of
the complement system in anti-glomerular basement membrane
glomerulonephritis (anti-GBM GN), a rare autoimmune disease
that often progresses to end-stage renal disease (154). Prior studies
have demonstrated the activation of all three complement pathways
and a correlation between complement-related proteins and lesion
severity. The identification of biomarkers of complement activation
enables risk stratification of renal deterioration and paves the way
for the use of complement inhibition as a novel therapeutic strategy
(155-159). These findings underscore the importance of
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complement function assessment in the prognosis and
management of patients with anti-GBM GN.

In the therapy domain, the study by Zhang and Sun evaluated
the potential of genetically engineered T-cell therapies (CAR-T and
CAR-Treg) for treating autoimmune kidney diseases that are
refractory to conventional therapies. By reprogramming T cells to
target autoreactive B cells or antibody-secreting plasma cells, these
therapies can modulate inflammation and prevent tissue damage
(160, 161). The review summarizes recent fundamental and clinical
research, highlighting the efficacy of precise targeting in immune
regulation. These advances open revolutionary therapeutic
perspectives in immune-mediated kidney diseases, marking a
transition toward personalized cellular medicine.

In conclusion, this Research Topic captures the dynamic
landscape of autoimmune research, emphasizing mechanistic
understanding, biomarker discovery, and innovative therapeutic
strategies. By linking immunology, genetics, proteomics,
microbiology, and technology, these studies collectively advance
our understanding of autoimmune pathogenesis and offer new
avenues for personalized interventions. As the field moves
forward, these interdisciplinary approaches will be essential for
translating mechanistic discoveries into clinical impact, ultimately
improving patient outcomes and fostering the development of
novel, targeted therapies for autoimmune diseases.
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