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Wuhan, China

Background: Intervertebral disc degeneration (IDD) is a major cause of low back
pain, significantly affecting the quality of life of elderly individuals worldwide. Its
pathogenesis is complex, involving extracellular matrix degradation,
inflammatory responses, and immune regulation.

Methods: This study integrated multiple transcriptomic and single-cell RNA-seq
datasets, and systematically identified and validated key IDD-related genes and
their immune regulatory roles through differential gene analysis, GO/KEGG
enrichment, PPl network construction, ANN, LASSO, random forest, SVM-RFE,
SHAP, Mendelian Randomization, as well as immune cell infiltration and CellChat
analyses. The identified candidate genes were further validated experimentally
using Western blot, confirming their expression patterns and potential as
diagnostic biomarkers.

Results: By integrating bioinformatics with in vitro validation, this study identified
three key biomarkers associated with IDD: MMP9, HPGD, and UCHL1. SHAP
analysis demonstrated that these genes make significant contributions to the
diagnostic model, primarily participating in immune regulation and inflammatory
responses. Functional enrichment analysis indicated their involvement in
signaling pathways such as IL-17, TNF, and MAPK. Correlation and differential
analyses of immune cells showed that yo T cells exhibited significant changes
across all three genes, while other immune cell types, such as CD4* T cells,
displayed differences in the remaining biomarkers. Single-cell analysis further
revealed that the MIF signaling pathway plays a key role in the interactions
between nucleus pulposus cells and immune cells.

Conclusion: These findings provide new insights into the molecular and immune
mechanisms of IDD and offer potential targets for diagnosis and therapy.

intervertebral disc degeneration, intercellular communication, machine learning,
artificial neural network, immune differences, biomarkers
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1 Introduction

Lower back pain (LBP) is a prevalent musculoskeletal disorder
and a major cause of disability among the elderly worldwide (1, 2).
Numerous studies have identified intervertebral disc degeneration
(IDD) as the primary pathological factor underlying LBP (3, 4). In
adults, the intervertebral disc (IVD) is an avascular tissue composed
of three distinct parts: the nucleus pulposus (NP) at the center, the
annulus fibrosus (AF) at the periphery, and the cartilaginous
endplates (CEP) on the top and bottom surfaces. Each region
contains specific cell populations with specialized functions. The
initiation and progression of IDD are driven by multiple factors,
including aging, oxidative stress, inflammation, and abnormal
mechanical loading. Hallmark pathological changes include NP
degeneration, AF rupture, and CEP calcification (5, 6). Despite
these observations, the precise molecular mechanisms underlying
disc degeneration remain unclear.

Epidemiological studies have shown that the prevalence of IDD
is increasing globally, making it an important public health issue
that imposes significant social and economic burdens (7). The
etiological mechanisms of IDD are highly complex, involving
genetic predisposition, immune-inflammatory responses,
extracellular matrix (ECM) metabolic imbalance, as well as
abnormalities in apoptosis and autophagy (8-10). For instance,
aberrant activation of matrix metalloproteinases (MMPs) and
cathepsins has been reported to promote ECM degradation and
disrupt NP collagen homeostasis, thereby accelerating disc
degeneration (11). In addition, infiltration of immune cells such
as macrophages and T lymphocytes can aggravate ECM breakdown
and cell death by releasing pro-inflammatory cytokines, including
TNF-o. and IL-1B, thus further driving the progression of IDD (12).

Advances in high-throughput techniques and bioinformatics in
recent years have enabled differential expression analysis, WGCNA,
and machine learning to identify crucial genes and signaling
pathways linked to IDD (13). Building on this, the present study
integrates multiple bioinformatics strategies to systematically
elucidate the molecular mechanisms of IDD. Network
pharmacology combines computational modeling with
bioinformatics to establish drug-target and signaling networks,
thereby facilitating drug discovery and enhancing the precision of
therapeutic prediction (14). Mendelian randomization (MR) uses
genetic variants as instrumental variables to reduce confounding
and evaluate possible causal relationships between exposures and
diseases (15). Progress in high-throughput technologies and
bioinformatics has greatly advanced insights into intercellular
communication within pathological tissues. Machine learning
(ML) enables the analysis of large-scale, complex datasets and the
identification of latent biological patterns (16, 17); however, its
inherent “black-box” problem constrains its clinical translation
(18). To overcome this limitation, the SHapley Additive
exPlanations (SHAP) method, derived from game theory,
provides an interpretable approach that quantifies the influence of
individual features on model predictions (19, 20).

Our findings indicate that patients with IDD display distinct gene
expression profiles compared with healthy controls. These genes are
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predominantly enriched in inflammatory and immune regulatory
pathways, in line with earlier reports (21). Immune infiltration
analysis further highlighted dynamic shifts in immune cell
composition as a hallmark of IDD pathogenesis. We suggest that
aberrant gene expression may serve as a trigger for IDD, exerting its
effects on immune cells through various mechanisms and ultimately
driving marked alterations in their expression patterns and
proportions. First, dysregulated gene expression in IDD may lead
to inappropriate activation or inhibition of pathological signaling
pathways, causing substantial secretion of inflammatory factors.
Second, the heightened expression of these mediators interferes
with immune homeostasis (22). Ultimately, the dysregulated
immune response results in differential expression of immune cells
within the body (23). In conclusion, abnormal gene expression is
crucial to the onset and development of IDD. To clarify this
mechanism, we integrated multichip analysis, PPI network
construction, ANNs, and machine learning to screen key
differentially expressed genes. Subsequently, SHAP modeling and
eQTL-based MR analysis were applied to assess their diagnostic
relevance. We further examined immune cell correlations and
expression differences across cell subsets, and incorporated single-
cell sequencing to investigate intercellular communication within the
immune microenvironment, thereby revealing its role in
IDD progression.

2 Materials and methods
2.1 Data sources

We retrieved IDD-related datasets (GSE124272, GSE150408,
and GSE153761) from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). These datasets included
transcriptomic profiles from 28 patients with IDD and 28 healthy
controls. In addition, we obtained single-cell transcriptomic data
from three IDD patients (GSM7831817, GSM7831818,
GSM7831819) in the GSE244889 dataset to investigate the cellular
composition and molecular characteristics of IDD tissues. The
detailed information of the datasets is provided in Supplementary
Table S1. Data preprocessing was carried out using R software
(version 4.3.1). To minimize batch effects and ensure comparability
between groups, we applied the “limma” (version 3.62.2),
“pheatmap” (version 1.0.12) and “ggplot2” (version 3.5.1)
packages. Differentially expressed genes (DEGs) were visualized
with heatmaps generated by “pheatmap” (version 1.0.12) and
volcano plots produced by “ggplot2”. All expression data were
log2-transformed prior to analysis to improve reliability.

2.2 ldentification of differentially expressed
genes
After standardizing the dataset, we applied the SVA package to

correct for batch effects. Subsequently, principal component
analysis (PCA) was performed to evaluate the effectiveness of the
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standardization process. The “limma” R package was employed for
preprocessing gene expression data, followed by differential
expression analysis between breast cancer and control groups.
Genes with [log,FC| > 1 and adjusted P < 0.05 (Benjamini-
Hochberg) were considered DEGs.

2.3 KEGG and GO analysis

The “clusterProfiler” (version 4.14.4) R package was used for
GO and KEGG enrichment analyses to characterize the biological
functions and pathways linked to the DEGs.

2.4 Artificial neural network

ANNs are widely used for predictive modeling due to their
ability to capture nonlinear relationships in high-dimensional data.
A typical ANN consists of an input layer, hidden layer(s), and an
output layer, enabling efficient data processing and prediction (24).
In this study, correlation analysis was performed in R, and the
“neuralnet” (version 1.44.2) and “NeuralNetTools” (version 1.5.3)
packages were used for model construction and visualization.

2.5 Machine learning algorithms

LASSO analysis was performed using the glmnet package with 10-
fold cross-validation to optimize the penalty parameter, and the
random seed was set to 123 to ensure reproducibility. A multilayer
perceptron (MLP) neural network model was constructed using the
MLP Classifier from Scikit-learn and trained on the transposed gene
expression data. The model consisted of two hidden layers with 50 and
15 nodes, respectively, with a maximum of 1000 iterations, and the
random seed was fixed at 42 to ensure reproducibility. Support Vector
Machine Recursive Feature Elimination (SVM-RFE) was performed
using an SVM model with a radial basis function (RBF) kernel, with the
random seed set to 123. Gene features ranging from 2 to 40 were
screened via cross-validation, and the gene set corresponding to the
minimum RMSE was selected. Additionally, the randomForest package
(version 4.7-1.4) was used to identify genes with an importance score
greater than 2, with the random seed set to 123456. Finally, the
intersection of results from LASSO, random forest (RF), SVM-RFE,
and neural network models was used to identify key marker genes in
IDD patients for further analysis and validation.

2.6 SHAP methodology

To enhance the interpretability of the machine learning models,
we employed the SHAP method, a game theory-based approach
that quantitatively evaluates the contribution of each feature to the
model’s predictions, thereby clarifying its positive or negative
impact on the outcomes. Based on the selected predictive factors,
we constructed ten machine learning models, including RLS, RF,
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DTS, SVM, logistic regression, KNN, XGBoost, GBM, neural
network, and GlmBoost. The optimal model was chosen as the
primary framework for this study. To improve interpretability,
SHAP were employed to evaluate feature contributions, offering
insights into potential biological mechanisms.

2.7 MR analysis

Mendelian Randomization (MR) analysis uses genetic variants
as instrumental variables to simulate a natural randomized
experiment, thereby inferring the causal relationship between
exposures and outcomes. We performed MR analysis using the
inverse variance weighted (IVW) method as the primary estimator.
Single nucleotide polymorphisms (SNPs) significantly associated
with the exposure (P < 5 x 107°) were pruned for linkage
disequilibrium (R> < 0.001, distance > 10,000 kb) to ensure
independence. Instrument strength was assessed by calculating F-
statistics, with all values >10, indicating no weak instrument bias.
Horizontal pleiotropy was evaluated using the MR-Egger intercept
test (P > 0.05) and further examined by MR-PRESSO to detect and
remove potential outliers. Supplementary Figure S1 provides a
schematic illustration of the MR analysis.

2.8 Infiltration analysis

Immune cell abundance was estimated by deconvolving
immune cell subtype expression matrices using CIBERSORT in R.
This method leverages 22 common immune cell types to analyze the
immune composition of samples.

2.9 Single-cell analysis

scRNA-seq data were quality-controlled by filtering out low-
quality cells (<50 genes, >15% mitochondrial reads) and removing
erythrocyte and ribosomal contamination. The data were log-
normalized, integrated using Seurat, and then scaled. Batch effects
were corrected using Harmony to minimize technical variation
between samples. Clustering was performed on the top 20
Harmony-corrected principal components: a nearest-neighbor
graph was constructed, and clusters were identified using the
Louvain algorithm with a resolution of 0.6. Cell types were
annotated with SingleR (version 2.8.0). t-SNE was used to
visualize the clustering results, with a perplexity of 30 and a
maximum of 1000 iterations to preserve both local and global
structure. Intercellular communication in IDD was analyzed using
CellChat (version 1.6.1).

2.10 Cell culture

Primary rat NP cells were obtained from Procell Life Science &
Technology (CP-R145, Wuhan, China), which were extracted from
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the intervertebral disc tissue of SD rats. NP cells were cultured in
complete medium supplemented with 10% fetal bovine serum
(Gibco, Grand Island, NY, United States) and 1% penicillin/
streptomycin (Gibco) in a 5% CO2 incubator at 37° C condition.
Nucleus pulposus cells were cultured in a 24-well plate (5x104/well)
and incubated at 37°C for 24 h. The various treatments were applied
to the cells for 24 h. The S group was treated with PBS. The M group
was stimulated by adding the proinflammatory factors IL-1B (50
ng/mL) (25, 26).

2.11 Western blotting analysis

Total protein was extracted from rat NP cells with the radio
immunoprecipitation assay (RIPA) buffer containing phosphatase
and protease inhibitors. Then, bicinchoninic acid (BCA) protein
assay kit was used to determine the protein concentrations. Thirty
micrograms of total protein were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and then
electro-transferred to the transmembrane PVDF (Millipore,
Billerica, MA, USA), blocked with 5% milk protein for 1 h. After
that, the target membranes were incubated with following primary
antibodies overnight at 4°C: MMP9 antibody (1:1000, Proteintech,
Wuhan, China), UCHLIlantibody (1:1000, Proteintech, Wuhan,
China), HPGD antibody (1:2000, Proteintech,Wuhan,China),
GAPDH (1:2000, Antgene, Wuhan, China). Following incubation
with the appropriate secondary antibody (goat anti-rabbit or goat
anti-mouse; KPL, USA), the membrane was developed using a
chemiluminescent substrate. The resulting bands were visualized
and subjected to densitometric analysis with Quantity One software
(Bio-Rad, USA).

2.12 Statistical analysis

All statistic data were expressed as mean + SD, and firstly
evaluated for normal distribution using Shapiro-Wilk test. Then,
the results were compared by one-way ANOVA followed with
Tukey’s or Games-Howell’s post hoc test. The Kruskal-Wallisnon-
parametric test was also used to evaluate non-normal distribution
variables. The value of P<0.05 was considered statistically
significant. The Graph Pad Prism 5.0 software (San Diego, CA,
USA) was employed to perform the statistical analysis. The datasets
supporting this study’s findings are fully provided within the
manuscript and its supplemental materials.

3 Results

3.1 Data integration and identification of
DEGs

Figure 1 illustrates the overall workflow of this study. Before
batch correction, samples from different experiments were clearly
separated, indicating a pronounced batch effect. After applying
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PCA, the samples from different experiments appeared randomly
distributed, suggesting that the batch effect was effectively mitigated
(Figures 2A, B). By applying the Limma algorithm, we identified a
total of 98 differentially expressed genes (DEGs), among which 45
were significantly upregulated and 53 were downregulated
(Figures 2C, G).

3.2 Functional enrichment analysis

The GO enrichment analysis was categorized into three
domains: biological processes (BP), cellular components (CC),
and molecular functions (MF). BP results showed enrichment in
leukocyte- and lymphocyte-mediated immunity, cytotoxicity, and
defense response to bacteria (Figure 2D). CC analysis indicated that
genes were mainly located in secretory granules, lysosomes, and
vesicle lumens, suggesting roles in vesicle transport and immune-
related granule function (Figure 2E). MF analysis showed
enrichment in oxidoreductase activity, phosphatase activity, and
various binding functions (e.g., organic acids, glycosaminoglycans,
and carbohydrates), indicating involvement in metabolic
regulation, immune response, and extracellular matrix
interactions (Figure 2F).

KEGG analysis showed enrichment in IL-17, TNF, PPAR,
MAPK, and T cell receptor signaling pathways, which are closely
related to inflammation and immune regulation in IDD. Pathways
such as FoxO, Ras, calcium, relaxin, and ErbB signaling further
suggested potential roles in cell survival, extracellular matrix
homeostasis, and stress responses. Moreover, enrichment in
cholesterol and arachidonic acid metabolism indicates that
metabolic dysregulation may contribute to disc degeneration and
inflammatory processes (Figure 2H).

3.3 ldentification of hub genes via PPI
network analysis

The 98 DEGs were visualized using the STRING database
(Figure 3A). To prioritize potential therapeutic targets, these
DEGs were analyzed with four topological algorithms—MCC,
EPC, Degree, and MNC—to identify hub genes (Figures 3B-E).
The intersection of the top 20 genes from each method revealed 14
hub genes (Figure 3F).

3.4 ANN prediction results

The artificial neural network (ANN) constructed in this study
consisted of an input layer, a hidden layer with five nodes, and an
output layer. The model was trained using the Rprop optimization
algorithm and the SSE loss function, and its classification
performance was evaluated with a confusion matrix. Our results
showed that the ANN achieved an accuracy of 93.6% in the
experimental group and 96.4% in the control group, with an
overall prediction accuracy of 95% (Figures 4A, B).
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Flowchart of this study.

3.5 Feature gene selection based on
machine learning

We applied LASSO regression to generate cross-validation
curves and identified nine disease-characteristic genes
(Figure 4C). Using the neural network algorithm, the top 10
characteristic genes ranked by importance were selected
(Figure 4D). The SVM-RFE method produced accuracy and
cross-validation error curves, from which 13 characteristic genes
were identified (Figure 4E). Using the Random Forest (RF)
algorithm, we generated a decision tree scoring plot and ranked
gene importance, from which five key genes were identified
(Figure 4F). Subsequently, a Venn diagram illustrated the overlap
among genes selected by all four machine learning approaches,
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revealing four intersecting candidates (Figure 4G; Supplementary
Table S2).

Additionally, we constructed box plots of the DEGs and
combined them with a volcano plot, which revealed that MMP9
was upregulated in the experimental group, whereas KLRBI,
UCHLI1, and HPGD were downregulated. Furthermore, the
correlations among these four genes and their chromosomal
distributions were visualized using a circos plot (Figures 4H-K).

3.6 SHAP analysis results

We evaluated the diagnostic performance of four IDD DEGs
using ten machine learning models combined with 10-fold cross-
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validation, and assessed overall performance with ROC curves
(Figure 5A). For predictive performance analysis, bar charts and
bee swarm plots were generated: in the bar chart, higher values
indicate greater impact of a gene on the prediction; the bee swarm
plot shows the mean SHAP value of each gene, reflecting its
contribution to the model (Figures 5B, C). Through SHAP
analysis, we not only interpreted the machine learning model but
also quantified the importance of each gene. The results
demonstrated that gene expression could effectively distinguish
patients at the single-sample level. By integrating these findings,
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we achieved a comprehensive explanation of the
model’s interpretability.

3.7 Genetically causal target identification
through MR analysis

MR analysis using expression quantitative trait loci (eQTL) was

conducted to evaluate genetic causality. Based on the Inverse
Variance Weighted (IVW) approach, KLRB1 was the only one
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among the four candidate genes to show a significant association
with IDD, suggesting a potential protective role (Figures 5D-F).
The other three genes were not identified, which may be due to the
dataset containing data exclusively from European populations.

3.8 Functional enrichment analysis of core
genes

GeneMANIA, GSEA, and GSVA were employed to investigate
functional and pathway enrichment between the high- and low-
expression groups of the target genes, and the top enriched
pathways were visualized. MMP9 high expression may promote
intervertebral disc degeneration by driving extracellular matrix
degradation and shaping an immune-inflammatory
microenvironment, whereas low expression may contribute to the
maintenance of energy metabolic homeostasis (Figure 6A). KLRB1
may play a pivotal role in IDD by regulating energy metabolism and
immune-inflammatory responses, acting as an important immune-
regulatory molecule on the cell membrane involved in disease
progression (Figure 6B). UCHL1 may influence IDD progression
by modulating cell proliferation, metabolism, DNA repair, and
immune responses (Figure 6C). HPGD may contribute to IDD
through regulation of cell proliferation, gene expression, lipid
metabolism, and inflammatory mediator signaling (Figure 6D).
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Overall, these genes collectively mediate metabolism, immunity,
and matrix remodeling in IDD.

3.9 Immune cell infiltration

In the differential box plots, an asterisk above an immune cell
denotes a statistically significant difference between the control and
experimental groups for that cell type (Figures 7A-C). We further
analyzed the relationships between immune cells and MMP9, KLRB1,
HPGD, and UCHLI, finding that UCHLI showed a relatively weak
overall association with immune cells (Figure 7D). In addition, all four
genes were related to T cells gamma delta, but the expression of MMP9
exhibited an opposite trend with T cells gamma delta counts compared
to the other three genes. The correlation results were then visualized
using lollipop plots (Figures 8A-D) to clearly illustrate the interactions
between these genes and immune cells.

3.10 Single-cell transcriptome analysis

Single-cell RNA sequencing data from three IDD patients were
first quality-filtered to remove low-quality cells. Gene expression
patterns across the retained cells were visualized using feature plots
(Supplementary Figure S1A), and 1,500 highly variable genes were
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Screening of DEGs using multiple methods and visualization of the results. (A, B) ANN distinguishing the experimental group from the control group,
with ROC curves constructed to evaluate overall diagnostic performance; (C) Gene selection using the LASSO algorithm; (D) Visualization of the top
10 important genes using the neural network algorithm; (E) Gene selection using the SVM-RFE algorithm; (F) Gene selection using the random forest
algorithm; (G) Intersection of the results from the four algorithms, yielding four genes; (H) Volcano plot of DEGs; (1) Boxplot of DEGs; (J)
Relationships among the four genes; (K) Chromosomal locations of the intersecting genes labeled on the corresponding chromosomes. *: p < 0.05,

** p<0.01, ***: p <0.001

selected for downstream analysis (Supplementary Figure S1B).
Principal component analysis (PCA) revealed clear segregation of
individual samples, indicating minimal batch effects
(Supplementary Figure S1C). Clustering via t-SNE identified 14
distinct cell populations, which were subsequently classified into
four major immune cell types based on canonical markers and
annotations from the SingleR package (Supplementary Figures S1D,
E). Analysis of core target gene expression across these
subpopulations showed that MMP9 was primarily expressed in
monocytes, KLRB1 in T cells, and UCHL1 predominantly in
chondrocytes, highlighting their potential cell type-specific
contributions to IDD pathogenesis (Supplementary Figure SIF).

3.11 Cell communication mapping in IDD
microenvironment

In single-cell ligand-receptor signaling enrichment analysis
based on 98 DEGs in IDD, the MIF pathway was significantly

Frontiers in Immunology

08

enriched, with chondrocytes serving as the primary signal sources
and monocytes and T cells as the main recipients (Figures 9A-C).
Signal transduction was largely mediated via the CD74-CD44 and
CD74-CXCR4 ligand-receptor pairs (Figures 9D, E). Notably,
although chondrocytes transmit signals to monocytes and T cells,
these interactions appear absent in endothelial cells, suggesting cell
type-specific signaling dynamics within the IDD
microenvironment (Figure 9F).

3.12 Experimental results

Primary rat nucleus pulposus (NP) cells were used as the
research model. In the experimental design, the S group was
treated with PBS, while the M group (IDD) was stimulated with
50 ng/mL IL-1f in the culture medium to establish an inflammatory
model for 24 h. To investigate the regulatory roles of UCHLI,
HPGD, and MMP9 in intervertebral disc degeneration, Western
blotting was employed. As demonstrated in Figures 10A, B,
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SHAP analysis and eQTL-based MR analysis. (A) ROC curves constructed using ten machine learning models to evaluate overall diagnostic
performance; (B) Bar chart with the vertical axis representing gene names and the horizontal axis representing the mean absolute SHAP value.
Higher values indicate a greater impact of the gene on the prediction results; (C) Bee swarm plot with the vertical axis representing gene names and
the horizontal axis representing SHAP values, used to calculate the mean SHAP value for each gene; (D—F) MR analysis of the KLRB1 gene, including

scatter plot, funnel plot, and leave-one-out analysis plot.

compared with the S group, the expression level of MMP9 was
significantly increased (P<0.05), while the expression levels of
UCHL1 and HPGD were markedly decreased in the M group
(P<0.05). This suggested that inflammatory stimulation may
cause protein expression imbalance in NP cells and play an
important role in the pathological process.

4 Discussion

IDD is a major contributing factor (27, 28). High-throughput
sequencing combined with bioinformatics can help identify key
biomarkers of IDD and provide new avenues for treatment (29, 30).
In this study, we conducted a comprehensive gene-level analysis to
systematically elucidate the differences in gene expression, signaling
pathway activity, and immune responses in IDD. We integrated PPI
networks, ANN, multiple ML approaches, SHAP interpretation
analysis, MR, and single-cell DEGs analysis to explore the
contribution of DEGs to IDD diagnosis. Furthermore, we
investigated the changes of these genes in immune responses and
examined the interactions and correlations among immune cells,
providing insights into the molecular mechanisms of IDD from
both genetic and immune perspectives. Finally, single-cell analysis
of cell-cell communication revealed key ligand-receptor
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interactions and signaling pathways between chondrocytes and
immune cells.

We evaluated the potential of KLRB1, MMP9, UCHLI, and
HPGD as diagnostic biomarkers using Western blot assays. Further
analysis indicated that KLRB1 showed no significant difference in
expression between IDD patients and healthy individuals,
suggesting its limited value as a potential diagnostic marker. Our
analysis revealed that the selected genes are closely associated with
immune function, and their upregulation in the inflammatory IDD
group may therefore have biological significance. Moreover, MMP9,
UCHLI, and HPGD exhibited strong discriminatory ability
between healthy individuals and IDD patients, representing a
novel finding of this study. Western blot validation further
confirmed that MMP9, UCHLI1, and HPGD consistently
maintained significant discriminatory power.

In this study, we performed functional enrichment analysis of
DEGs associated with IDD, revealing several key biological
processes and signaling pathways, including TNF, IL-17, PPAR,
MAPK, and FoxO pathways. TNF-o is abnormally expressed in
degenerated discs and contributes to inflammation and ECM
degradation (31). IL-17 expression correlates positively with IDD
severity, regulating ECM metabolism, inflammation, angiogenesis,
and NP cell autophagy and proliferation (32). PPAR plays a
protective role in IDD, and its agonists can alleviate IL-17-
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Visualization of GeneMANIA, GSEA, and GSVA results for target gene analysis. (A) MMP9; (B) KLRB1; (C) UCHLZ; (D) HPGD.

induced inflammation and degeneration by inhibiting NF-xB
signaling (33). The p38 MAPK pathway is involved in
inflammation, ECM degradation, apoptosis, and stress responses,
representing a potential therapeutic target (34). FoxO transcription
factors are critical for maintaining disc homeostasis, and their loss
can promote degeneration (35). Together, these findings suggest
that IDD is a multifactorial disease involving complex interactions
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among multiple signaling pathways. Future studies should further
elucidate the crosstalk and mechanisms of these pathways to
identify novel therapeutic targets for IDD.

In this study, we successfully identified four potential
biomarkers for IDD diagnosis, namely MMP9, KLRB1, HPGD,
and UCHLI, which play important roles in immune function. By
constructing ANN and evaluating its diagnostic performance, ROC
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Immune-related analysis results. (A, D) Relationships between immune cells and target genes; (B) The number of immune cells in each sample was
determined through immune cell infiltration analysis. The results were visualized as a bar chart, with the horizontal axis representing samples and the
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cells; (C) Box plot of differences, with the horizontal axis representing immune cell types and the vertical axis representing immune cell content.
Green represents the control group, and red represents the experimental group, * p < 0.05, ** p < 0.01, *** p < 0.001.

curve analysis indicated that the ANN achieved a prediction
accuracy of 95%. Subsequently, we developed multiple machine
learning models using these biomarkers and performed SHAP
analysis to provide interpretability, revealing the contribution and
potential mechanisms of each gene in IDD diagnosis. Furthermore,
MR analysis based on gene eQTL data suggested a potential causal
relationship between KLRB1 and IDD, indicating a possible
protective effect. However, other candidate genes did not show
significant causal associations, which may be attributable to
limitations such as small sample size, low gene expression levels,
or insufficient gene—phenotype association signals. Future studies
with larger multi-omics datasets and independent cohorts are
needed to further elucidate the roles of these genes in
IDD pathogenesis.

Studies have shown that matrix metalloproteinase 9 (MMP-9)
plays a key role in the onset and progression of IDD. MMP-9
degrades extracellular matrix components in the disc, such as
collagen and proteoglycans, and its expression level is positively
correlated with the severity of disc degeneration and herniation
(36). In addition, the -1562C/T polymorphism of the MMP-9 gene
is associated with IDD susceptibility in young adults (37), and
downregulation of miR-133a promotes collagen II loss by targeting
MMP-9, further contributing to disc degeneration (38). These
findings suggest that MMP-9 may serve as a potential biomarker
and therapeutic target for IDD.
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UCHL1 (Ubiquitin C-terminal hydrolase L1) is closely
associated with IDD. Transcriptomic analyses and clinical sample
validation have demonstrated that UCHLI expression is
significantly downregulated in both peripheral blood and
intervertebral disc tissues of IDD patients, suggesting its potential
involvement in the pathogenesis of disc degeneration (39). Further
mechanistic studies have revealed that UCHLI regulates HSPAS8
through deubiquitination, thereby activating the chaperone-
mediated autophagy pathway, which plays a critical protective
role in delaying intervertebral disc degeneration (40).

In the pathological context of IDD, previous studies have shown
that immune cells such as T cells and NK cells infiltrate the degenerative
disc tissue. By releasing pro-inflammatory cytokines including IL-1f3,
TNF-0, and IL-6, they exacerbate cell apoptosis and ECM degradation,
thereby promoting IDD progression (22). The protein level of HPGD is
significantly increased during the symptomatic and late stages of motor
neuron disease (41). These results suggest that HPGD may participate
in inflammatory responses and pathological processes in the nervous
system by regulating the metabolism of prostaglandin E2.

Our study revealed significant differences in plasma cells, Y5 T
cells, and neutrophils between the control and experimental groups.
We then further explored the relationships between individual
genes and immune cells, and the results showed that UCHLI
exhibited relatively weak associations with immune cells. In a
more detailed analysis of gene-immune cell interactions, we
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found that MMP9 displayed significant differences in the following
immune cell types: MO macrophages, CD8 T cells, monocytes,
activated mast cells, neutrophils, M1 macrophages, naive CD4 T
cells, Y0 T cells, resting memory CD4 T cells, and regulatory T cells
(Tregs). At the same time, KLRB1 showed significant differences in
YO T cells, resting memory CD4 T cells, naive CD4 T cells, CD8 T
cells, neutrophils, activated mast cells, M1 macrophages, and resting
mast cells. Further analysis demonstrated that HPGD was more
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strongly associated with ¥y T cells, CD8 T cells and mast cells
resting. For UCHLL, significant differences were observed in plasma
cells and y8 T cells. Notably, when all four DEGs were altered, Y0 T
cells consistently exhibited differential changes. However, the
expression pattern of MMP9 in immune cells was not entirely
consistent with that of the other three core genes.

In this study, we found that yd T cells may play a potential role
in intervertebral disc (IVD) injury and degeneration. Clayton et al.
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Expression distribution of genes associated with the MIF pathway; (F) Co-expression of CD74*CXCR4 and CD74*CD44 across different cell types.

A

ov}

1.5 skkk 1.0- Kokok
NMMPY .. ook 04 —1
0.8
}_ g : o 08- E )
HPGD ‘“ : 3 2 : 0.6
Q < 0.64 ) )
: : :
UCHLI '— = 0.5 8 04- z 04
2 E @)
0.2- = 02
GAPDH | s 004
1 - 0.0 - 0.0-
s M s M s M S M

FIGURE 10
Experimental validation. Western blot were used to detect the expression level of MMP9, HPGD, and UCHL1 in S group and M group.
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reported that y0 T cells predominantly appear in injured female
IVD tissues and exert anti-inflammatory and tissue-protective
effects, which may explain the sex differences in disc
degeneration; male mice, lacking the protection of Y0 T cells,
showed more severe degeneration (42). Interestingly, in studies
on bone fracture repair, mice deficient in yd T cells exhibited more
mature tissue regeneration, stronger expression of bone and
cartilage matrix proteins, and improved biomechanical strength,
suggesting that Y3 T cells may delay bone healing in certain contexts
(43). These findings not only deepen our understanding of the
immune mechanisms underlying IDD but also highlight the need
for future research to explore the spatiotemporal roles of Y5 T cells
in tissue injury and repair, as well as their potential
therapeutic value.

CDA4" T cells also play an essential role in the adaptive immune
system and are closely involved in the pathogenesis of IDD. Several
studies have demonstrated that the proportion of resting memory
CD4" T cells is significantly decreased in degenerated disc tissues,
suggesting impaired immune homeostasis in IDD patients (39). In
contrast, specific subsets such as Th17 cells are enriched in
degenerative discs and can secrete pro-inflammatory cytokines
including IL-17 and TNF-q, thereby accelerating extracellular
matrix degradation and promoting disease progression (8, 22).
On the other hand, Treg cells exert immunosuppressive effects
through IL-10 and TGF-B, and their functional imbalance with
Th17 cells is considered a hallmark of IDD-associated immune
dysregulation (44). Furthermore, a recent Mendelian
randomization analysis indicated a bidirectional causal
relationship between CD39" CD4" T cells and IVDD,
highlighting their potential as both biomarkers and therapeutic
targets (45). Collectively, these findings indicate that CD4" T cells,
through their diverse subsets and cytokine profiles, exert both
pathogenic and protective functions in IDD, and the imbalance
between them may critically shape disease onset and progression.

Through single-cell analysis of nucleus pulposus tissue, we
found that chondrocytes can regulate the function of monocytes
via the MIF signaling pathway, thereby participating in the
modulation of the intervertebral disc immune microenvironment
and the degenerative process. Previous studies have shown that MIF
expression is upregulated in degenerated nucleus pulposus cells and
promotes extracellular matrix degradation and apoptosis via the
NF-xB signaling pathway, and the use of the MIF inhibitor CPSI-
1306 can alleviate disc degeneration in mouse models, suggesting
that MIF may serve as a potential therapeutic target for IDD (46).
Furthermore, single-cell RNA sequencing studies revealed that MIF
can regulate nucleus pulposus cell function and extracellular matrix
metabolism through binding to the ACKR3 receptor, with MIF
expression positively correlated with ACKR3, and MIF inhibition
mitigating degenerative changes in nucleus pulposus cells (47).
These studies further support the potential of MIF inhibitors in
alleviating disc degeneration, reducing nucleus pulposus cell
apoptosis, and suppressing inflammation (48). Therefore, our
single-cell analysis findings are consistent with existing literature,
indicating that MIF may play a central role in chondrocyte-
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immune cell interactions and providing new insights for immune-
based therapeutic strategies for IDD.

In this study, we employed a multi-level analytical strategy to
explore the molecular mechanisms of IDD. First, PPI networks were
constructed to identify key gene nodes. Then, ANNs and machine
learning were used to evaluate the predictive value of these genes,
with SHAP analysis quantifying each gene’s contribution to the
models. Subsequently, MR was applied to validate the causal
relationships between key genes and the disease. Finally, single-
cell sequencing data were integrated to analyze the expression
patterns of differentially expressed genes in specific immune cell
types. This approach systematically reveals core genes and immune
features in IDD, providing a reference for future precision diagnosis
and intervention. However, the following limitations should be
considered when interpreting our results. First, this study did not
perform microarray or RNA sequencing, and the gene expression
data were entirely obtained from the GEO database. In addition, the
IDD cell model used in this study could not fully recapitulate the
complex in vivo IDD microenvironment, which is far more
physiologically intricate than in vitro models. Finally, the GWAS
dataset used in this study was primarily derived from European
populations, which may limit the applicability of the findings to
other populations. Future studies could include cohorts from
diverse ethnic groups to enhance the generalizability and
representativeness of the results. Moreover, the identified key
genes and pathways may serve as potential biomarkers or
therapeutic targets, providing new insights for early diagnosis and
individualized treatment of IDD.

5 Conclusion

In this study, IDD was analyzed by integrating ANN, multiple
machine learning methods, SHAP analysis, and MR. During gene
feature selection, we applied ANN, LASSO, SVM-RFE, and RF, and
subsequently validated the results using Western blot experiments.
Ultimately, three potential biomarkers were identified: MMP9,
HPGD, and UCHLI.By combining ten machine learning
approaches with SHAP models, we systematically evaluated the
role of these core genes in IDD diagnosis, revealing the genetic
characteristics, molecular pathways, and differentially abundant
immune cell types associated with IDD. Further integration with
single-cell analysis allowed us to explore the potential role of the MIF
pathway in IDD pathogenesis. Overall, our findings indicate that
machine learning-based approaches can provide effective support for
the precise diagnosis of IDD, while also offering novel insights for the
development of clinical interventions and therapeutic strategies.
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