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Disc inflammation and
intercellular communication
in shaping the immune
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of intervertebral
disc degeneration
Mengcheng Wei* and Kanghua Zhu

Department of Pain, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University,
Wuhan, China
Background: Intervertebral disc degeneration (IDD) is a major cause of low back

pain, significantly affecting the quality of life of elderly individuals worldwide. Its

pathogenesis is complex, involving extracellular matrix degradation,

inflammatory responses, and immune regulation.

Methods: This study integrated multiple transcriptomic and single-cell RNA-seq

datasets, and systematically identified and validated key IDD-related genes and

their immune regulatory roles through differential gene analysis, GO/KEGG

enrichment, PPI network construction, ANN, LASSO, random forest, SVM-RFE,

SHAP, Mendelian Randomization, as well as immune cell infiltration and CellChat

analyses. The identified candidate genes were further validated experimentally

using Western blot, confirming their expression patterns and potential as

diagnostic biomarkers.

Results: By integrating bioinformatics with in vitro validation, this study identified

three key biomarkers associated with IDD: MMP9, HPGD, and UCHL1. SHAP

analysis demonstrated that these genes make significant contributions to the

diagnostic model, primarily participating in immune regulation and inflammatory

responses. Functional enrichment analysis indicated their involvement in

signaling pathways such as IL-17, TNF, and MAPK. Correlation and differential

analyses of immune cells showed that gd T cells exhibited significant changes

across all three genes, while other immune cell types, such as CD4⁺ T cells,

displayed differences in the remaining biomarkers. Single-cell analysis further

revealed that the MIF signaling pathway plays a key role in the interactions

between nucleus pulposus cells and immune cells.

Conclusion: These findings provide new insights into the molecular and immune

mechanisms of IDD and offer potential targets for diagnosis and therapy.
KEYWORDS

intervertebral disc degeneration, intercellular communication, machine learning,
artificial neural network, immune differences, biomarkers
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1 Introduction

Lower back pain (LBP) is a prevalent musculoskeletal disorder

and a major cause of disability among the elderly worldwide (1, 2).

Numerous studies have identified intervertebral disc degeneration

(IDD) as the primary pathological factor underlying LBP (3, 4). In

adults, the intervertebral disc (IVD) is an avascular tissue composed

of three distinct parts: the nucleus pulposus (NP) at the center, the

annulus fibrosus (AF) at the periphery, and the cartilaginous

endplates (CEP) on the top and bottom surfaces. Each region

contains specific cell populations with specialized functions. The

initiation and progression of IDD are driven by multiple factors,

including aging, oxidative stress, inflammation, and abnormal

mechanical loading. Hallmark pathological changes include NP

degeneration, AF rupture, and CEP calcification (5, 6). Despite

these observations, the precise molecular mechanisms underlying

disc degeneration remain unclear.

Epidemiological studies have shown that the prevalence of IDD

is increasing globally, making it an important public health issue

that imposes significant social and economic burdens (7). The

etiological mechanisms of IDD are highly complex, involving

genetic predisposition, immune-inflammatory responses,

extracellular matrix (ECM) metabolic imbalance, as well as

abnormalities in apoptosis and autophagy (8–10). For instance,

aberrant activation of matrix metalloproteinases (MMPs) and

cathepsins has been reported to promote ECM degradation and

disrupt NP collagen homeostasis, thereby accelerating disc

degeneration (11). In addition, infiltration of immune cells such

as macrophages and T lymphocytes can aggravate ECM breakdown

and cell death by releasing pro-inflammatory cytokines, including

TNF-a and IL-1b, thus further driving the progression of IDD (12).

Advances in high-throughput techniques and bioinformatics in

recent years have enabled differential expression analysis, WGCNA,

and machine learning to identify crucial genes and signaling

pathways linked to IDD (13). Building on this, the present study

integrates multiple bioinformatics strategies to systematically

elucidate the molecular mechanisms of IDD. Network

pharmacology combines computational modeling with

bioinformatics to establish drug–target and signaling networks,

thereby facilitating drug discovery and enhancing the precision of

therapeutic prediction (14). Mendelian randomization (MR) uses

genetic variants as instrumental variables to reduce confounding

and evaluate possible causal relationships between exposures and

diseases (15). Progress in high-throughput technologies and

bioinformatics has greatly advanced insights into intercellular

communication within pathological tissues. Machine learning

(ML) enables the analysis of large-scale, complex datasets and the

identification of latent biological patterns (16, 17); however, its

inherent “black-box” problem constrains its clinical translation

(18). To overcome this limitation, the SHapley Additive

exPlanations (SHAP) method, derived from game theory,

provides an interpretable approach that quantifies the influence of

individual features on model predictions (19, 20).

Our findings indicate that patients with IDD display distinct gene

expression profiles compared with healthy controls. These genes are
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predominantly enriched in inflammatory and immune regulatory

pathways, in line with earlier reports (21). Immune infiltration

analysis further highlighted dynamic shifts in immune cell

composition as a hallmark of IDD pathogenesis. We suggest that

aberrant gene expression may serve as a trigger for IDD, exerting its

effects on immune cells through various mechanisms and ultimately

driving marked alterations in their expression patterns and

proportions. First, dysregulated gene expression in IDD may lead

to inappropriate activation or inhibition of pathological signaling

pathways, causing substantial secretion of inflammatory factors.

Second, the heightened expression of these mediators interferes

with immune homeostasis (22). Ultimately, the dysregulated

immune response results in differential expression of immune cells

within the body (23). In conclusion, abnormal gene expression is

crucial to the onset and development of IDD. To clarify this

mechanism, we integrated multichip analysis, PPI network

construction, ANNs, and machine learning to screen key

differentially expressed genes. Subsequently, SHAP modeling and

eQTL-based MR analysis were applied to assess their diagnostic

relevance. We further examined immune cell correlations and

expression differences across cell subsets, and incorporated single-

cell sequencing to investigate intercellular communication within the

immune microenvironment, thereby revealing its role in

IDD progression.
2 Materials and methods

2.1 Data sources

We retrieved IDD–related datasets (GSE124272, GSE150408,

and GSE153761 ) f rom the GEO database (h t tp s : / /

www.ncbi .nlm.nih.gov/geo/) . These datasets included

transcriptomic profiles from 28 patients with IDD and 28 healthy

controls. In addition, we obtained single-cell transcriptomic data

from three IDD patients (GSM7831817, GSM7831818,

GSM7831819) in the GSE244889 dataset to investigate the cellular

composition and molecular characteristics of IDD tissues. The

detailed information of the datasets is provided in Supplementary

Table S1. Data preprocessing was carried out using R software

(version 4.3.1). To minimize batch effects and ensure comparability

between groups, we applied the “limma” (version 3.62.2),

“pheatmap” (version 1.0.12) and “ggplot2” (version 3.5.1)

packages. Differentially expressed genes (DEGs) were visualized

with heatmaps generated by “pheatmap” (version 1.0.12) and

volcano plots produced by “ggplot2”. All expression data were

log2-transformed prior to analysis to improve reliability.
2.2 Identification of differentially expressed
genes

After standardizing the dataset, we applied the SVA package to

correct for batch effects. Subsequently, principal component

analysis (PCA) was performed to evaluate the effectiveness of the
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standardization process. The “limma” R package was employed for

preprocessing gene expression data, followed by differential

expression analysis between breast cancer and control groups.

Genes with |log2FC| ≥ 1 and adjusted P ≤ 0.05 (Benjamini–

Hochberg) were considered DEGs.
2.3 KEGG and GO analysis

The “clusterProfiler” (version 4.14.4) R package was used for

GO and KEGG enrichment analyses to characterize the biological

functions and pathways linked to the DEGs.
2.4 Artificial neural network

ANNs are widely used for predictive modeling due to their

ability to capture nonlinear relationships in high-dimensional data.

A typical ANN consists of an input layer, hidden layer(s), and an

output layer, enabling efficient data processing and prediction (24).

In this study, correlation analysis was performed in R, and the

“neuralnet” (version 1.44.2) and “NeuralNetTools” (version 1.5.3)

packages were used for model construction and visualization.
2.5 Machine learning algorithms

LASSO analysis was performed using the glmnet package with 10-

fold cross-validation to optimize the penalty parameter, and the

random seed was set to 123 to ensure reproducibility. A multilayer

perceptron (MLP) neural network model was constructed using the

MLP Classifier from Scikit-learn and trained on the transposed gene

expression data. The model consisted of two hidden layers with 50 and

15 nodes, respectively, with a maximum of 1000 iterations, and the

random seed was fixed at 42 to ensure reproducibility. Support Vector

Machine Recursive Feature Elimination (SVM-RFE) was performed

using an SVMmodel with a radial basis function (RBF) kernel, with the

random seed set to 123. Gene features ranging from 2 to 40 were

screened via cross-validation, and the gene set corresponding to the

minimumRMSEwas selected. Additionally, the randomForest package

(version 4.7-1.4) was used to identify genes with an importance score

greater than 2, with the random seed set to 123456. Finally, the

intersection of results from LASSO, random forest (RF), SVM-RFE,

and neural network models was used to identify key marker genes in

IDD patients for further analysis and validation.
2.6 SHAP methodology

To enhance the interpretability of the machine learning models,

we employed the SHAP method, a game theory–based approach

that quantitatively evaluates the contribution of each feature to the

model’s predictions, thereby clarifying its positive or negative

impact on the outcomes. Based on the selected predictive factors,

we constructed ten machine learning models, including RLS, RF,
Frontiers in Immunology 03
DTS, SVM, logistic regression, KNN, XGBoost, GBM, neural

network, and GlmBoost. The optimal model was chosen as the

primary framework for this study. To improve interpretability,

SHAP were employed to evaluate feature contributions, offering

insights into potential biological mechanisms.
2.7 MR analysis

Mendelian Randomization (MR) analysis uses genetic variants

as instrumental variables to simulate a natural randomized

experiment, thereby inferring the causal relationship between

exposures and outcomes. We performed MR analysis using the

inverse variance weighted (IVW) method as the primary estimator.

Single nucleotide polymorphisms (SNPs) significantly associated

with the exposure (P < 5 × 10−6) were pruned for linkage

disequilibrium (R² < 0.001, distance > 10,000 kb) to ensure

independence. Instrument strength was assessed by calculating F-

statistics, with all values >10, indicating no weak instrument bias.

Horizontal pleiotropy was evaluated using the MR-Egger intercept

test (P > 0.05) and further examined by MR-PRESSO to detect and

remove potential outliers. Supplementary Figure S1 provides a

schematic illustration of the MR analysis.
2.8 Infiltration analysis

Immune cell abundance was estimated by deconvolving

immune cell subtype expression matrices using CIBERSORT in R.

This method leverages 22 common immune cell types to analyze the

immune composition of samples.
2.9 Single-cell analysis

scRNA-seq data were quality-controlled by filtering out low-

quality cells (<50 genes, >15% mitochondrial reads) and removing

erythrocyte and ribosomal contamination. The data were log-

normalized, integrated using Seurat, and then scaled. Batch effects

were corrected using Harmony to minimize technical variation

between samples. Clustering was performed on the top 20

Harmony-corrected principal components: a nearest-neighbor

graph was constructed, and clusters were identified using the

Louvain algorithm with a resolution of 0.6. Cell types were

annotated with SingleR (version 2.8.0). t-SNE was used to

visualize the clustering results, with a perplexity of 30 and a

maximum of 1000 iterations to preserve both local and global

structure. Intercellular communication in IDD was analyzed using

CellChat (version 1.6.1).
2.10 Cell culture

Primary rat NP cells were obtained from Procell Life Science &

Technology (CP-R145, Wuhan, China), which were extracted from
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https://doi.org/10.3389/fimmu.2025.1719293
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wei and Zhu 10.3389/fimmu.2025.1719293
the intervertebral disc tissue of SD rats. NP cells were cultured in

complete medium supplemented with 10% fetal bovine serum

(Gibco, Grand Island, NY, United States) and 1% penicillin/

streptomycin (Gibco) in a 5% CO2 incubator at 37° C condition.

Nucleus pulposus cells were cultured in a 24-well plate (5×104/well)

and incubated at 37°C for 24 h. The various treatments were applied

to the cells for 24 h. The S group was treated with PBS. The M group

was stimulated by adding the proinflammatory factors IL-1b (50

ng/mL) (25, 26).
2.11 Western blotting analysis

Total protein was extracted from rat NP cells with the radio

immunoprecipitation assay (RIPA) buffer containing phosphatase

and protease inhibitors. Then, bicinchoninic acid (BCA) protein

assay kit was used to determine the protein concentrations. Thirty

micrograms of total protein were separated by sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and then

electro-transferred to the transmembrane PVDF (Millipore,

Billerica, MA, USA), blocked with 5% milk protein for 1 h. After

that, the target membranes were incubated with following primary

antibodies overnight at 4°C: MMP9 antibody (1:1000, Proteintech,

Wuhan, China), UCHL1antibody (1:1000, Proteintech, Wuhan,

China), HPGD antibody (1:2000, Proteintech,Wuhan,China),

GAPDH (1:2000, Antgene, Wuhan, China). Following incubation

with the appropriate secondary antibody (goat anti-rabbit or goat

anti-mouse; KPL, USA), the membrane was developed using a

chemiluminescent substrate. The resulting bands were visualized

and subjected to densitometric analysis with Quantity One software

(Bio-Rad, USA).
2.12 Statistical analysis

All statistic data were expressed as mean ± SD, and firstly

evaluated for normal distribution using Shapiro-Wilk test. Then,

the results were compared by one-way ANOVA followed with

Tukey’s or Games-Howell’s post hoc test. The Kruskal-Wallisnon-

parametric test was also used to evaluate non-normal distribution

variables. The value of P<0.05 was considered statistically

significant. The Graph Pad Prism 5.0 software (San Diego, CA,

USA) was employed to perform the statistical analysis. The datasets

supporting this study’s findings are fully provided within the

manuscript and its supplemental materials.
3 Results

3.1 Data integration and identification of
DEGs

Figure 1 illustrates the overall workflow of this study. Before

batch correction, samples from different experiments were clearly

separated, indicating a pronounced batch effect. After applying
Frontiers in Immunology 04
PCA, the samples from different experiments appeared randomly

distributed, suggesting that the batch effect was effectively mitigated

(Figures 2A, B). By applying the Limma algorithm, we identified a

total of 98 differentially expressed genes (DEGs), among which 45

were significantly upregulated and 53 were downregulated

(Figures 2C, G).
3.2 Functional enrichment analysis

The GO enrichment analysis was categorized into three

domains: biological processes (BP), cellular components (CC),

and molecular functions (MF). BP results showed enrichment in

leukocyte- and lymphocyte-mediated immunity, cytotoxicity, and

defense response to bacteria (Figure 2D). CC analysis indicated that

genes were mainly located in secretory granules, lysosomes, and

vesicle lumens, suggesting roles in vesicle transport and immune-

related granule function (Figure 2E). MF analysis showed

enrichment in oxidoreductase activity, phosphatase activity, and

various binding functions (e.g., organic acids, glycosaminoglycans,

and carbohydrates), indicating involvement in metabolic

regulation, immune response, and extracellular matrix

interactions (Figure 2F).

KEGG analysis showed enrichment in IL-17, TNF, PPAR,

MAPK, and T cell receptor signaling pathways, which are closely

related to inflammation and immune regulation in IDD. Pathways

such as FoxO, Ras, calcium, relaxin, and ErbB signaling further

suggested potential roles in cell survival, extracellular matrix

homeostasis, and stress responses. Moreover, enrichment in

cholesterol and arachidonic acid metabolism indicates that

metabolic dysregulation may contribute to disc degeneration and

inflammatory processes (Figure 2H).
3.3 Identification of hub genes via PPI
network analysis

The 98 DEGs were visualized using the STRING database

(Figure 3A). To prioritize potential therapeutic targets, these

DEGs were analyzed with four topological algorithms—MCC,

EPC, Degree, and MNC—to identify hub genes (Figures 3B–E).

The intersection of the top 20 genes from each method revealed 14

hub genes (Figure 3F).
3.4 ANN prediction results

The artificial neural network (ANN) constructed in this study

consisted of an input layer, a hidden layer with five nodes, and an

output layer. The model was trained using the Rprop optimization

algorithm and the SSE loss function, and its classification

performance was evaluated with a confusion matrix. Our results

showed that the ANN achieved an accuracy of 93.6% in the

experimental group and 96.4% in the control group, with an

overall prediction accuracy of 95% (Figures 4A, B).
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3.5 Feature gene selection based on
machine learning

We applied LASSO regression to generate cross-validation

curves and identified nine disease-characteristic genes

(Figure 4C). Using the neural network algorithm, the top 10

characteristic genes ranked by importance were selected

(Figure 4D). The SVM-RFE method produced accuracy and

cross-validation error curves, from which 13 characteristic genes

were identified (Figure 4E). Using the Random Forest (RF)

algorithm, we generated a decision tree scoring plot and ranked

gene importance, from which five key genes were identified

(Figure 4F). Subsequently, a Venn diagram illustrated the overlap

among genes selected by all four machine learning approaches,
Frontiers in Immunology 05
revealing four intersecting candidates (Figure 4G; Supplementary

Table S2).

Additionally, we constructed box plots of the DEGs and

combined them with a volcano plot, which revealed that MMP9

was upregulated in the experimental group, whereas KLRB1,

UCHL1, and HPGD were downregulated. Furthermore, the

correlations among these four genes and their chromosomal

distributions were visualized using a circos plot (Figures 4H–K).
3.6 SHAP analysis results

We evaluated the diagnostic performance of four IDD DEGs

using ten machine learning models combined with 10-fold cross-
FIGURE 1

Flowchart of this study.
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validation, and assessed overall performance with ROC curves

(Figure 5A). For predictive performance analysis, bar charts and

bee swarm plots were generated: in the bar chart, higher values

indicate greater impact of a gene on the prediction; the bee swarm

plot shows the mean SHAP value of each gene, reflecting its

contribution to the model (Figures 5B, C). Through SHAP

analysis, we not only interpreted the machine learning model but

also quantified the importance of each gene. The results

demonstrated that gene expression could effectively distinguish

patients at the single-sample level. By integrating these findings,
Frontiers in Immunology 06
we ach i e v ed a compr eh en s i v e e xp l an a t i on o f t h e

model’s interpretability.
3.7 Genetically causal target identification
through MR analysis

MR analysis using expression quantitative trait loci (eQTL) was

conducted to evaluate genetic causality. Based on the Inverse

Variance Weighted (IVW) approach, KLRB1 was the only one
FIGURE 2

Differential expression analysis, batch effect correction, and functional enrichment analysis. (A, B) PCA analysis showing samples from different
experiments before batch correction, with random shuffling; (C) Heatmap of DEGs in the IDD dataset; (D–F) GO enrichment analysis, including BP,
CC, and MF; (G) Volcano plot of DEGs in the IDD dataset; (H) KEGG pathway enrichment analysis.
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among the four candidate genes to show a significant association

with IDD, suggesting a potential protective role (Figures 5D–F).

The other three genes were not identified, which may be due to the

dataset containing data exclusively from European populations.
3.8 Functional enrichment analysis of core
genes

GeneMANIA, GSEA, and GSVA were employed to investigate

functional and pathway enrichment between the high- and low-

expression groups of the target genes, and the top enriched

pathways were visualized. MMP9 high expression may promote

intervertebral disc degeneration by driving extracellular matrix

degrada t ion and shap ing an immune- inflammatory

microenvironment, whereas low expression may contribute to the

maintenance of energy metabolic homeostasis (Figure 6A). KLRB1

may play a pivotal role in IDD by regulating energy metabolism and

immune-inflammatory responses, acting as an important immune-

regulatory molecule on the cell membrane involved in disease

progression (Figure 6B). UCHL1 may influence IDD progression

by modulating cell proliferation, metabolism, DNA repair, and

immune responses (Figure 6C). HPGD may contribute to IDD

through regulation of cell proliferation, gene expression, lipid

metabolism, and inflammatory mediator signaling (Figure 6D).
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Overall, these genes collectively mediate metabolism, immunity,

and matrix remodeling in IDD.
3.9 Immune cell infiltration

In the differential box plots, an asterisk above an immune cell

denotes a statistically significant difference between the control and

experimental groups for that cell type (Figures 7A–C). We further

analyzed the relationships between immune cells and MMP9, KLRB1,

HPGD, and UCHL1, finding that UCHL1 showed a relatively weak

overall association with immune cells (Figure 7D). In addition, all four

genes were related to T cells gamma delta, but the expression of MMP9

exhibited an opposite trend with T cells gamma delta counts compared

to the other three genes. The correlation results were then visualized

using lollipop plots (Figures 8A–D) to clearly illustrate the interactions

between these genes and immune cells.
3.10 Single-cell transcriptome analysis

Single-cell RNA sequencing data from three IDD patients were

first quality-filtered to remove low-quality cells. Gene expression

patterns across the retained cells were visualized using feature plots

(Supplementary Figure S1A), and 1,500 highly variable genes were
FIGURE 3

Identification of hub genes using CytoHubba. (A) STRING network visualization of DEGs; Hub genes identified using different CytoHubba scoring
methods: MNC (B), Degree (C), EPC (D), and MCC (E, F) Venn diagram showing overlapping hub genes identified by different methods.
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selected for downstream analysis (Supplementary Figure S1B).

Principal component analysis (PCA) revealed clear segregation of

individual samples , indicat ing minimal batch effects

(Supplementary Figure S1C). Clustering via t-SNE identified 14

distinct cell populations, which were subsequently classified into

four major immune cell types based on canonical markers and

annotations from the SingleR package (Supplementary Figures S1D,

E). Analysis of core target gene expression across these

subpopulations showed that MMP9 was primarily expressed in

monocytes, KLRB1 in T cells, and UCHL1 predominantly in

chondrocytes, highlighting their potential cell type-specific

contributions to IDD pathogenesis (Supplementary Figure S1F).
3.11 Cell communication mapping in IDD
microenvironment

In single-cell ligand–receptor signaling enrichment analysis

based on 98 DEGs in IDD, the MIF pathway was significantly
Frontiers in Immunology 08
enriched, with chondrocytes serving as the primary signal sources

and monocytes and T cells as the main recipients (Figures 9A–C).

Signal transduction was largely mediated via the CD74–CD44 and

CD74–CXCR4 ligand–receptor pairs (Figures 9D, E). Notably,

although chondrocytes transmit signals to monocytes and T cells,

these interactions appear absent in endothelial cells, suggesting cell

t y p e - s p e c ifi c s i gn a l i n g dynam i c s w i t h i n t h e IDD

microenvironment (Figure 9F).
3.12 Experimental results

Primary rat nucleus pulposus (NP) cells were used as the

research model. In the experimental design, the S group was

treated with PBS, while the M group (IDD) was stimulated with

50 ng/mL IL-1b in the culture medium to establish an inflammatory

model for 24 h. To investigate the regulatory roles of UCHL1,

HPGD, and MMP9 in intervertebral disc degeneration, Western

blotting was employed. As demonstrated in Figures 10A, B,
FIGURE 4

Screening of DEGs using multiple methods and visualization of the results. (A, B) ANN distinguishing the experimental group from the control group,
with ROC curves constructed to evaluate overall diagnostic performance; (C) Gene selection using the LASSO algorithm; (D) Visualization of the top
10 important genes using the neural network algorithm; (E) Gene selection using the SVM-RFE algorithm; (F) Gene selection using the random forest
algorithm; (G) Intersection of the results from the four algorithms, yielding four genes; (H) Volcano plot of DEGs; (I) Boxplot of DEGs; (J)
Relationships among the four genes; (K) Chromosomal locations of the intersecting genes labeled on the corresponding chromosomes. *: p < 0.05,
**: p < 0.01, ***: p < 0.001.
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compared with the S group, the expression level of MMP9 was

significantly increased (P<0.05), while the expression levels of

UCHL1 and HPGD were markedly decreased in the M group

(P<0.05). This suggested that inflammatory stimulation may

cause protein expression imbalance in NP cells and play an

important role in the pathological process.
4 Discussion

IDD is a major contributing factor (27, 28). High-throughput

sequencing combined with bioinformatics can help identify key

biomarkers of IDD and provide new avenues for treatment (29, 30).

In this study, we conducted a comprehensive gene-level analysis to

systematically elucidate the differences in gene expression, signaling

pathway activity, and immune responses in IDD. We integrated PPI

networks, ANN, multiple ML approaches, SHAP interpretation

analysis, MR, and single-cell DEGs analysis to explore the

contribution of DEGs to IDD diagnosis. Furthermore, we

investigated the changes of these genes in immune responses and

examined the interactions and correlations among immune cells,

providing insights into the molecular mechanisms of IDD from

both genetic and immune perspectives. Finally, single-cell analysis

of cell–cell communication revealed key ligand–receptor
Frontiers in Immunology 09
interactions and signaling pathways between chondrocytes and

immune cells.

We evaluated the potential of KLRB1, MMP9, UCHL1, and

HPGD as diagnostic biomarkers using Western blot assays. Further

analysis indicated that KLRB1 showed no significant difference in

expression between IDD patients and healthy individuals,

suggesting its limited value as a potential diagnostic marker. Our

analysis revealed that the selected genes are closely associated with

immune function, and their upregulation in the inflammatory IDD

group may therefore have biological significance. Moreover, MMP9,

UCHL1, and HPGD exhibited strong discriminatory ability

between healthy individuals and IDD patients, representing a

novel finding of this study. Western blot validation further

confirmed that MMP9, UCHL1, and HPGD consistently

maintained significant discriminatory power.

In this study, we performed functional enrichment analysis of

DEGs associated with IDD, revealing several key biological

processes and signaling pathways, including TNF, IL-17, PPAR,

MAPK, and FoxO pathways. TNF-a is abnormally expressed in

degenerated discs and contributes to inflammation and ECM

degradation (31). IL-17 expression correlates positively with IDD

severity, regulating ECM metabolism, inflammation, angiogenesis,

and NP cell autophagy and proliferation (32). PPAR plays a

protective role in IDD, and its agonists can alleviate IL-17-
frontiersin.or
FIGURE 5

SHAP analysis and eQTL-based MR analysis. (A) ROC curves constructed using ten machine learning models to evaluate overall diagnostic
performance; (B) Bar chart with the vertical axis representing gene names and the horizontal axis representing the mean absolute SHAP value.
Higher values indicate a greater impact of the gene on the prediction results; (C) Bee swarm plot with the vertical axis representing gene names and
the horizontal axis representing SHAP values, used to calculate the mean SHAP value for each gene; (D–F) MR analysis of the KLRB1 gene, including
scatter plot, funnel plot, and leave-one-out analysis plot.
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induced inflammation and degeneration by inhibiting NF-kB
signaling (33). The p38 MAPK pathway is involved in

inflammation, ECM degradation, apoptosis, and stress responses,

representing a potential therapeutic target (34). FoxO transcription

factors are critical for maintaining disc homeostasis, and their loss

can promote degeneration (35). Together, these findings suggest

that IDD is a multifactorial disease involving complex interactions
Frontiers in Immunology 10
among multiple signaling pathways. Future studies should further

elucidate the crosstalk and mechanisms of these pathways to

identify novel therapeutic targets for IDD.

In this study, we successfully identified four potential

biomarkers for IDD diagnosis, namely MMP9, KLRB1, HPGD,

and UCHL1, which play important roles in immune function. By

constructing ANN and evaluating its diagnostic performance, ROC
FIGURE 6

Visualization of GeneMANIA, GSEA, and GSVA results for target gene analysis. (A) MMP9; (B) KLRB1; (C) UCHL1; (D) HPGD.
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curve analysis indicated that the ANN achieved a prediction

accuracy of 95%. Subsequently, we developed multiple machine

learning models using these biomarkers and performed SHAP

analysis to provide interpretability, revealing the contribution and

potential mechanisms of each gene in IDD diagnosis. Furthermore,

MR analysis based on gene eQTL data suggested a potential causal

relationship between KLRB1 and IDD, indicating a possible

protective effect. However, other candidate genes did not show

significant causal associations, which may be attributable to

limitations such as small sample size, low gene expression levels,

or insufficient gene–phenotype association signals. Future studies

with larger multi-omics datasets and independent cohorts are

needed to further elucidate the roles of these genes in

IDD pathogenesis.

Studies have shown that matrix metalloproteinase 9 (MMP-9)

plays a key role in the onset and progression of IDD. MMP-9

degrades extracellular matrix components in the disc, such as

collagen and proteoglycans, and its expression level is positively

correlated with the severity of disc degeneration and herniation

(36). In addition, the -1562C/T polymorphism of the MMP-9 gene

is associated with IDD susceptibility in young adults (37), and

downregulation of miR-133a promotes collagen II loss by targeting

MMP-9, further contributing to disc degeneration (38). These

findings suggest that MMP-9 may serve as a potential biomarker

and therapeutic target for IDD.
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UCHL1 (Ubiquitin C-terminal hydrolase L1) is closely

associated with IDD. Transcriptomic analyses and clinical sample

validation have demonstrated that UCHL1 expression is

significantly downregulated in both peripheral blood and

intervertebral disc tissues of IDD patients, suggesting its potential

involvement in the pathogenesis of disc degeneration (39). Further

mechanistic studies have revealed that UCHL1 regulates HSPA8

through deubiquitination, thereby activating the chaperone-

mediated autophagy pathway, which plays a critical protective

role in delaying intervertebral disc degeneration (40).

In the pathological context of IDD, previous studies have shown

that immune cells such as T cells andNK cells infiltrate the degenerative

disc tissue. By releasing pro-inflammatory cytokines including IL-1b,
TNF-a, and IL-6, they exacerbate cell apoptosis and ECM degradation,

thereby promoting IDD progression (22). The protein level of HPGD is

significantly increased during the symptomatic and late stages of motor

neuron disease (41). These results suggest that HPGD may participate

in inflammatory responses and pathological processes in the nervous

system by regulating the metabolism of prostaglandin E2.

Our study revealed significant differences in plasma cells, gd T

cells, and neutrophils between the control and experimental groups.

We then further explored the relationships between individual

genes and immune cells, and the results showed that UCHL1

exhibited relatively weak associations with immune cells. In a

more detailed analysis of gene–immune cell interactions, we
FIGURE 7

Immune-related analysis results. (A, D) Relationships between immune cells and target genes; (B) The number of immune cells in each sample was
determined through immune cell infiltration analysis. The results were visualized as a bar chart, with the horizontal axis representing samples and the
vertical axis representing immune cell content. The sum of all immune cell contents equals 1. Different colors indicate different types of immune
cells; (C) Box plot of differences, with the horizontal axis representing immune cell types and the vertical axis representing immune cell content.
Green represents the control group, and red represents the experimental group, * p < 0.05, ** p < 0.01, *** p < 0.001.
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found that MMP9 displayed significant differences in the following

immune cell types: M0 macrophages, CD8 T cells, monocytes,

activated mast cells, neutrophils, M1 macrophages, naïve CD4 T

cells, gd T cells, resting memory CD4 T cells, and regulatory T cells

(Tregs). At the same time, KLRB1 showed significant differences in

gd T cells, resting memory CD4 T cells, naïve CD4 T cells, CD8 T

cells, neutrophils, activated mast cells, M1 macrophages, and resting

mast cells. Further analysis demonstrated that HPGD was more
Frontiers in Immunology 12
strongly associated with gd T cells, CD8 T cells and mast cells

resting. For UCHL1, significant differences were observed in plasma

cells and gd T cells. Notably, when all four DEGs were altered, gd T
cells consistently exhibited differential changes. However, the

expression pattern of MMP9 in immune cells was not entirely

consistent with that of the other three core genes.

In this study, we found that gd T cells may play a potential role

in intervertebral disc (IVD) injury and degeneration. Clayton et al.
FIGURE 8

Correlation analysis between DEGs and immune cells. (A) MMP9, (B) KLRB1, (C) HPGD, (D) UCHL1. In the correlation bubble plots, the vertical axis
represents immune cell types, the horizontal axis represents the correlation coefficient, the size of the circle represents the absolute value of the
correlation coefficient, and the color of the circle represents the P value of the correlation test. In the scatter plots, the horizontal axis represents the
expression level of the target gene, the vertical axis represents the content of immune cells, R represents the correlation coefficient, and P
represents statistical significance.
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FIGURE 10

Experimental validation. Western blot were used to detect the expression level of MMP9, HPGD, and UCHL1 in S group and M group.
FIGURE 9

Cell–cell communication analysis of IDD cell subsets with distinct differentiation patterns. (A) Dot plot of ligand–receptor (L–R) pairs in subtype-
specific pathways; (B, C) Network centrality scoring analysis; (D) Contribution of individual receptors to the overall MIF signaling pathway; (E)
Expression distribution of genes associated with the MIF pathway; (F) Co-expression of CD74+CXCR4 and CD74+CD44 across different cell types.
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reported that gd T cells predominantly appear in injured female

IVD tissues and exert anti-inflammatory and tissue-protective

effects, which may explain the sex differences in disc

degeneration; male mice, lacking the protection of gd T cells,

showed more severe degeneration (42). Interestingly, in studies

on bone fracture repair, mice deficient in gd T cells exhibited more

mature tissue regeneration, stronger expression of bone and

cartilage matrix proteins, and improved biomechanical strength,

suggesting that gd T cells may delay bone healing in certain contexts

(43). These findings not only deepen our understanding of the

immune mechanisms underlying IDD but also highlight the need

for future research to explore the spatiotemporal roles of gd T cells

in tissue injury and repair, as well as their potential

therapeutic value.

CD4+ T cells also play an essential role in the adaptive immune

system and are closely involved in the pathogenesis of IDD. Several

studies have demonstrated that the proportion of resting memory

CD4+ T cells is significantly decreased in degenerated disc tissues,

suggesting impaired immune homeostasis in IDD patients (39). In

contrast, specific subsets such as Th17 cells are enriched in

degenerative discs and can secrete pro-inflammatory cytokines

including IL-17 and TNF-a, thereby accelerating extracellular

matrix degradation and promoting disease progression (8, 22).

On the other hand, Treg cells exert immunosuppressive effects

through IL-10 and TGF-b, and their functional imbalance with

Th17 cells is considered a hallmark of IDD-associated immune

dysregulation (44). Furthermore, a recent Mendelian

randomization analysis indicated a bidirectional causal

relationship between CD39+ CD4+ T cells and IVDD,

highlighting their potential as both biomarkers and therapeutic

targets (45). Collectively, these findings indicate that CD4+ T cells,

through their diverse subsets and cytokine profiles, exert both

pathogenic and protective functions in IDD, and the imbalance

between them may critically shape disease onset and progression.

Through single-cell analysis of nucleus pulposus tissue, we

found that chondrocytes can regulate the function of monocytes

via the MIF signaling pathway, thereby participating in the

modulation of the intervertebral disc immune microenvironment

and the degenerative process. Previous studies have shown that MIF

expression is upregulated in degenerated nucleus pulposus cells and

promotes extracellular matrix degradation and apoptosis via the

NF-kB signaling pathway, and the use of the MIF inhibitor CPSI-

1306 can alleviate disc degeneration in mouse models, suggesting

that MIF may serve as a potential therapeutic target for IDD (46).

Furthermore, single-cell RNA sequencing studies revealed that MIF

can regulate nucleus pulposus cell function and extracellular matrix

metabolism through binding to the ACKR3 receptor, with MIF

expression positively correlated with ACKR3, and MIF inhibition

mitigating degenerative changes in nucleus pulposus cells (47).

These studies further support the potential of MIF inhibitors in

alleviating disc degeneration, reducing nucleus pulposus cell

apoptosis, and suppressing inflammation (48). Therefore, our

single-cell analysis findings are consistent with existing literature,

indicating that MIF may play a central role in chondrocyte–
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immune cell interactions and providing new insights for immune-

based therapeutic strategies for IDD.

In this study, we employed a multi-level analytical strategy to

explore the molecular mechanisms of IDD. First, PPI networks were

constructed to identify key gene nodes. Then, ANNs and machine

learning were used to evaluate the predictive value of these genes,

with SHAP analysis quantifying each gene’s contribution to the

models. Subsequently, MR was applied to validate the causal

relationships between key genes and the disease. Finally, single-

cell sequencing data were integrated to analyze the expression

patterns of differentially expressed genes in specific immune cell

types. This approach systematically reveals core genes and immune

features in IDD, providing a reference for future precision diagnosis

and intervention. However, the following limitations should be

considered when interpreting our results. First, this study did not

perform microarray or RNA sequencing, and the gene expression

data were entirely obtained from the GEO database. In addition, the

IDD cell model used in this study could not fully recapitulate the

complex in vivo IDD microenvironment, which is far more

physiologically intricate than in vitro models. Finally, the GWAS

dataset used in this study was primarily derived from European

populations, which may limit the applicability of the findings to

other populations. Future studies could include cohorts from

diverse ethnic groups to enhance the generalizability and

representativeness of the results. Moreover, the identified key

genes and pathways may serve as potential biomarkers or

therapeutic targets, providing new insights for early diagnosis and

individualized treatment of IDD.
5 Conclusion

In this study, IDD was analyzed by integrating ANN, multiple

machine learning methods, SHAP analysis, and MR. During gene

feature selection, we applied ANN, LASSO, SVM-RFE, and RF, and

subsequently validated the results using Western blot experiments.

Ultimately, three potential biomarkers were identified: MMP9,

HPGD, and UCHL1.By combining ten machine learning

approaches with SHAP models, we systematically evaluated the

role of these core genes in IDD diagnosis, revealing the genetic

characteristics, molecular pathways, and differentially abundant

immune cell types associated with IDD. Further integration with

single-cell analysis allowed us to explore the potential role of the MIF

pathway in IDD pathogenesis. Overall, our findings indicate that

machine learning–based approaches can provide effective support for

the precise diagnosis of IDD, while also offering novel insights for the

development of clinical interventions and therapeutic strategies.
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