

OPEN ACCESS

EDITED AND REVIEWED BY Dario S. Zamboni, University of São Paulo, Brazil

*CORRESPONDENCE
Joydeep Paul

joydeep.paul@adamasuniversity.ac.in
Anisuzzaman Anisuzzaman

zaman.a@bau.edu.bd

RECEIVED 18 October 2025 REVISED 05 November 2025 ACCEPTED 06 November 2025 PUBLISHED 17 November 2025

CITATION

Paul J, Hossain MT, Islam MA and Anisuzzaman (2025) Editorial: Helminthosis: immuno-pathology and anthelmintic vaccines. Front. Immunol. 16:1727852. doi: 10.3389/fimmu.2025.1727852

COPYRIGHT

© 2025 Paul, Hossain, Islam and Anisuzzaman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Helminthosis: immuno-pathology and anthelmintic vaccines

Joydeep Paul^{1*}, Muhammad Tofazzal Hossain², Md. Aminul Islam³ and Anisuzzaman^{4*}

¹Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India, ²Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh, ³Department of Medicine, Bangladesh Agricultural University, Mymensingh, Bangladesh, ⁴Department of Parasitology, Bangladesh Agricultural University, Mymensingh, Bangladesh

KEYWORDS

helminthosis, immunopathology, anthelmintic vaccines, extracellular vesicles (EVs), host–parasite interaction, immune modulation

Editorial on the Research Topic

Helminthosis: immuno-pathology and anthelmintic vaccines

Helminth infections remain a major global challenge, especially in the tropics and the sub-tropics. While they rarely receive the attention accorded to tuberculosis or malaria, their burden is considerable, resulting in growth impairment, infertility, chronic disability, and premature mortality (1-3). Co-evolution of these helminths along with their respective hosts is the key to their survival and persistence, even in the modern world (4). Initially, helminth infections induce a Th1 immune response, accompanied by increased IgE and T cell activation. Later in the chronic illness, polarization of the host immune response towards Th2 helps the parasites to survive in a more favourable environment (5). The immune response to the helminths is inherently paradoxical. Protective in some contexts, yet can be manipulated by the parasites to ensure survival (Figure 1). This duality is central to the immunopathology examined in this Research Topic. Helminths also actively induce Treg cells, which helps the helminth's survival by suppressing the host's immune response. Helminth-induced Treg ameliorates "bystander" immune responses, protecting against allergies and autoimmune diseases (6). The pursuit of vaccines is equally important, which, despite decades of work, lags behind efforts against bacterial and viral diseases (7). This study offered fresh perspectives on these intertwined challenges. This Research Topic will also help us to understand the host-parasite interactions more intricately by highlighting the underlying molecular mechanisms, particularly in the field of vaccine development.

The issue discussed many newer and evolving problems related to helminthosis. Ten different articles range from giving intricate highlights in understanding the modulation of immune responses and other host inflammatory responses in helminthosis to the development of protective responses against different helminths, either through regular physical exercises or with the advancement of new prophylactic and therapeutic modules. Sternkopf et al. showed that the vesicular fluid derived from the *Taenia solium* cyst (CVF) induces Caspase 3 and 9 mediated apoptosis in human neurocysticercosis patients by significantly inhibiting mitochondrial function. This article also identifies that elevated FasL levels act as a key mediator to induce brain inflammation by primarily targeting

Paul et al. 10.3389/fimmu.2025.1727852

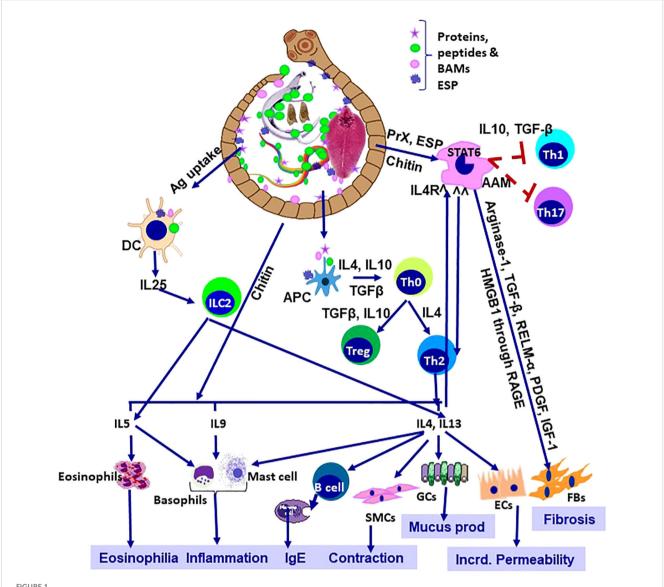


FIGURE 1
Helminthiosis: Immunological orchestra and patho-biology. AAM, alternatively activated macrophage; APC, antigen presenting cell; DC, dendritic cell; SMCs, smooth muscle cells, GCs, goblet cells; Ecs, epithelial cells; FBs, fibroblasts; Incrd, increased; Ag, antigens; BAMs, bioactive molecules, PrX, 2-Cys peroxiredoxin; RELM- α , Resistin-like Molecule- α ; PDGF, platelet-derived growth factor; IGF-1, insulin-like growth factor 1; HMGB1, High-Mobility Group Box 1, RAGE, receptor for advanced gycation end-products; ESP, excretory-secretory products.

monocytes, microglia, and in CD3+ expressing T cells. Yuan et al. demonstrated how *Nippostrongylus brasiliensis*-derived uridine alleviates colitis in mice via apical sodium-dependent bile acid transporter (ASBT). Their findings suggest novel molecular targets for treating inflammatory bowel diseases and also suggest how helminth biology can reform wider field of medicine. Schulze et al. characterize the immune remodelling in *Schistosoma mansoni* infection by documenting granulocyte expansion, cytokine dynamics and the interplay between Th1 and Th2 responses. They contribute significantly to understanding the late-stage disease and its systemic immunological impact. Adjah et al. broaden our knowledge on compartmentalized immunity by showing that portal lymph nodes, along with the mesenteric nodes, generate parasite-specific follicular helper T and B cells during *Heligmosomoides bakeri* infection. Lema et al. analyze immune responses in HIV-positive

individuals with *Taenia solium* cysticercosis. Their observations show cytokine patterns and CD4 variations in a sex-biased manner, having stronger responses in males. This study also underscores the complexity of co-infections and the need for tailored management strategies. Lopez et al. reviewed how ILC2 activity correlates with egg burden, IgE production and tryptase levels in *Ascaris lumbricoides* infection, thus linking innate immune responses with allergic and inflammatory consequences. While Sanku et al. emphasized the impaired APC activity and the suppression of the T cell responses by a filarial nematode (*Brugia malayi*) derived EVs. Their work also illustrates the inhibitory role of parasite-derived EVs in cytokine production and may extend to several dissimilar antigens, such as SARS-CoV-2.

Addressing the prophylactic and therapeutic challenges against helminthosis, Liu et al. identified various glycoprotein components

Paul et al. 10.3389/fimmu.2025.1727852

of the H11 antigen and also demonstrated that combinations of recombinant cocktails can reproduce a significant amount of protection as seen with native H11 antigen. With barbervax still being considered as the sole commercial helminth vaccine, such advances mark critical progress towards recombinant platforms. Addressing co-endemicity, Zhong et al. reviewed the role of EV-derived let-7 microRNAs in shaping host-parasite interactions. Their synthesis highlights both conserved pathways and translational challenges, pointing toward diagnostic and therapeutic opportunities. Lastly, Berkiks et al. contributed in a novel way by showing that moderate exercise reduces neuroinflammation and improves memory in mice infected with schistosomiasis. By linking lifestyle interventions to disease outcomes, this study broadens the scope of the helminth research beyond parasite clearance.

In summary, all ten articles not only provided insights into how helminths use different strategies for their survival in the host, but also suggested diverse approaches that could be used to combat infection. From cellular pathways and EV microRNAs to vaccine antigens and exercise-based interventions, the breadth of inquiry represented here is striking. Importantly, modern understanding unmasked that helminths are not only pathogens but also sources of therapeutic insights, resulting a twist whether helminths are 'friends or foe'. This Research Topic also highlights the ongoing need for increased visibility in helminth research. Despite their enormous global burden, particularly in low and middle-income countries, these diseases risk neglect amid shifting public health priorities. By bringing together diverse work, this Research Topic highlights both the scientific vibrancy of helminthology and its translational relevance for wider immunological and inflammatory conditions.

In conclusion, this Research Topic is more than a compilation of papers. The studies here remind us that advancing vaccines and therapies against these parasites requires scientific rigor but also collaborative persistence. May it inspire further inquiry and innovation in tackling helminthiosis and its far-reaching consequences.

Author contributions

JP: Conceptualization, Investigation, Methodology, Software, Supervision, Validation, Writing – original draft, Writing – review & editing. MH: Conceptualization, Investigation, Supervision, Writing – original draft, Writing – review & editing. MI: Conceptualization, Investigation, Supervision, Writing – original draft, Writing – review & editing. AA: Conceptualization,

Investigation, Project administration, Software, Supervision, Validation, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This study was partially funded by the internal seed grant by Adamas University (No. AU/ R&D/SEED/28/03-2020-21) granted to JP-lab, Krishi Gobeshana Foundation (KGF, TF-102-L/21), Bangladesh, Bangladesh Agricultural University Research System (2024/30/BAU) and Ministry of Science and Technology (MoST), Bangladesh (SRG-244380/2025/MoST).

Acknowledgments

We want to thank all the authors who have contributed to the Research Topic.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that Generative AI was used in the creation of this manuscript. Line rephrasing and reconstruction.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Anisuzzaman, Tsuji N. Schistosomiasis and hookworm infection in humans: Disease burden, pathobiology and anthelmintic vaccines. *Parasitol Int.* (2020) 75:102051. doi: 10.1016/j.parint.2020.102051
- 2. Frahm S, Anisuzzaman A, Prodjinotho UF, Vejzagić N, Verschoor A, Prazeres da Costa C. A novel cell-free method to culture Schistosoma mansoni from cercariae to

juvenile worm stages for in vitro drug testing. PloS Negl Trop Dis. (2019) 13:e0006590. doi: 10.1371/journal.pntd.0006590

3. Anisuzzaman FS, Prodjinotho UF, Bhattacharjee S, Verschoor A, da Costa CP. Host-specific serum factors control the development and survival of Schistosoma mansoni. Front Immunol. (2021) 12:635622. doi: 10.3389/fimmu.2021.635622

Paul et al. 10.3389/fimmu.2025.1727852

- 4. Yasmin H, Datta P, Deb A, Willingham AL, Kishore U. Innate immune response to helminth infections. *Adv Exp Med Biol.* (2025) 1476:251–73. doi: 10.1007/978-3-031-85340-1 10
- 5. Gazzinelli-Guimaraes PH, Jones SM, Voehringer D, Mayer-Barber KD, Samarasinghe AE. Eosinophils as modulators of host defense during parasitic, fungal, bacterial, and viral infections. *J Leukoc Biol.* (2024) 116:1301–23. doi: 10.1093/jleuko/qiae173
- 6. Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, et al. The microbiota regulates type 2 immunity through ROR γ t T cells. *Science*. (2015) 349:989–93. doi: 10.1126/science.aac4263
- 7. García-Bernalt Diego J, Desai P, Yeung ST, Damani-Yokota P, Khanna KM, Diamond MS, et al. Helminth infections affect host immune responses to viral infections and vaccines. *FEMS Microbiol Rev.* (2025) 49:fuaf036. doi: 10.1093/femsre/fuaf036