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Background: RZHDM4, or R3H domain containing 4, is a gene with uncertain
functions but is frequently investigated for its potential cellular roles and
associations with various diseases. Kidney renal clear cell carcinoma (KIRC ), a
prevalent and aggressive form of kidney cancer, currently lacks effective
treatment options. This study aimed to clarify the involvement of R3HDM4 in
KIRC pathogenesis.

Methods and results: An integrated pan-cancer approach was employed to
analyze data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus
(GEO), ArrayExpress, and the International Cancer Genome Consortium (ICGC ),
systematically assessing the prognostic relevance, clinical associations, signaling
pathways, DNA methylation patterns, immune infiltration profiles, and
chemotherapeutic sensitivity linked to RZHDM4 expression. Bioinformatics
analyses, supported by immunohistochemistry, Western blotting (WB), and
reverse transcription-quantitative polymerase chain reaction (RT-qPCR),
revealed significant upregulation of R3HDM4 in KIRC tissues compared to
normal controls. Kaplan—Meier (KM) survival analysis indicated that elevated
R3HDM4 expression correlated with poor clinical outcomes. Single-cell RNA
sequencing identified cancer cells and dendritic cells as the primary sources of
R3IHDM4 within the KIRC tumor microenvironment. Functional assays using
R3HDM4-targeting siRNA demonstrated that its depletion suppressed the
proliferative, migratory, and invasive capabilities of KIRC cells. At the molecular
level, R3HDM4 knockdown attenuated epithelial-mesenchymal transition (EMT),
as evidenced by increased E-cadherin expression and reduced levels of vimentin
and matrix metalloproteinases MMP-2 and MMP-9. Comprehensive immune
profiling revealed significant correlations between R3HDM4 expression and
several immunological parameters, including immune cell infiltration, immune
checkpoint expression, tumor mutational burden (TMB), and microsatellite
instability (MSI). Notably, silencing of R3HDM4 led to increased expression of
Immunoglobulin Superfamily Member 8 (IGSF8).

Conclusions: These analyses identify RSHDM4 as a critical oncogenic driver in
KIRC, potentially acting through two mechanisms: promoting tumor growth and
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metastasis while also exerting immunomodulatory effects, possibly mediated by
IGSF8. This suggests a potential role for IGSF8 in regulating immune checkpoints,
though this remains speculative. These findings highlight R3HDM4's potential as
both a prognostic biomarker and a therapeutic target in KIRC.

R3HDM4, renal clear cell carcinoma, prognosis, immune infiltration, IGSF8

Introduction

KIRC, the most common kidney cancer subtype, accounts for
about 75% of malignant renal tumors (1, 2). Advances in treatment,
particularly with targeted therapies and immunotherapies, have
significantly improved patient survival (3, 4). Targeted therapies
inhibit the VEGF pathway, while immunotherapies use immune
checkpoint inhibitors (ICIs) like PD-1 and CTLA-4 to boost the
immune response against tumors (5, 6). Combining these
approaches is now standard for advanced KIRC (7, 8).
Additionally, combining ICIs with tyrosine kinase inhibitors
(TKIs) shows promise in improving outcomes for patients with
higher-risk disease (9-13). Despite advancements, challenges
persist due to resistance to immunotherapy and side effects
impacting survival. Researchers are exploring new strategies, like
identifying biomarkers and targeted therapies, to improve
personalized treatment (14, 15). For instance, EMX2 has shown
potential in inhibiting cholangiocarcinoma by affecting the Akt/
FOXO3a pathway (16). KIRC molecular heterogeneity and
conventional therapy resistance prompted research on alternative
targets such as BUBIB, a key KIRC progression driver from
genome-wide transcriptomic analyses (17). BUB1B inhibitors
elicit apoptosis and hold therapeutic potential. Despite advances
in KIRC treatment, further research is critical to address drug
resistance and refine therapeutic strategies. Combining targeted
and immunotherapies with novel biomarkers and therapeutic
targets discovery offers substantial promise for improving KIRC
treatment outcomes (3, 18).

R3HDM4, also known as C190rf22 and formally designated as
R3H domain containing 4, is located on the short arm (p) of
chromosome 19 at region 13.3. This gene encodes the protein
MGC16353, listed in genomic databases as Ensemble ID
ENSG00000198858 and UniProt Q96D70. The R3HDM4 protein
features an R3H domain, which is typically associated with RNA
regulation in cells (19, 20). The significance of the R3H domain is
highlighted by its presence in various proteins across multiple
organisms, highlighting its evolutionary conservation and
functional relevance (20, 21). This domain is characterized by its
ability to bind single-stranded nucleic acids, a critical function in
processes such as transcriptional regulation and RNA metabolism.
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R3HDM#4’s role is closely linked to the modulation of RNA
metabolism, influencing RNA stability, transport, and translation.
Despite being frequently studied in relation to its involvement in
diverse cellular processes and disease mechanisms, the specific
functions of R3HDM4 remain largely undefined. Genes like
R3HDM4 are often identified through genome-wide association
studies (GWAS) and other genetic analyses that explore
associations between genetic variants and diseases, including
autoimmune and neurodegenerative disorders (22). Understanding
the roles of genes like R3HDM4 and their interactions with other
genetic elements is crucial for uncovering the molecular mechanisms
underlying various diseases. Such insights could inform the
development of targeted therapies aimed at mitigating the effects of
genetic predispositions. As research progresses, the characterization
of R3HDM4 and similar genes is expected to significantly enhance
our understanding of human genetics and disease.

This study utilized extensive multi-omics datasets from TCGA,
GEO, ArrayExpress, and ICGC to comprehensively analyze
R3HDM4 expression profiles and evaluate their clinical relevance
in KIRC. Techniques such as immunohistochemistry, western
blotting, and quantitative PCR revealed significantly elevated
R3HDM4 levels in KIRC tissues compared to normal renal
samples. Integrative analyses, including DNA methylation
profiling, single-cell transcriptomics, and drug sensitivity
assessments, further elucidated the biological functions of
R3HDM4 in KIRC pathogenesis. Cellular experiments
demonstrated that silencing R3HDM4 significantly reduced the
malignant characteristics of KIRC cells, such as proliferation,
invasiveness, and metastatic potential, accompanied by changes in
epithelial-mesenchymal transition (EMT) regulators (E-cadherin
and vimentin) and extracellular matrix remodeling enzymes
(MMP-2 and MMP-9). Furthermore, this study conducted a
systematic investigation into the impact of R3HDM4 on the
immunological landscape of KIRC tumors. The expression of
R3HDM4 was found to correlate with immune checkpoint
molecules and immune cell infiltration, indicating its potential
role in modulating the KIRC immune microenvironment.
Overall, these findings underscore the pivotal role of RSHDM4 in
KIRC tumorigenesis and offer valuable insights for the development
of targeted therapeutic strategies.
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Materials and methods

Data collection, preprocessing, and
expression analysis

Comprehensive genomic and transcriptomic datasets from
various cancer subtypes were systematically downloaded from the
TCGA database (https://portal.gdc.cancer.gov/). For comparative
analysis with tumor samples, tumor-matched normal tissue
expression profiles were obtained from the Genotype-Tissue
Expression (GTEx) project (http://www.gtexportal.org/) (23).
The study cohort included 28 normal kidney specimens from
GTEx, 72 adjacent non-tumor tissues from KIRC cases, and 531
KIRC tumor samples along with corresponding clinical annotations
from TCGA-KIRC. Detailed clinicopathological characteristics of
TCGA-KIRC are presented in Supplementary Table S1. To further
validate our findings, additional KIRC datasets were incorporated
from the GEO repository (https://www.ncbi.nlm.nih.gov/geo/),
including GSE167573 (63 tumor and 14 normal specimens),
GSE22541 (68 tumor samples), and GSE29609 (39 tumor
samples) (24). Further data were sourced from the ICGC portal
(https://dcc.icgc.org/) and the E_TABM_1980 dataset (101 KIRC
cases) from ArrayExpress. Transcript abundance was quantified as
transcripts per million (TPM) and normalized by log,(TPM + 1)
transformation. All computational analyses were performed using R
(v4.3.0) with rigorously documented pipelines, ensuring alignment
with current cancer bioinformatics standards. Missing values were
imputed using the missForest R package. Stringent quality control
measures were implemented, and potential outliers were identified
using interquartile range (IQR) assessment. Samples exceeding QI -
1.5 x IQR or Q3 + 1.5 x IQR were winsorized to the nearest
acceptable value. Only samples with complete transcriptomic
profiles and corresponding clinical metadata were included in
downstream analyses. TCGA RNA-seq data (TPM-normalized)
were processed using DESeq2 (v1.34.0) and limma (v3.50.3)
packages to accommodate RNA-seq count distribution properties
(25). GEO microarray data were normalized using the robust multi-
array average (RMA) algorithm to correct for platform-specific
artifacts. Differential expression analysis was conducted using
consistent statistical thresholds (adjusted P < 0.05, |log,FC| > 1)
across all datasets.

Tissue specimen collection and
immunohistochemical analysis

Sixteen matched pairs of KIRC samples and adjacent normal
kidney tissues were obtained from Ganzhou Cancer Hospital. The
study protocol was approved by the Institutional Ethics Committee
(Approval Number: 2025Kelunshen236). All specimens underwent
thorough histopathological verification to confirm KIRC diagnosis.
Detailed clinicopathological information is provided in
Supplementary Table S2. Selection criteria included (1):
histologically confirmed KIRC cases and (2) complete clinical
documentation. Exclusion criteria encompassed: (1) ambiguous
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pathological results, (2) missing clinical data, and (3) prior
extensive systemic treatments. For immunohistochemical
evaluation, tissue samples were fixed in 10% neutral buffered
formalin, processed into paraffin blocks, and sectioned at 4 pm
thickness. After deparaffinization and rehydration , antigen retrieval
was performed using diluted citrate buffer (1:100; Boster Biological
Technology, China). Sections were treated with HRP-labeled
secondary antibodies (ZSGB-Bio, China), visualized with DAB
substrate, and counterstained with hematoxylin. Digital image
quantification was performed using Image-Pro Plus 6.0 software
(Media Cybernetics, USA), with integrated optical density (IOD)
values calculated from multiple high-magnification fields
per sample.

Prognosis analysis of R3HDM4

To assess patient outcomes, comprehensive survival analyses
were performed using the Kaplan-Meier method, comparing key
clinical endpoints— overall survival (OS), progression-free survival
(PES), disease-free survival (DES), and disease-specific survival
(DSS)—between groups with high and low R3HDM4 expression,
based on median expression levels. These analyses were performed
using the survival package (v3.3-1). Statistical significance of
survival differences was determined via log-rank testing, with a
significance threshold of P < 0.05. Survival curves, along with 95%
confidence intervals and median survival estimates for each
subgroup, were visualized using the survminer package (v0.4.9).
Prognostic accuracy was further assessed through time-dependent
receiver operating characteristic (ROC) analysis, implemented
with the “timeROC” package, to estimate survival probabilities at
1-, 3-, and 5-year intervals. Corresponding ROC curves and area
under the curve (AUC) values were derived (26). To validate the
R3HDM4 expression trends in KIRC, external validation was
performed using independent datasets from GEO and ICGC
(24). Additionally, univariate and multivariate Cox regression
models were applied to comprehensively explore potential
prognostic factors.

Functional annotation analysis of RSHDM4
in KIRC

To investigate the functional role of R3HDM4 in KIRC,
systematic functional annotation was conducted via Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses (27). The GO method, a widely used
approach in functional genomics, facilitated an in-depth examination
of R3HDM4-related biological processes, molecular functions, and
cellular localization patterns in KIRC (28). For a more comprehensive
pathway-level analysis, Gene Set Enrichment Analysis (GSEA) was
performed, a robust computational tool that identifies coordinated
expression changes in functionally related gene clusters across diverse
biological contexts (29). All computational procedures were carried
out using advanced bioinformatics tools: the ClusterProfiler package
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(v3.14.3) in R was employed for GO and KEGG analyses, while GSEA
(v4.1.0) was utilized for pathway enrichment evaluation. Protein-
protein interaction (PPI) networks were constructed using the
STRING database (v9.1), which enabled the identification of
potential molecular interactions among co-expressed genes (30).
Network visualization and analysis were performed using the
GeneMANIA plugin in Cytoscape, integrating interaction data
from multiple public repositories based on the target genes,
including their functional annotations. Differential expression
analysis employed consistent statistical criteria (adjusted P < 0.05, |
log2FC| > 1) across all datasets. The entire analytical workflow
adhered to standardized protocols to ensure methodological rigor
and statistical reliability in omics data interpretation. A false
discovery rate (FDR) threshold of 0.05 was applied to ensure
result robustness.

DNA methylation analysis

The EWAS Data Hub (https://ngdc.cncb.ac.cn/ewas/datahub/
index) is a comprehensive repository for epigenome-wide
association studies, consolidating DNA methylation data from
115,852 biological samples across 528 distinct diseases (31). The
Shiny Methylation Analysis Resource Tool (SMART; http://
www.bioinfo-zs.com/smartapp/) provides a unified computational
platform for analyzing Infinium Human Methylation 450K array
datasets, RNA-seq profiles, and clinical annotations across 33
TCGA-derived cancer types (32). These platforms were utilized to
systematically investigate the epigenetic regulation of R3HDM4 in
KIRC. Specifically, this study assessed the relationship between
R3HDM4 promoter methylation levels and its transcriptional
activity, clinicopathological features, and OS. Illumina
HumanMethylation450K array data were preprocessed using the
ChAMP package (v2.22.0), which included quality filtering
(removing probes with detection P-values > 0.01 and cross-
hybridizing probes) and normalization via the BMIQ algorithm.
Methylation levels were quantified using beta-values (range: 0-1),
with hypermethylation defined as beta > 0.6 and hypomethylation
as beta < 0.2.

Single-cell expression analysis

Transcriptomic profiling at single-cell resolution was conducted
using sequencing data in.h5 format files, with comprehensive cell-
type annotations sourced from the TISCH database (33). Data
processing and analytical workflows were implemented via the
MAESTRO platform and Seurat software package (v4.1.0) in R to
ensure stringent quality control during preprocessing. Cellular
heterogeneity was explored using t-distributed stochastic neighbor
embedding (t-SNE) for dimensionality reduction and segregation of
populations. The SCP1288 dataset, linked to PMID: 33711272,
included 8 clinical samples, 3 from patients not receiving immune
checkpoint blockade (ICB) treatment and 5 from patients treated
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with ICB and other therapies (34). This dataset underwent
normalization, detection of highly variable features, and
unsupervised clustering to identify distinct cell subpopulations.
Rigorous quality control was maintained throughout the analysis.
The preprocessing pipeline included (1): filtering out low-quality
cellular profiles (retaining cells expressing 200-2000 genes and
excluding those with > 5% mitochondrial gene content) (2),
normalization using the LogNormalize method, and (3) feature
scaling. Cellular clustering was performed using the Louvain
community detection algorithm (cluster resolution parameter
optimized to 0.5 for biological interpretability), followed by cell-
type annotation based on established markers (hepatocytes: AFP; T
lymphocytes: CD3D). Spatial distribution patterns of R3HDM4
expression were examined using UMAP projections, and
expression levels across clusters were visualized with violin plots.

Correlation analysis of immune-related
indices and R3HDM4 in KIRC

To elucidate the relationship between R3HDM4 expression and
tumor microenvironment characteristics in KIRC, a comprehensive
immunogenomic analysis was conducted using multi-omics data from
TCGA, GEO, ICGC, and ArrayExpress databases. The analytical
framework incorporated seven advanced immune deconvolution
algorithms (ssGSEA, xCell, CIBERSORT, EPIC, TIMER, MCP-
counter, and quanTIseq), implemented through R packages such as
immunedeconv, estimate, and GSVA. This multi-method approach
enabled a systematic evaluation of immune cell composition, stromal
content, immune activity indices, and genomic instability parameters
(TMB and MSI). Additionally, co-expression patterns between
R3HDM4 and 150 immunomodulatory genes across five key
immune pathways were examined: (1) chemotactic signaling (41
genes), (2) immune checkpoint regulation (18 genes), (3) antigen
presentation machinery (21 genes), (4) immunosuppressive mediators
(24 genes), and (5) immunostimulatory factors (46 genes) (35). All
computational analyses were performed using R version 4.3.0, with
data visualization generated through ggplot2, pheatmap, and
ggstatsplot packages to ensure rigorous statistical interpretation and
accurate graphical representation.

Drug sensitivity of RZHDM4 in KIRC

Comprehensive drug sensitivity data were obtained from three
established public resources: the Cancer Therapeutics Response
Portal (CTRP v2.0), the PRISM Repurposing dataset, and the
Genomics of Drug Sensitivity in Cancer (GDSC) database. To
explore potential correlations between R3HDM4 expression and
drug efficacy, Spearman's rank correlation tests were conducted on
217 therapeutic compounds , including kinase inhibitors, epigenetic
regulators, and conventional chemotherapy agents. All analyses
were performed in R (v4.3.0), using the tidyverse package suite
for data manipulation, the pRRophetic package for predictive drug
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response modeling, and ComplexHeatmap for comprehensive
graphical representation of the results (36).

Cell culture

HEK-293K (normal human kidney cell line) and 786-O (KIRC
cell line) were obtained from Sangon Biotech (Shanghai, China).
786-0 cells were cultured in RPMI-1640 medium (Procell, Cat. No.
PM150110) supplemented with 10% fetal bovine serum (FBS,
Gibco, Grand Island, NY, USA) and 1% penicillin/streptomycin
(Solarbio, Beijing, China) in a humidified incubator at 37°C with
5% CO.,.

siRNA-mediated R3HDM4 knockdown

Twenty-four hours prior to transfection, 786-O cells were
seeded in 6-well plates and cultured to 80-90% confluence.
Transfection was carried out using Lipofectamine reagent
(KeyGEN, China) following the manufacturer’s instructions, with
either RAHDM4-targeting siRNA or non-targeting control siRNA.
Cells were harvested 24 hours post-transfection for RNA and
protein extraction. Six experimental groups were included:
untreated 786-O cells (CTRL), negative control siRNA (siNC),
and four R3HDM4-specific siRNAs: si-R3HDM4-1 (si-R3HDM4-
202), si-R3HDM4-2 (si-R3HDM4-391), si-R3HDM4-3 (si-
R3HDM4-562), and si-R3HDM4-4 (si-R3HDM4-788).
Preliminary screening indicated that si-R3HDM4-788 achieved
the highest silencing efficiency and was selected for subsequent
functional assays.

The sense and antisense sequences of the siRNAs used were
as follows:

si-R3HDM4-202: sense: 5'- AACAGCACUUCAUCAACCATT
-3'; antisense: 5- UGGUUGAUGAAGUGCUGUUTT-3".

si-R3HDM4-391: sense: 5'- GCAACAACGCCACCUAUGUTT
-3'; antisense: 5'- ACAUAGGUGGCGUUGUUGCTT-3".

si-R3HDM4-562: sense: 5'- AGUGCUUCCAGCGCAUCAGT
T-3'; antisense: 5'- CUGAUGCGCUGGAAGCACUTT-3'.

si-R3HDM4-788: sense: 5'- GCAGAUGAAGGUCAGUAAUT
T-3'; antisense: 5'- AUUACUGACCUUCAUCUGCTT-3"

The sense and antisense sequences of negative control siRNA
(siNC) were as follows:

siNC: sense: 5'- UUCUCCGAACGUGUCACGUTT-3};
antisense: 5- ACGUGACACGUUCGGAGAATT-3'.

RT-gPCR assay

Total RNA was extracted using RNA Isolater Total RNA
Extraction Reagent (VAZYME) following the manufacturer’s
protocol. The purified RNA was reverse-transcribed into
complementary DNA (cDNA) using HiScript® II Q RT SuperMix
for qPCR (+gDNA wiper) (VAZYME). Quantitative real-time PCR
(qPCR) was performed on the synthesized cDNA using ChamQ
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SYBR qPCR Master Mix (VAZYME). Relative gene expression
levels were calculated using the comparative threshold cycle (2°
44CY method. The specific primer sequences used in this study were
as follows:
R3HDM4: forward, 5'- CACCCAGTACCTCCTGACCC -3}
reverse, 5'- GAAATCGTTCCAGACCTCCAC -3, 142 bp.
GAPDH: forward, 5'- ATGGGGAAGGTGAAGGTCGGA
GT -3}
reverse, 5'- TAGTTGAGGTCAATGAAGGGGTC -3, 125 bp.

Western blot for detecting protein
expression

Following transfection, cells were washed twice with PBS and
lysed in ice-cold RIPA buffer. Protein concentrations were quantified
using a BCA assay kit (GBCBIO, China). Electrophoresis was
performed on 10% SDS-PAGE gels, followed by transfer to
nitrocellulose membranes (Biofroxx, Germany). Membranes were
blocked with 5% skim milk for 2 hours at room temperature before
overnight incubation with primary antibodies at 4°C. Between each
incubation step, membranes were washed three times for 10 minutes
with TBST. HRP-conjugated goat anti-mouse IgG (1:10,000, Boster,
China) was used as the secondary antibody, with identical washing
conditions applied prior to chemiluminescent detection. The primary
antibodies used were: RSHDM4 (29 kDa, 1:1000, Invitrogen, USA),
GAPDH (36 kDa, 1:10,000, Proteintech, China), E-cadherin (125
kDa, 1:40,000, Proteintech, China), Vimentin (55 kDa, 1:40,000,
Proteintech, China), MMP2 (63 kDa, 1:1000, BIOSS, China),
MMP9 (78 kDa, 1:1000, Affinity, USA), and IGSF8 (70 kDa,
1:2000, Proteintech, China).

Evaluation of cell proliferation

Cell proliferation was assessed using the CCK-8 assay kit
(HYCEZMBIO, China). Following transfection , cells were seeded
in 96-well plates at a density of 3 x 107 cells per well. Cellular
viability was measured at 0, 24, and 48 hours after plating by adding
10 uL of CCK-8 solution to each well °C and incubating for 1 hour
at 37°C with 5% CO,. Optical density at 450 nm was recorded using
a microplate reader (Thermo Scientific, USA).

Transwell assays for cell migration and
invasion

Cell migration and invasion assays were performed using 24-
well Transwell chambers (Corning, USA) with 8 um pore
membranes, pre-coated with 100 uL Matrigel basement
membrane matrix (Corning, USA). Transfected 768-O cells (6 x
10* cells per well) were seeded in serum-free medium in the upper
compartment, while the lower chamber contained 600 UL complete
medium supplemented with 20% fetal bovine serum as a
chemoattractant. After 24-hour incubation at 37 °C, cells that
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migrated through the membrane were fixed with 4%
paraformaldehyde for 1 hour and stained with 0.5% crystal violet
for 20 minutes. The number of migrated cells was quantified by
counting stained cells in five randomly selected fields per membrane
using bright-field microscopy.

Statistical analysis

Data analysis was performed using the R statistical computing
environment (v4.3.0), employing multiple analytical methods. Fold-
change metrics and hazard ratios (HR ) were calculated for
quantitative assessment, with statistical significance determined
via Log-rank testing. Correlation analyses utilized Spearman's
rank correlation and Pearson's correlation methods. Group
comparisons were made using Wilcoxon rank-sum tests, Student's
t-tests (for two-group comparisons), and ANOVA (for multiple
group comparisons). Survival analysis was visualized through
Kaplan-Meier plots, with log-rank tests applied to assess
differences, maintaining a significance threshold of P = 0.05.
Statistical significance was represented as follows: * (P < 0.05),
**(P < 0.01), **(P < 0.001), and ****(P < 0.0001).

Results

Analysis of RSHDM4 expression and its
correlation with clinical parameters in KIRC
via public databases

Figure 1 shows the study design flowchart. A pan-cancer
analysis using TCGA and TCGA+GTEx datasets examined
R3HDM4 expression across various cancers. Analysis revealed
significantly higher RSHDM4 mRNA levels in tumor vs. normal
tissues across multiple cancers, including ACC (adrenocortical
carcinoma), BLCA (bladder urothelial carcinoma), BRCA (breast
invasive carcinoma), KIRC, LIHC (liver hepatocellular carcinoma),
LGG (lower grade glioma), and other common malignancies.
R3HDM4 was only downregulated in diffuse large B-cell
lymphoma (DLBC) (Figure 2A). This upregulation in multiple
tumors and downregulation in DLBC highlights its context-
dependent functions in different cancers, supporting further
studies. In KIRC, R3HDM4 was significantly higher in tumor
than normal tissues in both TCGA and combined TCGA+GTEx
datasets (Figure 2B). Clinical analyses showed its expression
correlated with advanced tumor stage (III/IV vs. I/II) in
TCGA_KIRC, and with tumor grade in multiple datasets. It was
higher in advanced grades in E_MTAB_1980, while in TCGA-KIRC
only grade 4 was elevated compared to grades 1, 2, 3 (Figure 2C).
R3HDM4 expression varied across renal cell carcinoma cell lines:
higher in BFTC-909, SLR 26, 786-O, RCC10RGB, KMRC-3, 769-P
and lower in KMRC-1, A-704, KMRC-20 (Figure 2D).
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In vitro validation of R3BHDM4 differential
MRNA and protein expression

To further validate R3HDM4 dysregulation in KIRC, in vitro
assays were performed. IHC staining of 16 paired KIRC and
adjacent normal tissues showed significantly stronger R3HDM4
protein staining in KIRC tissues, as seen in representative 4x and
20x images (Figure 3A). Mean IOD quantification confirmed
elevated R3HDM4 protein levels in KIRC tissues (Figure 3B).
qRT-PCR revealed significantly higher R3HDM4 mRNA levels in
renal cancer cell line 786-O than normal renal epithelial cell line
HEK-293T (Figure 3C). Consistent with mRNA data, Western blot
demonstrated increased R3HDM4 protein in 786-O cells compared
to HEK-293T cells (Figure 3D). Together, these results confirm
R3HDM4 upregulation at both mRNA and protein levels in KIRC
tissues and cells.

Prognostic significance of R3HDM4
expression across pan-cancer, with
emphasis on KIRC

Subsequent to identifying aberrant R3HDM4 expression in KIRC,
we comprehensively investigated its prognostic significance. Pan-
cancer univariate Cox regression analysis for OS revealed elevated
R3HDM4 expression correlated with poor prognosis in multiple
malignancies, acting as a risk factor in ACC, KIRC, acute myeloid
leukemia (LAML) and LGG, and a protective factor in THYM and
UCS (Figure 4A). Kaplan-Meier (KM) analysis validated these
findings, particularly for OS (Figure 4B). In TCGA-LIHC, high
R3HDM4 expression significantly correlated with worse OS (HR =
1.717), PES (HR =2.135) and DSS (HR = 2.304) (Figures 4C-E). Time-
dependent ROC analysis for KIRC demonstrated moderate predictive
accuracy, with 1-year AUC values of 0.642 for OS, 0.631 for PFS and
0.664 for DSS, and slight decreases at 3 and 5 years (Figures 4C-E).
Univariate analysis showed high R3HDM4 expression significantly
increased OS risk, a finding further validated by multivariate analysis.
Pathologic T stage (T3/T4 vs. T1/T2) also emerged as an independent
prognostic factor (Figure 4F). External validation in independent
datasets (E_MTAB_1980, GSE22541) confirmed R3HDM4’s adverse
prognostic role, with high expression associating with reduced OS as
depicted in KM curves (Figure 4G).

DNA methylation analysis of R3HDM4 in
patients with KIRC

DNA methylation is pivotal in KIRC phenotypic changes and
clinical outcomes, regulating tumor biology and patient prognosis.
Given R3HDM4’s aberrant expression in KIRC, its epigenetic
regulation was explored through DNA methylation analysis to
identify overexpression mechanisms. R3HDM4’s promoter
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FIGURE 1
Research flowchart of this study.

contains multiple CpG sites, with predominant hypermethylation
in tumor tissues (circular/linear gene maps, Figures 5A, B). Tumor
tissues had lower R3HDM4 methylation than adjacent normal
tissues, correlating with its elevated tumor expression (Figure 5C).
Correlation analysis showed weak yet significant inverse
correlations between individual CpG sites (cgl12045715;
cg03052794) and aggregated methylation levels (Figure 5D).
Contrary to Figure 4C, violin plots revealed significantly higher
methylation beta-values in tumors vs. normal tissues for CpG sites
cg02667291, cg25814612 et al; in contrast, cg03052794 et al. and
the aggregated region showed the inverse pattern (Figure 5E). Stage-
stratified boxplots indicated differential methylation across stages
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for CpG sites ¢g02667291, cg12045715 and the aggregated region,
with highest methylation in Stage 1 (Figure 5F). Integrative copy
number variation (CNV) and methylation analysis revealed
significant epigenetic-genomic interactions; various CNV  states
(deep deletion [-2], loss [—1], neutral [0], gain [1], amplification
[2]) correlated with distinct methylation patterns. Notably, CpG
sites cg02667291, cg25814612 et al. and the aggregated region had
highest methylation in neutral (0) and amplification (2) CNV states,
indicating CNV-dependent methylation variations (Figure 5G).
Collectively, these findings identify R3HDM4 methylation as a
molecular determinant in KIRC progression, with potential
diagnostic and prognostic value for clinical management.
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Expression analysis of RSHDM4 and its association with clinical features. (A) Comparative analysis of RZHDM4 expression in pan-cancer tissues
versus adjacent normal tissues based on data from the TCGA and GTEx databases. (B) Comparative analysis of R3HDM4 expression in tumor versus
normal tissues in KIRC based on data from the TCGA and TCGA + GTEx databases. (C) Analysis of the association between R3HDM4 expression and
clinical parameters in KIRC. (D) Comparative analysis of R3HDM4 expression in renal clear cell carcinoma cell lines. *P < 0.05, **P < 0.01, ***P <
0.001, **** P < 0.0001. R3HDM4, R3H domain containing 4; KIRC, Kidney Renal Clear Cell Carcinoma; TCGA, The Cancer Genome Atlas; GEO,

Gene Expression Omnibus.

Functional analysis of REHDM4 co-
expression networks in KIRC

To further elucidate RSHDM4’s functions in KIRC, GO, KEGG,
and Hallmark enrichment analyses were performed using its related
DEGs from TCGA-KIRC. GO analysis showed BP enrichment in
cellular macromolecule/protein metabolism and organization
(Figure 6A), CC in intracellular structures/organelles/nucleoplasm,
and MF in protein/enzyme binding, supporting R3HDM4 as a
nucleic acid-binding protein in PPIs. KEGG enrichment linked it
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to cellular processes (actin cytoskeleton, adherens junction),
transport/catabolism (peroxisome, endocytosis), signal transduction
(Notch pathway) (Figure 6B), metabolic pathways (amino acid,
carbohydrate, lipid metabolism), and diseases (cancer, immune
disorders). GO GSEA generated a waterfall plot highlighting
positive (glycolysis, type I interferon signaling) and negative
(receptor internalization inhibition) pathways (Figure 6C),
indicating R3HDM4 enhances energy metabolism while
suppressing certain regulators. KEGG GSEA emphasized
glycosaminoglycan degradation, Fc gamma R-mediated
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immunohistochemistry; IOD, integrated optical density.

phagocytosis, and homologous recombination (Figure 6D),
contributing to ECM remodeling, immune phagocytosis, and DNA
repair in KIRC. Hallmark GSEA highlighted TNFo/NF-xB, MYC/
E2F targets, interferon gamma response, and EMT (Figure 6E),
implicating R3HDM4 in cell cycle control and immune regulation.
PPI networks identified RBHDM4 as a central node interacting with
SPAG7, RHOH, PARP1 (Figure 6F), and a mitochondrial network
with oxidative phosphorylation elements (UQCRFS1, CYC1, MT-
CO1/2/3) (Figure 6G), emphasizing its role in mitochondrial
function. In summary, enrichment analyses confirm R3HDM4
promotes KIRC progression via metabolic reprogramming, cellular
adhesion, DNA repair, and immune-related pathways.

Single-cell RNA sequencing profiling of
R3HDM4 expression in KIRC

To delineate R3HDM4 cellular distribution and expression in
KIRC, single-cell RNA sequencing (scRNA-seq) data from KIRC
tumors and adjacent normal tissues were analyzed. Uniform
manifold approximation and projection (UMAP) dimensionality
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reduction identified distinct cell clusters, annotated via canonical
marker genes into major lineages: cancer cells (cycling, program-
specific subtypes), endothelial cells, fibroblasts, mast cells, monocytes,
myeloid cells, natural killer (NK) cells, plasma cells, dendritic cells,
regulatory T cells (Treg), tumor-associated macrophages (TAM), and
undefined populations (Figure 7A). RBHDM4 expression on UMAP
plots showed predominant upregulation in cancer cell clusters, with
scattered expression in immune and stromal compartments
(Figure 7B). Median normalized expression quantification across cell
types confirmed highest R3HDM4 in cancer cells, followed by
dendritic cells, TAM, myeloid cells, and minimal/absent expression
in endothelial and plasma cells (Figure 7C). Clinical variable
stratification contextualized R3HDM4’s role; gender-based analysis
showed no significant clustering bias, with slight enrichment in male-
derived cells (Figure 7D); clear cell populations predominantly
occupied R3BHDM4-high regions by subtype (Figure 7E); tumor
location analysis distinguished primary kidney, lung metastases, and
adjacent normal tissue, with metastatic cells showing higher RIHDM4
(Figure 7F); Stage IV tumors had higher R3HDM4 intensity than
earlier stages (Figure 7G); R3BHDM4 was enriched in ICB-treated
cohorts, with distinct clustering in patients with/without urothelial

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

10.3389/fimmu.2025.1722358

A

Pyalue

se_ Hazard Ratio(95% CI)

ACC 26ledz  BRe0l 2260 39701 24111526 B
BLCA 33001 140l 9601 1Sle-0l 116086,1.55) 1 Method E
BRCA  Tddedl 5202 330l 16lel 105(0.765.L.45) [ sumvival Type
CESC 44201 —181c-0l 7701 236001 0.834(0.525,1.32) cc .
CHOL 8360l -979-02 2101 473l 09070359229 g H §
COAD  BS5e2 Ade0l L7e0 201 1.4100.953,2.09) I z
DLBC 430l 580l TIe0l  T34e0l 0570.13524) ¥ H
ESCA 4960l o170l 680l 25001 08430517.1.38) Je H
GBM 87601 28502 —Leo-0l 184l 0972067139) 1
HNSC 636Dl 60602 450l 13601 09410721,123) g ¢
KICH 246001 82001 LI6eH0 70701 2270568909 .
KIRC 5004 5S40l 3d%ei00 1SS0l 172027233 —_——
KIRP 36001 27501 910l 30301 13207212.38) Progaoetcruls Mettod
LAML 24703 66le0l 303100 21501 19401.26297)
LHC 55902 3380l 191600 177601 140991,1.95) LI
LUAD 20301 LSS0l L24eH00 14901 120899.L61) Nomsense - Survival Type M
LUSC 0M8edl 402 -1l 138l 09860.752.129) . £
MESO Tkl 4250l L7ew0 23501 15309592.49)
ov 2601 L9l LI3oH0 133601 1160895,1.5)
PAAD 0780l 56403 -2 205-01 101(0669,L51)
POPG LISl L60H0 156000 105400 S41068945) 4t
PRAD  TSdl 2240l 32601 70801 0199019932) 44
READ  BSTedl 73602 LSl 40601 L080.4862.38)
SARC  996ed LI -le2 201l 0999(0.673,1.48)
SKOM 9202 23101 LeSew0 13701 126(0963,1.65)
STAD  46ledl 120l o0l 167l 08840.637,129)
TGCT 505Dl %0l 670l 1170 218022216 ——t
THCA 4700l 3640l 720l 50501 0695(0.258,187) R
THYM 4502 L&) 26100 Bldeol 0197004097
UCEC 60902 —dedl  -LEToH0 213601 0670.441,1.02)
UCS Tedl 9802 2801 el L1(05652.14)
UVM L1901 6850l LS6er0 ddel 198083847)
T

O

00475 15202530354045
Hazard Ratio

Rt

Lapcrmaen

P——

FIGURE 4

Characteristics  Totaf)

Hazard ato(95% CI) P value Hozard o (95% 1) P value
PangogeT g,

R 279 Reference Reference

id 7 as0sss-2e1) 0125 462008782438 0144
ToaTs 1 asss(esis-sE <0001 sueRsEa-4707) <0001
RIOME 54t

Low 20 Reference Reference

High 1 ATMGas-2408 <000t 1520(1123-2089) 0007

T 75
Time in years

) %
Time in years

GSE22541 E_MTAB_1980
100, a0
5 o 5 o
H H
2 oso Z o
g Log-rank 3 Log-rank
025 o5
© p=0.0061 ° P <0.0001
oo, oo
T 5 75w s 5 7 4 3 7
Number a isk Number at risk
Zrgnlo 63200 2 Hian 121 10 2 o
2 2
Frowls w07 I L R Ry 1
[ T s g 3 =

Prognostic significance of RBHDM4 expression across cancers and validation in KIRC cohorts. (A) Univariate Cox regression analysis of R3HDM4
expression in diverse cancer types. (B) Distribution of RZ3HDM4 expression among tumor molecular subtypes. (C) Prognostic analysis for OS of
R3HDM4 in the TCGA-KIRC dataset. (D) Prognostic analysis for PFS of R3HDM4 in the TCGA-KIRC dataset. (E) Prognostic analysis for DSS of
R3HDM4 in the TCGA-KIRC dataset. (F) Prognostic significance of RBHDM4 expression for PFS evaluated by univariate and multivariate analyses.
(G) Independent validation in external GEO and ArrayExpress cohorts confirming the prognostic significance of RZHDM4 in KIRC. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001. AUC, Area Under Curve; Cl, Confidence Interval; DFS, Disease-Free Survival; GEO, Gene Expression Omnibus;
HR, Hazard Ratio; KIRC, Kidney Renal Clear Cell Carcinoma; OS, Overall Survival; PFS, Progression-Free Survival; RFS, Relapse-Free Survival; ROC,
Receiver Operating Characteristic; TCGA, The Cancer Genome Atlas; TPM, Transcripts Per Million.

carcinoma immunotherapy (UCI), suggesting therapeutic modulation
of R3BHDM4-expressing cells (Figure 7H). Cell type composition
analysis identified CD8 T cells as the major sequenced population,
followed by cancer cells, TAM, T cells, and other minor fractions,
highlighting a tumor-dominant microenvironment (Figure 7I). A G1/
S and G2/M phase gene heatmap across cell types demonstrated cell
cycle activity primarily in cycling cancer subsets, correlating with
R3HDM4 expression and implicating it in proliferative dynamics
(Figure 7]). These scRNA-seq findings position RSHDM4 as a cancer-
enriched factor in the KIRC TME, potentially regulating immune
infiltration and metastatic potential.

Correlations of REHDM4 expression with
immune cell infiltration in KIRC
In KIRC, R3HDM4 expression correlated significantly with

clinicopathological characteristics, highlighting its potential role in
tumor progression; tumor-infiltrating lymphocytes are strong

Frontiers in Immunology

indicators of tumor progression, histological differentiation, and
nodal involvement, while complex crosstalk among malignant cells,
stromal components, and immune populations in the tumor
microenvironment contributes critically to pathogenesis. To
investigate these relationships, comprehensive bioinformatics
analyses using TCGA and GEO data assessed associations between
R3HDM4 expression and immune infiltration in KIRC. Pan-cancer
analysis revealed tissue-specific correlations between R3HDM4 and
immune cell composition (Figure 8A); R3HDM4 showed variable
(positive/negative) associations with immune infiltration across 33
malignancies, with consistent positive correlations in KIRC, LAML,
ovarian cancer (OV), pheochromocytoma and paraganglioma
(PCPG), uveal melanoma (UVM) — particularly with NK
CD56bright cells. Comparative analysis showed significantly higher
activated dendritic cell (aDC) enrichment scores in high-R3HDM4
tumors, suggesting a potential regulatory role in dendritic cell
activation (Figure 8B). Immune cell distribution (Figure 8C) differed
notably between R3HDM4 expression groups, with high-expression
samples showing increased quiescent CD4+ memory T cells, activated
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NK cells, and M1 macrophages. Correlation analyses (Figure 8D)
revealed positive associations between R3HDM4 and NK CD56bright
cells, Th2 lymphocytes, follicular helper T cells, and negative
correlations with central memory T cells (Tcm) and Th17 cells.
Methodological validation was performed using six platforms (EPIC,
ESTIMATE, TIMER, MCP-Counter, QuanTIseq, xCell) across six
independent cohorts (TCGA-KIRC, ICGC_EU, GSE167573,
GSE22541, E-MTAB-1980, GSE29609), and convergent results
supported that R3BHDM4 participates in renal carcinoma immune
microenvironment remodeling, potentially influencing tumor
immunogenicity and treatment response (Figure 8E).

Analysis of immune regulatory genes, TMB,
MSI, and immune checkpoints related to
R3HDM4 in KIRC

To investigate R3HDM4’s role in KIRC immune-related
processes, correlation analyses were conducted between R3HDM4
expression and immune-related genes, which identified significant
associations with multiple immune gene categories in KIRC.
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fication). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. CpG,
arcinoma; TCGA, The Cancer Genome Atlas; TNM, Tumor-Node-

Heatmap visualization showed strong positive correlations between
R3HDM4 and chemokines (e.g., CCL15, CXCL12), immune
checkpoint molecules (including PD-1, CTLA4), and major
histocompatibility complex (MHC) genes (Figure 9A). Notably,
R3HDM4 exhibited the strongest correlation with IGSF8, followed
by ITPRIPLI, CD274 (PD-L1), CTLA4, LAG3, and TIGIT
(Figure 9B). R3HDM4 expression also positively correlated with
genomic instability markers (MSI, TMB), suggesting a potential
link to tumor immunogenicity (Figure 9C). To validate these
associations, comprehensive correlation analyses were performed
between R3HDM4 and 137 immune modulators across five
functional categories (antigen presentation molecules, chemokines,
inhibitory checkpoints, stimulatory checkpoints, immune receptors)
using six independent datasets (TCGA-KIRC, ICGC_EU,
GSE167573, GSE22541, E-MTAB-1980, GSE29609) (Figure 9D).
Consistent positive correlations with immunosuppressive
checkpoints were observed, with TGFB1 showing the strongest
association, followed by LGALS9 and LAG3. The consistent
enrichment of these associations across multiple datasets reinforces
findings reliability, indicating RSHDM4 significantly influences the
immune landscape in the KIRC tumor microenvironment.
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R3HDM4 expression associates with
immunotherapy response and drug

sensitivity in KIRC

To investigate RBHDM4 expression-drug sensitivity/resistance
in KIRC, correlation analyses were performed using PRISM,

Frontiers in Immunology

GDSC1, CTRP, GDSC2 pharmacogenomic databases, integrating
transcriptomic and drug response data from KIRC cell lines

(Figure 10). In PRISM, higher R3HDM4 correlated positively
with resistance to deoxycytidine-propanate, hydrocortisone-

12

valerate, prednisone-hemisuccinate, and negatively with
maprotiline, LY3023414, uracil-(+), ethynodiol-diacetate,
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Single-cell RNA sequencing analysis of RSHDM4 expression in KIRC. (A) UMAP projection of scRNA-seq data colored by annotated cell types,
including cancer (cycling/programl/program?2), endothelial, fibroblast, mast cell, monocyte, myeloid, NK cell, plasma, dendritic cell, T cell, TAM,
Treg, and undefined cells. (B) UMAP projection colored by R3HDM4 expression levels. (C) Bar plot of median normalized RZHDM4 expression across
cell types. (D) UMAP projection stratified by gender. (E) UMAP projection stratified by cancer subtype. (F) UMAP projection stratified by sample
location. (G) UMAP projection stratified by tumor stage. (H) UMAP projection stratified by treatment status (no UCB: blue, UCB: red). (I) Bar plot of
cell type proportions in the dataset. (J) Heatmap depicting the expression of G1/S and G2/M cell cycle genes across annotated cell types. UMAP,
Uniform Manifold Approximation and Projection; R3HDM4, R3H domain containing 4; CD4T_conv, Conventional CD4+ T cells; CD8T_typical,
Typical CD8+ T cells; CD8T_exhausted, Exhausted CD8+ T cells; T_prolif, Proliferating T cells; Treg, Regulatory T cells; NK_cell, Natural Killer cell;
B_cell, B lymphocyte; Mono/Macro, Monocyte/Macrophage; KIRC, Renal Clear Cell Carcinoma; CC, Cholangiocarcinoma; G1/S, G1/S phase

transition genes; G2/M, G2/M phase transition genes.

indicating a dual role in chemotherapeutic response modulation
(Figure 10A). In GDSC1, strong positive associations were observed
with cisplatin, cetuximab, erlotinib resistance, and negative
correlations with refametinib, CI-1040, tretinoin sensitivity,
suggesting mechanisms involving DNA damage repair and EGFR
signaling (Figure 10B). In CTRP/GDSC2, similar patterns emerged:
positive correlations with TAF1-5496, Acetalax-1804, IGF1R-3801,
JAK-8517 resistance, and negative correlations with AZD8186,
Selumetinib, Trametinib sensitivity. Collectively, R3HDM4 may
confer resistance to platinum-based/anti-EGFR therapies while
enhancing sensitivity to MEK/ERK and proteasome inhibitors in
KIRC (Figures 10C, D). Supporting these, Kaplan-Meier PFS
analysis of Chao cohort (2020) KIRC patients treated with anti-
PD-1/PD-L1 immunotherapy showed significantly longer median
PES (=1 year extension) in high vs. low R3HDM4 expression
patients (Figure 10E). These findings identify R3HDM4 as a
potential biomarker for predicting ICB response and guiding
personalized therapy in KIRC.

Frontiers in Immunology 13

Downregulation of R3HDM4 attenuated
proliferation, migration, and invasion in
KIRC cells

To elucidate RSHDM4’s biological function in KIRC progression,
in vitro studies were performed in R3HDM4-knockdown 768-O cells.
Four R3HDM4-targeting siRNAs were transfected, and effective
R3HDM4 silencing was verified by Western blot and quantitative
PCR, with significant differences observed versus untreated and si-
NC-treated controls (Figures 11A, B). Following comprehensive
assessment, the most effective si-R3HDM4-4 was selected for
subsequent functional assays. CCK-8 assay showed R3HDM4
depletion significantly impaired 768-O cell proliferation
(Figure 11C), while transwell assays demonstrated R3ZHDM4
silencing notably reduced cancer cell migration and invasion
(Figure 11D). Given EMT’s established role in cancer metastasis,
key EMT markers were analyzed; EMT is characterized by decreased
epithelial markers (e.g., E-cadherin), increased mesenchymal markers

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

10.3389/fimmu.2025.1722358

Correlations between

R3HDM4 and Immune cells

aDC

Beels

Teels

Cytotoxic cells

DC
Eosinophils
iDC

Macrog

“p<00s

Mast cells

trophils

Cor

NK CDSBoright cells [¥]
NK i

w0
W

NK cells

00

-05

Ko

Tosls
T helper cells
Tem

3
1Y
?%

A

S
SES
‘?"ae c°

Enrichment score of aDC

Proportion (%)
]

il
 cals CO4 memory estng

 calls CD4 mmory a
 calls folcar haper

 cells requiatory Tregs
el gamm deta

Plasma cll
Teals con
T oels CO4 nave

R3|

w
R3HDM4

SEAESIRUE SR f e

High

R3HDM4

Eosiopnis
Neurophis

L
[T —
e et ety

Y pt—
Monooyas [a———
acopnages 0 | st cots esing

oot [ st ot acvaes

HDM4

NK CDS6bright cells.
cells

Th cells

pDC

NK cells

NK CDS6dim cells
TFH

DC

TReg

CD8 T cells
Cytotoxic cells
aDC

ioc

Mast cells
em
Macrophages
Tod

T cells
Neutrophils
Eosinophils

T helper cells o—
Th17 cells { @———|

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

——|
—=e
—e
—
—o
—e
—o
—e
—
—o
—
—e
=
e
Lo

Tom 40——

-02 -0.1 0,

0 01 02 03

Correlation

FIGURE 8

ESTIMATEScore

ImmuneScore
tromalScore

B_cells
Macrophages_M1
Tregs.
T_cells_CD8
T_cells_CD4

Monocyte:
Macrophages_M2.
irophils

-
i
= b
i

NK_cells |
Ped | ]

CAFs
Endothelial
CD4_Teells
Beells
Macrophages
D8, Tosls
ells

T_oele_reguitary_(Tregs
irophils

ool raive

Mast_cells_aciivated
T_cells_CD4_memory_activated

ophils
Denditc collo Tostng
Is_resting

ma_cells

Dendritic_¢ ceus anl\valed

7 callsCD4_mematy 1oaing
Mast_cells_resting

T_cells_gamma_delta

NKT

Pericytes | I
MSC

Eosinophiss
Keratinocytes
‘Sebocytes|
Epithelial_cells
Astrocytes,

er
Mesangial_cells
Neutrophils

Megakaryocytes
Basophic
ce4
fioin

Helanopyes

Skeletal_r musda

GP.
pro_B-cells
chiP
Myocytes
Neurons
Hepatocytes
Thi_cells
Ostedblast
Macrophages_M2.
e

o6
Memory._B-cells

Flroblasts

Wacrophages, | W
Tgd_cells
naive_B~cells
Macrophages
cLp

T-cells
Class-swithec mamory B el

CDs_alve_T- o
Dt Tom

my_E Emiomeua\ oells
thelial_cells
y_Endatnlal oote

cmo_memary_r—oeus
‘Smooth_muscle
HSC!

T_cels_regulatory_(Tregs)
ftrophils
Dendriio_cells_activated
cells

osinophils
Denditic_c cebe - resting
cels_naive:

ocytes

T_call CD4_memary_testng|

7_cels_olicuar heper
Niacrophades. i1
Mast_cells_resting|

|

| =

Algorithms
I CIBERSORT

| |

T_oells_gamma_delta

Fibroisss
ool
fonocytic

Mye\owd dendrmc oells

Cytotoxic_lymphocytes
Endoiaial cals
B_lineage
_celis
Neutrophis
CDB_T_cells
T_oell_CD4.
Neusophi

Macmohsge
D8,

.JE

GSE22541
E_MTAB_1980

1CGC_EU
GSE167573
GSE29609

TCGA_KIRC

Integrative analysis of the correlation between R3HDM4 expression and tumor microenvironment immune cells in KIRC. (A) Correlation between
R3HDM4 expression and immune cells across 33 cancer types. (B) Enrichment score of activated dendritic cells in patients with KIRC stratified by
R3HDM4 expression (Low vs. High). (C) Comparison of immune cell proportions stratified by R3HDM4 expression levels (Low vs. High) in TCGA-KIRC.
(D) Correlation between R3HDM4 expression and immune infiltration in KIRC using the ssGSEA algorithm. (E) Correlation between R3HDM4 expression
and immune infiltration in KIRC across multiple immune infiltration tools and genomic datasets. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
CIBERSORT, cell-type identification by estimating relative subsets of RNA Transcripts; Cor, Pearson correlation coefficient; ESTIMATE, estimation of
stromal and immune cells in malignant tumor tissues using expression data; KIRC, Kidney Renal Clear Cell Carcinoma; Pval, p-value; TCGA, The Cancer

Genome Atlas; xCell, cell type enrichment analysis tool.

Frontiers in Immunology

14

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

10.3389/fimmu.2025.1722358

FIGURE 9

S
B

B

7%

“penos _
p<o0l L

00 01 02 03
Conclaion

g qapm 2 4 iar

Didgaddait G AL
eEH b e it

4 P

L Y R e

PigeniiDideagatiy

Hidaiir it

Gaterigidiiadid

AT

gl e

et Rl

SR EECrESP L L EWPICPPIEED: PRl

Lialiiagt ‘4:4,:, EM SEacH 124
Gigidiigd it ottt iiia TRl
4.4 A AR Errtirss
LAY P g S PP S G T M T DT T G gy

B R P BWE Rk S

tEie s : P
il e A 4 4

S A Pt L PP AL

45 AGaioa i dn AT 0] Ta Al
Bttt ad e R
EOEEE z==szsz;*z;;4§;z;;'4f=;;;s;j‘;:-4 e
zhaar e i IR ]
STt aigiitaad el
o bty Pt *3‘:‘13 14343 :i:: g:
il
HALiie e, it 0 28 M R
F.':ﬂ‘?:.:“;‘::: ..4-*93;4‘%; .éa‘ﬁ;ij‘,‘? T
PiEer kY e A ET Ai SEEPr EE T M RE| i
LiianiiiALgi A 0 ia90a% A 44gas A
T Z.;;:.A;‘"j‘.j 41 aq *.344" 41
EERE P R Rl
Agel :44.4:1'3*.44*. 1%"jﬂ‘. A
g - TEOV iAdqt
A A

EERP RV LR - PR PR o s Py PR RS Eak K
Gigiiiiiiiaiiaisies fiaa 4g giizeia” M
e R | )
pn L agun ol s b ! . 404" 2
e :35.5 FiAdT A 3?4 ISTEEREE| (2
A T A G
i tiiladtidnt AT aagiA i it
42 <3 FEw e iia R AR
g = e e

el ! i <14 || sn
it 14
Rnagiit 24

P d s g B
ERCEENE P E
FiAsiiiaTeddias i
CERSREEERsEtss O

aperl o o e Ta e s aie i apapelare 5
iy RS Y i,

sl 2.4:2‘1“ Ligat 4 A L L4
:::::*.:::'..4*::%:”:*: atadqdaagyiiad g

it iiiiiiai el il e gt e tea 41 R
SOOI NNRAY

X

-
S "*;g» 3 S

cormelaion coeficient

“10-05 00 05 10
paluc.

HC
@ immunoinibitor
© Immunostimulator

I —

[ —

2

z
T3
S
N .

=
3
A
2

]

-

[ ]
o
|

|

o
2
8

n

xo
88
m

cxacL1
oxeLa,
Ters1
LGALS9
Lacs|

cD27
TNFRSF138.

g
£

TNFRSF14

o
8

BEm
-
| |
m

253
988
253

COR
OXCR1 |
CxCR2
XGRS | N |

‘CGRs|
CCRe|
CXGR6
cCR2| o

XSGR

Gcrio
CeRs|
XCRI

OXCR3

cci | ]
Srpocsg
BEERES
80050

u

Integrated analysis of associations between R3HDM4 expression and immune-related genes. (A) Associations of R3HDM4 expression with TMB and
MSI in KIRC. (B) Analysis of the relationship between R3HDM4 expression and immune checkpoints in KIRC. (C) Pan-cancer associations between
R3HDM4 expression and immune-related genes. (D) Associations between R3HDM4 expression and immune-related genes in KIRC across multiple
immune infiltration tools and genomic datasets. *P < 0.05, **P < 0.01, ***P < 0.001. KIRC, Kidney Renal Clear Cell Carcinoma; Pearson, Pearson
correlation coefficient; Cor, Correlation coefficient.

(e.g., vimentin) and matrix metalloproteinases (MMP-2, MMP-9),

which collectively enhance cellular motility and invasiveness in vitro
(37-39). Western blot analysis revealed R3HDM4 knockdown
significantly upregulated E-cadherin and downregulated vimentin,
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MMP-2, and MMP-9 (Figures 12A-E). These findings confirm
R3HDM4 promotes KIRC progression by regulating EMT-related
signaling pathways that control neoplastic cell proliferation and

metastatic potential
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R3HDM4 silencing upregulated IGSF8
protein expression in KIRC cells

This study further systematically examined the associations
between R3HDM4 expression patterns and immune cell infiltration
characteristics in the tumor microenvironment. Analyses identified
significant positive correlations between R3HDM4 and key
immunosuppressive checkpoint molecules, with a strong positive
correlation between R3HDM4 and IGSF8. To validate this
functional association, siRNA-mediated R3HDM4 knockdown
was performed in 768-O cells; Western blot (Figures 12A, F)
showed R3HDM4 silencing (si-R3HDM4-4) significantly
upregulated IGSF8 protein vs. CTRL and si-NC groups.
Densitometric quantification confirmed a negative regulatory
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relationship between R3HDM4 and IGSF8 at the protein level,
which contrasts with the strong transcriptomic positive correlation
from prior bioinformatic analysis, suggesting a potential post-
transcriptional or post-translational regulatory mechanism.

Discussion

KIRC is the most common renal malignancy subtype. While
VEGF-targeted TKIs and ICIs significantly improve advanced
patient survival, key challenges (immunotherapy resistance,
intratumoral heterogeneity, lack of reliable biomarkers) still limit
long-term efficacy ) (2, 3, 13). This highlights the urgent need for
novel molecular drivers linking tumor cell-intrinsic behaviors

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

10.3389/fimmu.2025.1722358

A B NN TS
134 X X (5
2 & O rb?‘&\ %Y\O“\ﬁ\"o\\ 5\"0\&
_ & ¢ S L 2 —
* = RIHDMA (D . —— o e *

GAPDH

Relative R3HDM4 mRNA expression

Si-NC

S-R3HDM4-1 s-R3HDM4-2 s-R3HDM4-3 s-R3HDM4-4

D

CTRL

CCK8
114 -
1.04
£
3091  CTRL
< * siNC
= * s-R3HDM4-4
3 08
Invasion
07
n
06
Oh 24h 48h
FIGURE 11

o - -

o

B

Relative R3HDM4 protein expression
o
o

CTRL si-NC

S-R3HDM4-1 s-R3HDM4-2 si-R3HDM4-3 si-R3HDM4-4

si-NC si-R3HDM4-4

Migrated cells

CTRL  SiNC  s-R3HDM4-4

Invaded cells

CTRL

SINC  RIHDM4-4

R3HDM4 silencing inhibits renal clear cell carcinoma cell proliferation, migration, and invasion in 786-O cells. (A) Validation of RBHDM4 mRNA
knockdown efficiency in 786-0 cells. (B) Validation of RZHDM4 protein knockdown efficiency in 786-O cells (representative Western blot included).
(C) Cell viability of 786-0 cells with R3HDM4 silencing assessed by CCK-8 assay. (D) Migration and invasion of 786-0 cells with R3HDM4 silencing
(representative images and quantification).*P < 0.05, **P < 0.01, ***P < 0.001. CTRL, control untreated; si-NC, negative control siRNA; si-R3HDM4,

R3HDM4-targeting siRNA.

(proliferation, metastasis) with TME remodeling, as such targets
serve as biomarkers and therapeutic vulnerabilities. R3HDM4,
encoding an R3H domain-containing RNA metabolism protein, is
poorly characterized in cancers with no prior KIRC studies (20, 21).
Prompted by this, we investigated R3BHDM4’s expression, function,
and clinical significance in KIRC using multi-omics datasets, in
vitro experiments, and clinical correlation analyses. Pan-cancer
analysis showed R3HDM4 upregulation in solid tumors
(including KIRC) vs. normal tissues, with downregulation only in
DLBC, mirroring tissue-specific dysregulation of cancer drivers and
suggesting oncogenic potential. In KIRC, consistent R3HDM4
upregulation across datasets correlated with advanced stages and
higher grades, similar to known drivers BUB1B and EMX2 in vitro
(16, 17). R3BHDM4’s association with KIRC aggressiveness extends
beyond BUBIB (cell cycle-related) and EMX2 (tissue-specific),
linking to both stage and grade. Renal cancer cell lines showed
variable RSHDM4 expression (high in 786-O; low in KMRC-1),
reflecting KIRC molecular diversity and supporting its potential as a
subtype-specific malignancy marker.

To validate bioinformatics findings, in vitro experiments
confirmed higher R3HDM4 protein levels in KIRC via IHC and
qRT-PCR/Western blot (786-O, HEK-293T cells). This multi-
method approach addressed early cancer gene research
limitations of relying solely on transcriptomic data, as post-
transcriptional regulation causes mRNA-protein discrepancies
that limited clinical utility of previous KIRC biomarkers.

Frontiers in Immunology

R3HDM4 was a clinically relevant prognostic marker: pan-cancer
Cox regression linked its high expression to poor OS in KIRC,
LAML, LGG; Kaplan-Meier analysis and time-dependent ROC
supported its KIRC prognostic value. Multivariate analysis
confirmed it as an independent prognostic factor unaffected by
stage/grade, with external validation in independent cohorts
ensuring reliability and resolving insufficient validation in prior
KIRC biomarker studies in vitro.

Weak inverse overall R3AHDM4 methylation-expression
correlation was observed in analyzing epigenetic mechanisms of
its KIRC upregulation via DNA methylation. Site-specific analysis
revealed varied CpG methylation patterns, with some
hypermethylated and others hypomethylated; CNVs correlated
with distinct methylation patterns, suggesting genomic-epigenetic
interaction. These findings align with prior KIRC epigenetic
research (exemplified by VHL) showing gene expression regulated
by multiple loci and genomic features. Our study highlights
R3HDM4 expression controlled by complex methylation-CNV
interactions, providing new insights into KIRC gene regulation.

Functional enrichment analyses linked R3HDM4 to metabolic
reprogramming, EMT, and immune pathways in KIRC progression.
R3HDM4 was an upstream regulator of metabolic reprogramming,
differing from previous studies focusing on downstream enzymes;
its EMT association supported in vitro findings, while PPI networks
showed interactions with mitochondrial/ DNA repair proteins,
implying roles in therapy resistance and metabolic adaptation.
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This highlighted R3BHDM4’s broad regulatory influence, distinct
from specific drivers like BUB1B.

scRNA-seq revealed R3BHDM4’s predominant expression in
cancer cell clusters, especially cycling/metastatic subsets, with low
expression in immune/stromal cells; unlike bulk RNA-seq
averaging signals, scRNA-seq pinpointed its cancer cell-specific
pro-tumor effects and indirect TME influence. Elevated RAHDM4
was detected in metastatic cells, Stage IV tumors, and ICI-treated
cohorts, linking it to aggressive KIRC phenotypes and potential
immunotherapy response. These findings extend prior scRNA-seq
studies by identifying cancer cell-enriched genes with prognostic
and therapeutic implications.

R3HDM4 expression correlated context-dependently with
immune cell infiltration: positive with NK CD56bright cells, M1
macrophages et al. and negative with Tcm, Th17 cells. These align
with NK/M1 anti-tumor roles, while Tecm (long-term immune
memory) negative correlation explains R3HDM4’s poor
prognostic link despite anti-tumor subset associations. Validated
across six platforms (EPIC et al.) and six cohorts, the results
distinguish our study from single-platform/small-cohort studies,
indicating R3HDM4 regulates KIRC TME—seldom reported for
RNA metabolism-related genes. R3HDM4’s immunomodulatory
role was clarified via correlations with immune regulatory genes
(CCL15, PD-1 et al.), MHC genes, IGSF8 (immune adhesion/tumor
immunity), TMB, and MSI (genomic instability/ICI response
markers). Consistent correlations position it as a potential TMB/
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MSI surrogate (9, 11). KM analysis of Chao (2020) cohort showed
elevated R3HDM4 associated with improved PFS in ICI-treated
KIRC patients, supporting its utility as a complementary predictive
biomarker for immunotherapy patient stratification.

Pharmacogenomic analyses demonstrated RIHDM4 expression
correlates with drug sensitivity: positive correlations with platinum-
based (cisplatin) and anti-EGFR (cetuximab) therapy resistance,
and negative correlations with MEK/ERK inhibitor (refametinib,
selumetinib) sensitivity. These results align with established
platinum resistance mechanisms and MEK/ERK pathway
activation in KIRC. R3HDM4 was identified as a potential
treatment selection biomarker, addressing the limitation of
lacking biomarkers for MEK inhibitor-responsive KIRC patients;
our data suggest its expression enables personalized MEK inhibitor
application in high R3HDM4-expressing patients.

In vitro assays confirmed R3HDM4’s pro-tumorigenic role.
siRNA knockdown of R3HDM4 in 768-O cells significantly
reduced proliferation and migratory/invasive capacities, with
EMT phenotype reversal marked by E-cadherin upregulation and
vimentin et al. downregulation. This supports the EMT-KIRC
metastasis link and identifies R3HDM4 as a novel upstream
pathway regulator. Unlike traditional EMT drivers (Snail, Twist)
that directly repress E-cadherin transcription, RSHDM4’s RNA
metabolism role suggests post-transcriptional EMT regulation,
potentially via EMT marker mRNA stability modulation. This
novel KIRC pathway merits further investigation.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

Notably, R3HDM4 and IGSF8 exhibit regulatory interaction.
Transcriptomic data showed strong positive correlation between
them, yet R3HDM4 knockdown significantly upregulated IGSF8
protein expression, indicating inverse post-transcriptional/post-
translational regulation. This discrepancy supports R3HDM4’s
RNA metabolism function, leading to hypotheses such as
repressed IGSF8 mRNA translation or facilitated degradation via
R3HDM4-mediated microRNA/RNA-binding protein interactions,
(19, 20). No prior studies reported R3HDM4-IGSF8 functional
association in cancer, highlighting this novel regulatory axis that
may influence KIRC immunomodulatory phenotypes.

In conclusion, this study identified R3HDM4 as a novel
oncogenic driver in KIRC, with roles including promoting tumor
proliferation and metastasis through EMT regulation, modulating
TME composition and immune checkpoint expression, correlating
with TMB/MSI and ICI response, and predicting sensitivity to
MEK/ERK inhibitors. These findings fill significant gaps in the
current understanding of R3HDM4's function in cancer and KIRC
biology, while highlighting its potential as a prognostic biomarker
independent of cancer stage and as a predictive marker for
personalized therapy.

This study's limitations include using only one KIRC cell line
(786-0) and normal renal cells (HEK-293T) in vitro, highlighting
the need for in vivo validation with patient-derived xenografts and
other KIRC models. The small IHC cohort suggests the need for
larger multi-center studies to confirm clinical correlations. Further
investigation is needed into the molecular mechanisms of
R3HDM4's regulation of IGSF8 and EMT, especially post-
transcriptional pathways. Despite these limitations, R3HDM4
shows promise for clinical translation, potentially addressing
therapy resistance and improving personalized treatments for
KIRC patients.

Data availability statement

The data presented in the study are retrieved from public
repositories, including the TCGA repository (https://portal.gdc.
cancer.gov/, accession: TCGA-KIRC), GTEx repository (http://
gtexportal.org/), GEO repository (https://www.ncbi.nlm.nih.gov/
geo/, accessions: GSE167573, GSE22541 and GSE29609), the
ICGC portal (https://dcc.icgc.org/) and ArrayExpress repository
(https://www.ebi.ac.uk/arrayexpress/),accession: E_TABM_1980).

Ethics statement

The studies involving humans were approved by the Ethics
Committee of Ganzhou Cancer Hospital. The studies were
conducted in accordance with the local legislation and
institutional requirements. The ethics committee/institutional
review board waived the requirement of written informed consent
for participation from the participants or the participants' legal
guardians/next of kin because This retrospective study utilized
archived pathological specimens and anonymized clinical data

Frontiers in Immunology

19

10.3389/fimmu.2025.1722358

collected during routine medical care. As the samples were
obtained prior to the study design and could not be linked to
individual patients through coded identifiers, the requirement for
written informed consent was waived by the institutional ethics
review board under the principle of minimal risk to participants and
public benefit from secondary research use of existing data.

Author contributions

KS: Funding acquisition, Supervision, Writing — original draft,
Writing - review & editing, Investigation, Software, Resources,
Data curation, Project administration, Formal analysis,
Validation, Conceptualization, Visualization, Methodology. RL:
Data curation, Conceptualization, Formal analysis, Writing -
review & editing. TX: Writing - review & editing, Methodology,
Funding acquisition, Investigation. SW: Project administration,
Software, Writing - review & editing, Resources. DX: Writing -
review & editing, Supervision, Visualization, Validation. KW:
Writing - review & editing, Conceptualization, Validation,
Writing - original draft, Supervision, Visualization.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article.This work was supported
by the Science and Technology Combined with Healthcare Special
Program of Ganzhou (2025YLCEO0173) and the Science and
Technology Development Planning Project of Ganzhou
(GZWIW202502271).

Acknowledgments

This work was supported by the Science and Technology
Combined with Healthcare Special Program of Ganzhou
(2025YLCE0173) and the Science and Technology Development
Planning Project of Ganzhou (GZWJW202502271).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure

frontiersin.org


https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://gtexportal.org/
http://gtexportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/
https://www.ebi.ac.uk/arrayexpress/
https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

accuracy, including review by the authors wherever possible. If you
identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product

References

1. Quinn AE, Bell SD, Marrah AJ, Wakefield MR, Fang Y. The current state of the
diagnoses and treatments for clear cell renal cell carcinoma. Cancers (Basel). (2024) 16
(23):4034. doi: 10.3390/cancers16234034

2. Rose TL, Kim WY. Renal cell carcinoma: A review. JAMA. (2024) 332:1001-10.
doi: 10.1001/jama.2024.12848

3. Young M, Jackson-Spence F, Beltran L, Day E, Suarez C, Bex A, et al. Renal cell
carcinoma. Lancet. (2024) 404:476-91. doi: 10.1016/S0140-6736(24)00917-6

4. Chen YW, Wang L, Panian ], Dhanji S, Derweesh I, Rose B, et al. Treatment
landscape of renal cell carcinoma. Curr Treat Options Oncol. (2023) 24:1889-916.
doi: 10.1007/s11864-023-01161-5

5. Wang Y, Suarez ER, Kastrunes G, de Campos N, Abbas R, Pivetta RS, et al.
Evolution of cell therapy for renal cell carcinoma. Mol Cancer. (2024) 23:8.
doi: 10.1186/s12943-023-01911-x

6. Kase AM, George DJ, Ramalingam S. Clear cell renal cell carcinoma: from biology
to treatment. Cancers (Basel). (2023) 15(3):665. doi: 10.3390/cancers15030665

7. Kumbla RA, Figlin RA, Posadas EM. Recent advances in the medical treatment of
recurrent or metastatic renal cell cancer. Drugs. (2017) 77:17-28. doi: 10.1007/540265-
016-0665-1

8. Bedke J, Albiges L, Capitanio U, Giles RH, Hora M, Lam TB, et al. The 2021
updated european association of urology guidelines on renal cell carcinoma: immune
checkpoint inhibitor-based combination therapies for treatment-naive metastatic clear-
cell renal cell carcinoma are standard of care. Eur Urol. (2021) 80:393-7. doi: 10.1016/
j.eururo.2021.04.042

9. Albiges L, Powles T, Stachler M, Bensalah K, Giles RH, Hora M, et al. Updated
european association of urology guidelines on renal cell carcinoma: immune
checkpoint inhibition is the new backbone in first-line treatment of metastatic clear-
cell renal cell carcinoma. Eur Urol. (2019) 76:151-6. doi: 10.1016/j.eururo.2019.05.022

10. Grigolo S, Filgueira L. Immunotherapy of clear-cell renal-cell carcinoma.
Cancers (Basel). (2024) 16(11):2092. doi: 10.3390/cancers16112092

11. Liu YF, Zhang ZC, Wang SY, Fu SQ, Cheng XF, Chen R, et al. Immune checkpoint
inhibitor-based therapy for advanced clear cell renal cell carcinoma: A narrative review.
Int Immunopharmacol. (2022) 110:108900. doi: 10.1016/j.intimp.2022.108900

12. Gulati S, Labaki C, Karachaliou GS, Choueiri TK, Zhang T. First-line treatments
for metastatic clear cell renal cell carcinoma: an ever-enlarging landscape. Oncologist.
(2022) 27:125-34. doi: 10.1093/oncolo/oyab056

13. Atkins MB, Tannir NM. Current and emerging therapies for first-line treatment
of metastatic clear cell renal cell carcinoma. Cancer Treat Rev. (2018) 70:127-37.
doi: 10.1016/j.ctrv.2018.07.009

14. Ge W, Song S, Qi X, Chen F, Che X, Sun Y, et al. Review and prospect of immune
checkpoint blockade therapy represented by PD-1/PD-L1 in the treatment of clear cell
renal cell carcinoma. Oncol Res. (2023) 31:255-70. doi: 10.32604/0r.2023.027942

15. Abah MO, Ogenyi DO, Zhilenkova AV, Essogmo FE, Ngaha Tchawe YS,
Uchendu IK, et al. Innovative therapies targeting drug-resistant biomarkers in
metastatic clear cell renal cell carcinoma (ccRCC). Int ] Mol Sci. (2024) 26(1):265.
doi: 10.3390/ijms26010265

16. Zhou X, Dong S, Zhou Y, He Z, Zhang Z, Liao L, et al. EMX2 inhibits clear cell
renal cell carcinoma progress via modulating Akt/FOXO3a pathway. Mol Carcinog.
(2024) 63:951-61. doi: 10.1002/mc.23700

17. ElHafi M, Bouzian Y, Parvizi N, Kim W, Subasioglu M, Ozcan M, et al. Synthesis
and biological assessment of BUB1B inhibitors for the treatment of clear cell renal cell
carcinoma. Eur | Med Chem. (2025) 285:117247. doi: 10.1016/j.ejmech.2025.117247

18. Choi SH, Chen YW, Panian J, Yuen K, McKay RR. Emerging innovative
treatment strategies for advanced clear cell renal cell carcinoma. Oncologist. (2025)
30(3):0yae276. doi: 10.1093/oncolo/oyae276

Frontiers in Immunology

10.3389/fimmu.2025.1722358

that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.
1722358/full#supplementary-material

19. Liepinsh E, Leonchiks A, Sharipo A, Guignard L, Otting G. Solution structure of
the R3H domain from human Smubp-2. ] Mol Biol. (2003) 326:217-23. doi: 10.1016/
$0022-2836(02)01381-5

20. Ciesla M, Turowski TW, Nowotny M, Tollervey D, Boguta M. The expression of
Rpbl10, a small subunit common to RNA polymerases, is modulated by the R3H
domain-containing Rbsl protein and the Upfl helicase. Nucleic Acids Res. (2020)
48:12252-68. doi: 10.1093/nar/gkaal069

21. Liu WF, Zhang A, He GJ, Yan YB. The R3H domain stabilizes poly(A)-specific
ribonuclease by stabilizing the RRM domain. Biochem Biophys Res Commun. (2007)
360:846-51. doi: 10.1016/j.bbrc.2007.06.139

22. Erdogan-Yildirim Z, Carlson JC, Krishnan M, Zhang JZ, Lambert-Messerlian
G, Naseri T, et al. A genome-wide association study of anti-miillerian hormone
(AMH) levels in Samoan women. Genes (Basel). (2025) 16(7):793. doi: 10.3390/
genes16070793

23. Goldman M]J, Craft B, Hastie M, Repecka K, McDade F, Kamath A, et al.
Visualizing and interpreting cancer genomics data via the Xena platform. Nat
Biotechnol. (2020) 38:675-8. doi: 10.1038/s41587-020-0546-8

24. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. (2013)
41:D991-5. doi: 10.1093/nar/gks1193

25. Liu S, Wang Z, Zhu R, Wang F, Cheng Y, Liu Y. Three differential expression
analysis methods for RNA sequencing: limma, edgeR, DESeq2. ] Vis Exp. (2021) 175.
doi: 10.3791/62528

26. Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve
analysis in medical research: current methods and applications. BMC Med Res
Methodol. (2017) 17:53. doi: 10.1186/s12874-017-0332-6

27. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. (2000) 28:27-30. doi: 10.1093/nar/28.1.27

28. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and
still GOing strong. Nucleic Acids Res. (2019) 47:D330-330D338. doi: 10.1093/nar/
gky1055

29. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal

enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

30. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
STRING v11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Res. (2019) 47:D607-607D613. doi: 10.1093/nar/gky1131

31. Xiong Z, Yang F, Li M, Ma Y, Zhao W, Wang G, et al. EWAS Open Platform:
integrated data, knowledge and toolkit for epigenome-wide association study. Nucleic
Acids Res. (2022) 50:D1004-1004D1009. doi: 10.1093/nar/gkab972

32. Li Y, Ge D, Lu C. The SMART App: an interactive web application for
comprehensive DNA methylation analysis and visualization. Epigenet Chromatin.
(2019) 12:71. doi: 10.1186/s13072-019-0316-3

33. Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J, et al. TISCH2: expanded datasets
and new tools for single-cell transcriptome analyses of the tumor microenvironment.
Nucleic Acids Res. (2023) 51:D1425-1425D1431. doi: 10.1093/nar/gkac959

34. Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, et al. Tumor and
immune reprogramming during immunotherapy in advanced renal cell carcinoma.
Cancer Cell. (2021) 39:649-61.e5. doi: 10.1016/j.ccell.2021.02.015

35. Chen Y, Feng Y, Yan F, Zhao Y, Zhao H, Guo Y. A novel immune-related gene
signature to identify the tumor microenvironment and prognose disease among patients

with oral squamous cell carcinoma patients using ssGSEA: A bioinformatics and biological
validation study. Front Immunol. (2022) 13:922195. doi: 10.3389/fimmu.2022.922195

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1722358/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1722358/full#supplementary-material
https://doi.org/10.3390/cancers16234034
https://doi.org/10.1001/jama.2024.12848
https://doi.org/10.1016/S0140-6736(24)00917-6
https://doi.org/10.1007/s11864-023-01161-5
https://doi.org/10.1186/s12943-023-01911-x
https://doi.org/10.3390/cancers15030665
https://doi.org/10.1007/s40265-016-0665-1
https://doi.org/10.1007/s40265-016-0665-1
https://doi.org/10.1016/j.eururo.2021.04.042
https://doi.org/10.1016/j.eururo.2021.04.042
https://doi.org/10.1016/j.eururo.2019.05.022
https://doi.org/10.3390/cancers16112092
https://doi.org/10.1016/j.intimp.2022.108900
https://doi.org/10.1093/oncolo/oyab056
https://doi.org/10.1016/j.ctrv.2018.07.009
https://doi.org/10.32604/or.2023.027942
https://doi.org/10.3390/ijms26010265
https://doi.org/10.1002/mc.23700
https://doi.org/10.1016/j.ejmech.2025.117247
https://doi.org/10.1093/oncolo/oyae276
https://doi.org/10.1016/s0022-2836(02)01381-5
https://doi.org/10.1016/s0022-2836(02)01381-5
https://doi.org/10.1093/nar/gkaa1069
https://doi.org/10.1016/j.bbrc.2007.06.139
https://doi.org/10.3390/genes16070793
https://doi.org/10.3390/genes16070793
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.3791/62528
https://doi.org/10.1186/s12874-017-0332-6
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkab972
https://doi.org/10.1186/s13072-019-0316-3
https://doi.org/10.1093/nar/gkac959
https://doi.org/10.1016/j.ccell.2021.02.015
https://doi.org/10.3389/fimmu.2022.922195
https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

36. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One.
(2014) 9:¢107468. doi: 10.1371/journal.pone.0107468

37. Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in
cancer invasion and metastasis. J Cell Sci. (2013) 126:393-401. doi: 10.1242/jcs.100115

Frontiers in Immunology

21

10.3389/fimmu.2025.1722358

38. Gupta S, Maitra A. EMT: matter of life or death. Cell. (2016) 164:840-2.
doi: 10.1016/j.cell.2016.02.024

39. Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and
potential therapeutic targets in human cancer. J Clin Oncol. (2009) 27:5287-97.
doi: 10.1200/JC0O.2009.23.5556

frontiersin.org


https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1242/jcs.100115
https://doi.org/10.1016/j.cell.2016.02.024
https://doi.org/10.1200/JCO.2009.23.5556
https://doi.org/10.3389/fimmu.2025.1722358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

Glossary
R3HDM4
KIRC
AFP
TCGA
GEO
ICGC
IHC
AUC
CI
ROC
TPM
CC
CNV
SNV
WES
CpG
KIRC
TNM
ES
GSEA

CIBERSORT

Cor
ESTIMATE

xCell

Pearson

Cor

UMAP
CDA4T_conv
CDS8T_typical
CD8T_exhausted
T_prolif

Treg

NK_cell
B_cell
Mono/Macro
KIRC

CC

Gl/S

G2/M

R3H domain containing 4

Kidney Renal Clear Cell Carcinoma
Alpha-fetoprotein

The Cancer Genome Atlas

Gene Expression Omnibus

International Cancer Genome Consortium
immunohistochemistry

Area Under Curve

Confidence Interval

Receiver Operating Characteristic
Transcripts Per Million
Cholangiocarcinoma

Copy Number Variation

Single Nucleotide Variant

Whole Exome Sequencing
Cytosine-phosphate-Guanine dinucleotide
Renal Clear Cell Carcinoma
Tumor-Node-Metastasis staging system
Enrichment Score

Gene Set Enrichment Analysis

cell-type identification by estimating relative subsets of
RNA Transcripts

Pearson correlation coefficient

estimation of stromal and immune cells in malignant tumor
tissues using expression data

cell type enrichment analysis tool
Pearson correlation coefficient
Correlation coefficient

Uniform Manifold Approximation and Projection
Conventional CD4+ T cells
Typical CD8+ T cells

Exhausted CD8+ T cells
Proliferating T cells

Regulatory T cells

Natural Killer cell

B lymphocyte
Monocyte/Macrophage

Renal Clear Cell Carcinoma
Cholangiocarcinoma

G1/S phase transition genes

G2/M phase transition genes
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CTRP
PRISM
GDSC1/GDSC2
Anti-PD-1
Anti-CTLA-4
Log-rank
Number at risk
CTRL
si-NC
si-R3HDM4
E-cadherin
MMP-2/9
LUAD
LUSC

TMB

GTEx

oS

PES

DSS

ROC

AUCs
C-index
KM plotter
10D

EC

HR

siRNA

oD

GBM
GBMLGG
LGG

BRCA
KIRP
STAD
HNSC
KIRC
PAAD

TILs

TME

ICI
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Cancer Therapeutics Response Portal
Preclinical Repurposing of Medicines
Genomics of Drug Sensitivity in Cancer 1/2
Anti-Programmed Cell Death Protein 1
Anti-Cytotoxic T-Lymphocyte-Associated Protein 4
Log-rank test

Number of patients at risk at each time point
control untreated

negative control siRNA

R3HDM4-targeting siRNA

epithelial cadherin

matrix metalloproteinase-2/9

Lung adenocarcinoma

Lung squamous cell carcinoma

Tumor mutation burden;MSI, Microsatellite instability
Genotype-Tissue Expression databases
overall survival

progression-free survival

disease-specific survival

receiver operating characteristic

area under the curves

consistency index

Kaplan-Meier plotter

integrated optical density

fold-change

Hazard ratio

small interfering RNA

optical density

Glioblastoma

Glioblastoma and Lower Grade Glioma
Lower Grade Glioma

Breast Cancer

Kidney Papillary Cell Carcinoma

Stomach Adenocarcinoma

Head and Neck Squamous Cell Carcinoma
Kidney Renal Clear Cell Carcinoma
Pancreatic Adenocarcinoma
tumor-infiltrating lymphocytes

tumor microenvironment

Immune checkpoint inhibitors.
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