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R3HDM4 influences kidney renal
clear cell carcinoma progression,
immune modulation, and
potential links to the IGSF8
immune checkpoint
Kai Sun1†, Rong Li2†, Ting Xu1†, Song Wen1, De-chang Xu1*‡

and Ke-run Wang1*‡

1Department of Oncology, Ganzhou Cancer Hospital, The Affiliated Cancer Hospital of Gannan
Medical University, Ganzhou, Jiangxi, China, 2Department of Pathology, Ganzhou Cancer Hospital,
The Affiliated Cancer Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
Background: R3HDM4, or R3H domain containing 4, is a gene with uncertain

functions but is frequently investigated for its potential cellular roles and

associations with various diseases. Kidney renal clear cell carcinoma (KIRC ), a

prevalent and aggressive form of kidney cancer, currently lacks effective

treatment options. This study aimed to clarify the involvement of R3HDM4 in

KIRC pathogenesis.

Methods and results: An integrated pan-cancer approach was employed to

analyze data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus

(GEO), ArrayExpress, and the International Cancer Genome Consortium (ICGC ),

systematically assessing the prognostic relevance, clinical associations, signaling

pathways, DNA methylation patterns, immune infiltration profiles, and

chemotherapeutic sensitivity linked to R3HDM4 expression. Bioinformatics

analyses, supported by immunohistochemistry, Western blotting (WB), and

reverse transcription-quantitative polymerase chain reaction (RT-qPCR),

revealed significant upregulation of R3HDM4 in KIRC tissues compared to

normal controls. Kaplan–Meier (KM) survival analysis indicated that elevated

R3HDM4 expression correlated with poor clinical outcomes. Single-cell RNA

sequencing identified cancer cells and dendritic cells as the primary sources of

R3HDM4 within the KIRC tumor microenvironment. Functional assays using

R3HDM4-targeting siRNA demonstrated that its depletion suppressed the

proliferative, migratory, and invasive capabilities of KIRC cells. At the molecular

level, R3HDM4 knockdown attenuated epithelial–mesenchymal transition (EMT),

as evidenced by increased E-cadherin expression and reduced levels of vimentin

and matrix metalloproteinases MMP-2 and MMP-9. Comprehensive immune

profiling revealed significant correlations between R3HDM4 expression and

several immunological parameters, including immune cell infiltration, immune

checkpoint expression, tumor mutational burden (TMB), and microsatellite

instability (MSI). Notably, silencing of R3HDM4 led to increased expression of

Immunoglobulin Superfamily Member 8 (IGSF8).

Conclusions: These analyses identify R3HDM4 as a critical oncogenic driver in

KIRC, potentially acting through two mechanisms: promoting tumor growth and
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metastasis while also exerting immunomodulatory effects, possibly mediated by

IGSF8. This suggests a potential role for IGSF8 in regulating immune checkpoints,

though this remains speculative. These findings highlight R3HDM4’s potential as

both a prognostic biomarker and a therapeutic target in KIRC.
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Introduction

KIRC, the most common kidney cancer subtype, accounts for

about 75% of malignant renal tumors (1, 2). Advances in treatment,

particularly with targeted therapies and immunotherapies, have

significantly improved patient survival (3, 4). Targeted therapies

inhibit the VEGF pathway, while immunotherapies use immune

checkpoint inhibitors (ICIs) like PD-1 and CTLA-4 to boost the

immune response against tumors (5, 6). Combining these

approaches is now standard for advanced KIRC (7, 8).

Additionally, combining ICIs with tyrosine kinase inhibitors

(TKIs) shows promise in improving outcomes for patients with

higher-risk disease (9–13). Despite advancements, challenges

persist due to resistance to immunotherapy and side effects

impacting survival. Researchers are exploring new strategies, like

identifying biomarkers and targeted therapies, to improve

personalized treatment (14, 15). For instance, EMX2 has shown

potential in inhibiting cholangiocarcinoma by affecting the Akt/

FOXO3a pathway (16). KIRC molecular heterogeneity and

conventional therapy resistance prompted research on alternative

targets such as BUB1B, a key KIRC progression driver from

genome-wide transcriptomic analyses (17). BUB1B inhibitors

elicit apoptosis and hold therapeutic potential. Despite advances

in KIRC treatment, further research is critical to address drug

resistance and refine therapeutic strategies. Combining targeted

and immunotherapies with novel biomarkers and therapeutic

targets discovery offers substantial promise for improving KIRC

treatment outcomes (3, 18).

R3HDM4, also known as C19orf22 and formally designated as

R3H domain containing 4, is located on the short arm (p) of

chromosome 19 at region 13.3. This gene encodes the protein

MGC16353, listed in genomic databases as Ensemble ID

ENSG00000198858 and UniProt Q96D70. The R3HDM4 protein

features an R3H domain, which is typically associated with RNA

regulation in cells (19, 20). The significance of the R3H domain is

highlighted by its presence in various proteins across multiple

organisms, highlighting its evolutionary conservation and

functional relevance (20, 21). This domain is characterized by its

ability to bind single-stranded nucleic acids, a critical function in

processes such as transcriptional regulation and RNA metabolism.
02
R3HDM4’s role is closely linked to the modulation of RNA

metabolism, influencing RNA stability, transport, and translation.

Despite being frequently studied in relation to its involvement in

diverse cellular processes and disease mechanisms, the specific

functions of R3HDM4 remain largely undefined. Genes like

R3HDM4 are often identified through genome-wide association

studies (GWAS) and other genetic analyses that explore

associations between genetic variants and diseases, including

autoimmune and neurodegenerative disorders (22). Understanding

the roles of genes like R3HDM4 and their interactions with other

genetic elements is crucial for uncovering the molecular mechanisms

underlying various diseases. Such insights could inform the

development of targeted therapies aimed at mitigating the effects of

genetic predispositions. As research progresses, the characterization

of R3HDM4 and similar genes is expected to significantly enhance

our understanding of human genetics and disease.

This study utilized extensive multi-omics datasets from TCGA,

GEO, ArrayExpress, and ICGC to comprehensively analyze

R3HDM4 expression profiles and evaluate their clinical relevance

in KIRC. Techniques such as immunohistochemistry, western

blotting, and quantitative PCR revealed significantly elevated

R3HDM4 levels in KIRC tissues compared to normal renal

samples. Integrative analyses, including DNA methylation

profiling, single-cell transcriptomics, and drug sensitivity

assessments, further elucidated the biological functions of

R3HDM4 in KIRC pathogenesis. Cellular experiments

demonstrated that silencing R3HDM4 significantly reduced the

malignant characteristics of KIRC cells, such as proliferation,

invasiveness, and metastatic potential, accompanied by changes in

epithelial–mesenchymal transition (EMT) regulators (E-cadherin

and vimentin) and extracellular matrix remodeling enzymes

(MMP-2 and MMP-9). Furthermore, this study conducted a

systematic investigation into the impact of R3HDM4 on the

immunological landscape of KIRC tumors. The expression of

R3HDM4 was found to correlate with immune checkpoint

molecules and immune cell infiltration, indicating its potential

role in modulating the KIRC immune microenvironment.

Overall, these findings underscore the pivotal role of R3HDM4 in

KIRC tumorigenesis and offer valuable insights for the development

of targeted therapeutic strategies.
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Materials and methods

Data collection, preprocessing, and
expression analysis

Comprehensive genomic and transcriptomic datasets from

various cancer subtypes were systematically downloaded from the

TCGA database (https://portal.gdc.cancer.gov/). For comparative

analysis with tumor samples, tumor-matched normal tissue

expression profiles were obtained from the Genotype-Tissue

Expression (GTEx) project (http://www.gtexportal.org/) (23).

The study cohort included 28 normal kidney specimens from

GTEx, 72 adjacent non-tumor tissues from KIRC cases, and 531

KIRC tumor samples along with corresponding clinical annotations

from TCGA-KIRC. Detailed clinicopathological characteristics of

TCGA-KIRC are presented in Supplementary Table S1. To further

validate our findings, additional KIRC datasets were incorporated

from the GEO repository (https://www.ncbi.nlm.nih.gov/geo/),

including GSE167573 (63 tumor and 14 normal specimens),

GSE22541 (68 tumor samples), and GSE29609 (39 tumor

samples) (24). Further data were sourced from the ICGC portal

(https://dcc.icgc.org/) and the E_TABM_1980 dataset (101 KIRC

cases) from ArrayExpress. Transcript abundance was quantified as

transcripts per million (TPM) and normalized by log2(TPM + 1)

transformation. All computational analyses were performed using R

(v4.3.0) with rigorously documented pipelines, ensuring alignment

with current cancer bioinformatics standards. Missing values were

imputed using the missForest R package. Stringent quality control

measures were implemented, and potential outliers were identified

using interquartile range (IQR) assessment. Samples exceeding Q1 -

1.5 × IQR or Q3 + 1.5 × IQR were winsorized to the nearest

acceptable value. Only samples with complete transcriptomic

profiles and corresponding clinical metadata were included in

downstream analyses. TCGA RNA-seq data (TPM-normalized)

were processed using DESeq2 (v1.34.0) and limma (v3.50.3)

packages to accommodate RNA-seq count distribution properties

(25). GEO microarray data were normalized using the robust multi-

array average (RMA) algorithm to correct for platform-specific

artifacts. Differential expression analysis was conducted using

consistent statistical thresholds (adjusted P < 0.05, |log2FC| > 1)

across all datasets.
Tissue specimen collection and
immunohistochemical analysis

Sixteen matched pairs of KIRC samples and adjacent normal

kidney tissues were obtained from Ganzhou Cancer Hospital. The

study protocol was approved by the Institutional Ethics Committee

(Approval Number: 2025Kelunshen236). All specimens underwent

thorough histopathological verification to confirm KIRC diagnosis.

Detailed clinicopathological information is provided in

Supplementary Table S2. Selection criteria included (1):

histologically confirmed KIRC cases and (2) complete clinical

documentation. Exclusion criteria encompassed: (1) ambiguous
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pathological results, (2) missing clinical data, and (3) prior

extensive systemic treatments. For immunohistochemical

evaluation, tissue samples were fixed in 10% neutral buffered

formalin, processed into paraffin blocks, and sectioned at 4 mm
thickness. After deparaffinization and rehydration , antigen retrieval

was performed using diluted citrate buffer (1:100; Boster Biological

Technology, China). Sections were treated with HRP-labeled

secondary antibodies (ZSGB-Bio, China), visualized with DAB

substrate, and counterstained with hematoxylin. Digital image

quantification was performed using Image-Pro Plus 6.0 software

(Media Cybernetics, USA), with integrated optical density (IOD)

values calculated from multiple high-magnification fields

per sample.
Prognosis analysis of R3HDM4

To assess patient outcomes, comprehensive survival analyses

were performed using the Kaplan-Meier method, comparing key

clinical endpoints— overall survival (OS), progression-free survival

(PFS), disease-free survival (DFS), and disease-specific survival

(DSS)—between groups with high and low R3HDM4 expression,

based on median expression levels. These analyses were performed

using the survival package (v3.3-1). Statistical significance of

survival differences was determined via log-rank testing, with a

significance threshold of P < 0.05. Survival curves, along with 95%

confidence intervals and median survival estimates for each

subgroup, were visualized using the survminer package (v0.4.9).

Prognostic accuracy was further assessed through time-dependent

receiver operating characteristic (ROC) analysis, implemented

with the “timeROC” package, to estimate survival probabilities at

1-, 3-, and 5-year intervals. Corresponding ROC curves and area

under the curve (AUC) values were derived (26). To validate the

R3HDM4 expression trends in KIRC, external validation was

performed using independent datasets from GEO and ICGC

(24). Additionally, univariate and multivariate Cox regression

models were applied to comprehensively explore potential

prognostic factors.
Functional annotation analysis of R3HDM4
in KIRC

To investigate the functional role of R3HDM4 in KIRC,

systematic functional annotation was conducted via Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses (27). The GO method, a widely used

approach in functional genomics, facilitated an in-depth examination

of R3HDM4-related biological processes, molecular functions, and

cellular localization patterns in KIRC (28). For a more comprehensive

pathway-level analysis, Gene Set Enrichment Analysis (GSEA) was

performed, a robust computational tool that identifies coordinated

expression changes in functionally related gene clusters across diverse

biological contexts (29). All computational procedures were carried

out using advanced bioinformatics tools: the ClusterProfiler package
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(v3.14.3) in R was employed for GO and KEGG analyses, while GSEA

(v4.1.0) was utilized for pathway enrichment evaluation. Protein–

protein interaction (PPI) networks were constructed using the

STRING database (v9.1), which enabled the identification of

potential molecular interactions among co-expressed genes (30).

Network visualization and analysis were performed using the

GeneMANIA plugin in Cytoscape, integrating interaction data

from multiple public repositories based on the target genes,

including their functional annotations. Differential expression

analysis employed consistent statistical criteria (adjusted P < 0.05, |

log2FC| > 1) across all datasets. The entire analytical workflow

adhered to standardized protocols to ensure methodological rigor

and statistical reliability in omics data interpretation. A false

discovery rate (FDR) threshold of 0.05 was applied to ensure

result robustness.
DNA methylation analysis

The EWAS Data Hub (https://ngdc.cncb.ac.cn/ewas/datahub/

index) is a comprehensive repository for epigenome-wide

association studies, consolidating DNA methylation data from

115,852 biological samples across 528 distinct diseases (31). The

Shiny Methylation Analysis Resource Tool (SMART; http://

www.bioinfo-zs.com/smartapp/) provides a unified computational

platform for analyzing Infinium Human Methylation 450K array

datasets, RNA-seq profiles, and clinical annotations across 33

TCGA-derived cancer types (32). These platforms were utilized to

systematically investigate the epigenetic regulation of R3HDM4 in

KIRC. Specifically, this study assessed the relationship between

R3HDM4 promoter methylation levels and its transcriptional

activity, clinicopathological features, and OS. Illumina

HumanMethylation450K array data were preprocessed using the

ChAMP package (v2.22.0), which included quality filtering

(removing probes with detection P-values > 0.01 and cross-

hybridizing probes) and normalization via the BMIQ algorithm.

Methylation levels were quantified using beta-values (range: 0–1),

with hypermethylation defined as beta > 0.6 and hypomethylation

as beta < 0.2.
Single-cell expression analysis

Transcriptomic profiling at single-cell resolution was conducted

using sequencing data in.h5 format files, with comprehensive cell-

type annotations sourced from the TISCH database (33). Data

processing and analytical workflows were implemented via the

MAESTRO platform and Seurat software package (v4.1.0) in R to

ensure stringent quality control during preprocessing. Cellular

heterogeneity was explored using t-distributed stochastic neighbor

embedding (t-SNE) for dimensionality reduction and segregation of

populations. The SCP1288 dataset, linked to PMID: 33711272,

included 8 clinical samples, 3 from patients not receiving immune

checkpoint blockade (ICB) treatment and 5 from patients treated
Frontiers in Immunology 04
with ICB and other therapies (34). This dataset underwent

normalization, detection of highly variable features, and

unsupervised clustering to identify distinct cell subpopulations.

Rigorous quality control was maintained throughout the analysis.

The preprocessing pipeline included (1): filtering out low-quality

cellular profiles (retaining cells expressing 200–2000 genes and

excluding those with > 5% mitochondrial gene content) (2),

normalization using the LogNormalize method, and (3) feature

scaling. Cellular clustering was performed using the Louvain

community detection algorithm (cluster resolution parameter

optimized to 0.5 for biological interpretability), followed by cell-

type annotation based on established markers (hepatocytes: AFP; T

lymphocytes: CD3D). Spatial distribution patterns of R3HDM4

expression were examined using UMAP projections, and

expression levels across clusters were visualized with violin plots.
Correlation analysis of immune-related
indices and R3HDM4 in KIRC

To elucidate the relationship between R3HDM4 expression and

tumor microenvironment characteristics in KIRC, a comprehensive

immunogenomic analysis was conducted using multi-omics data from

TCGA, GEO, ICGC, and ArrayExpress databases. The analytical

framework incorporated seven advanced immune deconvolution

algorithms (ssGSEA, xCell, CIBERSORT, EPIC, TIMER, MCP-

counter, and quanTIseq), implemented through R packages such as

immunedeconv, estimate, and GSVA. This multi-method approach

enabled a systematic evaluation of immune cell composition, stromal

content, immune activity indices, and genomic instability parameters

(TMB and MSI). Additionally, co-expression patterns between

R3HDM4 and 150 immunomodulatory genes across five key

immune pathways were examined: (1) chemotactic signaling (41

genes), (2) immune checkpoint regulation (18 genes), (3) antigen

presentation machinery (21 genes), (4) immunosuppressive mediators

(24 genes), and (5) immunostimulatory factors (46 genes) (35). All

computational analyses were performed using R version 4.3.0, with

data visualization generated through ggplot2, pheatmap, and

ggstatsplot packages to ensure rigorous statistical interpretation and

accurate graphical representation.
Drug sensitivity of R3HDM4 in KIRC

Comprehensive drug sensitivity data were obtained from three

established public resources: the Cancer Therapeutics Response

Portal (CTRP v2.0), the PRISM Repurposing dataset, and the

Genomics of Drug Sensitivity in Cancer (GDSC) database. To

explore potential correlations between R3HDM4 expression and

drug efficacy, Spearman's rank correlation tests were conducted on

217 therapeutic compounds , including kinase inhibitors, epigenetic

regulators, and conventional chemotherapy agents. All analyses

were performed in R (v4.3.0), using the tidyverse package suite

for data manipulation, the pRRophetic package for predictive drug
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response modeling, and ComplexHeatmap for comprehensive

graphical representation of the results (36).
Cell culture

HEK-293K (normal human kidney cell line) and 786-O (KIRC

cell line) were obtained from Sangon Biotech (Shanghai, China).

786-O cells were cultured in RPMI-1640 medium (Procell, Cat. No.

PM150110) supplemented with 10% fetal bovine serum (FBS,

Gibco, Grand Island, NY, USA) and 1% penicillin/streptomycin

(Solarbio, Beijing, China) in a humidified incubator at 37˚C with

5% CO2.
siRNA-mediated R3HDM4 knockdown

Twenty-four hours prior to transfection, 786-O cells were

seeded in 6-well plates and cultured to 80-90% confluence.

Transfection was carried out using Lipofectamine reagent

(KeyGEN, China) following the manufacturer’s instructions, with

either R3HDM4-targeting siRNA or non-targeting control siRNA.

Cells were harvested 24 hours post-transfection for RNA and

protein extraction. Six experimental groups were included:

untreated 786-O cells (CTRL), negative control siRNA (siNC),

and four R3HDM4-specific siRNAs: si-R3HDM4-1 (si-R3HDM4-

202), si-R3HDM4-2 (si-R3HDM4-391), si-R3HDM4-3 (si-

R3HDM4-562), and si-R3HDM4-4 (si-R3HDM4-788) .

Preliminary screening indicated that si-R3HDM4–788 achieved

the highest silencing efficiency and was selected for subsequent

functional assays.

The sense and antisense sequences of the siRNAs used were

as follows:

si-R3HDM4-202: sense: 5'- AACAGCACUUCAUCAACCATT

-3'; antisense: 5'- UGGUUGAUGAAGUGCUGUUTT-3'.

si-R3HDM4-391: sense: 5'- GCAACAACGCCACCUAUGUTT

-3'; antisense: 5'- ACAUAGGUGGCGUUGUUGCTT-3'.

si-R3HDM4-562: sense: 5'- AGUGCUUCCAGCGCAUCAGT

T-3'; antisense: 5'- CUGAUGCGCUGGAAGCACUTT-3'.

si-R3HDM4-788: sense: 5'- GCAGAUGAAGGUCAGUAAUT

T-3'; antisense: 5'- AUUACUGACCUUCAUCUGCTT-3'.

The sense and antisense sequences of negative control siRNA

(siNC) were as follows:

siNC: sense: 5'- UUCUCCGAACGUGUCACGUTT-3';

antisense: 5'- ACGUGACACGUUCGGAGAATT-3'.
RT-qPCR assay

Total RNA was extracted using RNA Isolater Total RNA

Extraction Reagent (VAZYME) following the manufacturer’s

protocol. The purified RNA was reverse-transcribed into

complementary DNA (cDNA) using HiScript® II Q RT SuperMix

for qPCR (+gDNA wiper) (VAZYME). Quantitative real-time PCR

(qPCR) was performed on the synthesized cDNA using ChamQ
Frontiers in Immunology 05
SYBR qPCR Master Mix (VAZYME). Relative gene expression

levels were calculated using the comparative threshold cycle (2-

DDCt) method. The specific primer sequences used in this study were

as follows:

R3HDM4: forward, 5'- CACCCAGTACCTCCTGACCC -3';

reverse, 5'- GAAATCGTTCCAGACCTCCAC -3', 142 bp.

GAPDH: forward, 5'- ATGGGGAAGGTGAAGGTCGGA

GT -3';

reverse, 5'- TAGTTGAGGTCAATGAAGGGGTC -3', 125 bp.
Western blot for detecting protein
expression

Following transfection, cells were washed twice with PBS and

lysed in ice-cold RIPA buffer. Protein concentrations were quantified

using a BCA assay kit (GBCBIO, China). Electrophoresis was

performed on 10% SDS-PAGE gels, followed by transfer to

nitrocellulose membranes (Biofroxx, Germany). Membranes were

blocked with 5% skim milk for 2 hours at room temperature before

overnight incubation with primary antibodies at 4°C. Between each

incubation step, membranes were washed three times for 10 minutes

with TBST. HRP-conjugated goat anti-mouse IgG (1:10,000, Boster,

China) was used as the secondary antibody, with identical washing

conditions applied prior to chemiluminescent detection. The primary

antibodies used were: R3HDM4 (29 kDa, 1:1000, Invitrogen, USA),

GAPDH (36 kDa, 1:10,000, Proteintech, China), E-cadherin (125

kDa, 1:40,000, Proteintech, China), Vimentin (55 kDa, 1:40,000,

Proteintech, China), MMP2 (63 kDa, 1:1000, BIOSS, China),

MMP9 (78 kDa, 1:1000, Affinity, USA), and IGSF8 (70 kDa,

1:2000, Proteintech, China).
Evaluation of cell proliferation

Cell proliferation was assessed using the CCK-8 assay kit

(HYCEZMBIO, China). Following transfection , cells were seeded

in 96-well plates at a density of 3 × 103 cells per well. Cellular

viability was measured at 0, 24, and 48 hours after plating by adding

10 mL of CCK-8 solution to each well °C and incubating for 1 hour

at 37°C with 5% CO2. Optical density at 450 nm was recorded using

a microplate reader (Thermo Scientific, USA).
Transwell assays for cell migration and
invasion

Cell migration and invasion assays were performed using 24-

well Transwell chambers (Corning, USA) with 8 mm pore

membranes, pre-coated with 100 mL Matrigel basement

membrane matrix (Corning, USA). Transfected 768-O cells (6 ×

104 cells per well) were seeded in serum-free medium in the upper

compartment, while the lower chamber contained 600 mL complete

medium supplemented with 20% fetal bovine serum as a

chemoattractant. After 24-hour incubation at 37 °C, cells that
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migrated through the membrane were fixed with 4%

paraformaldehyde for 1 hour and stained with 0.5% crystal violet

for 20 minutes. The number of migrated cells was quantified by

counting stained cells in five randomly selected fields per membrane

using bright-field microscopy.
Statistical analysis

Data analysis was performed using the R statistical computing

environment (v4.3.0), employing multiple analytical methods. Fold-

change metrics and hazard ratios (HR ) were calculated for

quantitative assessment, with statistical significance determined

via Log-rank testing. Correlation analyses utilized Spearman's

rank correlation and Pearson's correlation methods. Group

comparisons were made using Wilcoxon rank-sum tests, Student's

t-tests (for two-group comparisons), and ANOVA (for multiple

group comparisons). Survival analysis was visualized through

Kaplan-Meier plots, with log-rank tests applied to assess

differences, maintaining a significance threshold of P = 0.05.

Statistical significance was represented as follows: * (P < 0.05),

**(P < 0.01), ***(P < 0.001), and ****(P < 0.0001).
Results

Analysis of R3HDM4 expression and its
correlation with clinical parameters in KIRC
via public databases

Figure 1 shows the study design flowchart. A pan-cancer

analysis using TCGA and TCGA+GTEx datasets examined

R3HDM4 expression across various cancers. Analysis revealed

significantly higher R3HDM4 mRNA levels in tumor vs. normal

tissues across multiple cancers, including ACC (adrenocortical

carcinoma), BLCA (bladder urothelial carcinoma), BRCA (breast

invasive carcinoma), KIRC, LIHC (liver hepatocellular carcinoma),

LGG (lower grade glioma), and other common malignancies.

R3HDM4 was only downregulated in diffuse large B-cell

lymphoma (DLBC) (Figure 2A). This upregulation in multiple

tumors and downregulation in DLBC highlights its context-

dependent functions in different cancers, supporting further

studies. In KIRC, R3HDM4 was significantly higher in tumor

than normal tissues in both TCGA and combined TCGA+GTEx

datasets (Figure 2B). Clinical analyses showed its expression

correlated with advanced tumor stage (III/IV vs. I/II) in

TCGA_KIRC, and with tumor grade in multiple datasets. It was

higher in advanced grades in E_MTAB_1980, while in TCGA-KIRC

only grade 4 was elevated compared to grades 1, 2, 3 (Figure 2C).

R3HDM4 expression varied across renal cell carcinoma cell lines:

higher in BFTC-909, SLR 26, 786-O, RCC10RGB, KMRC-3, 769-P

and lower in KMRC-1, A-704, KMRC-20 (Figure 2D).
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In vitro validation of R3HDM4 differential
mRNA and protein expression

To further validate R3HDM4 dysregulation in KIRC, in vitro

assays were performed. IHC staining of 16 paired KIRC and

adjacent normal tissues showed significantly stronger R3HDM4

protein staining in KIRC tissues, as seen in representative 4× and

20× images (Figure 3A). Mean IOD quantification confirmed

elevated R3HDM4 protein levels in KIRC tissues (Figure 3B).

qRT-PCR revealed significantly higher R3HDM4 mRNA levels in

renal cancer cell line 786-O than normal renal epithelial cell line

HEK-293T (Figure 3C). Consistent with mRNA data, Western blot

demonstrated increased R3HDM4 protein in 786-O cells compared

to HEK-293T cells (Figure 3D). Together, these results confirm

R3HDM4 upregulation at both mRNA and protein levels in KIRC

tissues and cells.
Prognostic significance of R3HDM4
expression across pan-cancer, with
emphasis on KIRC

Subsequent to identifying aberrant R3HDM4 expression in KIRC,

we comprehensively investigated its prognostic significance. Pan-

cancer univariate Cox regression analysis for OS revealed elevated

R3HDM4 expression correlated with poor prognosis in multiple

malignancies, acting as a risk factor in ACC, KIRC, acute myeloid

leukemia (LAML) and LGG, and a protective factor in THYM and

UCS (Figure 4A). Kaplan-Meier (KM) analysis validated these

findings, particularly for OS (Figure 4B). In TCGA-LIHC, high

R3HDM4 expression significantly correlated with worse OS (HR =

1.717), PFS (HR = 2.135) and DSS (HR = 2.304) (Figures 4C-E). Time-

dependent ROC analysis for KIRC demonstrated moderate predictive

accuracy, with 1-year AUC values of 0.642 for OS, 0.631 for PFS and

0.664 for DSS, and slight decreases at 3 and 5 years (Figures 4C-E).

Univariate analysis showed high R3HDM4 expression significantly

increased OS risk, a finding further validated by multivariate analysis.

Pathologic T stage (T3/T4 vs. T1/T2) also emerged as an independent

prognostic factor (Figure 4F). External validation in independent

datasets (E_MTAB_1980, GSE22541) confirmed R3HDM4’s adverse

prognostic role, with high expression associating with reduced OS as

depicted in KM curves (Figure 4G).
DNA methylation analysis of R3HDM4 in
patients with KIRC

DNA methylation is pivotal in KIRC phenotypic changes and

clinical outcomes, regulating tumor biology and patient prognosis.

Given R3HDM4’s aberrant expression in KIRC, its epigenetic

regulation was explored through DNA methylation analysis to

identify overexpression mechanisms. R3HDM4’s promoter
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1722358
contains multiple CpG sites, with predominant hypermethylation

in tumor tissues (circular/linear gene maps, Figures 5A, B). Tumor

tissues had lower R3HDM4 methylation than adjacent normal

tissues, correlating with its elevated tumor expression (Figure 5C).

Correlation analysis showed weak yet significant inverse

correlations between individual CpG sites (cg12045715;

cg03052794) and aggregated methylation levels (Figure 5D).

Contrary to Figure 4C, violin plots revealed significantly higher

methylation beta-values in tumors vs. normal tissues for CpG sites

cg02667291, cg25814612 et al.; in contrast, cg03052794 et al. and

the aggregated region showed the inverse pattern (Figure 5E). Stage-

stratified boxplots indicated differential methylation across stages
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for CpG sites cg02667291, cg12045715 and the aggregated region,

with highest methylation in Stage 1 (Figure 5F). Integrative copy

number variation (CNV) and methylation analysis revealed

significant epigenetic-genomic interactions; various CNV states

(deep deletion [−2], loss [−1], neutral [0], gain [1], amplification

[2]) correlated with distinct methylation patterns. Notably, CpG

sites cg02667291, cg25814612 et al. and the aggregated region had

highest methylation in neutral (0) and amplification (2) CNV states,

indicating CNV-dependent methylation variations (Figure 5G).

Collectively, these findings identify R3HDM4 methylation as a

molecular determinant in KIRC progression, with potential

diagnostic and prognostic value for clinical management.
FIGURE 1

Research flowchart of this study.
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Functional analysis of R3HDM4 co-
expression networks in KIRC

To further elucidate R3HDM4’s functions in KIRC, GO, KEGG,

and Hallmark enrichment analyses were performed using its related

DEGs from TCGA-KIRC. GO analysis showed BP enrichment in

cellular macromolecule/protein metabolism and organization

(Figure 6A), CC in intracellular structures/organelles/nucleoplasm,

and MF in protein/enzyme binding, supporting R3HDM4 as a

nucleic acid-binding protein in PPIs. KEGG enrichment linked it
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to cellular processes (actin cytoskeleton, adherens junction),

transport/catabolism (peroxisome, endocytosis), signal transduction

(Notch pathway) (Figure 6B), metabolic pathways (amino acid,

carbohydrate, lipid metabolism), and diseases (cancer, immune

disorders). GO GSEA generated a waterfall plot highlighting

positive (glycolysis, type I interferon signaling) and negative

(receptor internalization inhibition) pathways (Figure 6C),

indicating R3HDM4 enhances energy metabolism while

suppressing certain regulators. KEGG GSEA emphasized

glycosaminoglycan degradation, Fc gamma R-mediated
FIGURE 2

Expression analysis of R3HDM4 and its association with clinical features. (A) Comparative analysis of R3HDM4 expression in pan-cancer tissues
versus adjacent normal tissues based on data from the TCGA and GTEx databases. (B) Comparative analysis of R3HDM4 expression in tumor versus
normal tissues in KIRC based on data from the TCGA and TCGA + GTEx databases. (C) Analysis of the association between R3HDM4 expression and
clinical parameters in KIRC. (D) Comparative analysis of R3HDM4 expression in renal clear cell carcinoma cell lines. *P < 0.05, **P < 0.01, ***P <
0.001, **** P < 0.0001. R3HDM4, R3H domain containing 4; KIRC, Kidney Renal Clear Cell Carcinoma; TCGA, The Cancer Genome Atlas; GEO,
Gene Expression Omnibus.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1722358
phagocytosis, and homologous recombination (Figure 6D),

contributing to ECM remodeling, immune phagocytosis, and DNA

repair in KIRC. Hallmark GSEA highlighted TNFa/NF-kB, MYC/

E2F targets, interferon gamma response, and EMT (Figure 6E),

implicating R3HDM4 in cell cycle control and immune regulation.

PPI networks identified R3HDM4 as a central node interacting with

SPAG7, RHOH, PARP1 (Figure 6F), and a mitochondrial network

with oxidative phosphorylation elements (UQCRFS1, CYC1, MT-

CO1/2/3) (Figure 6G), emphasizing its role in mitochondrial

function. In summary, enrichment analyses confirm R3HDM4

promotes KIRC progression via metabolic reprogramming, cellular

adhesion, DNA repair, and immune-related pathways.
Single-cell RNA sequencing profiling of
R3HDM4 expression in KIRC

To delineate R3HDM4 cellular distribution and expression in

KIRC, single-cell RNA sequencing (scRNA-seq) data from KIRC

tumors and adjacent normal tissues were analyzed. Uniform

manifold approximation and projection (UMAP) dimensionality
Frontiers in Immunology 09
reduction identified distinct cell clusters, annotated via canonical

marker genes into major lineages: cancer cells (cycling, program-

specific subtypes), endothelial cells, fibroblasts, mast cells, monocytes,

myeloid cells, natural killer (NK) cells, plasma cells, dendritic cells,

regulatory T cells (Treg), tumor-associated macrophages (TAM), and

undefined populations (Figure 7A). R3HDM4 expression on UMAP

plots showed predominant upregulation in cancer cell clusters, with

scattered expression in immune and stromal compartments

(Figure 7B). Median normalized expression quantification across cell

types confirmed highest R3HDM4 in cancer cells, followed by

dendritic cells, TAM, myeloid cells, and minimal/absent expression

in endothelial and plasma cells (Figure 7C). Clinical variable

stratification contextualized R3HDM4’s role; gender-based analysis

showed no significant clustering bias, with slight enrichment in male-

derived cells (Figure 7D); clear cell populations predominantly

occupied R3HDM4-high regions by subtype (Figure 7E); tumor

location analysis distinguished primary kidney, lung metastases, and

adjacent normal tissue, with metastatic cells showing higher R3HDM4

(Figure 7F); Stage IV tumors had higher R3HDM4 intensity than

earlier stages (Figure 7G); R3HDM4 was enriched in ICB-treated

cohorts, with distinct clustering in patients with/without urothelial
FIGURE 3

mRNA and protein expression analysis of R3HDM4 in in vitro experiments. (A) IHC analysis of R3HDM4 in KIRC tumor tissues and paired adjacent
non-tumor kidney tissues. (B) Quantification of R3HDM4 immunostaining via IOD analysis. (C) Relative R3HDM4 mRNA levels in HEK-293K (normal
kidney cell line) and 786-O (KIRC cell line) cells. (D) Relative R3HDM4 protein levels and representative Western blot images in HEK-293K and 786-O
cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. R3HDM4, R3H domain containing 4; KIRC, Kidney Renal Clear Cell Carcinoma; IHC,
immunohistochemistry; IOD, integrated optical density.
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carcinoma immunotherapy (UCI), suggesting therapeutic modulation

of R3HDM4-expressing cells (Figure 7H). Cell type composition

analysis identified CD8 T cells as the major sequenced population,

followed by cancer cells, TAM, T cells, and other minor fractions,

highlighting a tumor-dominant microenvironment (Figure 7I). A G1/

S and G2/M phase gene heatmap across cell types demonstrated cell

cycle activity primarily in cycling cancer subsets, correlating with

R3HDM4 expression and implicating it in proliferative dynamics

(Figure 7J). These scRNA-seq findings position R3HDM4 as a cancer-

enriched factor in the KIRC TME, potentially regulating immune

infiltration and metastatic potential.
Correlations of R3HDM4 expression with
immune cell infiltration in KIRC

In KIRC, R3HDM4 expression correlated significantly with

clinicopathological characteristics, highlighting its potential role in

tumor progression; tumor-infiltrating lymphocytes are strong
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indicators of tumor progression, histological differentiation, and

nodal involvement, while complex crosstalk among malignant cells,

stromal components, and immune populations in the tumor

microenvironment contributes critically to pathogenesis. To

investigate these relationships, comprehensive bioinformatics

analyses using TCGA and GEO data assessed associations between

R3HDM4 expression and immune infiltration in KIRC. Pan-cancer

analysis revealed tissue-specific correlations between R3HDM4 and

immune cell composition (Figure 8A); R3HDM4 showed variable

(positive/negative) associations with immune infiltration across 33

malignancies, with consistent positive correlations in KIRC, LAML,

ovarian cancer (OV), pheochromocytoma and paraganglioma

(PCPG), uveal melanoma (UVM) — particularly with NK

CD56bright cells. Comparative analysis showed significantly higher

activated dendritic cell (aDC) enrichment scores in high-R3HDM4

tumors, suggesting a potential regulatory role in dendritic cell

activation (Figure 8B). Immune cell distribution (Figure 8C) differed

notably between R3HDM4 expression groups, with high-expression

samples showing increased quiescent CD4+ memory T cells, activated
FIGURE 4

Prognostic significance of R3HDM4 expression across cancers and validation in KIRC cohorts. (A) Univariate Cox regression analysis of R3HDM4
expression in diverse cancer types. (B) Distribution of R3HDM4 expression among tumor molecular subtypes. (C) Prognostic analysis for OS of
R3HDM4 in the TCGA-KIRC dataset. (D) Prognostic analysis for PFS of R3HDM4 in the TCGA-KIRC dataset. (E) Prognostic analysis for DSS of
R3HDM4 in the TCGA-KIRC dataset. (F) Prognostic significance of R3HDM4 expression for PFS evaluated by univariate and multivariate analyses.
(G) Independent validation in external GEO and ArrayExpress cohorts confirming the prognostic significance of R3HDM4 in KIRC. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001. AUC, Area Under Curve; CI, Confidence Interval; DFS, Disease-Free Survival; GEO, Gene Expression Omnibus;
HR, Hazard Ratio; KIRC, Kidney Renal Clear Cell Carcinoma; OS, Overall Survival; PFS, Progression-Free Survival; RFS, Relapse-Free Survival; ROC,
Receiver Operating Characteristic; TCGA, The Cancer Genome Atlas; TPM, Transcripts Per Million.
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NK cells, and M1 macrophages. Correlation analyses (Figure 8D)

revealed positive associations between R3HDM4 and NK CD56bright

cells, Th2 lymphocytes, follicular helper T cells, and negative

correlations with central memory T cells (Tcm) and Th17 cells.

Methodological validation was performed using six platforms (EPIC,

ESTIMATE, TIMER, MCP-Counter, QuanTIseq, xCell) across six

independent cohorts (TCGA-KIRC, ICGC_EU, GSE167573,

GSE22541, E-MTAB-1980, GSE29609), and convergent results

supported that R3HDM4 participates in renal carcinoma immune

microenvironment remodeling, potentially influencing tumor

immunogenicity and treatment response (Figure 8E).
Analysis of immune regulatory genes, TMB,
MSI, and immune checkpoints related to
R3HDM4 in KIRC

To investigate R3HDM4’s role in KIRC immune-related

processes, correlation analyses were conducted between R3HDM4

expression and immune-related genes, which identified significant

associations with multiple immune gene categories in KIRC.
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Heatmap visualization showed strong positive correlations between

R3HDM4 and chemokines (e.g., CCL15, CXCL12), immune

checkpoint molecules (including PD-1, CTLA4), and major

histocompatibility complex (MHC) genes (Figure 9A). Notably,

R3HDM4 exhibited the strongest correlation with IGSF8, followed

by ITPRIPL1, CD274 (PD-L1), CTLA4, LAG3, and TIGIT

(Figure 9B). R3HDM4 expression also positively correlated with

genomic instability markers (MSI, TMB), suggesting a potential

link to tumor immunogenicity (Figure 9C). To validate these

associations, comprehensive correlation analyses were performed

between R3HDM4 and 137 immune modulators across five

functional categories (antigen presentation molecules, chemokines,

inhibitory checkpoints, stimulatory checkpoints, immune receptors)

using six independent datasets (TCGA-KIRC, ICGC_EU,

GSE167573, GSE22541, E-MTAB-1980, GSE29609) (Figure 9D).

Consistent positive correlations with immunosuppressive

checkpoints were observed, with TGFB1 showing the strongest

association, followed by LGALS9 and LAG3. The consistent

enrichment of these associations across multiple datasets reinforces

findings reliability, indicating R3HDM4 significantly influences the

immune landscape in the KIRC tumor microenvironment.
FIGURE 5

DNA methylation profiling of R3HDM4 genomic features in KIRC. (A) Chromosomal localization of R3HDM4 in the human genome. (B) Genomic
architecture of R3HDM4 and its flanking regions. (C) Dynamics of promoter methylation in KIRC versus normal kidney tissues. (D) Analysis of the
correlation between R3HDM4 expression and its methylation status. (E) Comparison of R3HDM4 methylation levels between tumor tissue samples
and normal tissues. (F) Identification of tumor stage-specific methylation alterations. (G) Correlation between methylation levels of individual
R3HDM4 CpG sites and CNV status (deep deletion, loss, neutral, gain, amplification). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. CpG,
Cytosine-phosphate-Guanine dinucleotide; KIRC, Kidney Renal Clear Cell Carcinoma; TCGA, The Cancer Genome Atlas; TNM, Tumor-Node-
Metastasis staging system; CNV, copy number variation.
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R3HDM4 expression associates with
immunotherapy response and drug
sensitivity in KIRC

To investigate R3HDM4 expression-drug sensitivity/resistance

in KIRC, correlation analyses were performed using PRISM,
Frontiers in Immunology 12
GDSC1, CTRP, GDSC2 pharmacogenomic databases, integrating

transcriptomic and drug response data from KIRC cell lines

(Figure 10). In PRISM, higher R3HDM4 correlated positively

with resistance to deoxycytidine-propanate, hydrocortisone-

valerate, prednisone-hemisuccinate, and negatively with

maprotiline, LY3023414, uracil-(+), ethynodiol-diacetate,
FIGURE 6

R3HDM4 functional enrichment analysis across immune-related pathways and biological processes in KIRC. (A) GO enrichment analysis of biological
processes associated with R3HDM4. (B) KEGG pathway enrichment analysis of R3HDM4. (C) GSEA-GO enrichment profile of R3HDM4 in immune
regulation, as indicated by the enrichment score. (D) GSEA-KEGG enrichment profile of R3HDM4 in immune regulation, as indicated by the
enrichment score. (E) Hallmark gene set enrichment analysis of R3HDM4 in KIRC. (F) Protein–protein interaction network analysis of R3HDM4 in
KIRC. (G) Gene co-expression network analysis correlated with R3HDM4 expression patterns in KIRC. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001. KIRC, Kidney Renal Clear Cell Carcinoma; R3HDM4, R3H domain containing 4; ES, Enrichment Score; GSEA, Gene Set Enrichment Analysis;
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; R3HDM4, R3H domain containing 4. TCGA, The Cancer Genome Atlas.
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indicating a dual role in chemotherapeutic response modulation

(Figure 10A). In GDSC1, strong positive associations were observed

with cisplatin, cetuximab, erlotinib resistance, and negative

correlations with refametinib, CI-1040, tretinoin sensitivity,

suggesting mechanisms involving DNA damage repair and EGFR

signaling (Figure 10B). In CTRP/GDSC2, similar patterns emerged:

positive correlations with TAF1-5496, Acetalax-1804, IGF1R-3801,

JAK-8517 resistance, and negative correlations with AZD8186,

Selumetinib, Trametinib sensitivity. Collectively, R3HDM4 may

confer resistance to platinum-based/anti-EGFR therapies while

enhancing sensitivity to MEK/ERK and proteasome inhibitors in

KIRC (Figures 10C, D). Supporting these, Kaplan-Meier PFS

analysis of Chao cohort (2020) KIRC patients treated with anti-

PD-1/PD-L1 immunotherapy showed significantly longer median

PFS (≈1 year extension) in high vs. low R3HDM4 expression

patients (Figure 10E). These findings identify R3HDM4 as a

potential biomarker for predicting ICB response and guiding

personalized therapy in KIRC.
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Downregulation of R3HDM4 attenuated
proliferation, migration, and invasion in
KIRC cells

To elucidate R3HDM4’s biological function in KIRC progression,

in vitro studies were performed in R3HDM4-knockdown 768-O cells.

Four R3HDM4-targeting siRNAs were transfected, and effective

R3HDM4 silencing was verified by Western blot and quantitative

PCR, with significant differences observed versus untreated and si-

NC-treated controls (Figures 11A, B). Following comprehensive

assessment, the most effective si-R3HDM4–4 was selected for

subsequent functional assays. CCK-8 assay showed R3HDM4

depletion significantly impaired 768-O cell proliferation

(Figure 11C), while transwell assays demonstrated R3HDM4

silencing notably reduced cancer cell migration and invasion

(Figure 11D). Given EMT’s established role in cancer metastasis,

key EMT markers were analyzed; EMT is characterized by decreased

epithelial markers (e.g., E-cadherin), increased mesenchymal markers
FIGURE 7

Single-cell RNA sequencing analysis of R3HDM4 expression in KIRC. (A) UMAP projection of scRNA-seq data colored by annotated cell types,
including cancer (cycling/program1/program2), endothelial, fibroblast, mast cell, monocyte, myeloid, NK cell, plasma, dendritic cell, T cell, TAM,
Treg, and undefined cells. (B) UMAP projection colored by R3HDM4 expression levels. (C) Bar plot of median normalized R3HDM4 expression across
cell types. (D) UMAP projection stratified by gender. (E) UMAP projection stratified by cancer subtype. (F) UMAP projection stratified by sample
location. (G) UMAP projection stratified by tumor stage. (H) UMAP projection stratified by treatment status (no UCB: blue, UCB: red). (I) Bar plot of
cell type proportions in the dataset. (J) Heatmap depicting the expression of G1/S and G2/M cell cycle genes across annotated cell types. UMAP,
Uniform Manifold Approximation and Projection; R3HDM4, R3H domain containing 4; CD4T_conv, Conventional CD4+ T cells; CD8T_typical,
Typical CD8+ T cells; CD8T_exhausted, Exhausted CD8+ T cells; T_prolif, Proliferating T cells; Treg, Regulatory T cells; NK_cell, Natural Killer cell;
B_cell, B lymphocyte; Mono/Macro, Monocyte/Macrophage; KIRC, Renal Clear Cell Carcinoma; CC, Cholangiocarcinoma; G1/S, G1/S phase
transition genes; G2/M, G2/M phase transition genes.
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FIGURE 8

Integrative analysis of the correlation between R3HDM4 expression and tumor microenvironment immune cells in KIRC. (A) Correlation between
R3HDM4 expression and immune cells across 33 cancer types. (B) Enrichment score of activated dendritic cells in patients with KIRC stratified by
R3HDM4 expression (Low vs. High). (C) Comparison of immune cell proportions stratified by R3HDM4 expression levels (Low vs. High) in TCGA-KIRC.
(D) Correlation between R3HDM4 expression and immune infiltration in KIRC using the ssGSEA algorithm. (E) Correlation between R3HDM4 expression
and immune infiltration in KIRC across multiple immune infiltration tools and genomic datasets. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
CIBERSORT, cell-type identification by estimating relative subsets of RNA Transcripts; Cor, Pearson correlation coefficient; ESTIMATE, estimation of
stromal and immune cells in malignant tumor tissues using expression data; KIRC, Kidney Renal Clear Cell Carcinoma; Pval, p-value; TCGA, The Cancer
Genome Atlas; xCell, cell type enrichment analysis tool.
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(e.g., vimentin) and matrix metalloproteinases (MMP-2, MMP-9),

which collectively enhance cellular motility and invasiveness in vitro

(37–39). Western blot analysis revealed R3HDM4 knockdown

significantly upregulated E-cadherin and downregulated vimentin,
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MMP-2, and MMP-9 (Figures 12A-E). These findings confirm

R3HDM4 promotes KIRC progression by regulating EMT-related

signaling pathways that control neoplastic cell proliferation and

metastatic potential .
FIGURE 9

Integrated analysis of associations between R3HDM4 expression and immune-related genes. (A) Associations of R3HDM4 expression with TMB and
MSI in KIRC. (B) Analysis of the relationship between R3HDM4 expression and immune checkpoints in KIRC. (C) Pan-cancer associations between
R3HDM4 expression and immune-related genes. (D) Associations between R3HDM4 expression and immune-related genes in KIRC across multiple
immune infiltration tools and genomic datasets. *P < 0.05, **P < 0.01, ***P < 0.001. KIRC, Kidney Renal Clear Cell Carcinoma; Pearson, Pearson
correlation coefficient; Cor, Correlation coefficient.
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R3HDM4 silencing upregulated IGSF8
protein expression in KIRC cells

This study further systematically examined the associations

between R3HDM4 expression patterns and immune cell infiltration

characteristics in the tumor microenvironment. Analyses identified

significant positive correlations between R3HDM4 and key

immunosuppressive checkpoint molecules, with a strong positive

correlation between R3HDM4 and IGSF8. To validate this

functional association, siRNA-mediated R3HDM4 knockdown

was performed in 768-O cells; Western blot (Figures 12A, F)

showed R3HDM4 silencing (si-R3HDM4-4) significantly

upregulated IGSF8 protein vs. CTRL and si-NC groups.

Densitometric quantification confirmed a negative regulatory
Frontiers in Immunology 16
relationship between R3HDM4 and IGSF8 at the protein level,

which contrasts with the strong transcriptomic positive correlation

from prior bioinformatic analysis, suggesting a potential post-

transcriptional or post-translational regulatory mechanism.
Discussion

KIRC is the most common renal malignancy subtype. While

VEGF-targeted TKIs and ICIs significantly improve advanced

patient survival, key challenges (immunotherapy resistance,

intratumoral heterogeneity, lack of reliable biomarkers) still limit

long-term efficacy ) (2, 3, 13). This highlights the urgent need for

novel molecular drivers linking tumor cell-intrinsic behaviors
FIGURE 10

A comprehensive analysis of the correlation between R3HDM4 expression and drug response across multiple databases, along with its association
with survival outcomes. (A) Correlation between R3HDM4 expression and drug resistance/sensitivity in the PRISM dataset. (B) Correlation between
R3HDM4 expression and drug resistance/sensitivity in the GDSC1 database. (C) Correlation between R3HDM4 expression and drug resistance/
sensitivity in the CTRP dataset. (D) Correlation between R3HDM4 expression and drug resistance/sensitivity in the GDSC2 dataset. (E) Overall survival
analysis of the Cohort 2020 (Anti-PD-1/PD-L1). *P < 0.05, **P < 0.01, ***P < 0.001. CTRIP, Cancer Therapeutics Response Portal; PRISM, Preclinical
Repurposing of Medicines; GDSC1/GDSC2, Genomics of Drug Sensitivity in Cancer 1/2; Anti-PD-L1, Anti-Programmed Death-Ligand 1; Log-rank,
Log-rank test; Number at risk, Number of patients at risk at each time point.
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(proliferation, metastasis) with TME remodeling, as such targets

serve as biomarkers and therapeutic vulnerabilities. R3HDM4,

encoding an R3H domain-containing RNA metabolism protein, is

poorly characterized in cancers with no prior KIRC studies (20, 21).

Prompted by this, we investigated R3HDM4’s expression, function,

and clinical significance in KIRC using multi-omics datasets, in

vitro experiments, and clinical correlation analyses. Pan-cancer

analysis showed R3HDM4 upregulation in solid tumors

(including KIRC) vs. normal tissues, with downregulation only in

DLBC, mirroring tissue-specific dysregulation of cancer drivers and

suggesting oncogenic potential. In KIRC, consistent R3HDM4

upregulation across datasets correlated with advanced stages and

higher grades, similar to known drivers BUB1B and EMX2 in vitro

(16, 17). R3HDM4’s association with KIRC aggressiveness extends

beyond BUB1B (cell cycle-related) and EMX2 (tissue-specific),

linking to both stage and grade. Renal cancer cell lines showed

variable R3HDM4 expression (high in 786-O; low in KMRC-1),

reflecting KIRC molecular diversity and supporting its potential as a

subtype-specific malignancy marker.

To validate bioinformatics findings, in vitro experiments

confirmed higher R3HDM4 protein levels in KIRC via IHC and

qRT-PCR/Western blot (786-O, HEK-293T cells). This multi-

method approach addressed early cancer gene research

limitations of relying solely on transcriptomic data, as post-

transcriptional regulation causes mRNA-protein discrepancies

that limited clinical utility of previous KIRC biomarkers.
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R3HDM4 was a clinically relevant prognostic marker: pan-cancer

Cox regression linked its high expression to poor OS in KIRC,

LAML, LGG; Kaplan-Meier analysis and time-dependent ROC

supported its KIRC prognostic value. Multivariate analysis

confirmed it as an independent prognostic factor unaffected by

stage/grade, with external validation in independent cohorts

ensuring reliability and resolving insufficient validation in prior

KIRC biomarker studies in vitro.

Weak inverse overall R3HDM4 methylation-expression

correlation was observed in analyzing epigenetic mechanisms of

its KIRC upregulation via DNA methylation. Site-specific analysis

revealed varied CpG methylation patterns, with some

hypermethylated and others hypomethylated; CNVs correlated

with distinct methylation patterns, suggesting genomic-epigenetic

interaction. These findings align with prior KIRC epigenetic

research (exemplified by VHL) showing gene expression regulated

by multiple loci and genomic features. Our study highlights

R3HDM4 expression controlled by complex methylation-CNV

interactions, providing new insights into KIRC gene regulation.

Functional enrichment analyses linked R3HDM4 to metabolic

reprogramming, EMT, and immune pathways in KIRC progression.

R3HDM4 was an upstream regulator of metabolic reprogramming,

differing from previous studies focusing on downstream enzymes;

its EMT association supported in vitro findings, while PPI networks

showed interactions with mitochondrial/DNA repair proteins,

implying roles in therapy resistance and metabolic adaptation.
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FIGURE 11

R3HDM4 silencing inhibits renal clear cell carcinoma cell proliferation, migration, and invasion in 786-O cells. (A) Validation of R3HDM4 mRNA
knockdown efficiency in 786-O cells. (B) Validation of R3HDM4 protein knockdown efficiency in 786-O cells (representative Western blot included).
(C) Cell viability of 786-O cells with R3HDM4 silencing assessed by CCK-8 assay. (D) Migration and invasion of 786-O cells with R3HDM4 silencing
(representative images and quantification).*P < 0.05, **P < 0.01, ***P < 0.001. CTRL, control untreated; si-NC, negative control siRNA; si-R3HDM4,
R3HDM4-targeting siRNA.
g

https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1722358
This highlighted R3HDM4’s broad regulatory influence, distinct

from specific drivers like BUB1B.

scRNA-seq revealed R3HDM4’s predominant expression in

cancer cell clusters, especially cycling/metastatic subsets, with low

expression in immune/stromal cells; unlike bulk RNA-seq

averaging signals, scRNA-seq pinpointed its cancer cell-specific

pro-tumor effects and indirect TME influence. Elevated R3HDM4

was detected in metastatic cells, Stage IV tumors, and ICI-treated

cohorts, linking it to aggressive KIRC phenotypes and potential

immunotherapy response. These findings extend prior scRNA-seq

studies by identifying cancer cell-enriched genes with prognostic

and therapeutic implications.

R3HDM4 expression correlated context-dependently with

immune cell infiltration: positive with NK CD56bright cells, M1

macrophages et al. and negative with Tcm, Th17 cells. These align

with NK/M1 anti-tumor roles, while Tcm (long-term immune

memory) negative correlation explains R3HDM4 ’s poor

prognostic link despite anti-tumor subset associations. Validated

across six platforms (EPIC et al.) and six cohorts, the results

distinguish our study from single-platform/small-cohort studies,

indicating R3HDM4 regulates KIRC TME—seldom reported for

RNA metabolism-related genes. R3HDM4’s immunomodulatory

role was clarified via correlations with immune regulatory genes

(CCL15, PD-1 et al.), MHC genes, IGSF8 (immune adhesion/tumor

immunity), TMB, and MSI (genomic instability/ICI response

markers). Consistent correlations position it as a potential TMB/
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MSI surrogate (9, 11). KM analysis of Chao (2020) cohort showed

elevated R3HDM4 associated with improved PFS in ICI-treated

KIRC patients, supporting its utility as a complementary predictive

biomarker for immunotherapy patient stratification.

Pharmacogenomic analyses demonstrated R3HDM4 expression

correlates with drug sensitivity: positive correlations with platinum-

based (cisplatin) and anti-EGFR (cetuximab) therapy resistance,

and negative correlations with MEK/ERK inhibitor (refametinib,

selumetinib) sensitivity. These results align with established

platinum resistance mechanisms and MEK/ERK pathway

activation in KIRC. R3HDM4 was identified as a potential

treatment selection biomarker, addressing the limitation of

lacking biomarkers for MEK inhibitor-responsive KIRC patients;

our data suggest its expression enables personalized MEK inhibitor

application in high R3HDM4-expressing patients.

In vitro assays confirmed R3HDM4’s pro-tumorigenic role.

siRNA knockdown of R3HDM4 in 768-O cells significantly

reduced proliferation and migratory/invasive capacities, with

EMT phenotype reversal marked by E-cadherin upregulation and

vimentin et al. downregulation. This supports the EMT-KIRC

metastasis link and identifies R3HDM4 as a novel upstream

pathway regulator. Unlike traditional EMT drivers (Snail, Twist)

that directly repress E-cadherin transcription, R3HDM4’s RNA

metabolism role suggests post-transcriptional EMT regulation,

potentially via EMT marker mRNA stability modulation. This

novel KIRC pathway merits further investigation.
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FIGURE 12

R3HDM4 silencing modulates expression of EMT, invasion, and immune-related markers in 786-O cells. (A) Representative Western blot of E-cadherin,
MMP-2, MMP-9, Vimentin, IGSF8 and GAPDH in 786-O (control), 786-O+si-NC (negative control siRNA), and 786-O+si-R3HDM4-4 (R3HDM4-targeting
siRNA) groups. (B) Quantification of relative E-cadherin expression across 786-O, si-NC, and si-R3HDM4–4 groups. (C) Quantification of relative MMP-2
expression across 786-O, si-NC, and si-R3HDM4–4 groups. (D) Quantification of relative MMP-9 expression across 786-O, si-NC, and si-R3HDM4–4
groups. (E) Quantification of relative Vimentin expression across 786-O, si-NC, and si-R3HDM4–4 groups. (F) Quantification of relative IGSF8 expression
across 786-O, si-NC, and si-R3HDM4–4 groups.P -values were determined by one-way ANOVA; **P < 0.001 indicates statistical significance.*P < 0.05,
**P < 0.01, ***P < 0.001. CTRL, control untreated; si-NC, negative control siRNA; si-R3HDM4, R3HDM4-targeting siRNA; E-cadherin, epithelial cadherin;
MMP-2/9, matrix metalloproteinase-2/9; IGSF8, Immunoglobulin Superfamily Member 8 expression.
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Notably, R3HDM4 and IGSF8 exhibit regulatory interaction.

Transcriptomic data showed strong positive correlation between

them, yet R3HDM4 knockdown significantly upregulated IGSF8

protein expression, indicating inverse post-transcriptional/post-

translational regulation. This discrepancy supports R3HDM4’s

RNA metabolism function, leading to hypotheses such as

repressed IGSF8 mRNA translation or facilitated degradation via

R3HDM4-mediated microRNA/RNA-binding protein interactions,

(19, 20). No prior studies reported R3HDM4-IGSF8 functional

association in cancer, highlighting this novel regulatory axis that

may influence KIRC immunomodulatory phenotypes.

In conclusion, this study identified R3HDM4 as a novel

oncogenic driver in KIRC, with roles including promoting tumor

proliferation and metastasis through EMT regulation, modulating

TME composition and immune checkpoint expression, correlating

with TMB/MSI and ICI response, and predicting sensitivity to

MEK/ERK inhibitors. These findings fill significant gaps in the

current understanding of R3HDM4's function in cancer and KIRC

biology, while highlighting its potential as a prognostic biomarker

independent of cancer stage and as a predictive marker for

personalized therapy.

This study's limitations include using only one KIRC cell line

(786-O) and normal renal cells (HEK-293T) in vitro, highlighting

the need for in vivo validation with patient-derived xenografts and

other KIRC models. The small IHC cohort suggests the need for

larger multi-center studies to confirm clinical correlations. Further

investigation is needed into the molecular mechanisms of

R3HDM4's regulation of IGSF8 and EMT, especially post-

transcriptional pathways. Despite these limitations, R3HDM4

shows promise for clinical translation, potentially addressing

therapy resistance and improving personalized treatments for

KIRC patients.
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Visualizing and interpreting cancer genomics data via the Xena platform. Nat
Biotechnol. (2020) 38:675–8. doi: 10.1038/s41587-020-0546-8

24. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. (2013)
41:D991–5. doi: 10.1093/nar/gks1193

25. Liu S, Wang Z, Zhu R, Wang F, Cheng Y, Liu Y. Three differential expression
analysis methods for RNA sequencing: limma, edgeR, DESeq2. J Vis Exp. (2021) 175.
doi: 10.3791/62528

26. Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve
analysis in medical research: current methods and applications. BMC Med Res
Methodol. (2017) 17:53. doi: 10.1186/s12874-017-0332-6

27. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

28. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and
still GOing strong. Nucleic Acids Res. (2019) 47:D330–330D338. doi: 10.1093/nar/
gky1055

29. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

30. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
STRING v11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Res. (2019) 47:D607–607D613. doi: 10.1093/nar/gky1131

31. Xiong Z, Yang F, Li M, Ma Y, Zhao W, Wang G, et al. EWAS Open Platform:
integrated data, knowledge and toolkit for epigenome-wide association study. Nucleic
Acids Res. (2022) 50:D1004–1004D1009. doi: 10.1093/nar/gkab972

32. Li Y, Ge D, Lu C. The SMART App: an interactive web application for
comprehensive DNA methylation analysis and visualization. Epigenet Chromatin.
(2019) 12:71. doi: 10.1186/s13072-019-0316-3

33. Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets
and new tools for single-cell transcriptome analyses of the tumor microenvironment.
Nucleic Acids Res. (2023) 51:D1425–1425D1431. doi: 10.1093/nar/gkac959

34. Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, et al. Tumor and
immune reprogramming during immunotherapy in advanced renal cell carcinoma.
Cancer Cell. (2021) 39:649–61.e5. doi: 10.1016/j.ccell.2021.02.015

35. Chen Y, Feng Y, Yan F, Zhao Y, Zhao H, Guo Y. A novel immune-related gene
signature to identify the tumor microenvironment and prognose disease among patients
with oral squamous cell carcinoma patients using ssGSEA: A bioinformatics and biological
validation study. Front Immunol. (2022) 13:922195. doi: 10.3389/fimmu.2022.922195
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1722358/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1722358/full#supplementary-material
https://doi.org/10.3390/cancers16234034
https://doi.org/10.1001/jama.2024.12848
https://doi.org/10.1016/S0140-6736(24)00917-6
https://doi.org/10.1007/s11864-023-01161-5
https://doi.org/10.1186/s12943-023-01911-x
https://doi.org/10.3390/cancers15030665
https://doi.org/10.1007/s40265-016-0665-1
https://doi.org/10.1007/s40265-016-0665-1
https://doi.org/10.1016/j.eururo.2021.04.042
https://doi.org/10.1016/j.eururo.2021.04.042
https://doi.org/10.1016/j.eururo.2019.05.022
https://doi.org/10.3390/cancers16112092
https://doi.org/10.1016/j.intimp.2022.108900
https://doi.org/10.1093/oncolo/oyab056
https://doi.org/10.1016/j.ctrv.2018.07.009
https://doi.org/10.32604/or.2023.027942
https://doi.org/10.3390/ijms26010265
https://doi.org/10.1002/mc.23700
https://doi.org/10.1016/j.ejmech.2025.117247
https://doi.org/10.1093/oncolo/oyae276
https://doi.org/10.1016/s0022-2836(02)01381-5
https://doi.org/10.1016/s0022-2836(02)01381-5
https://doi.org/10.1093/nar/gkaa1069
https://doi.org/10.1016/j.bbrc.2007.06.139
https://doi.org/10.3390/genes16070793
https://doi.org/10.3390/genes16070793
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.3791/62528
https://doi.org/10.1186/s12874-017-0332-6
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkab972
https://doi.org/10.1186/s13072-019-0316-3
https://doi.org/10.1093/nar/gkac959
https://doi.org/10.1016/j.ccell.2021.02.015
https://doi.org/10.3389/fimmu.2022.922195
https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1722358
36. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One.
(2014) 9:e107468. doi: 10.1371/journal.pone.0107468

37. Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in
cancer invasion and metastasis. J Cell Sci. (2013) 126:393–401. doi: 10.1242/jcs.100115
Frontiers in Immunology 21
38. Gupta S, Maitra A. EMT: matter of life or death. Cell. (2016) 164:840–2.
doi: 10.1016/j.cell.2016.02.024

39. Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and
potential therapeutic targets in human cancer. J Clin Oncol. (2009) 27:5287–97.
doi: 10.1200/JCO.2009.23.5556
frontiersin.org

https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1242/jcs.100115
https://doi.org/10.1016/j.cell.2016.02.024
https://doi.org/10.1200/JCO.2009.23.5556
https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1722358
Glossary

R3HDM4 R3H domain containing 4
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KIRC Kidney Renal Clear Cell Carcinoma
AFP Alpha-fetoprotein
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
ICGC International Cancer Genome Consortium
IHC immunohistochemistry
AUC Area Under Curve
CI Confidence Interval
ROC Receiver Operating Characteristic
TPM Transcripts Per Million
CC Cholangiocarcinoma
CNV Copy Number Variation
SNV Single Nucleotide Variant
WES Whole Exome Sequencing
CpG Cytosine-phosphate-Guanine dinucleotide
KIRC Renal Clear Cell Carcinoma
TNM Tumor-Node-Metastasis staging system
ES Enrichment Score
GSEA Gene Set Enrichment Analysis
CIBERSORT cell-type identification by estimating relative subsets of

RNA Transcripts
Cor Pearson correlation coefficient
ESTIMATE estimation of stromal and immune cells in malignant tumor

tissues using expression data
xCell cell type enrichment analysis tool
Pearson Pearson correlation coefficient
Cor Correlation coefficient
UMAP Uniform Manifold Approximation and Projection
CD4T_conv Conventional CD4+ T cells
CD8T_typical Typical CD8+ T cells
CD8T_exhausted Exhausted CD8+ T cells
T_prolif Proliferating T cells
Treg Regulatory T cells
NK_cell Natural Killer cell
B_cell B lymphocyte
Mono/Macro Monocyte/Macrophage
KIRC Renal Clear Cell Carcinoma
CC Cholangiocarcinoma
G1/S G1/S phase transition genes
G2/M G2/M phase transition genes
ogy 22
CTRP Cancer Therapeutics Response Portal
PRISM Preclinical Repurposing of Medicines
GDSC1/GDSC2 Genomics of Drug Sensitivity in Cancer 1/2
Anti-PD-1 Anti-Programmed Cell Death Protein 1
Anti-CTLA-4 Anti-Cytotoxic T-Lymphocyte-Associated Protein 4
Log-rank Log-rank test
Number at risk Number of patients at risk at each time point
CTRL control untreated
si-NC negative control siRNA
si-R3HDM4 R3HDM4-targeting siRNA
E-cadherin epithelial cadherin
MMP-2/9 matrix metalloproteinase-2/9
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
TMB Tumor mutation burden;MSI, Microsatellite instability
GTEx Genotype-Tissue Expression databases
OS overall survival
PFS progression-free survival
DSS disease-specific survival
ROC receiver operating characteristic
AUCs area under the curves
C-index consistency index
KM plotter Kaplan-Meier plotter
IOD integrated optical density
FC fold-change
HR Hazard ratio
siRNA small interfering RNA
OD optical density
GBM Glioblastoma
GBMLGG Glioblastoma and Lower Grade Glioma
LGG Lower Grade Glioma
BRCA Breast Cancer
KIRP Kidney Papillary Cell Carcinoma
STAD Stomach Adenocarcinoma
HNSC Head and Neck Squamous Cell Carcinoma
KIRC Kidney Renal Clear Cell Carcinoma
PAAD Pancreatic Adenocarcinoma
TILs tumor-infiltrating lymphocytes
TME tumor microenvironment
ICI Immune checkpoint inhibitors.
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