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Effects of heavy metal exposure
on kidney transplant recipients:
mechanisms and clinical

implications for graft failure risk
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Yongliang Qu?, Bo Yuan™ and Wei Wei™*

‘Department of Urology, The First Hospital of Jilin University, Changchun, China, 2Organ Transplant
Center, First Hospital of Jilin University, Changchun, China

Environmental exposure to heavy metals, such as cadmium, lead, arsenic, and
copper, represents a significant yet underappreciated threat to the long-term
survival of kidney transplants. Accumulating epidemiological evidence
consistently links even low-level exposure to a substantially elevated risk of
late graft failure. The transplanted kidney is particularly vulnerable due to its
heightened susceptibility to oxidative stress, compounded by
immunosuppressive therapy and often impaired excretory function. The core
pathophysiological mechanism involves the accumulation of heavy metals in the
renal cortex, where they disrupt mitochondrial function and catalyze the
generation of reactive oxygen species (ROS) via Fenton-like reactions. This
oxidative surge depletes antioxidant defenses, triggering a deleterious cascade
of inflammation, apoptosis, and fibrosis, which accelerates the progression of
chronic allograft injury. Recognizing this modifiable environmental risk factor is
paramount for improving outcomes. This review synthesizes the current
evidence and proposes a multi-pronged management strategy, encompassing
rigorous biomonitoring, targeted dietary interventions, and novel therapeutic
approaches, such as mitochondrial transplantation and the use of natural
antioxidants, to mitigate heavy metal toxicity and enhance graft longevity.
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1 Introduction

With the rapid advancement of global industrialization and urbanization, heavy metal
pollutants pose an increasingly severe threat to ecological environments and human health.
Heavy metals such as cadmium, lead, mercury, and arsenic exhibit high toxicity,
environmental persistence, non-biodegradability, and bioaccumulation (1-3). They resist
degradation in natural environments yet accumulate continuously through food chains,
thereby causing long-term harm to ecosystems and human health (1). These pollutants
primarily originate from human activities, including mining, smelting, industrial
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wastewater discharge, pesticide application, electronic waste
disposal, and various emissions generated during urbanization
(4-6). This leads to their widespread distribution in soil, water
bodies, and air (3, 6, 7). Heavy metals enter the environment
through multiple pathways, including wastewater, exhaust gases,
and solid waste. They not only accumulate near their emission
points but also migrate to previously uncontaminated areas,
forming complex pollution and exacerbating ecological risks (8-
10). The accumulation of heavy metals is particularly pronounced
in coastal waters, lake sediments, and urban environments, severely
impacting the environmental balance and sustainable human
habitats (11-13). When humans ingest heavy metals through
contaminated air, drinking water, or the food chain, these
elements gradually accumulate in the body (7, 14, 15). This
accumulation can trigger multi-system health damage, including
neurological disorders, kidney failure, immune system dysfunction,
digestive system disorders, skin diseases, reproductive
abnormalities, respiratory diseases, and potential carcinogenic
risks (14-16). Long-term exposure to heavy metals, even at low
concentrations, may cause progressive, irreversible damage to
multiple organs, posing a significant global public health challenge.

The kidneys serve as the body’s primary excretory and
metabolic organs. Due to their high blood flow and the
reabsorption and concentration functions of the renal tubules,
they are more prone to accumulating heavy metal elements,
making them a key target for heavy metal toxicity (17-19).
Consequently, they become key targets for heavy metal toxicity.
After entering the kidneys via the bloodstream, heavy metals exert
nephrotoxic effects through multiple mechanisms, including
induction of oxidative stress, mitochondrial dysfunction,
inflammatory responses, apoptosis, and direct damage to renal
tubular epithelial cells (20-24). Chronic low-level exposure to
heavy metals and the resulting subclinical kidney injury have
become a focal point in public health. Such damage often
presents insidiously in its early stages yet exhibits persistent
progression, significantly increasing the risk of chronic kidney
disease and end-stage renal disease while severely compromising
renal transplant outcomes (25-28). Therefore, against the backdrop
of widespread heavy metal contamination, elucidating the
nephrotoxic mechanisms of these metals is crucial for developing
early biomarkers, identifying high-risk populations, and
formulating targeted prevention strategies. This review
summarizes the sources and exposure pathways of several major
heavy metal pollutants, with a focus on their core molecular
mechanisms that induce nephrotoxicity. It aims to provide
theoretical foundations for toxicity prevention research and to
reduce the risk of kidney transplant failure.

Abbreviations: ROS, reactive oxygen species; Nrf2, nuclear factor erythroid 2-
related factor 2; TGF-, transforming growth factor-f; KTRs, kidney transplant
recipients; GSH, glutathione; SOD, superoxide dismutase; WQS, weighted
quantile sum regression; BKMR, Bayesian kernel machine regression; eGFR,
estimated glomerular filtration rate; EGFR, epidermal growth factor receptor;

GSTs, glutathione s-transferases.
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2 Epidemiological evidence indicates a
strong association between heavy
metal exposure and kidney transplant
failure

Recent epidemiological studies have identified a significant
association between heavy metal exposure and kidney transplant
failure. Environmental exposure to heavy metals poses a serious
threat to kidney graft function, substantially increasing the risk of
graft failure and renal decline. Recognizing heavy metal exposure as
a controllable risk factor in the long-term management of
transplanted kidneys and implementing corresponding exposure
prevention strategies holds significant potential clinical implications
for improving graft survival.

2.1 Increased risk of graft failure associated
with heavy metal exposure

Heavy metals are ubiquitous in the environment and workplace,
and their nephrotoxicity is widely recognized as a potential contributor
to the onset and progression of chronic kidney disease (CKD). In
recent years, epidemiological research has increasingly focused on the
impact of heavy metal exposure on the specific population of kidney
transplant recipients (KTRs), particularly its association with graft
failure risk. Multiple prospective cohort studies indicate that even at
levels typical of environmental exposure, heavy metals significantly
increase the risk of graft failure in KTRs. A Dutch prospective cohort
study suggested that a doubling of plasma lead concentration in KTRs
was associated with a 59% increase in the risk of late graft failure,
implying that controlling lead exposure may represent a novel
approach to improving long-term graft survival (29). This finding
remained significant after multivariable adjustment for major clinical
and cardiovascular risk factors, confirming lead exposure as an
independent risk factor (29). Separately, a study of 693 KTRs found
that doubling urinary copper excretion increased the risk of transplant
failure by 57%, demonstrating a dose-response relationship. This
mechanism may relate to copper-induced oxidative damage to renal
tubules (30). Additionally, elevated plasma cadmium concentrations
were independently associated with long-term graft failure and
declining renal function (31). Similarly, among 665 KTRs, plasma
arsenic concentrations were independently associated with an 80%
increased risk of late graft failure, with fish consumption identified as
the primary source of arsenic exposure (32). In summary, existing
epidemiological evidence consistently indicates that even low-level
environmental heavy metal exposure, which is conventionally
considered safe, is significantly associated with an increased risk of
long-term graft failure in KTRs (33, 34). These findings are consistent
with a causal relationship between heavy metal exposure and graft
failure and highlight environmental heavy metal exposure as a critical,
potentially modifiable risk factor for graft failure in KTRs. However,
definitive confirmation of causality awaits support from intervention
studies or quasi-experimental evidence. Although prospective cohort
studies control major confounding factors through methods such as
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multivariable adjustment and reveal exposure-response relationships of
public health significance, caution is still needed in causal inferences.
Potential residual confounding, exposure misclassification, time-
varying exposures, and competing risks may still affect the accuracy
of effect estimates.

2.2 Summary of epidemiological evidence
on heavy metal exposure and kidney
transplant failure

Existing epidemiological evidence consistently indicates that even
low-level environmental heavy metal exposure is significantly
associated with an increased risk of long-term graft failure in KTRs.
However, while current studies reveal these associations, they also
expose several key issues. First, low-dose, long-term cumulative, and
mixed exposures to multiple heavy metals represent the main realistic
risk scenarios faced by transplant populations, and their combined
toxic effects may be more complex. Second, exposure levels measured
in biological matrices, such as blood or urine, may differ from the actual
heavy metal load in transplant kidney tissue. Additionally,
observational studies cannot entirely rule out reverse causation, in
which declining kidney function reduces heavy metal excretion, leading
to elevated blood concentrations. These factors limit the causal
inference of the exposure-outcome relationship. Therefore, it is
urgently necessary to elucidate the exact molecular pathways of
heavy metal-induced nephrotoxicity and, on this basis, to conduct
targeted interventional studies to consolidate the causal chain of this
association and provide a solid foundation for the development of
subsequent clinical prevention strategies.

3 Mechanisms by which heavy metal
exposure affects kidney transplant
outcomes

Although current observational studies have revealed an
association between heavy metal exposure and adverse outcomes in
kidney transplantation, and these studies’ differences in
characterization provide targeted strategies for prevention and
treatment, the specific mechanisms of action require further
clarification. This section will elaborate on the potential mechanisms
linking heavy metal exposure to kidney transplant failure and how such
exposure influences the development of transplanted kidneys. The
complex relationship between heavy metal exposure and adverse
kidney transplant outcomes involves multiple pathways, including
nephrotoxic effects, oxidative stress, and cumulative effects.

3.1 Heavy metal accumulation and specific
vulnerabilities in transplanted organs

Heavy metals such as cadmium, lead, and arsenic exhibit a
significant affinity for the kidneys (35). Following environmental or
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occupational exposure, they preferentially accumulate in the renal
cortex (35). By inducing oxidative stress and mitochondrial
dysfunction, they directly damage renal tubular epithelial cells and
glomerular structures (31, 36). This accumulation phenomenon also
occurs in transplanted kidneys, and because the kidneys are
frequently hyper filtrated, the toxic effects may be further amplified.
Even when circulating heavy metal concentrations remain within
conventional detection ranges, their long-term accumulation in
transplanted kidney tissue can persistently induce oxidative damage
(29, 37). When multiple heavy metals co-expose, they may
synergistically activate oxidative stress pathways, thereby
accelerating the progression of renal injury (38, 39). Transplant
recipients constitute a specialized group exhibiting heightened
sensitivity to heavy metal toxicity. Long-term immunosuppressive
therapy weakens the body’s antioxidant defenses, making
transplanted kidneys more susceptible to oxidative stress attacks
(34, 40). Additionally, certain immunomodulatory drugs may
interfere with heavy metal metabolism or inhibit renal self-repair
mechanisms, thereby increasing susceptibility to toxicity (37).
Although total heavy metal accumulation in transplanted kidneys
may be lower than in kidneys removed due to tumors, their intrinsic
compensatory mechanisms against heavy metal toxicity are
significantly weakened by prolonged subclinical inflammation (37).
Transplanted kidneys often carry preexisting pathological
foundations from ischemia-reperfusion injury or rejection-related
conditions. Heavy metal exposure can further exacerbate oxidative
damage, breaching physiological compensation thresholds (31, 40,
41). Moreover, with partial functional impairment in transplanted
kidneys, the efficiency of heavy metal excretion decreases, leading to
higher accumulation levels compared to normal kidneys (42-44).
This accelerates the progression of renal fibrosis and chronic
transplant nephropathy.

Exposure to heavy metals in the environment typically occurs as
mixtures, which may produce additive or interactive effects when
inducing nephrotoxicity (38, 39). For example, cadmium and
arsenic may synergistically inhibit the Nrf2 antioxidant pathway,
making cells more susceptible to oxidative damage (45, 46).
However, the role of Nrf2 in heavy metal-induced nephrotoxicity
is complex and dual. While chronic low-dose exposure to heavy
metals is generally associated with Nrf2 suppression, recent
evidence suggests that acute or high-intensity exposure may
trigger persistent overactivation of Nrf2 signaling (47, 48). This
abnormal sustained activation is not protective; it may lead to
harmful consequences, including the induction of autophagy
blockage and a vicious cycle of oxidative stress-autophagy
inhibition, further weakening the cell’s antioxidant defenses (47,
48). Such overactivation can cause ‘transcriptional exhaustion,
meaning that after long-term efforts to combat oxidative stress,
the cell can no longer maintain subsequent antioxidant gene
expression, leading to the collapse of the antioxidant defense
system and autophagy dysfunction (47, 48). Moreover, persistent
activation of Nrf2 can reprogram cellular metabolism and promote
the expression of profibrotic factors, directly exacerbating renal
tubular interstitial inflammation and fibrosis (49). This mechanism
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involves Nrf2 interfering with normal cellular signaling pathways,
which under pathological conditions can transform into a pro-
fibrotic effect (49). In the specific context of transplanted kidneys,
the inherent oxidative stress state interacts with heavy metal
exposure, making the Nrf2 pathway more prone to shift from
early protective activation to decompensated dysfunction (50, 51).
And lead and copper may have cumulative effects at the
mitochondrial level, jointly aggravating disturbances in the
electron transport chain and increasing ROS bursts (52). This
complex interaction makes risk assessments based on a single
metal likely to underestimate the actual health risk. Therefore, in
future mechanistic and epidemiological studies, the use of advanced
statistical models, such as weighted quantile regression and
Bayesian kernel machine regression, is crucial for clarifying the
overall effects of mixed heavy metal exposure on transplant kidney
injury, identifying key driving components, and understanding
potential interactions (53, 54).
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3.2 Oxidative stress

Heavy metals are ubiquitous in the environment and
occupational settings, entering the human body through multiple
pathways and specifically accumulating in the renal cortex, thereby
inducing significant nephrotoxic effects. Their core toxic
mechanism is closely associated with the induction of oxidative
stress (Figure 1). Heavy metals can disrupt the mitochondrial
electron transport chain in renal tubules, leading to an increased
production of superoxide anion (O,) and hydrogen peroxide
(H,0,) (55-58). Metal ions catalyze the Fenton reaction to
generate large amounts of reactive oxygen species (ROS) (52, 59,
60). This process disrupts intracellular redox balance, continuously
depleting endogenous antioxidants, such as glutathione, and
directly inhibits the activity of key antioxidant enzymes, including
superoxide dismutase (SOD) and glutathione peroxidase (GPx) (45,
58, 61). Furthermore, heavy metal exposure inhibits the activation
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FIGURE 1

The core mechanism of heavy metal-induced oxidative stress and chronic injury in the transplanted kidney. This figure illustrates the core molecular
pathways involved in environmental heavy metal exposure leading to transplanted kidney failure. Upon accumulation of heavy metals in the renal
cortex, the primary target is to disrupt renal tubular mitochondrial function, inducing a burst of ROS generation by interfering with the electron
transport chain and catalyzing the Fenton reaction. The dramatically elevated ROS disrupts cellular redox homeostasis, depletes endogenous
antioxidants such as GSH, and inhibits key antioxidant enzymes, such as SOD and GPx, on the one hand. On the other hand, it leads to a
comprehensive dysregulation of cellular antioxidant defense system by inhibiting or abnormally activating the Nrf2 pathway. Dysregulation of the
cellular antioxidant defense system. Sustained oxidative damage triggers direct cellular damage such as lipid peroxidation, protein modification, and
DNA breakage, and in turn activates three key MAPK signaling pathways (IJNK, p38, Erk), which dominate apoptosis, inflammation, and fibrosis,
respectively. Meanwhile, ROS also activate the NF-xB inflammatory pathway and TGF-3 pro-fibrotic pathway. These pathways are intertwined, and
together they lead to renal tubular epithelial cell death, chronic inflammation and interstitial fibrosis, which ultimately drive the progression of
chronic transplant kidney injury until the loss of transplant kidney function.
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of nuclear factor E2-related factor 2 (Nrf2), thereby obstructing the
expression of downstream antioxidant genes (45, 46). In
transplanted kidneys, heavy metal-induced ROS surges further
lead to the depletion of antioxidant enzymes and the
accumulation of lipid peroxides, directly damaging renal cell
membrane structures and compromising DNA integrity (31, 38,
39, 43, 62). Oxidative damage ultimately triggers cellular harm,
including lipid peroxidation, protein modification, and DNA
breaks. This oxidative stress response not only directly damages
tubular epithelial cells and glomerular structures, causing acute or
chronic kidney injury, but also further activates inflammatory
signaling pathways, including NF-xB and MAPK (60, 63, 64).In
addition, different members of the mitogen-activated protein kinase
(MAPK) signaling pathway play specific roles in heavy metal-
associated kidney injury. This family mainly includes extracellular
signal-regulated kinase (Erk), c-Jun N-terminal kinase (JNK), and
p38 MAPK. The Erk pathway exhibits a dual function in heavy
metal nephrotoxicity: while it primarily participates in cell
proliferation and survival under physiological conditions, its
sustained abnormal activation under heavy metal stress may
mediate excessive proliferation and phenotypic transformation of
intrinsic kidney cells, thereby promoting the progression of renal
interstitial fibrosis (65, 66). Specifically, uranium can promote
proliferation signals by enhancing Erk phosphorylation, whereas
chromium inhibits its activity, weakening the cell’s self-repair
ability; using an Erk inhibitor can effectively alleviate cadmium-
triggered inflammatory responses (67-69). In contrast, the JNK and
p38 pathways are generally considered core mediators of stress
responses and are highly sensitive to oxidative stress caused by
heavy metals. The JNK pathway primarily regulates apoptosis.
Metals like cadmium and uranium induce a burst of reactive
oxygen species (ROS), significantly increasing the p-JNK/JNK
ratio, thereby activating the mitochondrial apoptosis pathway and
leading to renal tubular epithelial cell death through a caspase-9/3
cascade reaction (67, 70-72). The p38 pathway primarily governs
the initiation and amplification of inflammatory responses.
Cadmium and lead promote p38 phosphorylation, further
activating NF-kB and the NLRP3 inflammasome, leading to
massive release of key inflammatory factors such as TNF-o and
IL-1B (60, 69). Moreover, p38 can form a positive feedback loop
with signaling pathways like endoplasmic reticulum stress,
synergistically aggravating tissue damage (60, 73). It is
noteworthy that there is close interaction among these MAPK
sub-pathways. For instance, cadmium and chromium can jointly
activate JNK and p38, synergistically enhancing apoptotic signals
(72, 74).Different heavy metals also show pathway preferences, such
as lead being more inclined to activate JNK (75). Upstream
oxidative stress events collectively regulate all these pathways.
ROS induced by cadmium, chromium, uranium, and other metals
can directly phosphorylate and activate Erk, JNK, and p38, forming
a core ROS-MAPK signaling axis (76). In summary, under heavy
metal exposure, a sharp increase in ROS can simultaneously or
preferentially activate distinct MAPK signaling pathways. This
promotes the release of pro-inflammatory factors, such as TNF-o
and IL-6, which drive localized chronic inflammation in the
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transplanted kidney and amplify its effects (60, 63, 64).
Concurrently, ROS activates the caspase-dependent apoptosis
pathway and induces TGF-B expression, leading to tubular
epithelial cell apoptosis and subsequent interstitial fibrosis (31, 42,
58). In summary, oxidative stress-mediated cellular injury not only
disrupts functional recovery in transplanted kidneys but may also
contribute to acute rejection. Studies confirm that post-transplant
oxidative stress levels serve as key biomarkers for acute rejection,
inducing renal cell inflammation and necrosis that delay graft
functional recovery or cause long-term dysfunction.

3.3 Genetic susceptibility

Beyond the direct pathophysiological mechanisms, individual
genetic susceptibility plays a pivotal role in modulating the risk and
severity of heavy metal nephrotoxicity in KTRs. Genetic
polymorphisms can influence an individual’s ability to metabolize,
detoxify, and excrete heavy metals, as well as the resilience of renal
tissue to the ensuing oxidative stress and inflammation (77). As
highlighted by Glicklich et al. in their review on heavy metal toxicity
in chronic kidney disease and cardiovascular disease, genetic
variations are key determinants of inter-individual differences in
toxicant handling and disease manifestation (77). This principle is
highly relevant to the transplant population. Variations in genes
involved in the glutathione (GSH) synthesis and conjugation
pathways, such as glutathione S-transferases (GSTs), can
significantly impact cellular antioxidant capacity and the
elimination of heavy metals, thereby modifying the extent of
oxidative damage (78, 79). Specific polymorphisms also illustrate
gene-environment interactions that heighten susceptibility to renal
injury. The AA genotype of rs13244925 in the epidermal growth
factor receptor (EGFR) gene has been associated with higher
estimated glomerular filtration rate (eGFR) in cadmium-exposed
individuals, suggesting a protective role against cadmium
nephrotoxicity that is absent in non-exposed groups (80). Similarly,
single-nucleotide polymorphisms (SNPs) in the tumor necrosis
factor-a. (TNF-o) gene increase susceptibility to metal-induced
CKD by upregulating transmembrane TNF-o expression,
particularly worsening renal injury through chronic inflammation
and fibrosis in advanced CKD (81). Polymorphisms in the vascular
endothelial growth factor A (VEGFA) gene exacerbate the risk of
renal dysfunction under co-exposure to lead and cadmium (81). In
both additive and recessive genetic models, these SNPs—combined
with urinary cadmium and blood lead levels—significantly modulate
renal dysfunction risk, underscoring their role in altering baseline
renal function and amplifying heavy metal toxicity. Furthermore,
variants in inflammation-related genes, such as NLRP3, enhance
fibrosis propensity in response to metal exposure, significantly
elevating CKD risk by amplifying chronic inflammatory responses
(82). Certain allelic combinations exert multiplicative effects, further
increasing the risk of graft failure and highlighting how genetic
variants promote susceptibility via renal interstitial fibrotic
pathways. In kidney transplantation, this genetic predisposition
interacts with the allograft’s unique milieu. The recipient’s genetic
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background controls systemic metal metabolism and immune-
inflammatory responses, whereas the donor’s genetic makeup
influences the kidney’s intrinsic resilience after transplantation. The
two interact in a complex manner that ultimately determines the
outcome of grafts under heavy metal exposure. Therefore, omitting
genetic susceptibility from risk assessments may lead to an
incomplete understanding and underestimation of threats faced by
vulnerable KTR subpopulations.

4 Potential prevention and treatment
strategies

To reduce the risk of graft failure in KTR due to heavy metal
exposure, the researchers proposed a set of multi-level integrated
intervention strategies (Figure 2). The system is based on
environmental control and biomonitoring to reduce exposure at the
source and achieve early warning. Based on this system, mitochondrial
transplantation to restore cellular energy metabolism, probiotic
interventions to minimize absorption and enhance antioxidant

10.3389/fimmu.2025.1718695

defense through the intestinal-renal axis, and natural antagonists to
activate the endogenous antioxidant pathway are employed to address
the key aspects of heavy metal-induced mitochondrial damage,
oxidative stress, and intestinal absorption, thus synergizing to reduce
secondary damage such as inflammation and fibrosis. It is important to
note that several of the proposed strategies—namely mitochondrial
transplantation, probiotic supplementation, and the use of natural
antagonists—currently rest largely on preclinical evidence derived
from animal studies and in vitro models. Although they represent
promising therapeutic avenues, their safety, efficacy, and practical
feasibility in the immunocompromised KTR population remain to be
validated in future clinical trials. The following sections detail the
mechanistic rationale and experimental support for each strategy, and
address the challenges associated with their clinical translation.

4.1 Mitochondrial transplantation

To address the risk of renal toxicity and transplant failure
associated with heavy metal exposure, mitochondrial transplantation

Potential prevention and treatment strategy

robiotic intervention

Use natural antagonists

FIGURE 2

Chelation therapy

Mitochondrial
transplantation

Heavy metal exposure'
monitor and control

A multi-pronged management framework for mitigating heavy metal-associated injury in kidney transplant recipients. This figure presents a
framework for a comprehensive intervention strategy to mitigate heavy metal toxicity and protect kidney function after transplantation. The
framework is based on environmental control and biomonitoring to limit exposure through source reduction and early warning. On this basis,
multiple intervention strategies are integrated. Mitochondrial transplantation can directly repair heavy metal-induced mitochondrial dysfunction and
restore energy metabolism from the root. Probiotic intervention reduces the bioavailability of heavy metals through adsorption and chelation,
enhances systemic antioxidant capacity, and improves intestinal barrier function through the intestinal-renal axis. Natural antagonists activate
endogenous antioxidant pathways, such as Nrf-2/HO-1, and inhibit inflammation, thereby improving the function of transplanted kidneys. Natural
antagonists activate endogenous antioxidant pathways such as Nrf-2/HO-1, which in turn inhibit inflammatory and apoptotic signaling. Chelation
therapy may be considered to promote heavy metal excretion after cautious evaluation of patients with clearly excessive body burdens. These
strategies target the key components of heavy metal toxicity - mitochondrial damage, intestinal absorption, oxidative stress, and body load -
synergistically, and work together to mitigate secondary damage, such as inflammation and fibrosis, to decrease heavy metal accumulation,
alleviating oxidative stress, and thus enhancing renal transplantation function.
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has emerged as a promising but experimental therapeutic strategy in
preclinical research. Heavy metals primarily damage renal tubes by
inducing oxidative stress, disrupting mitochondrial function, and
triggering apoptosis, thereby significantly increasing the risk of graft
loss (83-85). Further research indicates that heavy metals specifically
damage highly metabolically active mitochondria in the kidney,
disrupting their energy supply and waste-clearance capabilities,
thereby accelerating post-transplant renal deterioration (42, 44, 85).
Mitochondrial transplantation directly repairs heavy metal-induced
mitochondrial dysfunction by exogenously supplying healthy
mitochondria, effectively reversing oxidative stress and cellular
damage (86-89). Preclinical studies in a cadmium-induced
nephrotoxicity model have shown that this therapy significantly
elevated intracellular reduced glutathione levels, enhanced Bcl-2 anti-
apoptotic protein expression, and inhibited caspase-3 activity (86). This
promoted ATP synthesis recovery and renal tubular structural
regeneration, improving renal function indicators and reducing
histopathological damage (86-88). Additionally, mitochondrial
transplantation mitigates immunosuppressant-related mitochondrial
toxicity and alleviates postoperative oxidative stress, thereby
contributing to a comprehensive reduction in the risk of graft
dysfunction (90, 91). Although still far from clinical application,
mitochondrial transplantation theoretically offers a novel intervention
approach in kidney transplantation. However, the promising evidence
for mitochondrial transplantation currently derives primarily from
preclinical animal studies and in vitro models. Its clinical translation
faces several bottlenecks, including the standardized sourcing of viable
mitochondria, the risk of immune reactions to allogeneic organelles,
the development of safe and efficient in vivo delivery methods to the
kidneys, and navigating the substantial regulatory and ethical hurdles
associated with such a novel cellular therapy.

4.2 Probiotic intervention

Experimental research, primarily in animal models, indicates
that probiotics, such as Lactobacillus and Bacillus, can significantly
reduce markers of oxidative damage in kidney tissue and restore
antioxidant enzyme activity through their antioxidant properties.
For instance, probiotic supplementation after nickel exposure
upregulates protective gene expression in the kidneys, reversing
the suppression of gene expression caused by heavy metals (63).
This antioxidant effect is particularly crucial for immunosuppressed
kidneys post-transplantation, mitigating secondary oxidative
damage (63). Heavy metal exposure disrupts gut microbiota,
exacerbating renal burden through the leaky gut effect. Probiotics
directly reduce intestinal heavy metal absorption through
mechanisms such as biosorption and bioaccumulation, while
repairing intestinal barrier functions to block the migration of
inflammatory factors to the kidneys (92-94). Clinical studies in
occupationally exposed populations demonstrate that probiotic-
containing yogurt reduces urinary cadmium levels by 60%-72% in
occupationally exposed populations, while promoting the
proliferation of the beneficial gut bacterium Bifidobacterium (95,
96). The specific probiotic strain Lactobacillus acidophilus exhibits a
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high-affinity binding capacity for cadmium, mercury, and other
heavy metals, converting them into less toxic forms for excretion via
surface proteins or metabolic enzymes (96-98). For instance,
probiotic strains isolated from kimchi significantly reduced renal
cadmium accumulation and alleviated tubular necrosis in mice (97).
This targeted detoxification reduces heavy metal burden in
transplanted kidneys. Moreover, probiotics modulate the Th1/Th2
immune balance to mitigate chronic inflammation induced by
heavy metals (92, 99). In KTRs, this immunoregulation may help
mitigate synergistic damage from transplant rejection and heavy
metal toxicity. Furthermore, synergistic supplementation with
probiotics and minerals, such as calcium/iron can further reduce
cadmium bioavailability, offering novel strategies for post-
transplant nutritional support (94). In summary, preclinical
evidence suggests that probiotics may serve as an adjunctive
therapy to mitigate the risks of heavy metal exposure in
transplanted kidneys through multi-pathway actions involving
intestinal detoxification, systemic antioxidant effects, and renal
protection (92, 100). While the efficacy of probiotics against
heavy metals is supported by studies in occupationally exposed
and general populations, direct evidence in KTRs is lacking. Critical
safety considerations in this immunocompromised cohort include
the risk of probiotic-derived infections and potential interactions
with immunosuppressive drugs. Future research should prioritize
randomized feasibility trials with endpoints focusing on probiotic
tolerability, alongside pharmacokinetic monitoring of
immunosuppressants and indicators of metal excretion.

4.3 The use of natural antagonists

Exposure to heavy metals constitutes a significant risk factor for
graft failure in KTRs, with its toxic effects primarily mediated through
inducing oxidative stress and precipitating renal cellular damage (31,
34). Natural antagonists, including plant extracts, polyphenols, and
hormonal substances, have shown potential in experimental settings
to alleviate oxidative stress and delay the decline in transplanted
kidney function by activating endogenous antioxidant pathways. For
instance, melatonin not only suppresses the production of reactive
oxygen species (ROS) and enhances superoxide dismutase (SOD)
activity, but also reduces heavy metal accumulation in the kidneys,
thereby exerting renal protective effects (101). Polyphenolic extracts
derived from seaweed improve renal function indicators by directly
counteracting heavy metal-induced oxidative stress (102).
Furthermore, the compound OOP isolated from traditional
Chinese medicine has demonstrated pivotal value in preventing
and treating transplant-associated renal injury by inhibiting tubular
epithelial cell apoptosis and mitigating oxidative damage through the
activation of the Nrf2/HO-1 signaling pathway (103). The
mechanisms of action for these natural compounds include
enhancing systemic antioxidant capacity and directly chelating
heavy metals to reduce their bioavailability, thereby achieving
multi-pathway renal protection (104, 105). At the therapeutic
strategy level, natural antagonists have demonstrated efficacy in
preclinical models. For instance, certain plant extracts, acting as
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potent antioxidants, significantly alleviate cadmium-induced
oxidative stress and renal structural damage. Modulating key
signaling pathways further amplifies antioxidant responses, offering
potential intervention targets for renal transplant recipients (45, 104,
106). Despite bioavailability limitations, experimental delivery
strategies, such as nanomedicines, are being explored in early-stage
research to enhance their in vivo efficacy and applicability (107, 108).
In summary, natural antagonists demonstrate promising prospects
for counteracting heavy metal-related transplanted kidney injury
through their multi-mechanism synergistic effects. The translation
of natural antagonists is constrained by questions regarding optimal
dosing, bioavailability of conventional formulations, and their
intricate pharmacokinetic profiles. The development of novel
delivery systems, such as nanomedicines, must therefore prioritize
the validation of their safety profile and exclusion of any adverse
interference with the transplant pharmacotherapy.

However, when considering any interventional strategy to
promote heavy metal excretion, a critical clinical paradox must be
acknowledged. The excretion process itself may transiently increase
the renal toxicant load, potentially exacerbating kidney injury (109).
This is particularly evident in the treatment of cadmium poisoning.
Although chelating agents are conventional methods for cadmium
removal, clinical observations indicate that mobilization of
cadmium from storage sites during treatment can lead to a
temporary surge in blood and renal cadmium concentrations
(110). This surge may precipitate a wave of “secondary injury” in
individuals with pre-existing renal impairment (111). Therefore, for
KTRs, a vulnerable group with limited functional reserve and whose
transplanted kidneys often exhibit subclinical injury, any proactive
detoxification treatment must be approached with great caution.
Future research should focus on developing gentler, more
controlled detoxification strategies and on incorporating close
monitoring of early kidney injury biomarkers during treatment.
The paramount principle must be the absolute priority of protecting
graft function throughout the detoxification process.

4.4 Chelation therapy

For KTRs whose body loads of specific heavy metals have been
definitively exceeded, chelation therapy is a way to reduce toxic metal
loads through medication directly. As comprehensively reviewed by
Glicklich and Frishman, there is a strong case for screening for heavy
metal exposure in at-risk populations, including those with chronic
kidney disease, as elevated levels of heavy metals are associated with a
poorer prognosis (112). Chelating agents (e.g., EDTA) act by forming
stable, water-soluble complexes with metal ions in the bloodstream,
thereby promoting their excretion through the urine (110, 112, 113).
Evidence from studies of non-transplanted patients with chronic
kidney disease and confirmed lead toxicity suggests that chelation
therapy improves renal function and slows disease progression
(77, 112). This provides a rationale for considering this therapy in
selected KTRs. However, the application of chelation therapy in KTRs
requires extreme caution due to the vulnerability of transplanted
organs. The process of mobilizing metals from tissue stores may
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temporarily increase the concentration of nephrotoxic substances
flowing through the renal tubules, thus posing a risk of “secondary
injury” to the graft (110, 114, 115). Transplanted kidneys, which often
have a reduced functional reserve and are already subclinical
compromised, may be particularly vulnerable to such damage.
Therefore, the decision to use chelation therapy for KTR must be
individualized and implemented only after careful risk-benefit
assessment. It should be limited to those cases where there is clear
evidence that high heavy metal loads are associated with progressive
decline in graft function and where environmental exposures have been
clearly controlled. Treatment must begin at low doses and be
administered under close clinical supervision with strict monitoring
of graft function, electrolytes, and renal injury biomarkers.
Collaboration between transplant nephrologists and clinical
toxicologists is essential to navigate this complex therapeutic area.
Future studies are needed to develop specific safety and efficacy
protocols for chelation therapy for the KTR population.

4.5 Environmental heavy metal exposure
control and monitoring

Environmental heavy metal exposure is widely recognized as a
significant risk factor for kidney damage, particularly for KTRs,
where even exposure levels within the normal range may increase
the risk of graft failure. Research indicates that heavy metal
nephrotoxicity arises from their accumulation in renal tissue
following environmental exposure, triggering oxidative stress and
inflammatory responses that reduce glomerular filtration rate and
lead to graft dysfunction (31, 42, 116). Prospective cohort analyses
demonstrate that elevated plasma cadmium levels are significantly
associated with an increased risk of kidney transplant failure,
independent of other clinical factors, with a progressive increase in
risk corresponding to longer exposure duration (31). In the general
population, mixed heavy metal exposure may also accelerate chronic
kidney injury progression, posing greater threats to transplant
recipients with pre-existing renal impairment (53, 116, 117).
Environmental exposure control is a core strategy for mitigating
risks. This includes reducing heavy metal concentrations in ecological
media through regulating pollution sources and implementing
environmental protection policies. Strict management of drinking
water sources, air particulate matter, and soil contaminants can
significantly lower ingestion exposure risks. Research confirms that
air pollution exposure is significantly and positively correlated with
mortality, graft failure, and rejection risks among KTRs, underscoring
the importance of pollution control as a modifiable environmental
risk factor (117-119). Furthermore, assessing total environmental
exposure levels is crucial for developing targeted interventions, such
as using biomarkers to monitor heavy metal concentrations or
conducting exposure assessments in polluted areas (120-122).
Concurrently, monitoring exposure levels forms the foundation of
risk management. Systematic monitoring involves real-time
evaluation of heavy metal concentrations in environmental and
biological samples to identify high-risk populations and regions.
For instance, epidemiological studies recommend using urinary
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cadmium and lead levels as exposure indicators, combined with early
biomarkers of kidney injury, to enable stratified monitoring of
susceptibility in KTRs (53, 116, 123, 124). This monitoring not
only aids in identifying exposure sources but also supports the
development of combined exposure risk models to predict graft
failure trends and optimize prevention strategies (54, 122). Finally,
comprehensive prevention measures must integrate control and
monitoring, including reducing individual exposure, strengthening
occupational and community regulations, and promoting
mechanism-based interventions such as drug development
targeting metal excretion pathways (44, 122). Future efforts should
involve multidisciplinary collaboration to optimize pollution
management, thereby reducing the burden of heavy metal-related
nephrotoxicity and improving long-term outcomes in
kidney transplantation.

5 Clinical management stratification
and process recommendations

Given the risks above, it is crucial to integrate management of
environmental heavy metal exposure into the long-term follow-up
system for KTRs, and a stratified management strategy is
recommended. For high-risk recipients living in highly polluted
areas or engaged in related occupations, baseline assessments
should be conducted upon enrollment. Exposure biomarkers, such
as urinary cadmium and blood lead, should be monitored regularly
every 6-12 months during follow-up, along with early kidney injury
markers, including kidney injury molecule-1, neutrophil gelatinase-
associated lipocalin, and (2-microglobulin, to capture subclinical
toxicity sensitively (125-127). Early indicators of heavy metal-
induced kidney injury are key to identifying this injury and
predicting graft outcomes in KTRs. Oxidative stress-related
biomarkers, such as 8-hydroxy-2’-deoxyguanosine (8-OHdG),
protein carbonyls, and the redox ratio (GSH/GSSG), can directly
reflect free-radical damage induced by heavy metal exposure (128,
129). Elevated urinary 8-OHdG is closely associated with heavy metal
exposure and, as a reliable marker of DNA oxidative damage, can be
used to assess the risk of early subclinical kidney injury (128, 129). F2-
isoprostanes and oxidized albumin profiling enhance the monitoring
of lipid peroxidation and protein modification, supplementing the
prediction of tubular interstitial injury. Meanwhile, quantifying
inflammatory cytokine profiles, such as IL-6 and TNF-q, can reveal
chronic inflammatory responses triggered by heavy metals, which are
related to graft rejection and long-term functional decline (34, 130).
The combined use of these indicators, such as KIM-1 and NGAL, has
been shown to effectively distinguish between exposed and non-
exposed groups, providing early warning signals (128, 131, 132).
Regarding lifestyle, specific guidance should be provided, including
reducing the intake of seafood known to be high in heavy metals,
being aware of heavy metals contamination risks in rice and drinking
water, and supplementing sufficient minerals such as selenium and
calcium to reduce intestinal absorption of heavy metals through
competitive inhibition (133-138). When monitoring indicates
elevated exposure levels, a structured intervention pathway should
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be initiated. First, potential sources of exposure in personal life and
work environments should be actively investigated. Then, supportive
measures can be taken, such as nutritional interventions, probiotic
supplementation, or the use of natural antioxidants. Additionally,
consider consulting with occupational or environmental health
experts to identify and control source exposure. Throughout the
process, the most critical aspect is maintaining close coordination
with the core management of the transplant team, ensuring that any
interventions do not compromise blood concentrations or the efficacy
of immunosuppressive drugs, thereby reducing heavy metal toxicity
while safeguarding the transplanted kidney’s long-term survival.

6 Future research directions

Future research should focus on deepening our understanding of
the association between heavy metal exposure and kidney transplant
outcomes across multiple levels, while advancing clinical translation. At
the mechanistic level, multi-omics technologies should be employed to
elucidate interactions among core pathways within the unique
microenvironment of transplanted kidneys, such as oxidative stress,
inflammation, and fibrosis, with particular emphasis on the amplified
effects of these processes under immunosuppression. Regarding
exposure assessment and risk prediction, establish comprehensive
risk models for mixed heavy metal exposure using large-scale
prospective cohorts, integrating factors such as genetic susceptibility
and immune status to enable precise risk stratification. Simultaneously
develop novel biomarkers capable of early detection of heavy metal
accumulation and subclinical injury within transplanted kidneys. At
the level of genetic susceptibility, future studies should integrate genetic
and epigenetic analyses to identify variants that confer heightened risk
from heavy metal exposure in KTRs. Building polygenic risk scores that
incorporate key polymorphisms in metal-handling and antioxidant
pathways could enable more precise stratification of patients and
personalized management strategies. At the clinical translation level,
the critical task is to design rigorous intervention trials to validate novel
therapeutic strategies that target antioxidant defense, maintain
mitochondrial function, and modulate the effects of probiotics. The
feasibility of incorporating environmental exposure control into
comprehensive post-transplant management should be evaluated,
ultimately translating research findings into clinical guidelines and
public health policies that effectively enhance graft long-term survival.

7 Conclusions

This review systematically elucidates that environmental and
occupational heavy metal exposure constitutes a significant threat
to the long-term prognosis of KTRs. Through accumulation in the
renal cortex, induction of mitochondrial dysfunction, and catalysis
of Fenton reactions, these metals trigger bursts of reactive oxygen
species that disrupt intracellular redox homeostasis. This cascade
activates inflammatory signaling pathways, promotes the
progression of fibrosis, and induces apoptosis, ultimately
accelerating the progression of chronic transplant kidney injury.
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Given the graft’s inherent susceptibility, immunosuppressed state,
and potential impaired excretory function, these toxic effects are
further amplified. Therefore, recognizing environmental heavy
metal exposure as a key modifiable risk factor and incorporating
targeted monitoring and protective strategies into clinical
management are crucial for improving long-term graft survival.
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