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Pulmonary fibrosis is a chronic interstitial lung disease with an incompletely

understood pathogenesis, and currently, effective treatment strategies remain

elusive. Neutrophils, as pivotal effector cells of the innate immune system, are

integral to the progression of pulmonary fibrosis. This review systematically

examines the mechanisms by which neutrophils contribute to the

advancement of pulmonary fibrosis through tissue infiltration, the release of

neutrophil elastase (NE), and the formation of neutrophil extracellular traps

(NETs). The interactions between neutrophils and other cell types, including

alveolar macrophages, epithelial cells, and fibroblasts, create a complex

inflammatory and fibrotic network. Clinical studies suggest that neutrophil

levels and associated biomarkers, such as NET components, may serve as

valuable indicators for disease assessment. Targeted therapeutic strategies,

such as NE inhibitors, peptidyl arginine deiminase 4 (PAD4) inhibitors, blockade

of the C5a-C5aR1 axis, and stem cell therapy, present promising avenues for the

treatment of pulmonary fibrosis. This article aims to provide a comprehensive

overview of the multifaceted roles of neutrophils in pulmonary fibrosis and their

therapeutic implications.
KEYWORDS

pulmonary fibrosis, neutrophils, neutrophil extracellular traps, neutrophil
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1 Introduction

Pulmonary fibrosis (PF) is a chronic and often fatal condition marked by the thickening

of alveolar walls, excessive extracellular matrix (ECM) deposition, disruption of lung

architecture, and progressive respiratory failure (1). The disease presents highly

heterogeneous trajectories and is associated with elevated mortality rates (2). The

etiological factors of PF are varied, encompassing environmental exposures (3–5), viral

infections (6), genetic predispositions (7) and connective tissue disorders (8) etc. While
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certain pharmacological interventions, such as pirfenidone and

nintedanib, can decelerate the deterioration of lung function (9),

there is a notable absence of curative therapies. This underscores the

urgent necessity for a more comprehensive understanding of the

underlying disease mechanisms (2, 9). The fundamental

pathological processes involve epithelial injury (10), dysregulated

immune cell activation (11–15), and persistent fibroblast activation

(16), culminating in irreversible ECM accumulation.

In the early stages of pulmonary fibrosis, chronic lung injury or

external stimuli, such as exposure to fine particulate matter or dust

irritation, can result in damage and activation of alveolar epithelial

cells. This process initiates inflammatory signaling pathways and

promotes the release of various inflammatory factors, including

NOD-like receptor family, pyrin domain containing 3 (NLRP3) and

interleukin-1 beta (IL-1b) (5, 17). The ensuing inflammatory

response facilitates the recruitment of immune cells, such as

neutrophils, macrophages, and monocytes, into the lung tissue,

leading to local immune dysregulation and the establishment of a

persistent inflammatory microenvironment (18, 19). Neutrophils,

as early responders, are swiftly recruited to the injury site, where

they release proteases, such as elastase, and reactive oxygen species

(ROS), thereby amplifying the inflammatory response.

Furthermore, they secrete pro-inflammatory mediators, including

interleukin-6 (IL-6) and interleukin-8 (IL-8), which enhance local

oxidative stress and compromise the epithelial barrier, thus

exacerbating the propagation of inflammation (15). Macrophages,

including monocyte-derived interstitial types, infiltrate and replace

alveolar macrophages, releasing pro-fibrotic mediators like

transforming growth factor-b1 (TGF-b1) and Tumor Necrosis

Factor-a (TNF-a), which maintain inflammation and boost

collagen production and pro-fibrotic signaling (14, 20). Immune

cell infiltration triggers a pro-fibrotic response that drives

fibroblasts to transdifferentiate into myofibroblasts. For example,

TGF-b1 from macrophages activates the Smad pathway in

fibroblasts, increasing a-smooth muscle actin (a-SMA)

expression and enhancing myofibroblast contractility and

migration (21). Additionally, neutrophil-derived proteases can

enhance TGF-b1 signal ing, contributing to excessive

myofibroblast differentiation and ECM deposition (15). These

processes result in increased ECM components, matrix stiffening,

and ultimately, irreversible fibrotic scars that drive progressive

pulmonary fibrosis (Figure 1).

Within the context of the immune-inflammatory mechanisms

underlying PF, neutrophils—recognized as the most prevalent

immune cells in humans (15, 22)—play a pivotal role through

their recruitment and activation within the airways. Originating

from the bone marrow, neutrophils are mobilized to sites of

inflammation in response to infection or tissue injury, where they

engage in phagocytosis, exhibit bactericidal activity, and release

proteases such as elastase through degranulation. Recent

investigations have demonstrated markedly increased neutrophil

levels in both the airways and circulation of patients with interstitial

lung disease (ILD), particularly idiopathic pulmonary fibrosis (IPF),

with these levels showing a positive correlation with disease severity

and mortality (23). Beyond their traditional inflammatory
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functions, neutrophils contribute to the progression of PF

through the formation of neutrophil extracellular traps (NETs),

which facilitate the release of pro-fibrotic mediators (e.g., proteases)

(24), activate TGF-b1 signaling pathways, and induce damage to

alveolar epithelial cells (24).

A comprehensive understanding of the regulatory networks

mediated by neutrophils in PF is of dual importance: firstly,

neutrophil counts and levels of NETs may serve as prognostic

biomarkers, such as the neutrophil-lymphocyte ratio (NLR) (25);

secondly, targeting neutrophil-associated pathways—such as

inhibiting NETs formation (24), blocking complement

component 5a receptor 1(C5aR1) signaling—offers potential as an

innovative therapeutic strategy (26). This review systematically

synthesizes the molecular mechanisms through which neutrophils

contribute to pulmonary fibrosis, encompassing the roles of

proteolytic enzymes, NET-mediated fibrotic signaling, and

microenvironmental regulation. Furthermore, it assesses the

therapeutic potential of strategies targeting neutrophils in

reversing fibrotic progression, thereby providing a theoretical

framework to address current clinical challenges.
2 Neutrophil pro-fibrotic functions

Neutrophils represent the most prevalent leukocyte population

in human peripheral blood and are integral components of the

innate immune system. They are crucial for host defense, the

regulation of inflammation, and the pathogenesis of various

diseases (27, 28). Derived from hematopoietic stem cells within

the bone marrow, neutrophils undergo a process of granulopoiesis,

culminating in their maturation into terminally differentiated cells

(29). Upon maturation, these cells are swiftly released into the

circulatory system, where they have a brief lifespan (30). They are

subsequently removed through apoptosis and clearance

mechanisms such as phagocytosis, or via reverse migration from

sites of inflammation, thus playing a role in maintaining tissue

homeostasis (31, 32). The recruitment of neutrophils to sites of

infection or injury is mediated by chemotactic factors, which

promote their rapid migration from the bloodstream into tissues

through processes involving diapedesis and chemotaxis (33).

Neutrophils perform a variety of effector functions through well-

coordinated mechanisms (30).
2.1 Neutrophil chemotaxis

Neutrophil chemotaxis constitutes the initial phase of their

physiological and pathological roles. This directed migration is

predominantly stimulated by chemokines such as C-X-C motif

chemokine ligand (CXCL) 1, CXCL2, CXCL6, CXCL16, interleukin

(IL)-8, and interleukin-36g (IL-36g) (34). These chemokines engage

with specific receptors on the neutrophil surface, triggering

downstream signaling pathways that direct cellular migration (35,

36). CXCR1 functions as the receptor for CXCL6 and IL-8, whereas

CXCR2 binds to CXCL1, CXCL2, CXCL6, and IL-8 (37, 38). Under
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physiological conditions, neutrophils adeptly detect chemotactic

gradients, such as the bacterial peptide N-formylmethionyl-leucyl-

phenylalanine (fMLP), and migrate to sites of inflammation

through directed migration, biased random walk, and front-rear

coordination, thereby facilitating effective pathogen clearance (39–

41). Neutrophils play a crucial role in the initiation and progression

of fibrosis across various organs through their chemotactic

capabilities. In a corneal fibrosis model induced by alkali burns,

leucine-rich alpha-2-glycoprotein 1 (LRG1) enhances neutrophil

chemotaxis and modulates the IL-6/STAT3 signaling pathway to

drive the fibrotic response in the cornea (42). Conversely, the

application of LRG1-specific small interfering RNA leads to a

reduction in the expression of fibrotic proteins and neutrophil

infiltration in this model (42). In the context of non-alcoholic

steatohepatitis (NASH), IL-8 targets CXCR2 to facilitate

neutrophil infiltration and activation, thereby promoting fibrotic

progression (43). The formyl peptide receptor 1 (FPR1) expressed

on neutrophils is instrumental in their recruitment into pulmonary

fibrotic tissues, and a deficiency in FPR1 has been shown to confer

protection against the development of pulmonary fibrosis (44).
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2.2 Neutrophil phagocytosis and
degranulation

Neutrophil phagocytosis represents a critical mechanism for the

elimination of pathogens. This process is initiated by the

internalization of particles into phagosomes, followed by their

degradation through a burst of ROS facilitated by nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase, along with the

coordinated release of granule enzymes (45, 46). Under

physiological conditions, the functionality of neutrophils displays

significant heterogeneity both inter-individually and at the single-

cell level s (47). This variability is influenced by gene expression

profiles and intrinsic signaling pathways, such as those mediated by

Fcg receptors, including FcgRIIa (48).
The process of neutrophil degranulation operates in conjunction

with phagocytosis as a critical immunemechanism. This process entails

the release of various granule constituents, such as myeloperoxidase

(MPO), neutrophil elastase (NE), and matrix metalloproteinases

(MMP-8/9) (49). The initiation of degranulation occurs via Syk-

dependent signaling pathways (50) and can be enhanced by the
FIGURE 1

Diagram illustrating the roles of neutrophils in lung fibrosis across three stages: recruitment, activation, and fibrosis. https://app.biorender.com.
frontiersin.org
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extracellular signal-regulated kinase 1/2 (ERK1/2) pathway (51). From

a physiological perspective, degranulation contributes to pathogen

clearance through the release of antimicrobial proteins and acts

synergistically with ROS generation and phagocytosis to resolve

infections (46).

The dysregulation of these functions plays a pivotal role in tissue

injury and the pathogenesis of various diseases. In cystic fibrosis (CF),

the airways are infiltrated by a specific subset of neutrophils known as

GRIM (granule-releasing, immunomodulatory, and metabolically

active), which demonstrate impaired bacterial phagocytosis, which

impairment significantly increases patients’ susceptibility to common

environmental bacteria (52). Additionally, these neutrophils, when

stimulated by granulocyte colony-stimulating factor (G-CSF) and

granulocyte-macrophage colony-stimulating factor (GM-CSF),

excessively release NE and MMP-9, thereby exacerbating airway

damage (53). In IPF, elevated serum levels of copper-zinc

superoxide dismutase, potentially released through degranulation or

from damaged neutrophils, are associated with disease severity and

may contribute to free radical-mediated tissue injury and fibrosis

(54). In the context of atrial fibrillation, neutrophils infiltrating the

atrial epicardial adipose tissue secrete substantial amounts of MPO,

which directly activates atrial fibroblasts and induces pro-fibrotic

responses (55).
2.3 NETosis

NETosis represents a distinct form of neutrophil cell death

primarily induced by ROS and NADPH oxidase (56). This process

involves chromatin decondensation and histone citrullination,

culminating in the release of NETs (56, 57). Upon activation,

neutrophils generate ROS through NADPH oxidase, which

subsequently activates MPO and NE, leading to membrane

rupture and the release of DNA (58). NETosis can occur in both

NADPH-dependent (“suicidal”) and independent (“vital”) forms,

ultimately resulting in NETs formation and cell death (58). NETs

are composed of DNA scaffolds, histones, and antimicrobial

proteins such as NE and MPO, which facilitate the trapping and

eradication of pathogens (59). Physiologically, NETosis enhances

innate immunity by capturing and neutralizing microbes, thereby

controlling infections and modulating inflammatory responses

(60, 61).

NETosis plays a crucial role in the fibrotic processes across

various organs. NETs contribute to the pathogenesis of fibrosis by

perpetuating inflammation and causing tissue damage. In the

context of liver fibrosis, NETs exacerbate hepatic tissue injury and

promote abnormal collagen deposition (62). In pulmonary fibrosis,

NETs significantly accelerate the formation of lung scars and impair

lung function by activating TGF-b1 and inducing damage to

alveolar epithelial cells (15). In the renal domain, patients with

IgA nephropathy exhibit elevated levels of NETosis markers, such

as citrullinated histone H3 and myeloperoxidase, which correlate

with the severity of glomerular fibrosis and facilitate collagen

deposition by stimulating mesangial cells (63). In systemic

sclerosis-associated skin fibrosis, there is a marked increase in
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NET production during the early stages of the disease, which is

linked to excessive skin collagen accumulation (64). In cardiac

fibrosis, NETosis mediates the myocardial inflammatory response

through neutrophil-specific enzymes, such as myeloperoxidase, and

contributes to fibrotic remodeling during heart failure (65). In

short, NETosis is key in fibrosis development across various

organs by inducing chronic inflammation and NET release,

linking inflammation with tissue fibrosis.
2.4 Neutrophil-derived pro-fibrotic
mediators

Neutrophils are capable of producing and releasing a variety of

pro-fibrotic cytokines and chemokines, including IL-1b, IL-6, TNF-
a, CCL3, IL-8, CXCL1, and CXCL2, which facilitate the initiation

and progression of fibrosis (66, 67). The simultaneous retention of

Mincle-positive neutrophils and macrophages during the transition

from acute kidney injury to chronic kidney disease results in

persistent inflammation, thereby promoting fibrosis, with TNF-a
serving as a pivotal pro-inflammatory cytokine (68). IL-6

contributes to fibrotic progression through STAT3-mediated

fibroblast senescence (69), while IL-1b-driven macrophage

activation and tubular cell senescence further exacerbate renal

fibrosis (70). Furthermore, In animal studies, high IL-23 levels are

strongly linked to increased neutrophil infiltration and worsening

lung structure, which promotes neutrophilic inflammation during

acute exacerbations of idiopathic pulmonary fibrosis (IPF) and may

indicate poor prognosis (71).
3 Neutrophil-centric crosstalk in lung
fibrosis

Neutrophils are pivotal cells implicated in the initiation and

progression of PF. Their pro-inflammatory and pro-fibrotic roles

are contingent upon interactions with a diverse array of immune

and tissue cells. To comprehensively elucidate the contribution

of neutrophils to pulmonary fibrosis, it is imperative to delineate

the intricate interactions between neutrophils and these cellular

counterparts. In the subsequent section, we will conduct an in-

depth examination of the mechanisms through which

neutrophils engage with neighboring cells in the lung—namely

macrophages, lymphocytes, fibroblasts, and epithelial cells—

and collectively facilitate the progression of the disease

(Table 1, Figure 2).
3.1 Crosstalk between neutrophils and
other immune cells

3.1.1 Macrophage
A complex bidirectional regulatory relationship exists between

macrophages and neutrophils. Firstly, macrophages serve as critical

upstream regulators to recruit and activate neutrophils. In the
frontiersin.org
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context of silica-induced pulmonary fibrosis, the activation of the

NLRP3 inflammasome in alveolar macrophages and other lung cells

facilitates the release of IL-1b and IL-18. This process drives

neutrophil infiltration into the airways and activates NE,

ultimately resulting in TGF-b-mediated myofibroblast activation

and fibrosis (72). Following exposure to particulate matter (PM),

keratinocyte chemoattractant (KC) produced by macrophages

functions as a key chemokine for neutrophil recruitment (73). In
Frontiers in Immunology 05
the bleomycin (BLM) model, the loss of vagal sensory neurons

prompts alveolar macrophages to produce vasoactive intestinal

peptide (VIP), which induces TGF-b1 production and promotes

the accumulation of a pro-fibrotic Siglec-F+ neutrophil subset (74).

Additionally, macrophages in fibrotic lungs exhibit high expression

levels of CXCL2, facilitating sustained neutrophil recruitment (75).

Conversely, activated neutrophils and NETs influence macrophage

polarization. Studies show that when macrophages engulf NETs,
TABLE 1 Neutrophil-centric crosstalk in lung fibrosis.

Interacting cell Model Mechanism (detailed) Ref.

Macrophage Silica-induced mice Macrophage NLRP3 inflammasome activation promotes IL-1b/IL-18 releases,
driving neutrophil infiltration and NE activation, leading to TGF-b-mediated
fibrosis.

2025 (72)

PM-induced mice Macrophage-derived KC (CXCL1) is a key chemokine for recruiting neutrophils
into the lungs.

2019 (73)

BLM-induced mice Loss of neuronal signaling causes alveolar macrophages to produce VIP, which
induces TGF-b1 production and the expansion of a pro-fibrotic Siglec-F+
neutrophil subset.

2025 (74)

BLM-induced mice Macrophages in fibrotic lungs upregulate CXCL2 expression, mediating the
sustained recruitment of neutrophils.

2022 (75)

In vitro (THP-1 cells) NETs from stimulated neutrophils are phagocytosed by macrophages, causing
oxidative stress, mitochondrial dysfunction, and driving polarization toward a
pro-fibrotic M1/M2 phenotype.

2025 (12)

Platelets HOCl/BLM-induced SSc mice Platelet activation via the GPVI collagen receptor triggers neutrophil activation
and NETosis. NETs are identified as key effector molecules driving tissue fibrosis.

2025 (81)

BLM-induced mice CD40-CD40L interaction mediates platelet-neutrophil adhesion. Inhibition of
platelet activation (by cangrelor) reduces neutrophil infiltration and fibrosis.

2020 (82)

T cells (IL-17A+) BLM-induced mice Gr1+ neutrophils produce BAFF under IL-1b/IL-17A induction. BAFF then acts
on IL-17A+ T cells to amplify IL-17A signaling, creating a positive feedback loop
that promotes fibrosis.

2015 (88)

BLM-induced mice IL-17A+ gd T cells enhance neutrophil infiltration and shift macrophages to the
M2 phenotype in the lungs, speeding up fibrosis.

2016 (90)

B cells CD19-DTR mice
Rosa26-DTR mice

B cells engage with senescent neutrophils through b integrins (CD11b–CD18) to
promote their apoptosis and clearance, preventing excess neutrophils and
reducing inflammation and fibrosis. The CXCR4 antagonist AMD3100 decreases
B cell and neutrophil presence in the lungs, directly slowing pulmonary fibrosis
progression.

2018 (91)

Complement system SWCNT-induced mice Activation of the C5a-C5aR1 signaling axis promotes early neutrophil
recruitment, TNF-a/IL-1b release, and subsequent fibrosis. A C5aR1 antagonist
(PMX205) inhibits this process.

2025 (26)

Lung epithelial cell BBP-induced mice BBP induces metabolic reprogramming in neutrophils (increased glucose uptake
& ROS burst), leading to NETosis. NETs then directly drive fibrotic
transformation of epithelial cells.

2022 (124)

BLM induced rats NE induces apoptosis via activating caspase-3/9 and cytochrome c release.
Sivelestat inhibits this process.

2009 (92)

PM-induced mice NE released from neutrophils promotes EMT and fibrosis via macrophage-
derived KC and SMAD2/3/a-SMA pathway.

2019 (73)

Severe COVID-19 patients & airway in vitro
model

NETs cooperate with AM-derived factors (TGF-b, IL-8, IL-1b) to induce EMT
(↓E-cadherin, ↑a-SMA).

2021 (93)

Patients with SLE and COVID-19-related PF NETs promote EMT (↑Twist, Snail, a-SMA; ↓E-cadherin) via a common
transcriptomic pathway.

2023 (94)

(Continued)
fro
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they experience oxidative stress and mitochondrial disruption,

leading to a mixed M1/M2 phenotype that boosts pro-fibrotic

factor expression (12). Consequently, a positive feedback loop is

established, amplifying fibrotic signaling.

3.1.2 Platelet
During inflammatory and innate immune responses, there is a

significant functional interaction between platelets and neutrophils.
Frontiers in Immunology 06
In the context of pulmonary diseases, this interaction is facilitated

by various receptors, such as GPVI, TLR4 and Sema7A/PlexinC1

(76, 77), signaling pathways including NLRP6/PAR4 (78, 79), and

secretory factors like CXCL5 and CXCL7 (80). These elements

contribute to the accumulation of platelet-neutrophil complexes

(PNCs) in the lungs and the formation of neutrophil extracellular

traps (NETs), which can result in microvascular occlusion, NET-

mediated tissue injury, and the amplification of inflammatory
TABLE 1 Continued

Interacting cell Model Mechanism (detailed) Ref.

Lung fibroblast Patients with NSIP; in vitro NET stimulation NET components (DNA, histones, MPO) induce myofibroblast differentiation;
NET-derived IL-17 upregulates CCN2 and collagen.

2014 (96)

Asbestos-induced mice NE directly promotes fibroblast proliferation and myofibroblast differentiation
(a-SMA expression) in a TGF-b-independent manner.

2015 (95)

BLM-induced mice PAD4-dependent NETosis promotes fibroblast activation and fibrosis; rescued by
PAD4 deficiency.

2020 (98)

Particulate Matter (PM)-induced mouse
model

NETs activate fibroblasts and promote fibrosis via the TLR9–miR-7–SMAD2
pathway.

2020 (97)

Lung fibroblast and
epithelial cell

MAILD model NETs induce EMT and NLRP3 inflammasome activation; Pirfenidone inhibits
NETosis and alleviates fibrosis.

2025 (99)
fro
COVID, corona virus disease; NETs, neutrophil extracellular traps; NE, neutrophil elastase; NLRP3, NOD-like receptor family, pyrin domain containing 3; IL-1b, interleukin-1 beta; IL-18,
interleukin-18; TGF-b, transforming growth factor-beta; KC, keratinocyte chemoattractant; CXCL1, C-X-C motif chemokine ligand 1; PM, particulate matter; VIP, vasoactive intestinal peptide;
CXCL2, C-X-C motif chemokine ligand 2; THP-1, human acute monocytic leukemia cell line; HOCl, hypochlorous acid; SSc, systemic sclerosis; GPVI, glycoprotein VI; CD40-CD40L, CD40 -
CD40 ligand; BALF, bronchoalveolar lavage fluid; IL-17A, interleukin-17A; SWCNT, single-walled carbon nanotube; C5a-C5aR1, complement component 5a - c5a receptor 1; TNF-a, tumor
necrosis factor-alpha; BBP, benzyl butyl phthalate; BLM, bleomycin; a-SMA, alpha-smooth muscle actin; EMT, epithelial-mesenchymal transition; AM, alveolar macrophage; SLE, systemic lupus
erythematosus; PF, pulmonary fibrosis; NSIP, Nonspecific Interstitial Pneumonia; MPO, myeloperoxidase; CNN2, calponin 2; PAD4, peptidyl arginine deiminase 4; TLR9, toll-like receptor 9;
MAILD, murine myositis-associated interstitial lung disease; Ref., reference.
FIGURE 2

Neutrophil-centric crosstalk in lung fibrosis. The fibrotic process involves coordinated cellular interactions: (1) Macrophages, T cells, and platelets
recruit and activate neutrophils; (2) Activated neutrophils release NETs, NE, IL-1b, and TNF-a; (3) These effector molecules target lung epithelial and
fibroblast cells, promoting apoptosis, EMT, and FMT to drive fibrosis. CXCL2, C-X-C motif chemokine ligand 2; VIP, vasoactive intestinal peptide;
TGF-b1, transforming growth factor beta 1; IL-18, interleukin-18; IL-1b, interleukin-1 beta; C5a, complement component 5a; C5aR1, complement
C5a receptor 1; GPV, glycoprotein V; CD40L, CD40 ligand; BAFF, B cell activating factor; IL-17A, interleukin-17A; NETosis, neutrophil extracellular
trap formation; DNA, deoxyribonucleic acid; TNF-a, tumor necrosis factor alpha; IL-1b, interleukin-1 beta; MPO, myeloperoxidase; NE, neutrophil
elastase; EMT, epithelial-mesenchymal transition; FMT, fibroblast-myofibroblast transition. https://app.biorender.com.
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responses. Empirical studies have shown that in systemic sclerosis

(SSc) and murine models of pulmonary fibrosis, platelet activation

through the collagen receptor glycoprotein VI (GPVI) induces

neutrophil activation and NET release, which ultimately promotes

tissue fibrosis (81). Similarly, in the BLM-induced lung injury

model, the administration of the platelet inhibitor Cangrelor has

been shown to mitigate pulmonary neutrophil infiltration and

subsequent fibrosis by inhibiting CD40–CD40L-mediated platelet-

neutrophil adhesion (82).

3.1.3 Complement system
The activation of the complement system plays a critical role in

the recruitment and activation of neutrophils. In the context of

COVID-19, the complement component C5a facilitates neutrophil

infiltration across the vascular endothelium into tissues and

enhances tissue factor expression, thereby exacerbating

coagulation and inflammatory responses (83). The membrane

attack complex (MAC/C5b-9) promotes the expression of

neutrophil adhesion molecules on vascular endothelial cells,

which aids in the formation of PNAs and accelerates neutrophil

migration (84). Concurrent stimulation with C5a and anti-

neutrophil cytoplasmic antibody (ANCA) can induce respiratory

burst and degranulation in neutrophils (85). Additionally, C1q is

capable of directly inducing NETosis in neutrophils primed with

LPS (86). Activated neutrophils also modulate the complement

system, creating an inflammatory amplification loop. For instance,

neutrophil-secreted properdin significantly enhances the activation

of the alternative pathway by stabilizing the C3 convertase and

NETs carry complement components such as C3 and complement

factor B (CFB) on their surfaces, which not only directly kill

pathogens but also further promote local complement activation

(87). Moreover, in the single-walled carbon nanotube (SWCNT)

model, activation of the C5a-C5aR1 signaling pathway markedly

enhances early neutrophil recruitment and the secretion of

inflammatory cytokines, including TNF-a and IL-1b. The

application of a C5aR1 antagonist effectively suppresses

neutrophil-mediated early inflammatory responses and

subsequent late-stage fibrosis (26).

3.1.4 Lymphocyte
In the progression of pulmonary fibrosis, the interactions

between neutrophils and lymphocytes are pivotal in regulating

disease development. Neutrophils can establish a positive

feedback loop with T cells, thereby exacerbating fibrosis. In the

BLM model, Gr1+ neutrophils, activated by IL-1b and IL-17A

signaling, produce B-cell activating factor (BAFF), which activates

IL-17A+ T cells, further enhancing IL-17A expression and

establishing a pro-fibrotic feedback loop (88). Ectopic

colonization by the periodontitis pathogen Porphyromonas

gingivalis facilitates the accumulation of neutrophils and Th17

cells in the lungs, where Th17 cells modulate neutrophil function

through IL-17A secretion, thereby aggravating the fibrotic process

(89). Furthermore, IL-17A+ gd T cells can augment neutrophil

infiltration and promote macrophage polarization toward the M2

phenotype in the lungs, accelerating fibrotic development (90).
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Conversely, B cells interact with senescent neutrophils via b
integrins, facilitating their apoptosis and clearance, thus

preventing abnormal neutrophil accumulation and suppressing

inflammation and fibrosis (91). The administration of the CXCR4

antagonist AMD3100 correspondingly diminishes B lymphocyte

accumulation and neutrophil infiltration in the lungs, thereby

directly mitigating the progression of pulmonary fibrosis (91).

Collectively, these mechanisms elucidate the bidirectional

regulatory roles of neutrophil interactions with T and B

lymphocytes in modulating the advancement of pulmonary fibrosis.

In conclusion, neutrophils function not solely as effector cells in

pulmonary fibrosis but also as pivotal nodes within the immune

interaction network. Their recruitment, activation, and the release of

NETs are intricately regulated by macrophages, platelets, lymphocytes,

and the complement system. Conversely, neutrophils and their NETs

reciprocally influence the activities of macrophages and other immune

cells, thereby establishing a complex positive feedback loop that

ultimately facilitates the progression of pulmonary fibrosis.
3.2 Crosstalk between neutrophils and
lung parenchymal cells

Neutrophils are integral to the pathogenesis of pulmonary fibrosis,

engaging in intricate interactions with lung epithelial cells and fibroblasts.

These interactions are predominantly facilitated by the release of NE and

NETs, which contribute to epithelial injury, dysregulated repair

processes, and fibroblast activation. Consequently, these processes lead

to extracellular matrix deposition and the development of fibrosis.

3.2.1 Epithelial cell
Neutrophil-derived proteases and NETs contribute directly to

epithelial damage and phenotype transition. In BLM rats, neutrophil

elastase promotes apoptosis of lung epithelial cells by activating

caspase-3 and caspase-9 and inducing cytochrome c release. The

inhibitor Sivelestat attenuates fibrosis by suppressing neutrophil

chemotaxis and elastase-mediated apoptosis (92). In severe COVID-

19, NETs are abundant in bronchoalveolar lavage fluid and cooperate

with alveolar macrophage-derived factors (TGF-b, IL-8, IL-1b) to

induce epithelial-mesenchymal transition (EMT) in alveolar epithelial

cells. This is characterized by downregulation of E-cadherin and

upregulation of a-SMA (93). A common transcriptomic signature in

systemic lupus erythematosus (SLE) and COVID-19 patients also

highlight NETs-induced EMT, suggesting a shared mechanism in

fibrosis development (94). Furthermore, in a murine model of PM-

induced fibrosis, neutrophil elastase released from accumulated

neutrophils enhances EMT and fibrotic responses via macrophage-

derived KC (73).

3.2.2 Fibroblast
Neutrophils play a pivotal role in activating fibroblasts and

facilitating their differentiation into matrix-producing myofibroblasts

through various mechanisms, thereby contributing to fibrosis. Research

shows that NE stimulates fibroblast proliferation by targeting insulin

receptor substrate-1 (IRS-1) and induces fibroblast differentiation into
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myofibroblasts in a SMAD3-dependent yet transforming growth factor-

beta (TGF-b)-independent manner, which is evidenced by the fact that

treatment with the TGF-b receptor inhibitor SB431542 does not inhibit

a-SMA production following NE exposure in vitro (95). Furthermore,

both genetic deletion and pharmacological inhibition of NE have been

shown to mitigate asbestos-induced pulmonary fibrosis in murine

models (95). Additionally, components of NETs, such as DNA,

histones, and myeloperoxidase, induce myofibroblast differentiation

and collagen production in lung fibroblasts. IL-17 within NETs

further enhances fibrotic responses by upregulating connective tissue

growth factor (CCN2) (96). Furthermore, NETs activate lung fibroblasts

through the TLR9–miR-7–SMAD2 axis in polymyositis-associated

interstitial lung disease (97). Importantly, deficiency or inhibition of

PAD4 suppresses NETs formation and significantly reduces bleomycin-

induced fibrosis, highlighting the critical role of NETosis in fibrogenesis

(98). From a therapeutic perspective, pharmacological inhibition of NET

formation with pirfenidone has been shown to reduce fibroblast

activation and NLRP3 inflammasome activity (99).

In summary, neutrophils promote pulmonary fibrosis through

elastase-mediated epithelial apoptosis and NET-driven EMT and

fibroblast activation. Targeting neutrophil-derived mediators may

offer promising therapeutic strategies for attenuating fibrosis.
4 Neutrophils as prognostic
biomarkers in pulmonary fibrosis

Accumulating clinical evidence highlights the pivotal role of

neutrophil activity in prognosticating outcomes in pulmonary

fibrosis. In patients with IPF, an elevated neutrophil-lymphocyte ratio

(NLR) in peripheral blood is independently associated with reduced

overall survival, thus serving as a robust hematological prognostic

marker (100). Under conditions such as infection, chemotherapy, or

tissue damage, G-CSF facilitates the mobilization of neutrophils from

the bone marrow to the peripheral circulation. Notably, G-CSF levels in

the bronchoalveolar lavage fluid (BALF) of IPF patients significantly

exceed those in healthy controls and are predictive of survival rates,

while inversely correlating with the decline in diffusing capacity of the
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lungs for carbon monoxide (DLCO) (101). Neutrophil percentages in

BLAF bronchoalveolar lavage fluid (BALF) offer etiology-independent

risk stratification, with each 10% increment associated with a 20%

increase in mortality risk in antineutrophil cytoplasmic antibody-

associated vasculitis interstitial lung disease (AAV-ILD) (hazard ratio

[HR] = 1.195, 95% confidence interval [CI]: 1.018–1.404) (102). A

threshold exceeding 6% predicts three-year mortality in progressive

fibrosing interstitial lung disease (PF-ILD) with 79% sensitivity and 80%

specificity (area under the curve [AUC] = 0.72) (103). Importantly,

neutrophil effector molecules further refine prognostic accuracy. NETs

in IPF lung tissue and BALF are associated with accelerated pulmonary

function decline (P < 0.03) and independently predict mortality after

multivariable adjustment (HR = 1.79–2.19) (104). This pattern is

mirrored in post-COVID fibrosis models, where persistent NETosis

at 30 days post-infection correlates with fibrotic severity (105). The

complex formed by NE anda-1-antiprotease (a--AP), referred to as the

NE: a--AP complex, when elevated, signifies increased NE release.

Similarly, elevated levels of NE: a--AP complex, in serum and BALF are

correlated with clinical progression in general pulmonary fibrosis

cohorts (106). Collectively, these findings underscore the potential of

neutrophil-centric biomarkers in enhancing prognostic evaluation

across various pulmonary conditions (Table 2).
5 Therapeutic targeting: translating
mechanisms to therapies

5.1 Targeting neutrophils in pulmonary
fibrosis: specific approaches

Targeting neutrophil-mediated inflammatory responses has

emerged as a promising therapeutic strategy for mitigating

pulmonary fibrosis (Table 3). Inhibition of NE has shown efficacy

across multiple models. In irradiated and LPS-challenged mice,

administration of a neutrophil elastase inhibitor reduced neutrophil

accumulation in BALF, suppressed TGF-b1 activation, and

decreased phospho-SMAD2/3 expression, thereby protecting

against fibrosis (107). Similarly, in BLM rats, the NE inhibitor
TABLE 2 Prognostic neutrophil-related biomarkers in pulmonary fibrosis.

Biomarker Sample source Cohort/model Prognostic significance Ref.

NLR Peripheral blood IPF patients Independent predictor of shorter overall survival 2022 (100)

G-CSF BALF IPF patients
1. Predicts survival rate
2. Positively correlates with DLCO decline

2022 (101)

Neutrophil percentage BALF AAV-ILD patients Each 10% increase → 20% higher mortality risk 2023 (102)

neutrophil ratio BALF PF-ILD patients >6% predicts 3-year mortality 2023 (103)

NETs
Lung tissue
BALF

IPF patients
1. Correlates with pulmonary function decline.
2. Predicts reduced survival after multivariable adjustment.

2024 (104)

NETs Lung tissue Post-COVID murine model Persistence for 30 days post-infection correlates with fibrosis severity. 2024 (105)

NE-a--AP Serum/BALF Pulmonary fibrosis patients Elevated NE-a--AP complexes correlate with clinical severity. 1998 (106)
fro
NLR, neutrophil-lymphocyte ratio; IPF, idiopathic pulmonary fibrosis; G-CSF, granulocyte colony-stimulating factor; BALF, bronchoalveolar lavage fluid; DLco, diffusing capacity of the lung for
carbon monoxide; ILD, interstitial lung disease; AVV, antineutrophil cytoplasmic antibody-associated vasculitis; COVID, Corona virus disease; NETs, neutrophil extracellular traps; NE,
neutrophil elastase; a--AP, a-1-antiprotease; Ref., reference.
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Sivelestat attenuated fibrosis by blocking neutrophil chemotaxis via

reduction of cytokine-induced neutrophil chemoattractant (CINC)-

1 and inhibiting NE-induced lung cell apoptosis, mediated through

suppression of caspase-3, caspase-9, and cytochrome c release (92).

Sivelestat also alleviated bleomycin-induced pulmonary fibrosis in

mice by inhibiting TGF-b activation and inflammatory cell

recruitment, without affecting total TGF-b levels (108).

Furthermore, in an asbestos-induced model, genetic deficiency or

pharmacologic inhibition of NE with ONO-5046 reduced fibroblast

proliferation, myofibroblast differentiation, and collagen

deposition, independently of TGF-b (95).
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Targeting NETs represents another viable approach. In BLM-

induced fibrosis, inhibition of PAD4 using Cl-amidine or genetic

knockout suppressed NETosis, reduced inflammatory and fibrotic

gene expression, and ameliorated fibrosis. This effect was

specifically linked to PAD4 expression in hematopoietic cells (98).

Similarly, chloro-amidine inhibited NETosis in vitro and in vivo,

improving lung function, reducing collagen deposition, and

modulating Del-1 and p53 pathways (109). However, PAD4

inhibition presents risks: it can suppress virus-specific CD8+ T

cell responses in SARS-CoV-2 models, affecting adaptive immunity

(110). PAD2 may compensate for PAD4 in conditions like
TABLE 3 Therapeutic strategies targeting neutrophils in pulmonary fibrosis.

Target Drug/intervention Model Mechanism Ref.

NE NE inhibitor
(unspecified)

sublethal irradiation + LPS
induced mice

Reduced neutrophil accumulation in BALF, inhibited TGF-b1
activation and phospho-SMAD2/3 expression.

2012 (107)

NE Sivelestat BLM-induced rats Suppressed neutrophil chemotaxis (via CINC-1 inhibition) and
inhibited NE-induced lung cell apoptosis (inhibited caspase-3/-9
activity and cytochrome c release).

2009 (92)

NE Sivelestat BLM-induced mice Alleviated fibrosis via inhibition of TGF-b activation (reduced
active TGF-b1, p-Smad2) and inflammatory cell recruitment. Did
not significantly decrease total TGF-b1 levels.

2012 (108)

NE ONO-5046 Asbestos-induced mice Directly inhibited lung fibroblast proliferation and myofibroblast
differentiation (in a TGF-b-independent fashion).

2015 (95)

NETosis PAD4 Cl-amidine (pan-PAD
inhibitor)

BLM-induced mice Inhibited PAD4 enzyme activity, reduced NETs formation, thereby
alleviating inflammatory and fibrotic gene expression. Effect linked
to PAD4 in hematopoietic cells.

2020 (98)

NETosis PAD4 Chloro-amidine BLM-induced mice Inhibited NETosis, improved lung function, reduced collagen
deposition, potentially modulating Del-1 and p53 pathways.

2024 (109)

miR-155 NETs Cap BLM-induced mice Downregulated miR-155-5p, reducing IL-1b, TNF-a, TGF-b1,
consequently inhibiting NET production (reduced NE, PAD-4
levels).

2024 (113)

NETs Conjugated linoleic acid BLM-induced mice Abrogated NET-induced M1/M2 macrophage polarization,
oxidative stress, mitochondrial membrane disruption, and pro-
fibrotic cytokine release.

2025 (12)

NETs Pirfenidone MAILD model Inhibited NETs formation and NLRP3 inflammasome activation,
attenuated EMT.

2025 (99)

C5a-C5aR1 signaling PMX205 (C5aR1
antagonist)

SWCNT-induced mice Inhibited C5a-C5aR1 axis, reducing early neutrophil recruitment
and TNF-a/IL-1b secretion.

2025 (26)

Platelet-neutrophil
interaction (CD40-
CD40L)

Cangrelor BLM-induced mice Inhibited platelet activation, reducing neutrophil infiltration
mediated by CD40-CD40L interaction.

2020 (82)

Multiple: NETs + NE DNase-I@PDA NPs +
Siv@PLGA NPs

LPS-induced mice
Neutrophils from COVID-
19 patients

Sequential nanotherapy: DNase-I degrades NETs, Sivelestat inhibits
NE activity and neutrophil hyperactivation.

2025 (114)

Multiple (Cell Therapy) GMSCs BLM-induced mice Reduced deleterious neutrophil accumulation, decreased release of
NE, MMP-9, LPA, APL1, and TGF-b.

2021 (115)

Multiple: TGF-b + PD-
1/ROS-NETs

JS-201 Lewis lung cancer model +
radiation therapy

Reduced fibroblast proliferation by inhibiting TGF-b/SMAD
pathway and ROS-mediated NETs release.

2025 (116)
fro
NETs, neutrophil extracellular traps; NE, neutrophil elastase; BLM, bleomycin; BALF, bronchoalveolar lavage fluid; LPS, Lipopolysaccharide; TGF-b1, transforming growth factor-beta 1; CINC-
1, cytokine-induced neutrophil chemoattractant 1; PAD4, peptidyl arginine deiminase 4; Del-1, developmental endothelial locus-1; TNF-a, tumor necrosis factor-alpha; IL-1b, interleukin-1 beta;
Cap, Capsaicin; MAILD, murine myositis-associated interstitial lung disease; EMT, epithelial-mesenchymal transition; NLRP3, NOD-like receptor family, pyrin domain containing 3; C5a-
C5aR1, complement component 5a - c5a receptor 1; SWCNT, single-walled carbon nanotube; CD40-CD40L, CD40 - CD40 ligand; COVID, corona virus disease; GMSCs, gingiva-derived
mesenchymal stem cells; MMP-9, matrix metalloproteinase-9; LPA, lysophosphatidic acid; APL1, lysophosphatidic acid receptor 1; PD-1, programmed cell death protein 1; ROS, reactive oxygen
species; Ref., reference.
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Kawasaki disease, and inhibitors like Cl-amidine might act on non-

PAD4 targets, leading to incomplete effects or side effects (111).

Timing is crucial; in myocardial infarction, early PAD4 inhibition

worsens injury, while delayed treatment improves outcomes (112).

Thus, while PAD4 targeting could aid pulmonary fibrosis

treatment, it risks T-cell suppression, off-target effects, and

requires precise timing and so on. Additionally, in BLM model,

miR-155 inhibition by Capsaicin reduced NET production via

downregulation of IL-1b, TNF-a, and TGF-b1, decreasing levels

of NE, PAD4, and hydroxyproline (113). Conjugated linoleic acid

CLA also abrogated NET-induced M1 and M2 macrophage

polarization and pro-fibrotic cytokine release in vitro (26).

Further, pirfenidone reduced NET formation, suppressed NLRP3

inflammasome activation, and attenuated EMT in a myositis-

associated ILD model (99).

Combination strategies targeting multiple neutrophil-derived

components have enhanced efficacy. In a LPS-induced model,

sequential delivery of DNase-I (to digest NETs) and sivelestat (to

inhibit NE) via nanoparticles reduced fibrosis, improved lung

function, and decreased NET biomarkers in neutrophils from

COVID-19 patients (114). Beyond direct neutrophil targeting,

interrupting neutrophil-platelet interactions via the CD40–CD40L

axis with cangrelor reduced neutrophil infiltration and attenuated

fibrosis (82).

Other strategies include modulating neutrophil recruitment

pathways. Inhibition of C5a–C5aR1 signaling with PMX205

reduced early neutrophil recruitment and pro-inflammatory

cytokines (TNF-a, IL-1b), thereby mitigating inflammation and

fibrosis in a model of SWCNT-induced lung injury (26). Cellular

therapies, such as gingiva-derived mesenchymal stem cells

(GMSCs), reduced neutrophil accumulation and decreased levels

of NE, MMP-9, lysophosphatidic acid (LPA), lysophosphatidic acid

receptor 1(APL1), and TGF-b in bleomycin-induced fibrosis (115).

Finally, dual targeting of PD-1 and TGF-b signaling with JS-201

suppressed radiation-induced fibrosis by inhibiting fibroblast

proliferation and NETosis mediated by ROS (116).

In summary, therapeutic interventions have focused on inhibiting

neutrophil recruitment, neutralizing cytotoxic enzymes, preventing

NETs formation, or dismantling existing NETs. These approaches

collectively underscore the centrality of neutrophils in fibrogenesis of

lungs and highlight multiple translational opportunities.
5.2 Neutrophil-targeted therapy as a pan-
fibrotic strategy: prospects and challenges

Neutrophils has been recognized as pivotal contributors to tissue

fibrosis across various organ-specific fibrotic diseases. Nevertheless,

the distinct characteristics of organ microenvironments and the

progression stages of these diseases present both opportunities and

challenges for the development of therapeutic strategies targeting

these cells, which hold potential for broad-spectrum anti-

fibrotic applications.
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In the context of renal fibrosis, through methods such as PAD4

deletion or DNase treatment, markedly mitigates renal fibrosis in

the UUO model, and then the introduction of exogenous NETs has

been shown to exacerbate the pathological condition (117).

Additionally, a subset of neutrophils characterized by siglec-F+

expression has been identified as highly expressing pro-fibrotic

factors, and the transplantation of these cells has been observed

to promote the progression of fibrosis. This observation is

consistent across both lung and renal fibrosis, suggesting the

presence of a conserved fibrotic mechanism across different

organs (118).

In the context of hepatic fibrosis, neutrophil function exhibits

considerable context-dependency. In models of alcohol-associated

MASH, NETs and their associated enzymes, NE and proteinase 3,

play a direct role in driving the fibrotic process (119, 120).

Conversely, in chronic liver injury induced by carbon

tetrachloride (CCl4), NETs mediated by PAD4 exert a limited

influence on the extent of fibrosis, suggesting the involvement of

alternative activation pathways (62). Furthermore, during the

resolution phase of inflammation, neutrophils can facilitate the

transition of macrophages to a pro-repair phenotype through

mediators such as microRNA-223, thereby exerting an anti-

fibrotic effect (121).

In the context of cardiac fibrosis, the functionality of

neutrophils exhibits a distinct temporal dependency. Post-acute

myocardial infarction (MI), neutrophils play a crucial role in

facilitating reparative fibrosis during the initial stages (122).

Conversely, their sustained activation in the chronic phase,

notably through mechanisms such as NET-induced pyroptosis

and the subsequent fibrotic responses in cardiac fibroblasts,

contributes to pathological remodeling and the progression to

heart failure (123).

Neutrophils are crucial in linking chronic injuries to fibrosis,

making them a promising target for fibrotic therapy, particularly by

inhibiting NET formation. However, two main challenges exist:

their dual roles in different organs, such as the liver, and the timing

of intervention, as seen in cardiac repair where early inhibition

might hinder healing. Future research should aim to identify

specific neutrophil functions and molecules across contexts to

develop precise, targeted treatments.
6 Concluding remarks and future
perspectives

Neutrophils, as pivotal effector cells within the innate immune

system, have been definitively identified as essential contributors to

the pathogenesis of pulmonary fibrosis. They play a direct role in

promoting inflammation, tissue damage, and the irreversible

fibrotic cascade through mechanisms such as tissue infiltration,

the release of NE, and the formation of NETs. The intricate

interactive network among neutrophils, alveolar macrophages,

epithelial cells, and fibroblasts exacerbates and sustains a
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deleterious cycle of “inflammation-damage-fibrosis,” thereby

complicating therapeutic interventions. Clinical data suggest that

neutrophil counts and NET-associated components are valuable

biomarkers for disease evaluation and prognosis. Notably,

therapeutic approaches targeting neutrophil-mediated pathways,

including NE inhibition, PAD4 blockade, or disruption of the

C5a-C5aR1 axis, have shown significant anti-fibrotic effects in

preclinical models, underscoring their potential as innovative

therapeutic targets.

Future research should strategically concentrate on several

critical areas. Firstly, it is imperative to elucidate the dynamic

functional roles of neutrophils and their upstream regulatory

networks across various disease stages to facilitate stage-specific

interventions. Secondly, a comprehensive understanding of the

neutrophil’s central role within the immune-stromal-epithelial

axis is required, with particular emphasis on how their

interactions with adaptive immune cells influence the fibrotic

environment. From a therapeutic standpoint, efforts must be

intensified to expedite the translation of targeted agents from

bench to bedside and to investigate the potential synergistic

effects of combining these novel therapies with existing anti-

fibrotic drugs.

In conclusion, neutrophils represent a crucial focal point in the

understanding and treatment of pulmonary fibrosis. Future

investigations should not only enhance our mechanistic insights

but also prioritize the development of robust translational pathways

to the clinic, ultimately providing new hope for patients.
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Glossary

PF pulmonary fibrosis
Frontiers in Immunol
ECM excessive extracellular matrix
ILD interstitial lung disease
IPF particularly idiopathic pulmonary fibrosis
NETs neutrophil extracellular traps
TGF-b1 transforming growth factor-beta 1
NLR neutrophil-lymphocyte ratio
C5aR1 complement component 5a receptor 1
CXCL14 C-X-C motif chemokine ligand 14
IL-36g interleukin-36 gamma
COPD chronic obstructive pulmonary disease
fMLP N-formylmethionyl-leucyl-phenylalanine
G-CSF granulocyte colony-stimulating factor
LRG1 leucine-rich alpha-2-glycoprotein 1
FPR1 formyl peptide receptor 1
LPS lipopolysaccharide
ROS reactive oxygen species
NADPH nicotinamide adenine dinucleotide phosphate
PSM phenol-soluble modulin
FPR2 formyl peptide receptor 2
cGAS-STING cyclic GMP-AMP synthase- stimulator of interferon genes
CR3 complement receptor 3
MPO myeloperoxidase
NE neutrophil elastase
NGAL neutrophil gelatinase-associated lipocalin
MMP matrix metalloproteinase
ERK1/2 extracellular signal-regulated kinase 1/2
CF cystic fibrosis
NLRP3 NOD-like receptor family, pyrin domain containing 3
COVID corona virus disease
IL-1b interleukin-1 beta
IL-18 interleukin-18
TGF-b transforming growth factor-beta
KC keratinocyte chemoattractant
ogy 15
CXCL1 C-X-C motif chemokine ligand 1
PM particulate matter
VIP vasoactive intestinal peptide
CXCL2 C-X-C motif chemokine ligand 2
THP-1 human acute monocytic leukemia cell line
HOCl hypochlorous acid
SSc systemic sclerosis
GPVI glycoprotein VI
CD40-CD40L CD40 - CD40 ligand
BALF bronchoalveolar lavage fluid
IL-17A interleukin-17A
SWCNT single-walled carbon nanotube
C5a-C5aR1 complement component 5a - c5a receptor 1
TNF-a tumor necrosis factor-alpha
BBP benzyl butyl phthalate
BLM bleomycin
a-SMA alpha-smooth muscle actin
EMT epithelial-mesenchymal transition
AM alveolar macrophage
SLE systemic lupus erythematosus
NSIP Nonspecific Interstitial Pneumonia
CNN2 calponin 2
PAD4 peptidyl arginine deiminase 4
TLR9 toll-like receptor 9
MAILD murine myositis-associated interstitial lung disease
CINC-1 cytokine-induced neutrophil chemoattractant 1
Del-1 developmental endothelial locus-1
Cap Capsaicin
GMSCs gingiva-derived mesenchymal stem cells
MMP-9 matrix metalloproteinase-9
LPA lysophosphatidic acid
APL1 lysophosphatidic acid receptor 1
PD-1 programmed cell death protein 1.
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